Skip to main content

Advertisement

Log in

Numerical analysis of high performance perovskite solar cells with stacked ETLs/C60 using SCAPS-1D device simulator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The latest advances in perovskite solar cells (PSCs) are reported with efficiencies over 25%. PSCs are one of the best developing research-level photovoltaic technologies. To the best of our knowledge, for the first time, we optimize all parameters containing thicknesses, conduction and valence band offset of ETLs (electron transport layers) and hole transport layer, defect densities and doping concentration densities for Cs0.05(FA0.77 MA0.23)0.95Pb(I0.77Br0.23)3. As an absorber layer with numerous stacked ETLs including SnO2/C60, ZnO/C60, TiO2/C60, CdZnS/C60 and CdSe/C60 are used. To find the efficiency, the SCAPS (Solar Cell Capacitance Simulator)-1D program is performed to realize which of stacked ETLs is more appropriate for both cost-effectiveness and high efficiency. After all, the efficiency for stacked SnO2/C60 at 31.16%, stacked ZnO/C60 at 31.22%, stacked TiO2/C60 at 30.55%, stacked CdZnS/C60 at 30.46% and stacked CdSe/C60 at 31.24% are reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmmed, S., Aktar, A., Rahman, M.F., Hossain, J., Ismail, A.B.M.: A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik (Stuttg) 223, 165625(1-10) (2020)

    ADS  Google Scholar 

  • Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J.A., Morales Vilches, A.B., Kasparavicius, E., Smith, J.A., Phung, N., Menzel, D., Grischek, M., Kegelmann, L., Skroblin, D., Gollwitzer, C., Malinauskas, T., Jošt, M., Matič, G., Rech, B., Schlatmann, R., Topič, M., Korte, L., Abate, A., Stannowski, B., Neher, D., Stolterfoht, M., Unold, T., Getautis, V., Albrecht, S.: Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science (80-.) 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016

    Article  ADS  Google Scholar 

  • Alqahtani, A., Abdel-naser, A.A., Alrafai, H.A., Al-Dossari, M., Shaaban, E.R., Qasem, A.: Zinc-induced changes on structural pathways, optical parameters, optical constants extracted by Kramers-Kronig formulas, photoluminescence spectra and photovoltaic characteristics of n-Cd50-xZnxS50/i-AgSe/p-Si solar cells. Opt. Mater. (Amst) 134, 113055(1-14) (2022)

    Google Scholar 

  • Ameer, M.K.A., Altaan, L.M.: Temperature and illumination intensity effects on the electric parameters of (n-CdSe/p-CdSe) solar cell using SCAPS. (2022)

  • Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019)

    ADS  Google Scholar 

  • Barbé, J., Tietze, M.L., Neophytou, M., Murali, B., Alarousu, E., Labban, A.E., Abulikemu, M., Yue, W., Mohammed, O.F., McCulloch, I., Amassian, A., Del Gobbo, S.: Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 9, 11828–11836 (2017). https://doi.org/10.1021/acsami.6b13675

    Article  Google Scholar 

  • Bouazizi, S., Tlili, W., Bouich, A., Soucase, B.M., Omri, A.: Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator. Mater. Res. Express 9, 96402(1-12) (2022)

    Google Scholar 

  • Bruzzi, M., Falsini, N., Calisi, N., Vinattieri, A.: Electrically active defects in polycrystalline and single crystal metal halide perovskite. Energies 13, 1643(1-14) (2020)

    Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    ADS  Google Scholar 

  • Cao, J., Wu, B., Chen, R., Wu, Y., Hui, Y., Mao, B., Zheng, N.: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596(1-9) (2018)

    Google Scholar 

  • Chang, W., Tian, H., Fang, G., Guo, D., Wang, Z., Zhao, K.: Simulation of innovative high efficiency perovskite solar cell with Bi-HTL: NiO and Si thin films. Sol. Energy 186, 323–327 (2019)

    ADS  Google Scholar 

  • Chen, D., Wang, Y., Lin, Z., Huang, J., Chen, X., Pan, D., Huang, F.: Growth strategy and physical properties of the high mobility p-type CuI crystal. Cryst. Growth Des. 10, 2057–2060 (2010)

    Google Scholar 

  • Daraie, A., Fattah, A.: Performance improvement of perovskite heterojunction solar cell using graphene. Opt. Mater. (Amst) 109, 110254(1-8) (2020)

    Google Scholar 

  • Devi, N., Parrey, K.A., Aziz, A., Datta, S.: Numerical simulations of perovskite thin-film solar cells using a CdS hole blocking layer. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 36, 04G105(1-8) (2018)

    Google Scholar 

  • Doroody, C., Rahman, K.S., Kiong, T.S., Amin, N.: Optoelectrical impact of alternative window layer composition in CdTe thin film solar cells performance. Sol. Energy 233, 523–530 (2022)

    ADS  Google Scholar 

  • Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  Google Scholar 

  • Hu, W., Yang, S., Yang, S.: Surface modification of TiO2 for perovskite solar cells. Trends Chem. 2, 148–162 (2020)

    Google Scholar 

  • Jäger, K., Korte, L., Rech, B., Albrecht, S.: Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt. Express 25, A473-A482 (2017). https://doi.org/10.1364/OE.25.00A473

    Article  ADS  Google Scholar 

  • Jamal, M.S., Shahahmadi, S.A., Wadi, M.A.A., Chelvanathan, P., Asim, N., Misran, H., Hossain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik (Stuttg) 182, 1204–1210 (2019)

    ADS  Google Scholar 

  • Jamal, S., Khan, A.D., Khan, A.D.: High performance perovskite solar cell based on efficient materials for electron and hole transport layers. Optik (Stuttg) 218, 164787(1-11) (2020)

    ADS  Google Scholar 

  • Jayan, K.D., Sebastian, V.: Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021)

    ADS  Google Scholar 

  • Jena, A.K., Kulkarni, A., Miyasaka, T.: Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019)

    Google Scholar 

  • Jošt, M., Köhnen, E., Morales-Vilches, A.B., Lipovšek, B., Jäger, K., Macco, B., Al-Ashouri, A., Krč, J., Korte, L., Rech, B.: Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523 (2018)

    Google Scholar 

  • Khattak, Y.H., Baig, F., Shuja, A., Beg, S., Soucase, B.M.: Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy 207, 579–591 (2020)

    ADS  Google Scholar 

  • Kim, H., Lim, K.-G., Lee, T.-W.: Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9, 12–30 (2016)

    Google Scholar 

  • Leijtens, T., Bush, K.A., Prasanna, R., McGehee, M.D.: Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018)

    ADS  Google Scholar 

  • Menzel, D., Al-Ashouri, A., Tejada, A., Levine, I., Guerra, J.A., Rech, B., Albrecht, S., Korte, L.: Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109(1-10) (2022)

    Google Scholar 

  • Min, H., Lee, D.Y., Kim, J., Kim, G., Lee, K.S., Kim, J., Paik, M.J., Kim, Y.K., Kim, K.S., Kim, M.G., Shin, T.J., Il Seok, S.: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8

    Article  ADS  Google Scholar 

  • Minemoto, T., Kawano, Y., Nishimura, T., Chantana, J.: Numerical reproduction of a perovskite solar cell by device simulation considering band gap grading. Opt. Mater. (Amst) 92, 60–66 (2019). https://doi.org/10.1016/j.optmat.2019.03.048

    Article  ADS  Google Scholar 

  • Mohandes, A., Moradi, M., Nadgaran, H.: Numerical study of high performance, low hysteresis, and stable perovskite solar cells with examining the optimized parameters. Eur. Phys. J. Plus 136, 113(1-20) (2021). https://doi.org/10.1140/epjp/s13360-021-01100-z

    Article  Google Scholar 

  • Ng, C.H., Hamada, K., Kapil, G., Kamarudin, M.A., Wang, Z., Shen, Q., Yoshino, K., Minemoto, T., Hayase, S.: Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell. J. Mater. Chem. A 8, 2962–2968 (2020)

    Google Scholar 

  • Nithya, K.S., Sudheer, K.S.: Device modelling of non-fullerene organic solar cell with inorganic CuI hole transport layer using SCAPS 1-D. Optik (Stuttg) 217, 164790(1-11) (2020)

    ADS  Google Scholar 

  • Ono, L.K., Liu, S., Qi, Y.: Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676–6698 (2020)

    Google Scholar 

  • Rai, M., Wong, L.H., Etgar, L.: Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. J. Phys. Chem. Lett. 11, 8189–8194 (2020)

    Google Scholar 

  • Richards, D., Burkitt, D., Patidar, R., Beynon, D., Watson, T.: Predicting a process window for the roll-to-roll deposition of solvent-engineered SnO2 in perovskite solar cells. Mater. Adv. 3, 8588–8596 (2022)

    Google Scholar 

  • Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J

    Article  Google Scholar 

  • Shikoh, A.S., Paek, S., Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Saranin, D.S., Didenko, S.I., Ahmad, Z., Touati, F., Nazeeruddin, M.K.: Assessing mobile ions contributions to admittance spectra and current–voltage characteristics of 3D and 2D/3D perovskite solar cells. Sol. Energy Mater. Sol. Cells 215, 110670(1-8) (2020)

    Google Scholar 

  • Shrivastav, N., Madan, J., Pandey, R., Shalan, A.E.: Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations. RSC Adv. 11, 37366–37374 (2021). https://doi.org/10.1039/D1RA06250F

    Article  ADS  Google Scholar 

  • Singh, T., Kulkarni, A., Ikegami, M., Miyasaka, T.: Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces 8, 14542–14547 (2016)

    Google Scholar 

  • Singh, A.K., Srivastava, S., Mahapatra, A., Baral, J.K., Pradhan, B.: Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Opt. Mater. (Amst) 117, 111193(1-6) (2021)

    Google Scholar 

  • Son, H., Jeong, B.-S.: Optimization of the power conversion efficiency of CsPbIxBr3−x-based perovskite photovoltaic solar cells using ZnO and NiOx as an inorganic charge transport layer. Appl. Sci. 12, 8987(1-16) (2022)

    Google Scholar 

  • Tan, X., Liu, X., Liu, Z., Sun, B., Li, J., Xi, S., Shi, T., Tang, Z., Liao, G.: Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 499, 143990(1-28) (2020)

    Google Scholar 

  • Tavakoli, M.M., Tavakoli, R., Yadav, P., Kong, J.: A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J. Mater. Chem. A 7, 679–686 (2019)

    Google Scholar 

  • Thakur, D., Chiang, S.-E., Yang, M.-H., Wang, J.-S., Chang, S.H.: Self-stability of un-encapsulated polycrystalline MAPbI3 solar cells via the formation of chemical bonds between C60 molecules and MA cations. Sol. Energy Mater. Sol. Cells 235, 111454(1-9) (2022)

    Google Scholar 

  • Wang, R., Mujahid, M., Duan, Y., Wang, Z., Xue, J., Yang, Y.: A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843(1-77) (2019)

    Google Scholar 

  • Wang, B., Yang, J., Lu, L., Xiao, W., Wu, H., Xiong, S., Tang, J., Duan, C., Bao, Q.: Interface engineering of air-stable n-doping fullerene-modified TiO2 electron transport layer for highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 7, 1901964(1-6) (2020a)

    Google Scholar 

  • Wang, K., Olthof, S., Subhani, W.S., Jiang, X., Cao, Y., Duan, L., Wang, H., Du, M., Liu, S.F.: Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy 68, 104289(1-79) (2020b)

    Google Scholar 

  • Yang, Z., Fan, Q., Shen, T., Jin, J., Deng, W., Xin, J., Huang, X., Wang, X., Li, J.: Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells. Sol. Energy 204, 223–230 (2020)

    ADS  Google Scholar 

  • Yang, L., Feng, J., Liu, Z., Duan, Y., Zhan, S., Yang, S., He, K., Li, Y., Zhou, Y., Yuan, N.: Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34(24), 2201681(1-10) (2022)

    Google Scholar 

  • Zeng, W., He, X., Bian, H., Guo, P., Wang, M., Xu, C., Xu, G., Zhong, Y., Lu, D., Sofer, Z.: Multi-functional strategy: ammonium citrate-modified SnO2 ETL for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 14, 43975–43986 (2022)

    Google Scholar 

  • Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., Hao, Y.: Device simulation of inverted CH3NH3PbI3−xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018)

    ADS  Google Scholar 

  • Zhou, Z., Liao, G., Song, X., Dai, Q., Sun, L., Peng, Y., Wang, P.: Significant detectivity enhancement of broad spectral organic–inorganic hybrid photodiodes by C60 film as hole-blocking layer. Nanoscale Res. Lett. 17, 1–9 (2022)

    ADS  Google Scholar 

  • Zhu, L., Shao, G., Luo, J.K.: Numerical study of metal oxide hetero-junction solar cells with defects and interface states. Semicond. Sci. Technol. 28, 55004(1-20) (2013)

    ADS  Google Scholar 

  • Zhu, L., Liu, D., Wang, J., Wang, N.: Large organic cations in quasi-2D perovskites for high-performance light-emitting diodes. J. Phys. Chem. Lett. 11, 8502–8510 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the SCAPS-1D program developed by the group of Prof. Marc Burgelman from Gent University, Belgium and permitting to use it.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

AM: Simulations, Investigation, Conceptualization, Wrote the paper. MM: Spell checked, Conceptualization, Review, Revise the paper. MK: Check the calculations, Review the paper.

Corresponding author

Correspondence to Mahmood Moradi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohandes, A., Moradi, M. & Kanani, M. Numerical analysis of high performance perovskite solar cells with stacked ETLs/C60 using SCAPS-1D device simulator. Opt Quant Electron 55, 533 (2023). https://doi.org/10.1007/s11082-023-04778-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04778-w

Keywords

Navigation