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Abstract
This paper investigates the behaviour of the quantum correlations for an accelerated two-
qubit system during its interaction with a classical stochastic field, utilizing the Wigner 
function and concurrence. The non-classical behaviour is indicated by negative values of 
the Wigner function, while the degree of entanglement is demonstrated by the concurrence. 
To consider acceleration and interaction with a common or independent environment, we 
discard the single-mode approximation and utilize the Unruh construction of the quantum 
field mode in our analysis. Our results suggest that coherence suppression is caused by the 
acceleration effect, noise strength, and noise frequency. Through an examination of quan-
tum concurrence, this study analyses the level of quantum entanglement that corresponds 
positively with negative values of the Wigner function. The findings indicate that coher-
ence degradation in the initial system is reduced when observers interact independently 
with their environments, as opposed to interacting with a common environment. Addition-
ally, the acceleration of both observers has an impact on coherence reduction. During sys-
tem evolution, the Wigner function displays collapse and reappearance behaviour, while 
quantum entanglement undergoes local collapse and revival phenomena. Notably, common 
noise situations exhibit more rapid variation in both the Wigner function and entanglement 
compared to independent noise configurations.
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1  Introduction

The relation between the quasi-probability distributions and quantum correlations remains 
a significant issue in quantum information theory (Ferrie 2011; McConnell et  al. 2015; 
Arkhipov et al. 2018). Numerous studies have shown that probabilistic quasi-distributions 
represent a composite measure, in which their positive values represent the classical corre-
lations, whereas the negative values indicate the quantum correlations (Abd-Rabbou et al. 
2019; Franco and Penna 2006). These distribution functions are widely used in the compu-
tation of quantum correlations within the classical dynamics of a nano-mechanical resona-
tors (Mohamed and Metwally 2018). It also may be used to illuminate the quantum density 
state within the visualization of phase space (Miquel et al. 2002). In fact, there are three 
discrete quasi-probabilistic functions that are reconstructed in s-parametrized form: Husimi 
Q-function (Husimi 1940), Wigner function (Wigner et al. 1997; Chumakov and Klimov 
2002) and Glauber-Sudarshan P-function (Sudarshan 1963), with s = −1, 0, 1 respectively. 
What is more, there are different constructions of quasi-probability in accordance with the 
phase space, such as the radiation field (Moya-Cessa and Knight 1993), the SU(2) angular 
momentum basis via atomic coherent states (Agarwal 1981; Klimov et al. 2017), the SU(3) 
Lie algebra (Rowe et al. 1999), and SU(1,1) (Seyfarth et al. 2020). Of particular signifi-
cance are the negative values of the Wigner function, which not only depict the entangle-
ment and decoherence of the quantum system, but also play an integral role in quantum 
state tomography (López and Paz 2003; Dahl et al. 2006; Paz et al. 2004).

The Wigner function has been used to investigate the 2N × 2N discrete phase space of N 
orthogonal quantum systems, as demonstrated in Gibbons et al. (2004). For different quan-
tum systems, the Wigner function has been widely discussed, including superconducting 
flux qubits (Reboiro et al. 2015), the accelerated two-qubit state in the presence of noise 
channels (Abd-Rabbou et al. 2019), tripartite W-state (Abd-Rabbou et al. 2020), GHZ state 
(Metwally et al. 2019), two non-equivalent resonators (Abgaryan et al. 2021), and a cavity 
coupled to atomic system (Mavrogordatos 2021). In addition, using Wigner distribution 
as a measure of quantum correlation for tripartite GHZ and W states have been studied 
experimentally (Ciampini et al. 2022).

From the perspective of physicists, quantum regimes are highly susceptible to inter-
action and environmental influence. Therefore, the impact of different environments on 
quantum correlations has garnered the attention of scientists. Studies have been conducted 
on the effect of acceleration processes on the entanglement of two-qubit and qubit-qutrit 
systems (Tian et  al. 2012; Metwally 2017, 2019). Additionally, the influence of dephas-
ing noisy environments on the information of two-qubit states has been examined (Yu and 
Eberly 2003; Karlsson et al. 2016). Recently, various classical noise channels have become 
an important factor in influencing quantum systems as they approach real-world scenarios 
(Lo and Chau 1999; Smith et  al. 2011). The dynamics of quantum coherence, quantum 
correlation, and the degree of estimation in the presence of a classical coloured noise chan-
nel have been investigated (Khan and Shamirzaie 2020; Metwally and Ebrahim 2020). The 
quantum skew information and quantum coherence of an accelerated two-qubit system 
with random telegraph noise have been studied (Abd-Rabbou et al. 2022). The dynamics of 
entanglement, coherence, and mixedness of a tripartite quantum state have been analysed 
under power-law and random telegraph noises (Rahman et al. 2022).

In this paper, our aim is to investigate how the Wigner function can indicate entangle-
ment in both Markovian and non-Markovian environments for an accelerated two-qubit 
system. To achieve this, we will not rely on the single mode approximation and instead 
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transform the Minkowski quantum field modes into the Rindler ones. We will model the 
effect of the environment using classical random telegraph noise, which can be applied to 
qubits independently or commonly. As is well known, a density operator’s non-separability 
is characterized by negative elements in its Wigner function. This negativity can serve as 
an indicator of entanglement in a two-qubit system. The paper is structured as follows: 
Sect. 2 presents the physical model of the quantum system and reviews essential tools for 
accelerating systems. In Sect. 3, we introduce analytical forms of the quasi-probability dis-
tributions, namely the Wigner function and quantum concurrence. Section 4 is dedicated 
to constructing density operators in various scenarios. In Sect. 5, we provide explicit forms 
of the Wigner function and concurrence as measures of quantum entanglement for the 
mentioned density operators. We investigate their behaviours for accelerated systems and 
highlight the effects of noise, acceleration, and discarding the single-mode approximation. 
Finally, in Sect. 6, we summarize our results.

2 � Quantum correlation measures

In this section, we will provide a mathematical review of the concurrence and negative 
values of the Wigner function, which may serve as a suitable measure of quantum correla-
tions. Let us consider a density operator 𝜚̂AB with an X-structure. In the computational basis 
{�00⟩, �01⟩, �10⟩, �11⟩} , 𝜚̂AB can be expressed as follows,

where �ij are corresponding components in the computational basis.

2.1 � Concurrence

As it is widely recognized, the entanglement produced between two particles, denoted as A 
and B, can be conveniently quantified by means of concurrence. Specifically, the concur-
rence for the X-structure of a density operator 𝜚̂AB is defined as follows (Hill and Wootters 
1997),

The function C is constrained to the interval [0, 0.5]. When C = 0 , the density operator 𝜚̂AB 
is completely separable, whereas it attains maximum entanglement at C = 0.5.

2.2 � Wigner function

To capture non-classical correlations that go beyond entanglement, we will utilize the 
negative values of the Wigner function. Also, constructing the atomic Wigner probability 
distribution in Su(2) algebra for a two-qubit system can be provided valuable insights into 
the nature of non-classical correlations beyond entanglement. For a two-qubit system, the 
atomic Wigner distribution can be defined as (Agarwal 1981),

(1)
𝜚̂
AB

= 𝜌11�00⟩⟨00� + 𝜌22�01⟩⟨01� + 𝜌33�10⟩⟨10�
+ 𝜌44�11⟩⟨11� + (𝜌14�00⟩⟨11� + 𝜌23�01⟩⟨10� + H.C.),

(2)C = max[0, ��14� −
√
�22�33, ��23� −

√
�11�44].
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here Yi
l,m
(�,�) are the spherical harmonics functions, and L̂(i)

L,m
 are the orthogonal irreduc-

ible tensor operators in 1
2
-spin representation are given by:

where C
1

2
,i�

1

2
,i;L,−m

 are the Clebsch-Gordon coefficients. Here L̂(i)
L,m

 for our case can be calcu-

lated as:

After some straightforward calculation, one can get the Wigner function for the X-state (6) 
in 1

2
-spin representation as,

where the functions �ij are defined by the following spherical harmonics,

Via substituting the spherical harmonics with their values in eq. (4), and take the negative 
values of the Wigner function, one can obtain the atomic Wigner function of X-structure 
as,

For a two-qubit system, the function W𝜌̂(𝜃,𝜙, t) ∈ [−0.5, 0) , where W𝜌̂(𝜃,𝜙, t) = −0.5 rep-
resents a maximally quantum correlation.

(3)W𝜌̂(𝜃,𝜙) = 2𝜋 Tr

[
𝜚̂AB

( ⨂

i∈{a,b}

(
L̂
(i)

0,0
Y

(i)

0,0
(𝜃,𝜙) +

1∑

n=−1

L̂
(i)

1,n
Y

(i)

1,n
(𝜃,𝜙)

))]
,

L̂
†(i)

L,m
= (−1)m

�
2L+1

2

1

2�

i,i�=−
1

2

C

1

2
,i�

1

2
,i;L,−m

� 1
2
, i�⟩⟨ 1

2
, i�

L̂i
0,0

=
1√
2
(�0⟩i⟨0� + �1⟩i⟨1�), L̂i

1,0
=

−1√
2
(�0⟩i⟨0� − �1⟩i⟨1�),

L̂i
1,−1

= �1⟩i⟨0� = −L̂i
†

1,1

(4)
W𝜌̂(𝜃,𝜙) = 2𝜋

[
𝜌11𝛬

2
11
+
(
𝜌22 + 𝜌33

)
𝛬11𝛬00 + 𝜌44𝛬

2
00

+
(
𝜌23𝛬01𝛬10 + 𝜌14𝛬

2
01
+ H.C.

)]
.

�11 =
1√
2
(Y0,0(�,�) − Y1,0(�,�)), �01 = −Y1,1(�,�),

�10 = Y1,−1(�,�), �00 =
1√
2
(Y0,0(�,�) + Y1,0(�,�)).

(5)

W𝜌̂(𝜃,𝜙, t) = min

�
0,

1

4

�
1 + 2

√
3 cos 𝜃(𝜌11 − 𝜌44) + 3 cos2 𝜃(𝜌11 − 𝜌22 − 𝜌33 + 𝜌44)

+ 6 sin
2 𝜃(𝜌23 + 𝜌14 cos 2𝜙)

��
.
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3 � The basis formalism and the physical models

In this section, we present the fundamental formalism for studying the dynamics of quan-
tum correlations between two observers, Alice and Bob, whose qubits are being subjected 
to interactions with their respective environments while one or both of them undergo uni-
form acceleration relative to an inertial coordinate system. We assume that each observer 
possesses a qubit and that their collective quantum state is initially prepared in a mixed 
state ( t = 0 and prior to any quantum information task) with a density matrix of the follow-
ing form,

where A, B refer to Alice and Bob, respectively, ��⟩AB =
1√
2
(�00⟩ + �11⟩) , 1 is identity 

matrix on a four dimensional Hilbert space and x ∈ [0, 1] is a measure for the purity of the 
state. Moreover, we ascribe 0’s and 1’s as the occupation of a fermionic quantum field, 
with specific energy E and momentum P. As outlined in the Introduction, our objective is 
to examine classical and quantum correlations among accelerating observers. Therefore, 
we assume that Bob and/or Alice uniformly accelerate with respect to an inertial observer 
after sharing the qubits. To investigate scenarios where some observers accelerate, quanti-
zation in non-inertial frames becomes necessary. Essentially, this involves quantizing the 
quantum field in non-inertial frames. It is widely recognized that an observer in a non-
inertial frame with constant proper acceleration a perceives the vacuum state of the field as 
a thermal distribution of field quanta, which is known as the Unruh effect (Unruh 1976). 
This phenomenon has been extensively studied in the literature. The word line of an 
observer moving with constant proper acceleration is a two-fold hyperbolic curve, as illus-
trated in Figure  1 of reference (Bruschi et  al. 2010). These hyperbolas are distinct and 
causally disconnected, located in two separate regions known as the right and left Rindler 
wedges. The right hyperbolic curve corresponds to the wordline of a real observer, while 
the left one corresponds to that of a fictitious observer. For accelerating observers, the 
appropriate basis for quantizing field modes is the Rindler basis (Takagi 1986), rather than 
the Minkowski or Unruh basis used by inertial observers. If the (anti)particle operators for 
Minkowski, Rindler and Unruh basis are (aM

i
, bM

i
) , (aΣ

i
, bΣ

i
) and (AR

i
,BR

i
), respectively, 

where Σ = I, II are two wedges of Rindler coordinates and R = R, L are two independent 
basis for Unruh modes, then these modes are related by Bogoliubov transformations as 
(Bruschi et al. 2010; Takagi 1986):

Here �Σ
ik

 and �Σ
ik

 are the Bogoliubov coefficients, and the parameter r is related to the 
acceleration, a through tan r = e−��c∕a where � is the mode frequency which accelerating 
observer measures and c is the speed of light. The Unruh one particle creation operator is a 
combination of two contribution of Left and Right Unruh operators:

(6)�AB(0) = x��⟩AB⟨�� + (1 − x)

4
1,

(7)aM
i
=∫

∞

0

(�I∗

ik
aI
k
+ �I ikb

I†

k
+ �II∗

ik
aII
k
+ �II

ik
a
II†

k
) dk

(8)AR
i
= cos raI

i
+ sin rb

II†

i

(9)AL
i
= cos raII

i
− sin rb

I†

i
.
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In Eq. (10), � and � are complex numbers satisfying the condition |�|2 + |�|2 = 1 . By suit-
ably localized Minkowski modes one can get the desired narrow peak of Unruh modes 
which are themselves related to single modes of Rindler basis. This setting just corresponds 
to � = 1 (and hence � = 0 ), and is known as single mode approximation (SMA).

The Bogoliubov transformations between filed operators enable us to express the vacuum 
�0k⟩+M and the first excited state �1k⟩+M of the Dirac filed in Minkowski basis for a specific 
k-mode in terms of Rindler basis. Theses transformations are:

It has been observed that Minkowski states can be represented using two separate Hilbert 
spaces for two causally disconnected regions, namely I and II, with positive and negative 
wave modes. The region that is inaccessible to the observer must be traced over. In our 
analysis, we consider the scenario where either one (Bob’s qubit) or both observers are 
simultaneously undergoing acceleration. The restriction of the state to the region I of Rin-
dler coordinates results in the loss of prepared coherence, leading to a mixed state.

When only Bob accelerates, the density matrix (6) of bipartite system in the computational 
basis is expressed as:

where �◦
ij
 are calculated as:

Here, rb denotes the acceleration parameter of Bob, and a asterisk over any parameters 
denotes the complex conjugation. A bar over each observer slat in this and subsequent sub-
sections, implies that this partner accelerates.

If we assume that Alice’s and Bob’s qubits are accelerated collectively by the parameters 
of ra and rb , respectively. The resulting density matrix of the bipartite system for the accessible 
region of each observer in Rindler coordinates can be expressed as follows:

where �∙
ij
 are calculated as:

(10)A
U†

i
= �A

R†

i
+ �A

L†

i

(11)

�0
k
⟩+
M

= cos2 r�0
k
⟩+
I
�0−k⟩−II�0−k⟩

−
I
�0

k
⟩+
II
− sin r cos r�0

k
⟩+
I
�0−k⟩−II�1−k⟩

−
I
�1

k
⟩+
II

+ sin r cos r�1
k
⟩+
I
�1−k⟩−II�0−k⟩

−
I
�0

k
⟩+
II
− sin

2
r�1

k
⟩+
I
�1−k⟩−II�1−k⟩

−
I
�1

k
⟩+
II

�1
k
⟩+
M

= �
�
cos r�1

k
⟩+
I
�0−k⟩−II�0−k⟩

−
I
�0

k
⟩+
II
− sin r�1

k
⟩+
I
�0−k⟩−II�1−k⟩

−
I
�1

k
⟩+
II

�

+ �
�
cos r�0

k
⟩+
I
�0−k⟩−II�1−k⟩

−
I
�0

k
⟩+
II
+ sin r�1

k
⟩+
I
�1−k⟩−II�0−k⟩

−
I
�1

k
⟩+
II

�

(12)
𝜌AB̄ = 𝜌◦

11
�00⟩⟨00� + 𝜌◦

22
�01⟩⟨01� + 𝜌◦

33
�10⟩⟨10� + 𝜌◦

44
�11⟩⟨11� + (𝜌◦

14
�00⟩⟨11� + H.C.),

(13)

�◦
11

=
1

4
cos(r

b
)2((x − 1)|�|2 + 2), �◦

22
=

1

4
(2 sin(r

b
)2 − cos(r

b
)2(x − 1)|�|2),

�◦
33

= −
1

4
cos(r

b
)2((x + 1)|�|2 − 2), �◦

44
=

1

4
(cos(r

b
)2(x + 1)|�|2 + 2 sin(r

b
)2)

�◦
14

=
1

2
x�

∗ cos(r
b
).

(14)
𝜌ĀB̄ = 𝜌∙

11
�00⟩⟨00� + 𝜌∙

22
�01⟩⟨01� + 𝜌∙

33
�10⟩⟨10� + 𝜌∙

44
�11⟩⟨11� + (𝜌∙

14
�00⟩⟨11� + H.C.),
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4 � Effect of a classical stochastic noise

Now, we assume that both qubits (specifically, the accessible sector of them) are subjected 
to interaction with their respective environments. As previously mentioned, we define the 
environment as a classical stochastic field that manifests as random telegraph noise. The 
Hamiltonian H(t) that characterizes the evolution of a bipartite system interacting with a 
classical environment over a duration of time t can generally be expressed as,

where 1 represents the identity matrix on a two dimensional Hilbert space and HA(B) is a 
single-qubit Hamiltonian describing its dynamics in the presence of noise which can be 
explicitly written as,

Here, � represents the energy of a qubit in the absence of noise. The qubit-environment 
coupling strength is denoted by gi ( i = A,B ) and is measured in units of inverse time. Addi-
tionally, �A(B) is a characteristic parameter of classical noise that varies randomly. The 
Pauli spin flip matrix, represented by �x , reflects the impact of classical noise on the qubit. 
As such, this Hamiltonian can effectively describe the stochastic time evolution of a quan-
tum system, as a result the qubit’s evolved state to acquire a random phase represented by 
Φi(t) = −� ∫ t

0
�i(t

�)dt� . In this paper, the parameter �i(t) represents random telegraph noise 
(RTN), which randomly fluctuates between ±1 at a rate of � . The second-order statistic of 
RTN is determined by its auto-correlation function K(t, t�) , which is given by,

where ⟨⋯⟩ denotes the average over all possible realizations of the process �(t) . The col-
lective impact of the noise on the evolved state can be determined by averaging the result-
ing density matrix over Φi(t) using,

here, U(�A,�B, t) is the unitary operator for time evolution of the Hamiltonian (16) can 
be expressed as U(�A,�B, t) = exp [−i ∫ H(t)dt] , where ℏ = 1 . Depending on the switch-
ing rate and coupling strength with the environment, the noise behavior can exhibit either 

(15)

�∙
11

=
1

4
cos2(r

a
) cos2(r

b
)
(
(x + 1)|�|4 − 4|�|2 + 4

)
,

�∙
22

= −
1

4
cos2(r

b
)
(
(x + 1)|�|4 cos2(r

a
) − 2|�|2 cos(2r

a
) − 4 sin

2(r
a
)
)
,

�∙
33

= −
1

4
cos2(r

a
)
(
(x + 1)|�|4 cos2(r

b
) − 2|�|2 cos(2r

b
) − 4 sin

2(r
b
)
)
,

�∙
44

=
1

8

(
2(x + 1)|�|4 cos2(r

a
) cos2(r

b
) + 2|�|2(cos(2r

a
) cos(2r

b
) + 1)

+8 sin2(r
a
) sin2(r

b
)
)
,

�∙
14

=
1

2
x �

∗2 cos(r
a
) cos(r

b
).

(16)H(t) = HA ⊗ 1 + 1⊗HB,

(17)HA(B) = �1A(B) + gA(B)�A(B)(t)�x,A(B).

(18)K(t, t�) =
⟨
�(t) ⋅ �(t�)

⟩
= e−2�t,

(19)�channel
AB

(t) =
⟨
U(�A,�B, t)�ABU

†(�A,�B, t)
⟩
,
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Markovian or non-Markovian characteristics. For Γ ≡ 𝛾∕g ≫ 1 , which is referred to as the 
weak coupling regime, a Markovian regime is observed. Conversely, for Γ ≡ 𝛾∕g ≪ 1 , 
known as the strong coupling regime, non-Markovian behavior is observed (Bordone et al. 
2013). In this study, we consider two cases: (i) both qubits interact with a common environ-
ment, where �A = �B = � and gA = gB = g ; and (ii) each observer interacts independently 
with their own environment. In the subsequent sections, we present the density matrix of 
systems that correspond to different scenarios of accelerated states in the presence of clas-
sical stochastic noise.

4.1 � The accelerated systems are interacted with a stochastic common environment

By utilizing the computational outlined of accelerated systems in Sect. 3, we can derive the 
density matrix of a system subject to varying acceleration within a shared environment. Fur-
thermore, we will investigate the impact of this noise channel on both entanglement and the 
negative values of atomic Wigner function.

4.1.1 � If Bob’s qubit is only accelerated

Firstly, it is assumed that Bob’s qubit is subjected to acceleration and the system as a whole is 
compelled to interact with a stochastic common environment. The resulting density matrix of 
the system at any given time t can be obtained as follows,

with array components as:

where Ai are given by:

Dn(t, �) corresponds to the average phase factor ein� , which appears through time evolution 
and it is calculated as (Abel and Marquardt 2008):

where �ng =
√
��2 − (ng)2� . The Wigner function Eq. (5) in this case is given by,

(20)
𝜌com
AB̄

(t) = 𝜌c1
11
�00⟩⟨00� + 𝜌c1

22
�01⟩⟨01� + 𝜌c1

33
�10⟩⟨10� + 𝜌c1

44
�11⟩⟨11�

+ (𝜌c1
23
�01⟩⟨10� + 𝜌c1

14
�00⟩⟨11� + H.C.),

�c1
11

= A1 + A2 D2(�, �) + A3 D4(�, �), �c1
22

= A4 − A2 D2(�, �) − A3 D4(�, �),

�c1
33

= A4 + A2 D2(�, �) − A3 D4(�, �), �c1
44

= A1 − A2 D2(�, �) + A3 D4(�, �),

�c1
14

= A5 + A6 D2(�, �) + A3 D4(�, �), �c1
23

= A3

(
1 −D4(�, �)

)
,

A1 =
1

8

(
x|�|2 cos2(r

b
) − x Re[�] cos(r

b
) + 2

)
, A2 =

1

4

(
cos(2r

b
) − cos2(r

b
)|�|2

)

A3 =
1

8

(
x|�|2 cos2(r

b
) + x Re[�] cos(r

b
), A4 =

1

8

(
− x|�|2 cos2(r

b
) + x Re[�] cos(r

b
) + 2

)

A5 =
1

8
x cos(r

b
)
(
3Re[�] − cos(r

b
)|�|2

)
, A6 =

1

2
− ix Im[�] cos(r

b
)

(21)Dn(t, 𝛾) =

⎧
⎪
⎨
⎪⎩

e−𝛾t
�
cosh 𝛿ngt +

𝛾

𝛿ng
sinh 𝛿ngt

�
𝛾 > ng

e−𝛾t
�
cos 𝛿ngt +

𝛾

𝛿ng
sin 𝛿ngt

�
𝛾 < ng
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In Fig.  1, we present the contour plot of the negative values of Wigner function of the 
output state (20) on the (�,�) plane. It is assumed that the initial state (6) is maximally entan-
gled state with x = 1 , the acceleration parameter rb = 0.1 , the scaled time � = � , Γ = 0.1 , and 
|�| = 1 . The negative values of the Wigner function are observed to form circular patterns 
around (�, �) = (�∕2,�∕2) and (�∕2, 3�∕2) , indicating that quantum correlation can be cap-
tured in these regions. Hence, we can choose suitable values of � and � at these points in the 
presence of the stochastic common environment to explore quantum correlation. Computa-
tional analysis reveals that the acceleration of the qubit results in a decrease in the lower limits 
of the Wigner function (Abd-Rabbou et al. 2019). We will provide a comprehensive explana-
tion of this phenomenon in the following section.

4.1.2 � If two qubits are accelerated simultaneously

Let us consider the accelerated two-qubit system with density matrix given by Eq. (14) is 
forced to interact with a classical stochastic common environment. The evolved density opera-
tor 𝜌com

ĀB̄
(t) at any time t can be calculated using Eq. (19) as follows,

(22)

W𝜌com
AB̄

(t) = min

�
0,

1

16
���2 cos2(r

b
)
�
4
√
3 cos(𝜃)D2(𝜏, 𝛾) − 3x cos2(𝜃)

�
cos(2𝜙)

�
D4(𝜏, 𝛾) − 1

�

− 3D4(𝜏, 𝛾) − 1
�
− 6x sin

2(𝜙)
�
D4(𝜏, 𝛾) − 1

��

−
3

4
x sin

2(𝜃)Im[�] cos(r
b
) sin(2𝜙)D2(𝜏, 𝛾)

+
1

16

�
4 − 4

√
3 cos(𝜃) cos(2r

b
)D2(𝜏, 𝛾)

�

−
3

16
x cos(r

b
)Re[�]

�
−
�
1 − cos2(𝜃)

�
cos(2𝜙)

�
D4(𝜏, 𝛾) + 3

�

+ cos2(𝜃)
�
3 − 3D4(𝜏, 𝛾)

�
+D4(𝜏, 𝛾) − 1

��

(23)
𝜌com
ĀB̄

(t) = 𝜌c2
11
�00⟩⟨00� + 𝜌c2

22
�01⟩⟨01� + 𝜌c2

33
�10⟩⟨10� + 𝜌c2

44
�11⟩⟨11�

𝜌c2
23
+ �01⟩⟨10�(𝜌c2

14
�00⟩⟨11� + H.C.),

Fig. 1   The contour plot of the 
Wigner function in (�,�) surface 
for the output state (20) with 
x = 1, � = �, Γ = 0.1, , r

b
= 0.1 , 

and � = 1
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where the elements are calculated as:

with

and

The negative Wigner function behaviour of the output density state (23) is illustrated 
in Fig. 2. A comparison between Figs. 1 and 2 highlight the impact of the Unruh effect 
on quantum correlations among observers. Specifically, the region with negative Wigner 
function values is more confined in Fig.  2 than in Fig.  1. Since the general form of 
Wigner function in this cases is complicated, so, we present Wigner function with sub-
stitution the values � = � = �∕2 . This choice for �, � can be justified numerically as 
depicted in Fig. 2.

For these values of � and � , the Wigner functions can gain the minimum values over 
the whole allowed range. With this remark, we can write,

�c2
11

= B1 + B2 D2(�, �) + B3 D4(�, �), �c2
22

= B4 + B5 D2(�, �) + B6 D4(�, �),

�c2
33

= B4 − B5 D2(�, �) + B6 D4(�, �), �c2
44

= B1 − B2 D2(�, �) + B3 D4(�, �),

�c2
14

= B7 + B8 D2(�, �) + B3 D4(�, �), �c2
23

= B3 − B3 D4(�, �),

B1 = b1 − b3 − b2 + b4, B2 =
−1

8
|�|2(cos(2ra) + cos(2rb) + 2) +

1

4
(cos(2ra) + cos(2rb))

B3 = b1 − b3 + b2 + b5, B4 = −B1, B5 =
1

8

(
|�|2 − 2

)
(cos(2ra) − cos(2rb))

B6 = −B3, B7 = −b1 + b3 + 3b2 − b5, B8 =
1

4
x
(
(�∗)

2 − �
2
)
cos(ra) cos(rb)

b1 =
1

8
(x + 1)|�|4 cos(ra)2 cos(rb)2, b2 =

1

16
x
(
(�∗)

2 + �
2
)
cos(ra) cos(rb),

b3 =
1

16
|�|2(cos(2ra)(2 cos(2rb) + 1) + cos(2rb)),

b4 =
1

16
(cos(2ra − 2rb) + cos(2(ra + rb)) + 4)

, b5 =
1

8
cos(2ra) cos(2rb),

Fig. 2   The contour plot of 
the Wigner function in (�,�) 
surface for the output state (23) 
with x = 1, � = �, Γ = 0.1, , 
r
a
= r

b
= 0.1 , and � = 1
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4.2 � The accelerated systems are interacted independently with their own 
stochastic environment

In this subsection, we assume that the subsystems are interacted independently with their 
own stochastic environments. In addition, either Bob’s qubit is individually accelerated or 
two qubits are accelerated simultaneously. So, we will treat these two cases in the follow-
ing, separately.

4.2.1 � If Bob’s qubit is only accelerated

When subsystems are brought to interact independently with their own stochastic environ-
ments, the initial density matrix (12) will evolve to:

with array components as:

where Ci are:

where D2(t, �i) is obtained from Eq. (21), and �1(2) refers to Alice (Bob)’s environment 
noise rate. The Wigner function in this case take the following form:

(24)

W𝜌com
ĀB̄

(t) = min

{
0,

3

16
|�|2(cos(2r

a
)(2 cos(2r

b
) + 1) + cos(2r

b
))
(
D4(𝜏, 𝛾) − 1

)

+
3

8
(x + 1)|�|4 cos(r

a
)2 cos(r

b
)2
(
1 −D4(𝜏, 𝛾)

)

+
3

8
x cos(r

a
) cos(r

b
)
(
Im[�]2 − Re[�]2

)(
D4(𝜏, 𝛾) + 1

)

−
3

4
(cos(r

a
) − cos(r

b
))2

(
D4(𝜏, 𝛾) + 1

)
+

5

8
−

3

8
D4(𝜏, 𝛾)

}

𝜌in
AB̄
(t) = 𝜌d1

11
�00⟩⟨00� + 𝜌d1

22
�01⟩⟨01� + 𝜌d1

33
�10⟩⟨10�

+ 𝜌d1
44
�11⟩⟨11� + (𝜌d1

23
�01⟩⟨10�𝜌d1

14
�00⟩⟨11� + H.C.),

�d1
11

=
1

4
(1 + C1 D2(�, �2) + C2 D2(�, �1) D2(�, �2)),

�d1
22

=
1

4
(1 − C1 D2(�, �2) − C2 D2(�, �1) D2(�, �2))

�d1
33

=
1

4
(1 + C1 D2(�, �2) − C2 D2(�, �1) D2(�, �2))

�d1
44

=
1

4
(1 − C1 D2(�, �2) + C2 D2(�, �1) D2(�, �2))

�d1
14

= C3

(
1 +D2(�, �1) D2(�, �2)

)
+ C4

(
D2(�, �1) +D2(�, �2)

)

�d1
23

= C3

(
1 −D2(�, �1) D2(�, �2)

)
+ C4

(
D2(�, �1) −D2(�, �2)

)

(25)
C1 = cos(2r

b
) − |�|2 cos(r

b
)2, C2 =

1

4
x|�|2 cos(r

b
)2,

C3 =
1

4
xRe[�] cos(r

b
), C4 = −

i

4
x Im[�] cos(r

b
)
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Similarly to Fig. 1, the contour plot of the Wigner function for the accelerated state 
(Eq. 25) is presented in Fig. 3. In this case, Bob’s qubit is only accelerated with rb = 0.1 , 
and the decoherence parameters of both baths are equal, with Γa = Γb = 0.1 . The mini-
mum bounds of the Wigner function are lower than those displayed in Fig. 1, indicating 
that the independent stochastic environment dissipates quantum correlation faster than 
the common environment. Furthermore, maximum bounds of quantum correlation accu-
mulate at (�, �) = (�∕2,�∕2) and (�∕2, 3�∕2) , making these points suitable for captur-
ing the quantum correlation of the state in the Wigner function.

4.2.2 � If two qubits are accelerated simultaneously

Beginning from the initial density matrix Eq. (14), the evolved density matrix is calcu-
lated as:

with

(26)

W𝜌in
AB̄
(t) = min

�
0,

1

4
���2 cos(𝜃) cos(r

b
)2D2

�
𝜏, 𝛾2

��
3x cos(𝜃)D2

�
𝜏, 𝛾1

�
+
√
3

�

−
3

8
x sin

2(𝜃) Im[�] cos(r
b
) sin(2𝜙)

�
D2

�
𝜏, 𝛾1

�
+D2

�
𝜏, 𝛾2

��

+
1

8

�
2 − 2

√
3 cos(𝜃) cos(2r

b
)D2

�
𝜏, 𝛾2

��

+
3

8
x sin

2(𝜃) cos(r
b
)Re[�]

�
cos(2𝜙)

�
D2

�
𝜏, 𝛾1

�
D2

�
𝜏, 𝛾2

�
+ 1

�

−D2

�
𝜏, 𝛾1

�
D2

�
𝜏, 𝛾2

�
+ 1

��

(27)
𝜌in
ĀB̄
(t) = 𝜌d2

11
�00⟩⟨00� + 𝜌d2

22
�01⟩⟨01� + 𝜌d2

33
�10⟩⟨10� + 𝜌d2

44
�11⟩⟨11�

+ (𝜌d2
23
�01⟩⟨10� + H.C.) + (𝜌d2

14
�00⟩⟨11� + H.C.),

Fig. 3   The contour plot of the 
Wigner function in (�,�) surface 
for the output state (25) with the 
same parameters as displayed in 
Fig. 1
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where Gi are:

Likewise, Fig.  4 illustrates that the Wigner function is centered at identical points 
for the preceding three scenarios. Here, we accelerated the initial two-qubit system and 
allowed them to interact independently with their respective stochastic noise. The center 
orange region is smaller than in the previous three cases, indicating independent envi-
ronment decoherence of non-classical correlation. Furthermore, acceleration parameters 
exacerbate this decoherence.

For the output state (27), we obtained the Wigner function by substituting 
� = � = �∕2 . This parameter selection is justified by Fig. 4, which indicates that these 
specific values of � and � correspond to the minimum values of the Wigner function. 
Consequently, the Wigner function reads,

�d2
11

=
1

4
(1 + G1 D2(�, �1) + G2 D2(�, �2) + G3 D2(�, �1) D2(�, �2))

�d2
22

=
1

4
(1 + G1 D2(�, �1) − G2 D2(�, �2) − G3 D2(�, �1) D2(�, �2))

�d2
33

=
1

4
(1 − G1 D2(�, �1) + G2 D2(�, �2) − G3 D2(�, �1) D2(�, �2))

�d2
44

=
1

4
(1 − G1 D2(�, �1) − G2 D2(�, �2) + G3 D2(�, �1) D2(�, �2))

�d2
14

= (G4 + G5 D2(�, �1) + G5 D2(�, �2) + G4 D2(�, �1) D2(�, �2))

�d2
23

= (G4 + G5 D2(�, �1) − G5 D2(�, �2) − G4 D2(�, �1) D2(�, �2))

(28)

G1 =
1

4
cos(2r

b
) −

1

4
|�|2 cos(r

b
)2, G2 =

1

4
cos(2r

a
) −

1

4
|�|2 cos(r

a
)2

G3 =
1

4
(x + 1)|�|4 cos(r

a
)2 cos(r

b
)2 −

1

8
|�|2(cos(2r

a
)(2 cos(2r

b
) + 1) + cos(2r

b
))

+
1

4
cos(2r

a
) cos(2r

b
)

G4 =
1

8
x

(
(�∗)

2 + �
2

)
cos(r

a
) cos(r

b
), G5 =

1

8
x

(
(�∗)

2 − �
2

)
cos(r

a
) cos(r

b
)

Fig. 4   The contour plot of the 
Wigner function in (�,�) surface 
for the output state (27) with the 
same parameters as displayed in 
Fig. 2
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5 � The quantum correlations and the entanglements: the results

Since the existence of quantum correlation in a system can be designated by the negative 
corresponding Wigner function, it is helpful to determine the sign of these functions. By 
solving the Eqs. (22, 24, 26, 29) in term of x, we get the following roots for the Wigner 
functions:

where we have abbreviated W𝜌com
AB̄

(t) , W𝜌com
ĀB̄

(t) , W𝜌in
AB̄
(t) and W𝜌in

ĀB̄
(t) , by W1,  W2,  W3   and W4 , 

respectively. We will also use this for easiness hereafter. For the later convenient, we will 
denote C1, C2, C3, C4, as the corresponding concurrences for four cases in Sec. (4).

In order to demonstrate the efficacy of the Wigner function in elucidating quantitative 
correlations, appropriate figures will be presented for comparison with concurrence. Fig-
ure 5a exhibits the Wigner function ( W ) and concurrence ( C ) as a function of the initial 
state’s purity parameter x, for specific values of � , Γ , and r as indicated in the caption. 

(29)

W𝜌in
ĀB̄
(t) = min

{
0,

1

4

(
3x cos(ra) cos(rb)

(
Im[�]2 − Re[�]2

)
D2

(
𝜏, 𝛾1

)
D2

(
𝜏, 𝛾2

)
+ 1

)}

(30)

x
W1

0
=

4

3
(
2|�|2 cos2(r

b
)
(
D4(�, �) − 1

)
+ 2 cos(r

b
)Re[�]

(
D4(�, �) + 1

)) ,

x
W2

0
=
(
sec(r

a
) sec(r

b
)

(
6
(
1 −D4(�, �)

)(
|�|2 cos2(r

b
)
(
|�|2 cos2(r

a
) − cos(2r

a
)
)

+ cos(2r
b
)
(
cos(2r

a
) − |�|2 cos2(r

a
)
))

+ 4

))
∕

(
6|�|4 cos(r

a
) cos(r

b
)
(
D4(�, �) − 1

)
+ 3

(
Im[�]2 + Re[�]2

)(
D4(�, �) + 1

))
,

x
W3

0
=

sec(r
b
)

3Re[�]D2

(
�, �1

)
D2

(
�, �2

)

x
W4

0
=

sec(r
a
) sec(r

b
)

3
(
Re[�]2 − Im[�]2

)
D2

(
�, �1

)
D2

(
�, �2

) ,

Fig. 5   a Comparison of four situations of the Wigner functions and concurrences against x with the 
specified parameters � = �∕2, Γ = Γ1 = Γ2 = 0.05 , and r

b
= 0.3, r

a
= 0.4 and � = 1 . The inset attached 

shows the detail of the plots around x ≈ 0.4 , b the roots of the Wigner functions for four cases with 
Γ = Γ1 = Γ2 = 0.01, ra = rb, x = 0.95, � = �∕2,� = 1
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Throughout our discussion, we presume that the distribution angles are fixed at � = � =
�

2
 , 

where this point is related to the minimum value of the Wigner function in phase space. 
We consider the single mode approximation, � = 1 for now. Later we will discard this 
approximation, and discuss on its effect on the correlations between observers.

It is inferred that to maintain the initial quantum correlation among observers, the value 
of x must exceed a certain threshold. Figure  5a illustrates that the system’s interaction 
with the environment is crucial in characterizing the correlation for specific parameters. 
Although for small values of accelerations the common environment condition provides a 
greater amount of correlations between observers, but by increasing the acceleration, the 
Unruh effect plays a prominent role to suppress quantum correlations. Indeed, for arbitrary 
values of acceleration, the status of observers concerning the inertial reference frame is 
determinative. For systems with equal initial conditions and noise strength, those with only 
accelerating observers exhibit more significant correlations than those with both accelerat-
ing and non-accelerating observers, regardless of any imposed noise configuration. Under 
this conditions, the lower bounds of the functions W1 and W3 exceed those of W2 and W4 , 
respectively. This trend is also observed in the corresponding concurrences. The impact of 
acceleration on correlations becomes evident when comparing either W1 and W3 , or W2 
and W4 . Notably, when two observers accelerate simultaneously, the correlation decreases 
more significantly than when only one observer accelerates. Therefore, for a non-inertial 
frame, it is advisable to provide them with a collective environment. Pure states are neces-
sary to achieve high-quality quantum communication between both accelerating observers. 
To clarify the aforementioned statement, we have plotted the roots of the Wigner function 
for variable x, as given by Eq. (30), against the parameter rb in Fig. 5b. It is noteworthy that 
we have set ra = rb for both cases discussed in Sects. 4.2.2 and 4.1.2. Our analysis reveals 
that as the acceleration increases, a purer state should be shared among the observers to 
maintain correlation. Furthermore, in cases where there is an independent environment, 
decoherence effects are more pronounced, necessitating a pure initial density matrix.

A comparative study was conducted between the common and independent stochastic 
environments of accelerated states with respect to the acceleration parameter rb , as depicted 
in Fig. 6. Here, � = � and Γ = Γ1 = Γ2 = 0.05 . As Bob’s qubit is only accelerated, Fig. 6a 
illustrates that the functions W1 , W3 , C1 , and C3 degrade to a non-zero value at the infi-
nite acceleration limit ( rb →

�

4
 ). The common noise configuration is more challenging to 

overcome than the independent noise configuration, where C1 is greater than C3 . Wigner’s 

Fig. 6   The effect of common or independent noise configurations on the quantum correlations against the 
acceleration parameter r

b
 , with the parameters � = �, x = 0.9 Γ = Γ1 = Γ2 = 0.05 , a only Bob’s qubit is 

accelerated ( r
a
= 0 ); the thick line correspond to � = 1 and the thin line to � = 0.85 , b two qubits are accel-

erated with r
a
= 0.3 or r

a
= r

b
 which have specified in the corresponding legend; � = 1 has been considered
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function provides an excellent indication of quantum correlation. Furthermore, the impact 
of disregarding the single mode approximation on the correlations of the states can be 
inferred from the blue curves in the same sub-figure. These curves correspond to a value 
of � = 0.85 . We incorporate the contribution of spacetime modes that are inaccessible to 
construct the Unruh mode. Consequently, by tracing over these inaccessible region modes, 
we forfeit this contribution and consequently more prepared correlations are lost due to 
the Unruh effect. To investigate the Unruh effect on systems with accelerating observers, 
Fig. 6b has been generated. The relevant quantities in this context are W2 , W4 , C2 , and C4 . 
As depicted in the figure, the quantum correlations and entanglements, namely W2 , W4 , 
C2 , and C4 , exhibit the deepest decay when both qubits are accelerated with identical values 
( ra = rb ), as compared to when only the Alice qubit is accelerated with a constant value 
( ra = 0.3 ). Moreover, it is observed that the decoherence effect of the common noise envi-
ronment is less pronounced than that of the independent environment.

To demonstrate the impact of different types of noise on the behavior of correlation 
functions with respect to the decoherence dimensionless rate Γ , we have presented Fig. 7, 
where we have set Γa = Γb = Γ . For small acceleration parameters (i.e., ra = rb = 0.1 ) and 
� = 1 , Fig. 7a, b show that the correlation functions, namely W1 , W2 , ( C1 , and C2 ), as well 
as the pair of W3 and W4 , ( C3 , and C4 ), are nearly the same for large values of Γ.

In the Markovian regime, characterized by large values of Γ , the Wigner function and 
concurrence of a common environment configuration are smaller than those of an inde-
pendent environment configuration. Specifically, W1,2 < W3,4 and C1,2 < C3,4 . Conversely, 
for small values of Γ , the opposite is true. This observation is supported by the inset of 
Fig. 7a. In addition, in the non-Markovian regime ( 0 < Γ < 1 , inset of Fig. 7a), quantum 
entanglement ( C ) extends over a wider range of Γ than quantum correlation as evidenced 
by the Wigner function ( W ). Therefore, we can conclude that the Wigner function is more 
susceptible to noise than concurrence. Another interesting phenomenon is the occurrence 
of quiescence in quantum entanglement due to variations in Γ , which can be attributed 
to a transition from a Markovian to a non-Markovian regime of noise. Figure 7b displays 
the same quantities as Fig. 7a, except when the single mode approximation ( � = 0.85 ) is 
not applied. The inset of this figure reveals that correlations degrade more rapidly than in 
the case where the single-mode approximation is used. Under these conditions, the Unruh 
effect can be amplified by the acceleration of observers. Specifically, Fig. 7b demonstrates 
that the curves in Fig.  7a, which were nearly identical, deviate significantly from each 
other.

Fig. 7   The behaviour of correlation functions W
i
 and C

i
 against the rate Γ with the parameters � = �, x = 1 , 

and Γ = Γ1 = Γ2 , ra = r
b
= 0.1 , a � = 1 , b � = 0.85 . The inset in each subfigure display the corresponding 

plot for 0 < Γ < 1
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The behaviour of the correlation function with respect to the dimensionless time � ≡ t g 
is presented in Fig. 8. Figure 8a, b depict the non-Markovian regime ( Γ ≪ 1 ) of noise. In 
Fig. 8a, the single mode approximation is assumed, while this assumption is discarded in 
Fig. 8b with � = 0.85 . A characteristic of the non-Markovian regime is a successive death 
and rebirth of correlation with damping amplitude. However, Wigner functions undergo 
deeper degradation in amplitude than entanglement. It is evident from Fig. 8a that correla-
tions contained in systems with common environment configurations are more sensitive to 
noise than those displayed for the independent environments. Additionally, quantum cor-
relation in the system, as witnessed by the Wigner function, may disappear for a period 
and reappear after a specific time. This collapse in quantum correlation is not observed for 
quantum entanglement, where oscillatory behaviour is found. The entanglement for com-
mon noise configuration varies more severely than independent noise configuration. The 
same relation between variation of the Wigner function with common environment against 
independent environments holds. So, when we imposed the subsystems to interact with 
an independent environment, a delay in the evolution of correlation is exhibited. When 
the single mode approximation is discarded, the impact of interaction time and accelera-
tion becomes significant, and the Unruh effect distinguishes between systems with a sin-
gle accelerating observer and those with both observers accelerating. The specifics of this 
behaviour are illustrated in the inset of the corresponding figures. Significantly, it has been 
observed that the application of independent noise channels can effectively reduce the fre-
quency of entanglement death and rebirth, thereby increasing the duration of quantum cor-
relations. This can be demonstrated by comparing C1,2 with C3,4 . Unlike the concurrence, 
the Wigner function for independent environments experiences more periods of inactiv-
ity, while the common environment exhibits more rapid variations. This can be illustrated 
by comparing W1,2 with W3,4 . A note on the difference between the Wigner function and 

Fig. 8   The behaviour of correlation functions W
i
 and C

i
 against the scaled time � with the parameters x = 1 , 

and r
a
= r

b
= 0.1 , a Γ = Γ1 = Γ2 = 0.05 , and � = 1 , b the same as (a) but � = 0.85 , c Γ = Γ1 = Γ2 = 50 

and � = 1 , and d the same as (c) but � = 0.85 has been chosen
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quantum concurrence would be helpful. Although we have considered the Wigner func-
tion as an indicator of non-classical correlations, the quantum concurrence can specifically 
capture the quantum entanglement of the desired system. Therefore, it is not reasonable to 
expect that non-classical correlations will accurately reflect quantum entanglement. Inter-
estingly, we have observed instances where the system and environment become separated 
in time and no correlation exists between them, yet the prepared quantum entanglement 
remains preserved between them. In Fig.  8c, d, we consider the non-Markovian regime 
at the other extreme ( Γ ≫ 1 ) for � = 1 and � = 0.85 , respectively. During this time, the 
correlation decays monotonically with time, but in cases with independent environments, 
the correlation lasts much longer than in cases with common environment configurations. 
Figure 8d demonstrates that systems with both accelerating observers have a more fragile 
correlation than systems with only one accelerating observer.

6 � Conclusion

In this study, we have investigated the behaviour of the Wigner function and quantum con-
currence in a bipartite mixed entangled state under the influence of RTN and the Unruh 
effect. Our analysis involved an assessment of the Wigner function and quantum concur-
rence, and we focused on their behaviour about various parameters such as the purity 
parameter x, observers’ acceleration parameters ra and rb , dimensionless evolution time, 
and dimensionless switching parameter Γ . It is important to note that we did not rely on the 
single-mode approximation throughout our analysis. Furthermore, we explored how these 
quantities are affected by different environmental setups, specifically in terms of the inde-
pendent/ common environment. By comparing our results, we have been able to conclude 
the behaviour of the Wigner function and quantum concurrence in this context. It has been 
demonstrated that the concurrence and the negative values of the Wigner function, two 
non-classical correlation indicators, are compatible with each other. Although the effect 
of acceleration as a decoherence agent has been established, it has been observed that the 
configuration of the environment has a more significant and dominant impact on the loss 
of entanglement and correlations. More intriguingly, it has been noted that quantum cor-
relations and entanglement behave differently for independent and common environments 
in two regimes of Markovian and non-Markovian noises. Furthermore, by discarding the 
single-mode approximation, the degradation impact of the Unruh effect on correlations is 
further strengthened.
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