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Abstract
In this paper, we will study two various nonlinear models: the Atangana–Baleanu frac-
tional system of equations for the ion sound and Langmuir waves (ISALWs) and Hirota 
Ramani equation to obtain variety of solitary wave solutions. We will obtain bright, dark, 
periodic wave and solitory wave for ISALWs equation. We will also retreived bell type, 
kink type, singular, Jacbion elliptic function, Weierstrass-elliptic function, hyperbolic func-
tions, periodic functions and other solitary wave solutions for Hirota Ramani equation 
using Sub ODE technique under some constraint conditions. At the end we will present our 
solutions with the help of graphs in distinct dimensions.

Keywords Integrability · Solitons · Fractional calculus

1 Introduction

Recently, the number of applications of fractional calculus is growing speedily. Fractional 
differential equations (FDEs) are used in various areas of nonlinear sciences like diffu-
sion, electrical circuits, economy, control problem, etc. (Sheng et al. 2020). Nonlinear FDE 
(NLFDE) have gained high attention and interest for researchers. These equations pos-
sess huge network of applications in the subject of physics and engineering fields with the 
development of corresponding theories. In real life, the solution of these types of equations 
have significant effects in the form of traveling waves. The theory of fractional derivatives 
(FD) is also helpful in physiology, medical science, and epidemic diseases (Rezazadeh 
et al. 2021; Younas et al. 2021; Akram et al. 2021; Seadawy et al. 2021c, 2021d, 2021e; 
Bilal et  al. 2021; Rizvi et  al. 2021b, c; Seadawy et al. 2021a; Tariq et  al. 2021; Ahmad 
et  al. 2021; Bashir et  al. 2021; Seadawy et  al. 2021b). There are so many types of FDs 
like Reimann Liouville, Caputo-Fabrizio and the Atangana Baleanu fractional derivatives 
(ABFD) (Syama and Al-Refai 2019; Atangana 2018). Mittag Leffler function is used in 
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ABFD as non local and non singular kernels accepting all properties of FD. Antangana 
and Koca (2016) used ABFD in nonlinear system and discussed the uniqueness and exist-
ence of the fractional order system. In the field of fractional calculus, ABFD is used to sort 
out many problems (Atangana and Baleanu 2016; Fernandez et  al. 2019; Baleanu et  al. 
2018; Bas and Ozarslan 2018). Ghanbari and Atangana (2020) studied some applications 
of ABFD in image processing. Jarad et al. (2018) studied uniqueness and existence condi-
tions for numerous ordinary differential equations with ABFD. Owolabi (2018) displayed 
relationship between dynamical system and ABFD. Peter et al. (2021) used AB Operator 
to analyse fractional order mathematical model of COVID-19 in Nigeria. Recently, many 
integration architectonics such as new extended auxiliary scheme (Rizvi et al. 2020a), G

′

G
-expansion method (Abazari 2016), csch method, extended tanh-coth mechanism and 
extended rational sinh-cosh process (Rizvi et al. 2020b), generalized exponential rational 
function method (Ghanbari et al. 2019), Jacobi elliptic function expansion scheme (Kurt 
2019), sub-ode method (Zayeda et al. 2019) and many other have been used to find exact 
solutions for different nonlinear evolution and FDEs(Ahmed et al. 2019b, Dianchen 2018, 
Khater et al. 2006, Seadawy et al. 2019b, c). Our aim is to obtain some new types of soli-
tary waves for ISALWs with ABFD and Hirota Ramani model with the aid of sub ode 
scheme.

The ISLAWs with ABFD is given by Rezazadeh et al. (2021)

t > 0, 0 < 𝛼 ≤ 1

here normalised density, electric field and AB fractional operator are represented by r, 
Je−i�pt and ABR

t
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where Ω�(.) is Mittag–Leffler function, which is given as
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The second model is known as Hirota Ramani equations given by Roshid and Alam (2017)

where Θ = Θ(x, t) is the amplitude of the wave mode and A ≠ 0 is a real constant.
The paper is arranged as follows: in Sect. 2, we will describe sub ode scheme, in Sect. 3, 

we will apply our tehnique to ISLAWs with ABFD, in Sect. 4, we will find solitary wave 

ABR
t

D�

0+
J +

1�2J

2�x2
− rJ = 0,

(1)ABR
t

D�

0+
r −

�2r

�x2
− 2

�2(|J|2)
�x2

= 0,

(2)ABR
t

D�

a+
g(t) =

�(�)

1 − �

d

dt ∫
t

a

g(x)Ω�

(
−�(t − �)�

1 − �

)
dx,

Ω�

(
−�(t − �)�

1 − �

)
= Σ∞

r=0

(
−�

1−�

)q

(t − x)�q

Γ(�q + 1)
,

ABR
t

D�

a+
g(t) =

�(�)

1 − �
Σ∞
q=0

(
−�

1 − �

)q

RLI�q
a
g(t)

(3)Θt − Θxxt + AΘx(1 − Θt) = 0,



New soliton molecules to couple of nonlinear models: ion sound…

1 3

Page 3 of 24 852

solutions for Hirota Ramani equation with our scheme. In Sect.  5, we will discuss our 
results and at the end in Sect. 6, we will provide conclusion.

2  Sub‑ODE method

To approach this sub ode, we suppose the following solution: (Rizvi et al. 2020c, 2021a)

here m is a parameter and M(�) satisfies the equation:

here Υ,Δ,Λ,Π and Ψ are constants. By using homogeneous balance method we can find 
m in (4) given as ,

Thus Eq. (5) has following solutions cases:
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and

Case 6 For Δ = Π = 0 , the Weierstrass-elliptic function (WEF) solutions are obtained for 
Eq. (5) as:
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3
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Case 9 ForΥ = Δ = 0,Λ > 0 ,then the following hyperbolic functions solutions for Eq. (5) 
are obtained:

Case 10 ForΥ = Δ = 0,Λ < 0 ,then the following periodic functions solutions for Eq. (5) 
are obtained:

3  Solitary wave solutions for Eq. (1)

We use the following transformation for Eq. (1),
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substituting Eqs. (28) and (29) into Eq. (26) provide us

By homogeneous balancing method we get p = m.

By putting Eq. (30) into Eq. (5), we get the following set of algebraic equations:

we have the following types of solutions:

Type 1a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters (Fig. 1).

provided that
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Fig. 1  The dynamical behavior of the solution J1,1(x, t) given by Eq. (34) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3
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Type 1b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters (Fig. 2).

Type 1c By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtained the solitary wave solutions (Fig. 3).

(35)
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�
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�
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√
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.

Fig. 2  The dynamical behavior of the solution J1,2(x, t) given by Eq. (29) is shown at p = 1 , T = 5 , � = 0.1 , 
K = 0.8 , � = 0.6 , r = 0.1 , � = 0.3 , � = 0.7 , � = 1

Fig. 3  The dynamical behavior of the solution J1,3(x, t) given by Eq. (30) is shown at p = 1 , T = 5 , � = 0.1 , 
K = 0.8 , � = 0.6 , r = 0.1 , � = 0.3 , � = 0.7 , � = 1
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Type 2a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the kink and anti-kink type soliton solutions (Fig. 4).

Type 2b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the kink and anti-kink type soliton solutions (Fig. 5).
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Fig. 4  The dynamical behavior of the solution J2,1(x, t) given by Eq. (31) at p = 1 , T = 5 , � = 20 , K = 0.7 , 
� = 7 , r = 10 , � = −1 , � = 3 , � = 1
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Type 3a m → 1 By substituting Δ = Π = 0 in Eq. (5) and we get values of following 
parameters and we obtain the solitary wave solutions (Fig. 6).

provided that

Type 3b m → 1 By substituting Δ = Π = 0 in Eq. (5) and we get values of following 
parameters and we obtain the bell type soliton solutions (Fig. 7).
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√
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Fig. 5  The dynamical behavior of the solution J2,2(x, t) given by Eq. (32) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1

Fig. 6  The dynamical behavior of the solution J3,1(x, t) given by Eq. (33) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3
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provided that

Type 3c m → 1 By substituting Δ = Π = 0 in Eq. (5) and we get values of following 
parameters and we obtain the solitary wave solutions (Fig. 8).
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,

(40)
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2
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Fig. 7  The dynamical behavior of the solution J3,2(x, t) given by Eq. (34) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3

Fig. 8  The dynamical behavior of the solution J3,3(x, t) given by Eq. (35) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3
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provided that

Type 6a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtained the WEF (Fig. 9).

Type 6e By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the WEF (Fig. 10).
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Fig. 9  The dynamical behavior of the solution J6,1(x, t) given by Eq. (36) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3
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Type 7 By substituting Δ = Π = 0 , Υ =
5Λ2

36Γ
 in Eq. (5) and we get values of following 

parameters and we obtained JEF (Fig. 11).

Type 8a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtained the bell type soliton solutions (Fig. 12).
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� =

�
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2
; Λ =
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,
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p2Ψ�2
℘

�
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2(k2+2�)2

9p4�4
,
(k2+2)3

54p6�6

�

2(k2 + 2� + 3p2�2℘[p�,
2(k2+2�)2

9p4�4
,
(k2+2)3

54p6�6
])

.

Fig. 10  The dynamical behavior of the solution J6,2(x, t) given by Eq. (37) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 15 , � = −1 , � = 3

Fig. 11  The dynamical behavior of the solution J7(x, t) given by Eq. (38) is shown at p = 1 , T = 5 , � = 20 , 
K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3
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Type 8b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the kink and anti-kink type soliton solutions (Fig. 13).

(45)

� =

�
�2p2Ψ(k2 − 1)

2
; Λ =

k2 + w

�2p2
,

J8,1(x, t) =

√
(−1 + k2) p2�2 sech

�
�
√
k2 + 2w

�

�
√
2

.

Fig. 12  The dynamical behavior of the solution J8,1(x, t) given by Eq. (39) is shown at p = 1 , T = 5 , 
� = 0.1 , K = 0.4 , � = 0.6 , r = 0.1 , � = 0.3 , � = 0.7 , � = 1

Fig. 13  The dynamical behavior of the solution J8,2(x, t) given by Eq. (40) is shown at p = 1 , T = 5 , 
� = 0.1 , K = 0.4 , � = 0.6 , r = 0.1 , � = 0.3 , � = 0.7 , � = 1
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Type 9a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the bell type soliton solutions (Fig. 14).

Type 9b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the following results (Fig. 15).
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Fig. 14  The dynamical behavior of the solution J9,1(x, t) given by Eq. (41) is shown at p = 1 , T = 5 , 
� = 0.1 , K = 0.3 , � = 0.1 , r = 0.1 , � = 0.3 , � = 0.7
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Type 10a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following 
parameters and we obtain the bell type soliton solutions (Fig. 16).
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Fig. 15  The dynamical behavior of the solution J9,2(x, t) given by Eq. (42) is at p = 1 , T = 5 , � = 0.1 , 
K = 0.3 , � = 0.1 , r = 0.1 , � = 0.3 , � = 0.7

Fig. 16  The dynamical behavior of the solution J10,1(x, t) given by Eq. (43) is at p = 1 , T = 5 , � = 10 , 
K = 0.9 , � = −1 , r = 1 , � = −1 , � = 0.1
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Type 10b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following 
parameters and we obtain the solitary wave solutions (Fig. 17).

4  Sub‑ODE method

By applying transformation in Eq. (3), 𝜁 = k(x − 𝜔t), here k > 0 , we get

let U� = V  , it will give us

By balancing technique we get 2p = m.
By putting Eq. (48) into Eq. (5), we get the following set of algebraic equations:

we have the following types of solutions:
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(51)(A�)U� + k2U��� + Ak�U2 = 0,

(52)(A�)V + k2�V �� + Ak�V2 = 0,

(53)G4p(�) ∶ 6k2p2T�� + Ak�2� = 0,

(54)G2p(�) ∶ A� − �� + 4Ck2p2�� = 0,

Fig. 17  The dynamical behavior of the solution J10,2(x, t) given by Eq. (44) is shown at p = 1 , T = 5 , 
� = 10 , K = 0.9 , � = −1 , r = 1 , � = −1 , � = 0.1
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Type 2a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the kink and anti-kink type soliton solutions (Fig. 18).

Type 2b By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the kink and anti-kink type soliton solutions (Fig. 19).
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Fig. 18  The dynamical behavior of the solution Θ2,1(x, t) given by Eq. (51) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1

Fig. 19  The dynamical behavior of the solution Θ2,2(x, t) given by Eq. (52) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1
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Type 3a (m → 1) By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of follow-
ing parameters and we obtain periodic solutions (Fig. 20).

Type 3b (m → 1) By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of follow-
ing parameters and we obtain the periodic solutions (Fig. 21).
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Fig. 20  The dynamical behavior of the solution Θ3,1(x, t) given by Eq. (53) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1
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Type 3c (m → 1) By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of follow-
ing parameters and we obtain the kink and anti-kink type soliton solutions (Fig. 22).

Type 6a By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the WEF (Fig. 23).
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Fig. 21  The dynamical behavior of the solution Θ3,2(x, t) given by Eq. (54) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1

Fig. 22  The dynamical behavior of the solution Θ3,3(x, t) given by Eq. (55) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1
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Type 6e By substituting Υ = Δ = Π = 0 in Eq. (5) and we get values of following param-
eters and we obtain the WEF (Fig. 24).
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Fig. 23  The dynamical behavior of the solution Θ6,1(x, t) given by Eq. (56) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1

Fig. 24  The dynamical behavior of the solution Θ6,2(x, t) given by Eq. (57) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1



New soliton molecules to couple of nonlinear models: ion sound…

1 3

Page 21 of 24 852

Type 7 By substituting Δ = Π = 0 , Υ =
5Λ2

36Γ
 in Eq. (5) and we get values of following 

parameters and we obtained the WEF (Fig. 25).

5  Results and discussion with graphical description

In this article, we have examined Atangana–Baleanu (AB) fractional system of equations 
for the ion sound and Langmuir waves (ISALWs) and HRE to gain different solitons. Under 
different conditions, we apply Sub-ODE procedure to both above models and perceived 
effective results. Tripathya and Sahoo (2020) derived exact solutions for ISLAWs equa-
tion. Baskonus and Bulut (2016) studied different modes of ISLAWs equations. Seadawy 
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Fig. 25  The dynamical behavior of the solution Θ7,1(x, t) given by Eq. (58) is shown at p = 1 , T = 5 , 
� = 20 , K = 0.7 , � = 7 , r = 10 , � = −1 , � = 3 , � = 1
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et  al. (2019a discussed about structure of ISLAWs equation and also its applications. 
Ahmed et al. (2019a) generate Rogue waves and studied about relationshup of multipeak 
solitons for the system of equations of ISLAWs. Koonprasert and Punpocha (2016) applied 
F-Expansion method on Hirota–Ramani equation. Qi et al. (2004) acquired traveling solu-
tions to Hirota equation. Zhao and Tam (2006) find soliton solutions for a coupled Ramani 
equation. We derived out bright, dark, singular and periodic wave solution for ISLAWs 
equation. We also retrieved bell type, kink type, periodic, rational, (JEF) and (WEF) solu-
tions for Ramani equation. The bell type solution are shown by Eqs. (8), (21) and (58) 
while the kink type is represented by Eqs. (10) and (19). Some periodic solutions have also 
been derived and are given by Eqs. (8), (11), (23) and (24). A rational solution is also dis-
cussed in Eq. (9). Some JEF are found from Eqs. (12)–(14) along with the conditions men-
tioned therein. whereas the WEF are represented by Eqs. (15)–(17). In addition to these, 
some more solutions have also been given in Eq. (22) singular soliton. A graphical descrip-
tion of these results has also been given.

6  Conclusion

We describe exact solution of NLFEE above we study the graphical representation of vari-
ous types of solutions. We obtained the different solutions of model name which consists 
of dark soliton, bright soliton, Jacobi elliptic solutions (JES), Weierstrass elliptic solitons 
(WES), hyperbolic solutions and parabolic solutions. For better understanding we express 
3D, 2D and contour view. We claim that the acheive solutions are distinct and very helpful 
for the study of model name.
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