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Abstract
This research manuscript focuses on the extraction of dark-bright solitons and periodic 
wave distributions of two models, namely, the Zakharov–Kuznetsov–Benjamin–Bona–
Mahony equation and complex Kundu–Eckhaus equation with conformable derivative. 
To reach these important properties, the generalized exponential rational function method 
is considered. To observe wave distributions in periodic and singular sense, dynamical 
behaviour modulus of solutions are also archived. Strain conditions for validity of results 
obtained in this paper are also reported.

Keywords Dual-power law nonlinearity · Zakharov–Kuznetsov–Benjamin–Bona–
Mahony equation · Nonlinear complex Kundu–Eckhaus equation with conformable · The 
generalized exponential rational function method · Strain conditions · Solitary and singular 
waves · Dark-bright solitons · Periodic waves · Hyperbolic roots

1 Introduction

Soliton theory is one of the most studied areas in applied sciences, in particular, non-
linear dynamical media. In this sense, Divo-Matos et. al. have firstly investigated the 
new model for gas adsorption isotherm at high pressures (Divo-Matos et al. 2021). This 
observation comes from the hydrogen which has been considered as an ideal energy 
source in the future. They have observed the new isotherm model for supercritical gas 
adsorption by using the Redlich-Kwong’s equation of state at high pressures. Another 
a new model to estimate permeability has been formed to explain the carbonate and 
shale samples (Liu et al. 2020). They have calculated the curvatures from the mercury 
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saturation data by using the Fermic-Dirac function. Gunasekeran and his team intro-
duced the digital health during COVID-19 (Gunasekeran et  al. 2021). As it is well 
known by almost everybody, COVID-19 has affected many peoples from all over the 
world. In these works, they presented the mathematical perspective to the Covid-19 
disease by giving deeper properties such as dynamical structures (Gao et  al. 2020), 
modeling the dynamics of novel coronavirus (2019-nCov) (Khan and Atangana 2020), 
stochastic COVID-19 Lvy jump model with isolation strategy (Danane et  al. 2021), 
unreported cases of 2019-nCOV epidemic outbreaks (Gao et al. 2020), threshold con-
dition and non pharmaceutical interventions control strategies (Zamir et al. 2021), the 
spread of COVID-19 with new fractal-fractional operators (Atangana 2020), the total 
digitalization in education during the Covid pandemi (Yuce 2022). Moreover, many real 
world problems have been also studied by using mathematical methods and tools such 
as sine-Gordon expansion method (Eskitascioglu et  al. 2019), tanh and extended tanh 
methods (Bibi and Mohyud-Din 2014; Zayed and Tala-Tebue 2018; Fan 2000). Some 
important properties of reduced higher-order and perturbed nonlinear Schrödinger equa-
tion (Kudryashov 2021, 2020) and so on were presented (Wazwaz 2018; Kaplan et al. 
2017; Cattani 2018; Zhang et al. 2015; Bridges and Ratliff 2017a, b). Therefore, such 
nonlinear evaluation equations (NLEs) have always been one of the most inspiring 
tools for researchers to study real phenomena and models arising in mathematics, phys-
ics, engineering and various fields of science (Chen and Ren 2022; Nabti and Ghan-
bari 2021; Wang et al. 2020; Ghanbari and Kumar 2021; Hu et al. 2022; Akbulut and 
Kaplan 2018; Durur and Yokus 2021; Sulaiman et  al. 2021; Gao et  al. 2020; Ghan-
bari and Djilali 2020; Rajesh Kanna et al. 2020; Ghanbari 2020; Kaplan and Akbulut 
2021; Ghanbari and Atangana 2020; McCue et al. 2021; Djilali and Ghanbari 2021; Gao 
et al. 2020; Ghanbari 2020a, b; Srivastava et al. 2019; Erturk and Kumar 2020; Ghan-
bari 2021; Saouli 2020; Ghanbari 2021; Munusamy et al. 2020; Ghanbari et al. 2020; 
Kaplan 2017; Ghanbari et al. 2019; Kudryashov 2020; Djilali and Ghanbari 2021), (Ali 
Akbar et al. 2021; Eslami et al. 2021; Rezazadeh et al. 2019; Akinyemi et al. 2021; Hos-
seini et al. 2020; Nisar et al. 2022; Pinar et al. 2020; Khodadad et al. 2021; Ozkan et al. 
2021; Halidou et al. 2022; Can et al. 2020).

The remaining parts of research manuscript are organized as follows. In Sect. 2, over-
view of the conformable derivative and its general properties are presented. Section 3 
provides the general properties of the projected scheme, namely, generalized exponen-
tial rational function method GERFM. Main results showing that the system can exhibit 
some interesting properties of the governing models such as Zakharov–Kuznetsov–Ben-
jamin–Bona–Mahony (ZKBBM) equation and complex Kundu–Eckhaus equation with 
conformable derivative are given in Sect. 4. The meaning of the parameters of the new 
findings is given there in terms of different simulations. We discuss and conclude our 
results in the last section of the paper.

Firstly, ZKBMM equation (lzaidy 2013; Khodadad et  al. 2017; Aksoy et  al. 2016) 
given as

where a, b are real-valued constants is studied.
Secondly, nonlinear complex Kundu–Eckhaus equation defined by Khater et  al. 

(2018), Khodadad et al. (2017), Mirzazadeh et al. (2018):

(1)ut(x, t) + uxx(x, t) − 2au(x, t)ux(x, t) − butxx(x, t) = 0,
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where �, � are real-valued constants is investigated by using projected method to extract 
some important properties.

2  Overview of the conformable derivative

Recently, an operator called conformable was formulated by Khalil in Khalil et al. (2014). 
The conformable calculus satisfies all the properties of the standard calculus. This operator 
may be considered to be a natural extension of the classical properties (Usta 2018; Abdel-
jawad 2015; Benkhettou et al. 2016; Ünal and Gökdogan 2017).

Definition 2.1 Let f ∶ [0,∞) → ℝ , the conformable derivative of a function f(t) of order 
� , is defined as (Khalil et al. 2014)

This new definition satisfies the properties in the following theorem:

Theorem 1 (Khalil et al. 2014) Let � ∈ (0, 1] , f, g be �-differentiable at a point t, then

• D�
t
(af + bg) = aD�

t
(f ) + bD�

t
(g) , for a, b ∈ ℝ.

• D�
t
(t�) = �t�−� , for � ∈ ℝ.

• D�
t
(fg) = fD�

t
(g) + gD�

t
(f ).

• D�
t
(
g

g
) =

gD�
t
(f )−fD�

t
(g)

g2
.

If, in addition, f is differentiable, then D�
t
(f )(t) = t1−�

df

dt
 . (Abdeljawad 2015) established 

the chain rule for conformable derivatives as following theorem:

Theorem 2 Let f ∶ (0, 1] → ℝ , be a function such that f is differentiable and also �-con-
formable differentiable. Let g be a differentiable function defined in the range of f. Then

where prime denotes the classical derivatives with respect to t.

3  Overview of the generalized exponential rational function method

In this section, we state the main steps of GERFM as follows (Biazar and Ghanbari 2012; 
Ghanbari and Kuo 2021; Kumar et al. 2021; Ghanbari and Akgül 2020; Ismael et al. 2020; 
Ghanbari et al. 2020) 

(2)
iqt(x, t) + qxx(x, t) − 2�|q|2(x, t)q(x, t) + �2|q|4(x, t)q(x, t)

+ 2i�
(|q(x, t)|2)

x
q(x, t) = 0,

(3)D𝛼

t
f (t) = lim

𝜖→0

f (t + 𝜖t1−𝛼) − f (t)

𝜖
, 𝛼 ∈ (0, 1], t > 0.

D�

t
(fog)(t) = t1−�g�(t)f �(g(t)),
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1. Let us take into account the following nonlinear partial differential equation 

 Via the transformations Υ = Υ(�) and � = �x − �t , in nonlinear partial differential 
equation (4), we attain 

 which is indeed an ordinary differential equation; where the values of � and � will be 
found later.

2. Consider equation (5) has the solution of the form 

 where 

 The values of constants ri, si(1 ≤ i ≤ 4) , A0,Ak and Bk(1 ≤ k ≤ M) are determined, in 
such a way that solution (6) always persuade equation (5). By considering the homog-
enous balance principle the value of M is determined.

3. Putting equation (6) into Eq. (5) we give the following algebraic equation 
Ξ(Λ1,Λ2,Λ3,Λ4) = 0 , in terms of Λi = esi� for i = 1,… , 4 . After setting each of the 
coefficients of variables in Ξ to zero, a system of nonlinear equations in terms of these 
parameters is constructed.

4. By solving the above system of equations using any symbolic computation software, 
the values of ri, si(1 ≤ i ≤ 4) , A0,Ak , and Bk(1 ≤ k ≤ M) are determined, replacing these 
values in Eq. (6) provides us the soliton solutions of Equation (4).

4  Main results

In this section, we apply GERFM into the governing models to find some important 
properties.

4.1  The ZKBMM equation with conformable derivative

In this subsection, we investigate exact wave solutions in studying the conformable version 
of the ZKBMM Eq. (1), giving by

By considering the wave transformation

where c, k are non zero constants. Utilizing the wave transformation (33), we get

(4)L(Υ,Υx,Υt,Υxx,⋯) = 0.

(5)L(Υ,Υ�,Υ��,⋯) = 0,

(6)Υ(�) = A0 +

M∑
k=1

AkΨ(�)
k +

M∑
k=1

BkΨ(�)
−k,

(7)Ψ(�) =
r1e

s1� + r2e
s2�

r3e
s3� + r4e

s4�
.

(8)D
�

t
u(x, t) +D

2�

x
u(x, t) − 2auD�

x
u(x, t) − bD3�

txx
u(x, t) = 0.

(9)u(x, t) = U(�), � =
(
k

�

)
x� −

(
c

�

)
t� ,
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When we integrate once and setting the integration constant to zero in (10), we obtain

Applying the balance principle on the terms U2 and U′′ in Eq. (11), we have 2M = M + 2 . 
Consequently, we find M = 2 . Using Eq. (7) together with M = 2 , we have

The following results are provided by processing the general steps required in the method.
Set 1:
One obtains r = [2, 0, 1, 1] and s = [−1, 0, 1,−1] , so Eq. (7) turns to

Case 1.1: We also obtain

Putting values in Equations (12) and (13), yields the following solution

Consequently, we get the solution of Equation (8) as

Figure 1 shows the dynamic properties of u1(x, t) for a = 0.5, b = 0.1, k = 0.3 , and for two 
different values of �’s.

Case 1.2: We also obtain

Putting values in Equations (12) and (13), yields the following solution

Consequently, we get the solution of Equation (8) as

(10)(k − c)U� − 2akUU
� + bck2U��� = 0.

(11)(k − c)U − akU2 + bck2U�� = 0.

(12)U(�) = A0 + A1Ψ(�) + A2Ψ
2(�) +

B1

Ψ(�)
+

B2

Ψ2(�)
.

(13)Ψ(�) =
cosh (�) − sinh (�)

cosh (�)
.

c =
k

4 bk2 + 1
, k = k,A0 =

4bk2

4 abk2 + a
,A1 = −

12bk2

4 abk2 + a
,A2 =

6bk2

4 abk2 + a
,B1 = 0,B2 = 0.

U(�) =
2
(
2 cosh

2 (�) − 3
)
bk2

a
(
4 bk2 + 1

)
cosh

2 (�)
.

(14)u1(x, t) =
2

(
2 cosh

2
((

k

�

)
x� −

(
c

�

)
t�
)
− 3

)
bk2

a
(
4 bk2 + 1

)
cosh

2
((

k

�

)
x� −

(
c

�

)
t�
) .

c = −
k

4 bk2 − 1
, k = k,A0 = 0,A1 =

12bk2

4 abk2 − a
,A2 = −

6bk2

4 abk2 − a
,B1 = 0,B2 = 0.

U(�) =
6bk2

a
(
4 bk2 − 1

)
cosh

2 (�)
.

(15)u2(x, t) =
6bk2

a
(
4 bk2 − 1

)
cosh

2
((

k

�

)
x� −

(
c

�

)
t�
) .
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Figure 2 shows the dynamic properties of u2(x, t) for a = 1.6, b = 0.5, k = 0.5 , and for two 
different values of �’s.

Set 2:
One obtains r = [1 − i,−1 − i,−1, 1] and s = [i,−i, i,−i] , so Eq. (7) turns to

Case 2.1: We also obtain

Putting values in Equations (12) and (16), yields the following solution

Consequently, we get the solution of Equation (8) as

(16)Ψ(�) =
cosh (�) − sinh (�)

cosh (�)
.

c =
k

4 bk2 + 1
, k = k,A0 =

12bk2

4 abk2 + a
,A1 = 0,A2 = 0,B1 =

24bk2

4 abk2 + a
,B2 =

24bk2

4 abk2 + a
.

U(�) = −
12bk2

a
(
4 bk2 + 1

)
(2 cos (�) sin (�) − 1)

.

Fig. 1  Dynamic behaviours modulus of solution u1(x, t) for a = 0.5, b = 0.1, k = 0.3

Fig. 2  Dynamic behaviours modulus of solution u2(x, t) for a = 1.6, b = 0.5, k = 0.5
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Figure 3 shows the dynamic properties of u3(x, t) for a = 0.3, b = 0.15, k = 0.7 , and for two 
different values of �’s.

Case 2.2: We also obtain

Putting values in Equations (12) and (16), yields the following solution

Consequently, we get the solution of Equation (8) as

Figure 4 shows the dynamic properties of u4(x, t) for a = 0.15, b = 0.35, k = 0.5 , and for 
two different values of �’s.

Set 3:
One obtains r = [2, 0, 1,−1] and s = [1, 0, 1,−1] , so Eq. (7) turns to

Case 3.1: We also obtain

(17)

u3(x, t) = −
12bk2

a
(
4 bk2 + 1

)(
2 cos

((
k

�

)
x� −

(
c

�

)
t�
)
sin

((
k

�

)
x� −

(
c

�

)
t�
)
− 1

) .

c = −
k

4 bk2 − 1
, k = k,A0 = −

8bk2

4 abk2 − a
,A1 = 0,A2 = 0,B1 = −

24bk2

4 abk2 − a
,

B2 = −
24bk2

4 abk2 − a
.

U(�) =
8bk2(cos (�) sin (�) + 1)

a
(
4 bk2 − 1

)
(2 cos (�) sin (�) − 1)

.

(18)u4(x, t) =
8bk2

(
cos

((
k

�

)
x� −

(
c

�

)
t�
)
sin

((
k

�

)
x� −

(
c

�

)
t�
)
+ 1

)

a
(
4 bk2 − 1

)(
2 cos

((
k

�

)
x� −

(
c

�

)
t�
)
sin

((
k

�

)
x� −

(
c

�

)
t�
)
− 1

) .

(19)Ψ(�) =
cosh (�) − sinh (�)

cosh (�)
.

Fig. 3  Dynamic behaviours modulus of solution u3(x, t) for a = 0.3, b = 0.15, k = 0.7
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Putting values in Equations (12) and (19), yields the following solution

Consequently, we get the solution of Equation (8) as

Case 3.2: We also obtain

Putting values in Equations (12) and (19), yields the following solution

Consequently, we get the solution of Equation (8) as

Figure 5 shows the dynamic properties of u6(x, t) for a = 0.8, b = 0.9, k = 0.9 , and for two 
different values of �’s.

Set 4:
One obtains r = [−1, 0, 1, 1] and s = [0, 0, 1, 0] , so Eq. (7) turns to

c =
k

4 bk2 + 1
, k = k,A0 =

4bk2

4 abk2 + a
,A1 = −

12bk2

4 abk2 + a
,A2 =

6bk2

4 abk2 + a
,B1 = 0,B2 = 0.

U(�) =
2
(
2 cosh

2 (�) + 1
)
bk2

a
(
4 bk2 + 1

)
sinh

2 (�)
.

(20)u5(x, t) =
2

(
2 cosh

2
((

k

�

)
x� −

(
c

�

)
t�
)
+ 1

)
bk2

a
(
4 bk2 + 1

)
sinh

2
((

k

�

)
x� −

(
c

�

)
t�
) .

c = −
k

4 bk2 − 1
, k = k,A0 = 0,A1 =

12bk2

4 abk2 − a
,A2 = −

6bk2

4 abk2 − a
,B1 = 0,B2 = 0.

U(�) = −
6bk2

a
(
4 bk2 − 1

)
(sinh (�))2

.

(21)
u6(x, t) = −

6bk2

a
(
4 bk2 − 1

)(
sinh

((
k

�

)
x� −

(
c

�

)
t�
))2

.

Fig. 4  Dynamic behaviours modulus of solution u4(x, t) for a = 0.15, b = 0.35, k = 0.5
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We also obtain

Putting values in Equations (12) and (22), yields the following solution

Consequently, we get the solution of Equation (8) as

Figure 6 shows the dynamic properties of u7(x, t) for a = 0.65, b = 0.35, k = 0.85 , and for 
two different values of �’s.

Set 5:
One obtains r = [3, 2, 1, 1] and s = [1, 0, 1, 0] , so Eq. (7) turns to

We also obtain

Putting values in Equations (12) and (24), yields the following solution

(22)Ψ(�) = −
(
1 + e�

)−1
.

c =
k

bk2 + 1
, k = k,A0 =

bk2

a
(
bk2 + 1

) ,A1 =
6bk2

a
(
bk2 + 1

) ,A2 =
6bk2

a
(
bk2 + 1

) ,B1 = 0,B2 = 0.

U(�) = −
bk2

(
−e2 � + 4 e� − 1

)

a
(
bk2 + 1

)(
1 + e�

)2 .

(23)u7(x, t) = −

bk2
(
−e

(
2k

�

)
x�−

(
2c

�

)
t�

+ 4 e

(
k

�

)
x�−

(
c

�

)
t�

− 1

)

a
(
bk2 + 1

)(
1 + e

(
k

�

)
x�−

(
c

�

)
t�
)2

.

(24)Ψ(�) =
3 e� + 2

1 + e�
.

c =

√
aA2 + 6

√
a
√
A2

6
√
b

, k =

√
a
√
A2√

b
√
aA2 + 6

,A0 = 6A2,A1 = −5A2,A2 = A2,B1 = 0,B2 = 0.

Fig. 5  Dynamic behaviours modulus of solution u6(x, t) for a = 0.15, b = 0.35, k = 0.5
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Consequently, we get the solution of Equation (8) as

Figure 7 shows the dynamic properties of u8(x, t) for a = 0.5, b = 0.35,A2 = 3 , and for two 
different values of �’s.

Set 6:
One obtains r = [−3,−2, 1, 1] and s = [1, 0, 1, 0] , so Eq. (7) turns to

We also obtain

U(�) = −
A2e

�

(
1 + e�

)2 .

(25)u8(x, t) = −
A2e

(
k

�

)
x�−

(
c

�

)
t�

(
1 + e

(
k

�

)
x�−

(
c

�

)
t�
)2

.

(26)Ψ(�) =
−3 − 2 e�

1 + e�
.

Fig. 6  Dynamic behaviours modulus of solution u7(x, t) for a = 0.65, b = 0.35, k = 0.

Fig. 7  Dynamic behaviours modulus of solution u8(x, t) for a = 0.5, b = 0.35,A2 = 3
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Putting values in Equations (12) and (26), yields the following solution

Consequently, we get the solution of Equation (8) as

Set 7:
One obtains r = [i,−i, 1, 1] and s = [i,−i, i,−i] , so Eq. (7) turns to

We also obtain

Putting values in equations (12) and (28), yields the following solution

Consequently, we get the solution of Equation (8) as

Figure 8 shows the dynamic properties of u10(x, t) for a = 0.5, b = 1.5, k = 0.8 , and for two 
different values of �.

Set 8:
One obtains r = [1, 1,−1, 1] and s = [1,−1, 1,−1] , so Eq. (7) turns to

We also obtain

Putting values in Equations (12) and (30), yields the following solution

c =
2

3
√
−b

, k = −
2√
−b

,A0 =
148

3 a
,A1 = 0,A2 = 0,B1 = 240 a−1,B2 = 288 a−1.

U(�) = −
4
(
−4 e2 � + 24 e� − 9

)

3a
(
3 + 2 e�

)2 .

(27)u9(x, t) = −

4

(
−4 e

(
2k

�

)
x�−

(
2c

�

)
t�

+ 24 e

(
k

�

)
x�−

(
c

�

)
t�

− 9

)

3a

(
3 + 2 e

(
k

�

)
x�−

(
c

�

)
t�
)2

.

(28)Ψ(�) = −
sin (�)

cos (�)
.

c =
k

16 bk2 + 1
, k = k,A0 =

12bk2

16 abk2 + a
,A1 = 0,A2 =

6bk2

16 abk2 + a
,B1 = 0,B2 =

6bk2

16 abk2 + a
.

U(�) =
6bk2

a
(
16 bk2 + 1

)
sin

2 (�) cos2 (�)
.

(29)u10(x, t) =
6bk2

a
(
16 bk2 + 1

)
sin

2
((

k

�

)
x� −

(
c

�

)
t�
)
cos2

((
k

�

)
x� −

(
c

�

)
t�
) .

(30)Ψ(�) = −
cosh (�)

sinh (�)
.

c =
k

16 bk2 + 1
, k = k,A0 =

4bk2

16 abk2 + a
,A1 = 0,A2 =

6bk2

16 abk2 + a
,B1 = 0,B2 =

6bk2

16 abk2 + a
.
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Consequently, we get the solution of Equation (8) as

4.2  The conformable Kundu–Eckhaus equation

In this part, we aim to construct exact wave solutions in studying the conformable version 
of the Kundu–Eckhaus equation (32), giving by

In order to find solutions of Equation (32), following new variables are introduced

where �, k and � are constants to be determined.
Taking Eq. (33) into account in Eq. (32) yields

If we balance the highest derivative term of Θ�� and nonlinear term of Θ5 in Eq. (34) as 
M + 2 = 5M , we obtain M =

1

2
.

So, we need to use a new transformation Θ(�) = U
1

2 (�) in Eq. (34) to get

U(�) =
bk2

(
6coth4(�) + 4coth2(�) + 6

)
(
16 abk2 + a

)
coth2(�)

.

(31)u11(x, t) =
bk2

(
6coth4

((
k

�

)
x� −

(
c

�

)
t�
)
+ 4coth2

((
k

�

)
x� −

(
c

�

)
t�
)
+ 6

)

(
16 abk2 + a

)
coth2

((
k

�

)
x� −

(
c

�

)
t�
) .

(32)
iD�

t
q(x, t) +D

2�

xx
qxx(x, t) − 2�|q|2(x, t)q(x, t)

+ �2|q|4(x, t)q(x, t) + 2i�D�

x

(|q(x, t)|2)q(x, t) = 0,

(33)
q(x, t) = Q(�)eiΦ(x,t), � = k

((
1

�

)
x� −

(
2�

�

)
t�
)
,

Φ(x, t) =
(
�

�

)
x� −

(
�

�

)
t� ,

(34)−
(
� + �2

)
Θ − k2Θ�� − 2�Θ3 + �2Θ5 − 4�kΘ2Θ� = 0,

Fig. 8  Dynamic behaviours modulus of solution u10(x, t) for a = 0.5, b = 1.5, k = 0.8
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Now if we apply the balance principle on the terms U4 and UU
′′ in Eq. (35), we have 

4M = M +M + 2 , so M = 1 . Using Eq. (7) together with M = 1 , we have

The following results are provided by processing the general steps required in the method.
Set 1:
One obtains r = [−1, 0, 1, 1] and s = [0, 0, 1, 1] , so Eq. (7) turns to

Case 1.1: In this case we also obtain

Putting values in Equations (36) and (37), yields the following solution

and

Figure 9 shows the dynamic behavior of solution q1(x, t) for � = 0.75, � = 0.95,� = 0.6 , 
and � = 0.9.

Case 1.2: In this case we also obtain

Putting values in Equations (36) and (37), yields the following solution

(35)−4
(
� + �2

)
U

2 + k2U�2 − 2k2UU
�� − 8�U

3 + 4�2U
4 − 8k�U2

U
� = 0,

(36)Θ(�) = A0 + A1Ψ(�) +
B1

Ψ(�)
.

(37)Ψ(�) = −
1

1 + e�
.

� =
−8�2�2 − �2

√
7 − 4 �2

8�2
, k = −

�
1 +

√
7

�
�

2�
,� = �,A0 = 0,A1 = −

�

�
4 +

√
7

�

2

�
3 +

√
7

�
�2

,B1 = 0.

Q(�) =
�

�
4 +

√
7

�

2

�
3 +

√
7

�
�2
�
1 + e�

� ,

(38)q1(x, t) =

⎛⎜⎜⎜⎜⎜⎝

�

�
4 +

√
7

�

2

�
3 +

√
7

�
�2

�
1 + e

−
(1+

√
7)�

2�

�
x−

2� t�

�

��

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

� =
−24�2�2

√
7 − 64�2�2 − 20 �2

√
7 − 53 �2

8�2

�
8 + 3

√
7

� , k =

�
1 +

√
7

�
�

2�
,� = �,

A0 =
�

�
4 +

√
7

�

2

�
3 +

√
7

�
�2

,A1 =
�

�
4 +

√
7

�

2

�
3 +

√
7

�
�2

,B1 = 0.
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and

Figure 10 shows the dynamic behavior of solution q2(x, t) for � = 0.75, � = 0.8,� = 0.69 , 
and � = 0.9.

Set 2:
One obtains r = [2, 0, 1,−1] and s = [1, 0, 1,−1] , so Eq. (7) turns to

Q(�) =
�

�
4 +

√
7

�
e�

2

�
3 +

√
7

�
�2
�
1 + e�

� ,

(39)q2(x, t) =

⎛⎜⎜⎜⎜⎜⎝

�

�
4 +

√
7

�
e
(1+

√
7)�

2�

��
1

�

�
x�−

2� t�

�

�

2

�
3 +

√
7

�
�2

�
1 + e

(1+
√
7)�

2�

��
1

�

�
x�−

2� t�

�

��

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

Fig. 9  Dynamic behaviours modulus of solution q1(x, t) , real part (left) and imaginary part (right) for 
� = 0.75, � = 0.95,� = 0.6 , and � = 0.9

Fig. 10  Dynamic behaviours modulus of solution q2(x, t) , real part (left) and imaginary part (right) for 
� = 0.75, � = 0.8,� = 0.69 , and � = 0.9
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Case 2.1: In this case we also obtain

Putting values in equations(36) and (40), yields the following solution

and

Case 2.2: In this case we also obtain

Putting values in equations (36) and (40), yields the following solution

and

(40)Ψ(�) =
cosh (�) + sinh (�)

sinh (�)
.

� =
−1796320�2�2

√
7 + 4752616�2�2 − 1492237 �2

√
7 + 3948088 �2

8�2

�
−594077 + 224540

√
7

� , k =

�
−1 +

√
7

�
�

4�
,

� = �,

A0 =
�

�
47

√
7 − 125

�

4

�
−53 + 20

√
7

�
�2

,A1 = −
�

�
−4 +

√
7

�

4�2

�
−3 +

√
7

� ,B1 = 0.

Q(�) =

�
133

√
7 − 352

�
� (cosh (�) − sinh (�))

4

�
−53 + 20

√
7

�
�2

�
−3 +

√
7

�
sinh (�)

,

(41)

q3(x, t) =

⎛⎜⎜⎜⎜⎜⎝

�
133

√
7 − 352

�
�

�
cosh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��
− sinh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

���

4

�
−53 + 20

√
7

�
�2

�
−3 +

√
7

�
sinh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

� =
−2105120�2�2

√
7 + 5569624�2�2 − 1748763 �2

√
7 + 4626792 �2

8�2

�
−696203 + 263140

√
7

� ,

k =

�
1 −

√
7

�
�

4�
,� = �,

A0 = 0,A1 =
3

�
−1225 + 463

√
7

�
�

8

�
−1561 + 590

√
7

�
�2

,B1 = 0.

Q(�) =
3

�
−1225 + 463

√
7

�
� (cosh (�) + sinh (�))

8

�
−1561 + 590

√
7

�
�2 sinh (�)

,
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Set 3:
One obtains r = [1, 2, 1, 1] and s = [0, 1, 0, 1] , so Eq. (7) turns to

We also obtain

Putting values in equations(36) and (43), yields the following solution

and

Figure 11 shows the dynamic behavior of solution q5(x, t) for � = 0.8, � = 0.2,� = 0.8 , and 
� = 0.7.

Set 4:
One obtains r = [−3,−2, 1, 1] and s = [0, 1, 0, 1] , so Eq. (7) turns to

We also obtain

(42)

q4(x, t) =

⎛⎜⎜⎜⎜⎜⎝

3

�
−1225 + 463

√
7

�
�

�
cosh

��
1−

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��
+ sinh

��
1−

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

���

8

�
−1561 + 590

√
7

�
�2 sinh

��
1−

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

(43)Ψ(�) =
1 + 2 e�

1 + e�
.

� =
−8�2�2 − �2

√
7 − 4 �2

8�2
, k =

�
1 +

√
7

�
�

2�
,� = �,

A0 = −

�
−5 +

√
7

�
�

2�2
,A1 = 0,B1 =

�
−5 +

√
7

�
�

2�2
.

Q(�) = −

�
−5 +

√
7

�
� e�

2�2
�
2 e� + 1

� ,

(44)q5(x, t) =

⎛⎜⎜⎜⎜⎜⎝

−

�
−5 +

√
7

�
� e

(1+
√
7)�

2�

��
1

�

�
x�−

2� t�

�

�

2�2

�
2 e

(1+
√
7)�

2�

��
1

�

�
x�−

2� t�

�

�
+ 1

�

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

(45)Ψ(�) =
−3 − 2 e�

1 + e�
.
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Putting values in equations (36) and (45), yields the following solution

and

Set 5:
One obtains r = [2, 0, 1, 1] and s = [−1, 0,−1, 1] , so Eq. (7) turns to

We also obtain

Putting values in equation (36) and (47), yields the following solution

� =
−8�2�2 − �2

√
7 − 4 �2

8�2
, k = −

�
1 +

√
7

�
�

2�
,� = �,A0 = −

3

�
−5 +

√
7

�
�

4�2
,

A1 = 0,B1 = −
3

�
−5 +

√
7

�
�

2�2
.

Q(�) = −
3

�
−5 +

√
7

�
�

4�2
�
2 e� + 3

� ,

(46)q6(x, t) =

⎛⎜⎜⎜⎜⎜⎝

−
3

�
−5 +

√
7

�
�

4�2

�
2 e

(1+
√
7)�

2�

��
1

�

�
x�−

2� t�

�

�
+ 3

�

⎞⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

(47)Ψ(�) =
cosh (�) − sinh (�)

cosh (�)
.

� =
−8�2�2 − �2

√
7 − 4 �2

8�2
, k = −

�
1 +

√
7

�
�

4�
,� = �,A0 = 0,A1 = −

�
−5 +

√
7

�
�

8�2
,B1 = 0.

Fig. 11  Dynamic behaviours modulus of solution q5(x, t) , real part (left) and imaginary part (right) for 
� = 0.8, � = 0.2,� = 0.8 , and � = 0.7
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and

Figure 12 shows the dynamic behavior of solution q7(x, t) for � = 0.45, � = 0.85,� = 0.35 , 
and � = 0.95.

Set 6:
One obtains r = [−3,−1, 1, 1] and s = [1,−1, 1,−1] , so Eq. (7) turns to

We also obtain

Putting values in equations (36) and (49), yields the following solution

Q(�) = −

�
−5 +

√
7

�
� (cosh (�) − sinh (�))

8�2
cosh (�)

,

(48)

q7(x, t) =

⎛
⎜⎜⎜⎜⎜⎝

−

�
−5 +

√
7

�
�

�
cosh

�
−

�
1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��
− sinh

�
−

�
1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

���

8�2
cosh

�
−

�
1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��

⎞
⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

(49)Ψ(�) =
−2 cosh (�) − sinh (�)

cosh (�)
.

� =
−24�2�2

√
7 + 64�2�2 − 20 �2

√
7 + 53 �2

8�2
�
−8 + 3

√
7

� , k =

�
−1 +

√
7

�
�

4�
,� = �,

A0 = −
�

�
−4 +

√
7

�

4�2
�
−3 +

√
7

� ,A1 = 0,B1 = −
3�

�
−4 +

√
7

�

4�2
�
−3 +

√
7

� .

Fig. 12  Dynamic behaviours modulus of solution q7(x, t) , real part (left) and imaginary part (right) for 
� = 0.45, � = 0.85,� = 0.35 , and � = 0.95
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and

Figure 13 shows the dynamic behavior of solution q8(x, t) for � = 0.5, � = 0.5,� = 0.5 , and 
� = 1.

5  Conclusions

In this research, the projected method has been effectively applied to the nonlinear com-
plex Kundu–Eckhaus and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations in 
conformable domain used to explain the most fascinating problems of modern optics. 
Some important optical soliton solutions such as single (dark, bright and singular), com-
plex solitons, as well as a hyperbolic, travelling wave and trigonometric function solu-
tions have been successfully extracted. The graphical simulations of the reported solu-
tions have been also presented in Figs. (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11, 12, 13). While 
some of these figures symbolize singular wave properties, others gives travelling wave 
distributions. The results are entirely new, interesting and play an important roles in the 
field of the nonlinear Schrödinger equation because the studied model, namely nonlin-
ear complex Kundu–Eckhaus equation is one of the part of NLSE. When we consider 
the obtained results, it is clear that the method has less limitations than other methods 
in determining the exact solutions of the equations. Despite the simplicity and ease of 

Q(�) =
�

�
−4 +

√
7

�
(cosh (�) − sinh (�))

4�2

�
−3 +

√
7

�
(2 cosh (�) + sinh (�))

,

(50)

q8(x, t) =

⎛
⎜⎜⎜⎜⎜⎝

�

�
−4 +

√
7

��
cosh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��
− sinh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

���

4�2

�
−3 +

√
7

��
2 cosh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

��
+ sinh

��
−1+

√
7

�
�

4�

��
1

�

�
x� −

2� t�

�

���

⎞
⎟⎟⎟⎟⎟⎠

1∕2

× e
i
��

�

�

�
x�−

�
�

�

�
t�
�
.

Fig. 13  Dynamic behaviours modulus of solution q8(x, t) , real part (left) and imaginary part (right) for 
� = 0.5, � = 0.5,� = 0.5 , and � = 1
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use of this method, it has a very powerful performance and is able to introduce a wide 
range of various types of solutions to such mathematical models. The idea used in this 
paper is readily applicable to solving other partial differential equations in mathematical 
physics. Finally, we observed that the propagation dynamics of these solutions obtained 
in this paper via GERFM may be used to explain the general properties of the nonlinear 
optical wave distributions (Weisstein 2002).
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