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Abstract
It is worth mentioning that the perturbed Chen–Lee–Liu equation (PCLLE) exhibits the 
effects of self-steepening (SS), Raman scattering (RS) and self-phase modulation (SPM). 
Our attention is focused, here, to inspect the challenge between these phenomena may lead 
to a dominant one among them. On the other hand, we investigate the dominant phenom-
ena produced due to these interactions. Furthermore, the structure of the configuration of 
pulses propagation in optical fibers are depicted. These phenomena are illustrated, here, via 
studying the PCLLE with an extra dispersion. This equation is formulated and the exact 
solutions of this new equation are found by using the unified method (UM). The impor-
tance of the UM stems from the fact that, in the applications, we have found that the UM is 
of low time cost in symbolic computation. So, we think that it prevails the known methods 
in the literature. On the other hand, the solutions for the complex envelope field equations, 
found in the literature, are always considered with real wave amplitude. Here, a transfor-
mation based on using complex wave amplitude is introduced. Indeed, in this case, solu-
tions describe the waves that result from soliton- periodic wave collision, which may reveal 
novel phenomena. The solutions obtained are evaluated numerically and represented in 
graphs. It is shown that pulses compression occurs which may be due to self-phase modu-
lation. Also, dispersive shock wave can be produced which may be argued to the presence 
of the extra dispersion and self-sdteepening. It is worthy to mention that, self-steepening 
arises for a small value of the related coefficient. The results obtained, here, are novel. The 
modulation instability is analyzed and it is found that it triggers at a critical values of SS 
and RS coefficients. At this stage, shock wave may occur. It is observed that the spectrum 
shows soliton with periodic waves background.
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1 Introduction

The perturbed nonlinear Schrodinger equations, among them the PCLLE describes the 
propagation of optical pulses in optical fibers, retaining the interactions of self-steepen-
ing, Raman scattering and self phase modulation phenomena (Chen et al. 1979). In Chen 
et al. (1979) the inverse scattering method was used to study the integrability of nonlin-
ear Hamiltonian systems. The PCLLE was currently studied in the literature. A general-
ized PCLLE with high nonlinearity perturbation terms were also considered. In this case, 
a PCLLE was taken full nonlinearity via integration algorithms, where solutions exhibit 
bright, dark, singular solitons were shown (Yıldırıma et al. 2020). In Kudryashov (2019), 
the traveling wave reduction was used where two first integrals for the system of equa-
tions of the real and imaginary parts of the solution of PCLLE were found. A higher-order 
extension of the PCLLE with third-order dispersion and quintic nonlinearity terms was 
studied in Zhang et al. (2015) by constructing the n-fold Darboux transformation. By using 
modified 1/G ′ -expansion and modified Kudryashov methods, traveling wave solutions of 
PCLLE, where different aspects of the solutions produced by both analytical methods were 
discussed (Yokuş et al. 2021). Analytical bright soliton solutions, dark soliton solutions, 
periodic solutions of the fractional PCLLE were obtained by the modified exp(−Ω(�))
-expansion function method (Martínez et  al. 2021). In Houwe et  al. (2021), the chirped 
and the corresponding chirp with their stability to the PCLLE with self-phase modulation 
and nonlinear dispersions were presented. The Jacobi elliptic function technique was used 
to find solutions of PCLLE (Sarla et al. 2022). A novel modification for the generalized 
exponential rational function method was used to determine novel analytical solutions of 
PCLLE (Mohamed et al. 2022).The conservation laws of PCLLE in optical fibers together 
with he conserved densities were retrieved by Lie symmetry analysis (Karaa et al. 2018).
The collective variable method to study two types of the CLLE, the classical and perturbed 
ones was employed (Alrashed et al. 2021). The classical Lie symmetry analysis was used 
to exhibit optical solitons to PCLLE (Bansal et al. 2020). Construction of different optical 
soliton solutions to the CLLE of monomode fibers, by executing the extended sinh-Gordon 
equation expansion method, logarithmic transformation, and the ansatz functions method, 
was executed (Bilal et al. 2021). The CLLE in birefringent fibers is examined to uncover 
dark, bright and also singular solitons (Yıldırım 2019). In Gaxiola and Biswas (2018), 
the CLLE in optical fibers was dealt with by the aid of Laplace Adomian decomposition 
method. The CLLE was investigated by the aid of fully shifted Jacobi’s collocation method 
with two independent approaches, via discretization of the spatial variable and the tempo-
ral variable (Abdelkawy et al. 2021). Periodic wave trains of the CLLE evolved from fully 
developed modulation instability was found in Liu et al. (2021). Therein it was shown that a 
highly nontrivial spectral evolution of such waves leads to strong asymmetry of its compo-
nents.The effect of fractional temporal evolution on chirped soliton solutions of the CLLE 
was studied by adopting the new modified sub-equation method to derive bright and dark 
solitons, periodic and singular function solutions (Dépélair et al. 2021). The classification 
of possible wave structures evolving from initially discontinuous profiles for the photon 
fluid propagating in a normal dispersion fiber was carried based on the generalized CLLE  
(Ivanov 2021). We mention that the PCLLE can be considered as kind of perturbed nonlin-
ear Schrodinger equation (PNLSE), so that they may share many physical insights concern-
ing the propagation of optical pulses in fiber optics. The PNLSE has received the attention 
of a variety of works. In Mihalache et al. (1993), the inverse scattering transform was used 
to find one-parameter and the breather-like four-parameter soliton solutions of a PNLSE.
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The Riccati-Bernoulli Sub-ODE method was used to investigate exact wave solution of the 
PNLSE (Shehata 2016). In Mahak and Akram (2019), the extension of the rational sine-
cosine method and rational sinh-cosh method to construct new exact solutions of PNLSE. 
The two (G′ /G,1/G)-expansion methods were suggested to obtain abundant closed form 
wave solutions to thePNLSE and the cubic-quintic Ginzburg-Landau equation Miah et al. 
(2016). In Neirameh (2016), a new class of conformable fractional derivative for construct-
ing new exact solitary wave solutions to the fractional PNLSE was proposed. New com-
plex solitons to the PNLSE model with the help of an analytical method were obtained 
(Gao et al. 2020). In Zhang et al. (2010), the modified mapping method and the extended 
mapping method we were used to derive some new exact solutions of the PNLSE. In the 
presence of parabolic law nonlinear fibers, Raman effect and self-steepening, the PNLSE 
was investigated using the sub-equation expansion method (Zhou 2014). The PNLSE was 
studied by utilizing two analytical methods, namely the extended modified auxiliary equa-
tion mapping and the generalized Riccati equation mapping methods (Osman et al. 2021). 
For the PNLSE, the exact traveling wave solutions solutions, trigonometric, hyperbolic, 
rational, soliton and complex function solutions,, via the extended (G′ G2)-expansion 
method and the first integral method were obtained (Akram and Mahak 2018). An aterna-
tive method used to inspect the local and nonlocal integrability is the inverse scattering 
method was used emplopyed in Ma (2022, 2021) and Ma and Yong (2021)

It is worthy to mention that, always in the literature, solutions of theNLSE. extended 
NLSE and Perturbed NlSE, for the complex envelope, were found by introducing real 
amplitude transformation. Very recently numerous works were carried by introducing com-
plex amplitude transformation which inspect the waves that result from solion-periodic 
wave collision. It reveals many new phenomena which were hidden in the traditional trans-
formation (Abdel-Gawad 2012, 2021a, b, c, d, 2022; Abdel-Gawad et al. 2022; Tantawy 
and Abdel-Gawad 2020), and It is estabished that NLSE-type equtions, they are integrabe 
when the the real and imaginary parts are linearly dependent. In the present work, we study 
the PCLLE in the presence of third order dispersion, where the interaction of self-steepen-
ing (SS), Raman scattering (RS) and self-phase modulation (SPM) is investigated, which 
is completely new. This is established by investigating the exact solutions of the PCLLE 
which are found by using the UM.

The outlines of this work are as follows.
In Sect.  2 the model equation and the method are presented. Section  3 is devoted to 

solutions in hyperbolic function forms. While, elliptic solutions are presented in Sect. 4. 
Modulation instability and the spectral analysis are studied in Sect. 5. Section 6 is devoted 
to conclusions.

2  The Model Eq. and outlines of the UM

2.1  The model Eq.

The propagation of optical pulses inside in a monomode fibers modeled by the CLL 
equation,which reads

where w ≡ w(x., t) is the complex envelope field, � is the group dispersion velocity and � is 
the coefficient of Raman scattering.

(1)iwt + � wxx + � ∣ w ∣2 wx = 0,
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The perturbed Chen–Lee–Liu equation describe the propagation of optical pulses in 
plasma and optical fibers reads,

where c is the phase velocity, � is the coefficient of self-steepening for short pulses and � is 
the coefficient of self-phase modulation (nonlinear dispersion).

The PCLLE with high nonlinearity is,

Here, we consider the Eq (2) with an extra dispersion,

where � is the coefficient of the highest order dispersion. We proceed by introducing a 
transformation with complex amplitude solution for w(x, t) in the form,

into (4), and the equations for the real and imaginary parts are given respectively by,

Here we use the transformations for the traveling wave solutions of (6) and (7), 
u(x, t) = U(z), v(x, t) = V(z), z = hx + dt , thus (6) and (7) reduce respectively to,

The exact solutions of (8) and (9) (or (6) and (7)) are obtained via the UM [ ]. It asserts 
that the solutions of nonlinear partial differential equations are expressed in polynomial an 
rational forms, in an auxiliary function that satisfied an auxiliary equation.

(2)iwt + � wxx + � ∣ w ∣2 wx = i[cwx + �(∣ w ∣2 w)x + �(∣ w ∣2)xw],

(3)iwt + 𝛼 wxx + 𝛾 ∣ w ∣2 wx = i[cwx + 𝜇(∣ w ∣2n w)x + 𝜎(∣ w ∣2n)xw], n > 1, n 𝜖ℕ,

(4)iwt + � wxx + i�wxxx + � ∣ w ∣2 wx = i[cwx + �(∣ w ∣2 w)x + �(∣ w ∣2)xw],

(5)w(x, t) = (u(x, t) + iv(x, t))ei(kx−�t), w∗(x, t) = (u(x, t) − iv(x, t))e−i(kx−�t),

(6)

ku3(� − �) − vt + u
(
ck − �k2 + �k3 + kv2(� − �) + 2uxv(� + �) + �

)

+ vx
(
c + 3�k2 − 2�k

)
+
[
u2(� − �) + v2(−� + 3� + 2�)

]
vx

+ uxx(� − 3�k) − �vxxx = 0,

(7)

kv3(� − �) + ut +
[
−c − 3�k2 + 2�k + u2(� − 3� − 2�)

+v2(� − �)
]
ux

+ v
(
ck − �k2 + �k3 + ku2(� − �) − 2u(� + �)vx + �

)

+ vxx(� − 3�k) + �uxxx = 0.

(8)

V �
(
−d + h

(
c + 3�k2 − 2�k

)
+ hV2(−� + 3� + 2�)

)

+ h2
(
U��(� − 3�k) − �hV (3)

)

+ U
(
ck + 2hV(� + �)U� − �k2 + �k3 + kV2(� − �) + �

)

+ hU2(� − �)V � + kU3(� − �) = 0,

(9)

U�
(
d − h

(
c + 3�k2 − 2�k

)
+ hU2(� − 3� − 2�)

)

+ h2
(
�hU(3) + V ��(� − 3�k)

)

+ V
(
ck − 2hU(� + �)V � − �k2 + �k3 + kU2(� − �) + �

)

+ hV2(� − �)U� + kV3(� − �) = 0.
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2.2  Outlines of the UM

2.2.1  Polynomial forms

The solutions of (8) and (9) are written,

where g(z)is the auxiliary function together with the auxiliary equation (AE).
The polynomial solution (10) of (8) and (9) exists, in the sense of polynomial form, if 

there exist integersn1, n2 and k. To this issue, we analyze two conditions, the balance and 
consistency We consider the case r = 1. With relevance to (8) and (9), the balance condition 
leads to n1 = n2 = k − 1 . For the consistency condition we determine the number of equa-
tions that result from inserting (10) into these equation and by setting the coefficients of 
g(z)i, i = 0, 1, 2, ...equal to zero (say p(k) = 4k − 3) . Also, we determine the numbers of arbi-
trary parameters {aj, bj, cj} (say q(k) = 2k − 1).The condition for the existence of (10) reads 
p(k) − q(k) ≤ m , m is the highest order derivative in (8) and (9). (here m = 3). We find that 
1 ≤ k ≤ 7∕2,thus k = 1, 2, 3. The case when r = 2 is discussed by the same way. It is worth 
noticing that when r = 1the solutions of (10) are hyperbolic functions, while when r = 2 , they 
are periodic or elliptic functions.

2.2.2  Rational forms

In this case, for simplicity, we write directly,

Indeed , rational solutions may be considered to describe “indirect” interactions, while (10) 
describes “direct” interactions. The discussion of existence of the rational forms is done by 
the same way as in the case of polynomial forms. Indeed the determination of the values k 
in (11) depends the high nonlinearity and the highest order derivative in (8) and (9).

The importance of the unified method results from the fact that it is of low time cost in 
symbolic computations. Furthermore, it provide a wide class of solutions ranges from hyper-
bolic solutions, periodic solutions to elliptic solutions in Jacobi elliptic functions. So, think 
that it prevails the known methods in the literature.

3  Hyperbolic functions solutions of (8) and (9)

We consider the solution in (10) and find the polynomial and rational solutions.

(10)
U(z) =

∑j=n1
j=0

ajg(z)
j, V(z) =

∑j=n2
j=0

bjg(z)
j,

(g�(z))r =
∑j=rk

j=0
cjg(z)

j, r = 1, 2,

(11)
U(z) =

a1g(z)+a0

s1g(z)+s0
, V(z) =

b1g(z)+b0

s1g(z)+s0
,

(g�(z))r =
∑j=rk

j=0
cjg(z)

j, r = 1, 2.
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3.1  Polynomial solutions

3.1.1  When r = 1, k = 2

Here, we write,

together with,the A E,

In (12) the real part and imaginary part are taken linearly dependent. By inserting (12) and 
(13) into (8) and (9) and by setting the coefficients of g(z)i, i = 0, 1, 2, ..equal to zero, we 
get,

The solution of (13) is,

Finally, the solutions of (6) and (7) are,

(12)U(z) = a1g(z) + a0, V(z) = b1g(z) + b0, b0 =
b1

a1
a0,

(13)g�(z) = c2g(z)
2 + c1g(z) + c0

(14)

� =
a2
1
(−�)+3a2

1
�+2a2

1
�−b2

1
�+3b2

1
�+2b2

1
�

6c2
2
h2

,

d =

√
a2
1
+b2

1(−6ck(�+�)(�+�)+3�(�+�)(�−3�−2�)+4�k
2(�+�)2)

9
√
�c2

√
k(�−�)

√
�+�

,

c0 =
1

12c2k(a21+b
2

1)(�−�)(�+�)
(3a2

1
c2
1
k(� − �)(� + �) + 3b2

1
c2
1
k(� − �)

(� + �) + 2c2
2

�
−6ck(� + �) + �k2(� + 3� + 4�) − 6�(� + �)

�
,

h =

√
k
√

a2
1
+b2

1

√
�+�

√
�c2

, a0 =
a1c1

2c2
.

(15)

g(z) =
1

6c2

√
k
√

a2
1
+b2

1
(𝜇−𝛾)

√
𝜇+𝜎

(3c1

√
k

�
a2
1
+ b2

1
(𝛾 − 𝜇)

√
𝜇 + 𝜎+

√
6c2

√
𝛾 − 𝜇

√
6ck(𝜇 + 𝜎) − 𝛼k2(𝛾 + 3𝜇 + 4𝜎) + 6𝜔(𝜇 + 𝜎)

tanh

�
c2(A0+z)

√
6ck(𝜇+𝜎)−𝛼k2(𝛾+3𝜇+4𝜎)+6𝜔(𝜇+𝜎)

√
6
√
k
√

a2
1
+b2

1

√
𝛾−𝜇

√
𝜇+𝜎

�
, 𝛾 > 𝜇.

(16)

u(x, t) = −
1√

6
√
k
√

a2
1
+b2

1

√
�−�

√
�+�

(a1
√
6ck(� + �) − �k2(� + 3� + 4�) + 6�(� + �)

tanh

�
c2(A0+z)

√
6ck(�+�)−�k2(�+3�+4�)+6�(�+�)

√
6
√
k
√

a2
1
+b2

1

√
�−�

√
�+�

�
, v(x, t) =

b1

a1
u(x, t)

z =
1

9
√
�c2

√
k(�−�)

√
�+�

�
4�k2t(� + �)2 − 3k(� + �)(2ct(� + �) + 3x(� − �))

+3t�(� + �)(� − 3� − 2�))
�

a2
1
+ b2

1
.
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The solutions in (15) are used to calculate Re w(x, t) which is evaluated numerically and the 
results are shown in Fig. 1(i)–(iv).

In Fig 1 (i), Rew(x,  t) is displayed against x for different values of t when 
� = 1.1, � = 2.5, � =0.8. Rew(x,  t) is displayed against t by varying � when 
� = 2.5, � =0.8. in Fig. 1(ii).

In Fig. 1(iii), by varying when � = 1.1, � =0.8. and in Fig. 1(iv) by varying � when 
� = 1.1, � = 2.5.Together, when x = −3.

Figure 1(i) shows pulses compression with quasi SPM Fig. 1(ii), shows the behavior 
when varying the coefficient of SS towards high values �.

This figure consolidates the occurrence of self-steepening and we think that pulses 
progress to shock wave at a value of � = �cr.

Figure 1(iii) shows Raman scattering effect, while Fig. (iv) shows again self-steepen-
ing with raising the coefficient of self-phase modulation.

3.1.2  When r = 2and k = 2

We consider (12) with AE,

From (12) and (17) into (8) and (9) gives rise to,

(17)g�(z) = g(z)

√
c2g(z)

2 + c1g(z) + c0.

Fig. 1  (i)–(iv) When c = 0.7,� = 7, k = 4, � = 0.7, a1 = 1.7, b1 = 1.3, c2 = 1,A0 = −10.
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Finally the solutions of (6) and 7 are,

The solutions in (19) are used to display Rew(x, t) in Fig. 2 (i)–(iv).
In Fig 2 (i), Rew(x,  t) is displayed against x for different values of t when 

� = 1.1, � = 2.5, � = 0.8,

Rew(x, t) is displayed against t by varying �when � = 2.5, � = 0.8  in Fig. 2 (ii).
In Fig. 2(iii) by varying � when � = 1.1, � = 0.8,and by varying � in Fig. 2 (iv) when 

� = 1.1, � = 2.5 , and when x = −3.

(18)

� = −
(a21+b

2

1)(�−3�−2�)
6c2h

2
, a0 =

a1c1

4c2
, c0 =

c2
1

4c2

d =
1

48hc
2

2

�
a2
1

�
8c2

�
c0h

2 − 3k2
�
− 3c2

1
h2
�
(� − 3� − 2�) + 48c2

2
h2(c − 2�k)

+
�
b2
1

�
8c2

�
c0h

2 − 3k2
�
− 3c2

1
h2
�
(� − 3� − 2�)

��
,

h =

√
k
√

a2
1
+b2

1

√
�+�

√
�
√
c2

, � =
1

48c2
2
(�+�)

�
k
�
3a2

1
c2
1
(� − �)(� + �)

+3b2
1
c2
1
(� − �)(� + �) + 8c2

2
(�k(� + 3� + 4�) − 6c(� + �))

��
.

(19)

u{x, t) = −

a1c1

�
2A0c2e

c1z

2
√
c2 +1

�

4c2

�
2A0c2e

c1z

2
√
c2 −1

� , v(x, t) =
b1

a1
u(x, t),

z = −
1

48�c2c
2

2

�
a4
1
c2
1
kt(� + �)(� − 3� − 2�) + b4

1
c2
1
kt(� + �)(� − 3� − 2�)

+ 24b2
1
c2
2
kt(�k(� + � + 2�) − 2c(� + �)) + 2kta2

1

�
b2
1
c2
1
(� + �)(� − 3� − 2�) + 12

+ 12c2
2
(�k(� + � + 2�) − 2c(� + �))

�
− 48

√
�
√
c2c

2

2

√
kx

�
a2
1
+ b2

1

√
� + �

�
.

Fig. 2  (i)–(iv).When c = 0.7,� = 7, k = 5, � = 0.7, a1 = 1.7, b1 = 1.3,A0 = −10, c2 = 2, c1 = 0.7.
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Figure  2 (i) shows pulses compression with quasi-self-phase modulation on x > 0 . 
Fig. 2 (ii) shows also wave compression of shock waves.

Fig. 2 (iii) exhibits the extra dispersion effect while Fig. 2 (iv) shows SPM.

3.2  Rational solutions

We write the solutions, when r = 2 and k = 2 , in the form,

together with AE,

From (20) and (21) into (8) and (9) yields,

The solution of (21) is,

The solutions of (6) and (7) are,

The solutions in (24) are used to display Rew(x, t)in Fig. 3 (i)–(vi).
In Fig 3 (i), Rew(x, t) is displayed against x for different values oft when � = 1.1, � = 1.8.
In Fig 3(ii) and Fig 3(iii) Rew(x, t) is displayed against t by varying � when � = 1.8and 

by varying � when

(20)U(z) =
a1g(z)+a0

s1g(z)+s0
, V(z) =

b1g(z)+b0

s1g(z)+s0
, b0 =

a0b1

a1
,

(21)g�(z) = g(z)
√
−b2g(z)2 + a2.

(22)

� =
(m−1)(�−3�−2�)(a20m

2s2
1
+b2

1
s2
0)

3a2h2m2s2
0
s2
1

, a1 =
m(a0s1)

s0
s1:=

√
2bs0√

a2(m+1)
,

� =
a2h2m2�s2

0

3(m−1)2(�+�)2(a2b21(m+1)+2a
2

0
b2m2)2

�
6a2

0
b2c3(m − 1)m2(� + �)

+a2
�
2�2b2h2m2s2

0
+ 3b2

1
c3
�
m2 − 1

�
(� + �)

��
,

d = h
�

a2b2
1(m

2+3m+2)(�+�)
3b2m2s2

0

+
2a2

0
(m+2)(�+�)

3s2
0

+ c

+
a2�2b2h2m2s2

0

(m−1)(�+�)(a2b21(m+1)+2a
2

0
b2m2)

�
,

k = −
a2�b2h2m2s2

0

(m−1)(�+�)(a2b21(m+1)+2a
2

0
b2m2)

, �:=�.

(23)g(z) =
asech

(
a
(
A0 + z

))
b

.

(24)

u(x, t) =
a0

�√
a2(m+1)+

√
2amsech(a(A0+z))

�

s0

�√
a2(m+1)+

√
2asech(a(A0+z))

� , v(x, t) =
b1

a1
u(x, t),

z = h
�
x + t

�
a2b2

1(m
2+3m+2)(�+�)
3b2m2s2

0

+
2a2

0
(m+2)(�+�)

3s2
0

+ c3

+
a2�2b2h2m2s2

0

(m−1)(�+�)(a2b21(m+1)+2a
2

0
b2m2)

��
.
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� = 1.1.and when x = −10. In Fig. 3 (iv) the 3D plot is displayed for the same values 
as in Fig. 3(i).

Figure 3(i) show pulses compression, while Fig. 3(ii) and 3(iii) show quasi SPM.These 
figures show , almost, shock waves. .

4  Elliptic solutions

In this case in (10) and (11), we take r = 2.Here, also, polynomial and rational solutions are 
found.

4.1  Polynomial solutions

4.1.1  When p = 2 and k = 2

We consider two cases.
Case (I)
We consider (12) with the AE,

By inserting (12) and (20) into (8) and (9), we have,

(25)g�(z) =

√
c4g(z)

4 + c2g(z)
2 + c0.

Fig. 3  (i)–(iv). When 
c = 0.7, � = 0.7, � = 0.6, a0 = 2.7, b1 = 2.3, h:=1.5,m = 1.2,A0 = 5, s0 = 5, a = 1.5, b = 1.3
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In (18), we remark that ci, i = 0, 2, 4 are arbitrary. We consider the case when 
c4 = −m2, c2 = 2m2 − 1, c0 = m2 − 1

In this case g(z) = cn
(
z + A0

||m
)
 and the solutions of (6) and (7) are,

By using (27), Rew(x, t) is displayed in figures 4 (i)–(iv).
In Fig 4 (i), Rew(x,  t) is displayed againstx for different values of t when 

� = 2.5,� = 1.1, � = 0.8.
In Fig. 4(ii), (iii) and (iv) , Rew(x,  t) is displayed against t for different values of �

when � = 2.5, � = 0.8,

against � when � = 1.1, � = 0.8,and against � when � = 2.5,� = 1.1, respectively and 
when x = 3.

Figure 4(i) shows chirped waves. Fig. 4(ii) shows highly dispersive waves induced by 
the the extra dispersion.

While Fig. 4 (ii) and (iv) show highly oscillatory pulses with SPM.
Case (II)
Here consider (12) with the AE,

(26)

� = −

(
a
2

1
+ b

2

1

)
(� − 3� − 2�)

6c4h
2

, d =
c2h

(
a
2

1
+ b

2

1

)
(� − 3� − 2�)

6c4
−

k
2
(
a
2

1
+ b

2

1

)
(� − 3� − 2�)

2c4h
+ ch − 2�hk,

k =
�c4h

2

(
a
2

1
+ b

2

1

)
(� + �)

, � =
h
2�

6
(
a
2

1
+ b

2

1

)
2(� + �)3

(
−3a4

1
c2(� − �)(� + �)2 − 3b4

1
c2(� − �)(� + �)2

−6a2
1
(� + �)2

(
b
2

1
c2(� − �) + c4c

)
− 6b2

1
c4c(� + �)2 + �2c2

4
h
2(� + 3� + 4�)

)
, a0 = 0.

(27)
u(x, t) = a1cn

(
z + A0

||m
)
, v(x, t) = b1cn

(
z + A0

||m
)
,

z = t
(
−

�2c4h
3(�−3�−2�)

2(a21+b
2

1)(�+�)2
−

2�2c4h
3

(a21+b
2

1)(�+�)
+

c2h(a21+b
2

1)(�−3�−2�)
6c4

+ ch
)
+ hx.

(28)g�(z) =

√
c2g(z)

2 + c1g(z) + c0

√
r2g(z)

2 + r1g(z) + r0.

Fig. 4  (i)–(iv). When k = 4, � = 0.7, a1 = 3.7, b1 = 5.3,m = 0.999, h = 3,A0 = −5, c = 0.7.
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By inserting (12) and (28) gives rise to,

The solution of (28) is,

Finally the solutions of (6) and (7) are,

(29)

h =

�
a2
1
+ b2

1

√
−� + 3� + 2�

√
6
√
�
√
c2
√
r2

, a0 =
1

4
a1

�
c1

c2
+

r1

r2

�
,

d =

�
a2
1
+ b2

1

√
−� + 3� + 2�

48
√
6
√
�c

5∕2

2
r
5∕2

2

�
8c2

2
r0r2

�
a2
1
+ b2

1

�
(� − 3� − 2�)

+ 8c0c2r
2

2

�
a2
1
+ b2

1

�
(� − 3� − 2�) + 8c1c2r1r2

�
a2
1
+ b2

1

�
(� − 3� − 2�)

+48c2
2
c3r2

2
− 3

�
a2
1
+ b2

1

��
c2r1 + c1r2

�
2(� − 3� − 2�) + 144�c2

2
k2r2

2
− 96�c2

2
kr2

2

�
,

k =
�(−� + 3� + 2�)

6�(� + �)
, � =

�(� − 3� − 2�)

216�2c1r
2

2
(� + �)3

�
−9a2

1
�c1r

2

1
(� − �)(� + �)2

− 18a2
1
�c1r0r2(� − �)(� + �)2 + 9�b2

1
c1r

2

1
(� − �)(� + �)2 + 18�b2

1
c1r0r2

(� − �)(� + �)2 + 18a2
1
�c0r1r2(� − �)(� + �)2 + 18�b2

1
c0r1r2(� − �)(� + �)2

+�2c1r
2

2
(� − 3� − 2�)2 + 36�c1c3r

2

2
(� + �)2 + 6�2c1r

2

2
(� + �)(� − 3� − 2�)

�
,

c2 =
c1r2

r1
.

(30)g(z) = −

�
r2
1
− 4r0r2sn

�
1

2

�
z + A0

�√
c1r1 − 4c0r2� c1(r21−4r0r2)

r1(c1r1−4c0r2)

�
+ r1

2r2
.

(31)

u(x, t) = −

a1

�
r2
1
− 4r0r2sn

�
1

2

�
z + A0

�√
c1r1 − 4c0r2� c1(r21−4r0r2)

r1(c1r1−4c0r2)

�

2r2
,

v(x, t) =
b1

a1
u(x, t),

z =
c1

�
a2
1
+ b2

1

√
−� + 3� + 2�

12
√
6
√
�
√
r2

�
c1r2

r1

�
5∕2

�
12c1r

2

2
x

r2
1

+ t
�
c1
�
a2
1
+ b2

1

�
(−(� − 3� − 2�))

+
2c1r0r2

�
a2
1
+ b2

1

�
(� − 3� − 2�)

r2
1

+
2c0r2

�
a2
1
+ b2

1

�
(� − 3� − 2�)

r1

+
12c1c3r

2

2

r2
1

+
4�2c1r

2

2
(� − 3� − 2�)

�r2
1
(� + �)

+
�2c1r

2

2
(� − 3� − 2�)2

�r2
1
(� + �)2

��
.
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The results in (31) are evaluated numerically and Rew(x, t) is shown in Fig. 5 (i)–(vi).
c1 = 3.3, � = 1.2,A0 = 4, c = 0.7.

In Fig.  5(i), Rew(x,  t) is displayed against x for different values oft when 
� = 2.5,� = 1.1, � = 0.8, .

In Fig. 5(ii), (iii) and (iv) , Rew(x, t) is displayed againstt for different values of �
when � = 2.5, � = 1.8 . , � when � = 1.1, � = 1.8,and � when � = 2.5,� = 1.1.respec-

tively when x = 3.
In Fig.  5 (v) and (vi) the 3D and contour plots are displayed for the same values in 

Fig. 5(i).
Figure 5(i) shows quasi-self-phase modulation. Fig. 5 (ii) shows more narrower waves 

than in
Figure 5(i), for a small value of �which corresponds to self-steepening effect.
Fig. 5 (iii) shows scattered dense pulses compression, while Fig. 5(iv) show
highly dispersive waves which may be argued to the presence of the extra dispersion.
Fig. 5 (v) shows quasi-self-phase modulation, while Fig. 5 (vi) shows lattice wave.

4.2  Rational solutions

Now, we consider (20) together with the AE,

From (20) and (32) into (8) and (9) yields,

(32)g�(z) =

√
c4g(z)

4 + c2g(z)
2 + c0.

Fig. 5  (i)–(iv).When � = 7, k = 4, � = 0.7, a1 = 1.7, b1 = 1.3, c0 = 1.2, r1 = 2.3, r0 = 0.5, r2 = 0.3,
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The solution of (32) is,

The solutions of (6) and (7) are,

The solutions in (35) are used to display Rew(x, t0in Fig. 6 (i)–(vi).
In Fig 6 (i), Rew(x,  t) is displayed against x for different values of t when 

� = 2.5,� = 1.1, � = 1.8.

Rew(x,  t) is displayed againstt for different values of �,when � = 2.5, � = 1.8 in 
Fig. 6(ii), against � when � = 1.1, � = 1.8in

Figure 6(iii) and against � , when � = 2.5,� = 1.1 in Fig. 6(iv), and when x = −10.
\In Fig.  6 (v) and (vi) the 3D and contour plots are displayed for the same values in 

Fig. 5(i).
Figure 6(i) shows SPM interaction. Fig. 5 (ii) shows that self-steepening holds for small 

values of �.

(33)

� =
a2
0
k
(
a2
1
+ b2

1

)
(� − �)

a2
1
s2
0

+
2a1c0h

2s0s1(� − 3�k)

a0s
2

0

−
2c0h

2s2
1
(� − 3�k)

s2
0

− k
(
c3 + �k2 − �k

)
,

�:=
−2a3

0
k
(
a2
1
+ b2

1

)
(� − �) + �a2

1
a0h

2
(
c2s

2

0
+ 4c0s

2

1

)
+ 2�a3

1
c0h

2s0s1

3a2
1
h2k

(
2a1c0s0s1 + a0

(
c2s

2

0
+ 4c0s

2

1

)) , a0 = −
a1s0

s1
,

c0 =
c4s

4

0

s4
1

, d =
1

3hks2
1

(
2c4s

2

0
+ c2s

2

1

)(−h22c4s20 + c2s
2

1

(
6�c4h

2s2
0

+
(
�c2h

2 + 3k(�k − c3)s2
1

))
+ ka2

1

(
6c4h

2s2
0
(� + � + 2�)

+
(
6k2(� − �) + h2(−� + 7�

+6�)c2
)
s2
1

)
+ b2

1
k
(
s2
1

(
c2h

2(−� + 7� + 6�) + 6k2(� − �)
)

+6c4h
2s2

0
(� + � + 2�)

))
,

k =
�h2

(
2c4s

2

0
+ c2s

2

1

)

4
(
a2
1
+ b2

1

)
(� + �)

, c2 = −m2.

(34)

g(z) =

√
2

�
s2
1

�
m2

√
m4s4

1
−4c2

4
s4
0
−m4s2

1

�
+2c2

4
s4
0

�

√
c4s

4

1

�
m2s2

1
−
√

m4s4
1
−4c2

4
s4
0

�
3∕2

sn

⎛⎜⎜⎝
(A0+z)

�√
2c4s

2

0

�
�

m2s2
1
−
√

m4s4
1
−4c2

4
s4
0

�m
2s2

1
−
√

m4s4
1
−4c2

4
s4
0√

m4s4
1
−4c2

4
s4
0
+m2s2

1

⎞⎟⎟⎠
.

(35)

u(x, t) =

a1
s21
(−

√

c4s0s41

(

m2s21 −
√

m4s41 − 4c24s
4
0

)

3∕2 + s1H)

√

c4s31s0

(

m2s21 −
√

m4s41 − 4c24s
4
0

)

3∕2 + H
, v(x, t) =

b1
a1

u(x, t),

H =
√

2
(

m2s21
√

m4s41 − 4c24s
4
0 + 2c24s

4
0 − m4s41

)

sn

⎛

⎜

⎜

⎜

⎜

⎝

√

2
(

z + A0
)

c4s20
√

m2s21 −
√

m4s41 − 4c24s
4
0

|

m2s21 −
√

m4s41 − 4c24s
4
0

m2s21 +
√

m4s41 − 4c24s
4
0

⎞

⎟

⎟

⎟

⎟

⎠

.
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Fig. 6 (iii) shows SPM-RS interaction, while Fig. 5(iv) show dispersive waves due to the 
extra dispersion.

Fig 6 (v) shows complex chirped waves, while Fig. 6 (vi) shows lattice wave.

5  Modulation instability and spectral analysis

5.1  Modulation instability

The study of modulation instability (MI) holds in a system which posses normal mode 
solution. This occurs for systems with complex envelope field. In Eq. (4), it has a solution 
of the form,

The solution in (36) holds when,

Noe, we use the perturbation expansion,

From (38) into (4) gives rise to,

(36)w(x, t) = Aei(Kx−tΩ), w∗(x, t) = Ae−i(Kx−tΩ),A�ℝ.

(37)Ω = −cK + �K2 − �K3 + �K − K�.

(38)
w(x, t) = ei(Kx−tΩ)

(
A + e�t

(
�1U1(x) + i�2V1(x)

))
,

w∗(x, t) = e−i(Kx−tΩ)
(
A + e�t

(
�1U1(x) − i�2V1(x)

))
.

Fig. 6  (i)–(iv) When 
m = 0.5, n = 0.75, c2 = −m2,A0 = −5, s1 = 5, c = 0.7, � = 0.7, � = 0.6, a1 = 1.7, b1 = 1.3, h = 0.8.
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The solution of (39) is det(H) = 0 , which yields a lengthy equation which will not pro-
duced her. It describes the eigenvalue problem. This equation is solved when subjected to 
boundary conditions (BCs) . Here, we assume that U(±∞) = −0 and V(±∞) = −0 . The 
BCs suggest to write the solutions,

By inserting (40) into the eigenvalue equation, we get,

Which solves to,

The MI does not depend on the sign of Δand it holds when,

That is when 𝜇 > 𝜇cr and 𝛾 > 𝛾cr.When MI occurs, it triggers, SS , shock waves and RS 
effect is produced.

5.2  Spectral analysis

Here we define the average wave number and the frequency and the spectrum content,

The spectral content is defined by,

(39)

H

(
�1
�2

)
= 0, H =

(
h11 h12
h21 h22

)
,

h11 = U1(x)
(
3A2K(� − �) + cK − �K2 + �K3 + Ω

)
+ (� − 3�K)U��

1
(x),

h21:=V
�
1
(x)

(
A2(� − �) + c + 3�K2 − 2�K

)
− �V1

(3)(x) + �
(
−V1(x)

)
,

h12 = −U�
1
(x)

(
A2(−(� − 3�)) + c + 3�K2 − 2�K

)
+ �U1(x) − +U1

(3)(x),

h22:=V1(x)
(
A2K(� − �) + cK − �K2 + �K3 + Ω

)
+ (� − 3�K)V ��

1
(x).

(40)
(

U(x)

V(x)

)
=

(
A1

A2

){
e−rx, r > 0, x > 0,

erx, x < 0.

(41)

A2

((
3A4 − 4A2 + 1

)
K2(� − �)2 + 2

(
2A2 − 1

)
Kr2(� − �)(3�K − �) + r4(� − 3�K)2

)

− A1

(
r
(
−A2(� − 3�) + 3�K2 − 2�K

)
+ cr + � + r3

)2
= 0,

(42)

� =
1

A1

�
−A1cr − A1r

3 + 2�A1Kr − 3A1�K
2r + A2A1�r − 3A2A1�r+

√
Δ,

Δ = A1B1(
�
3A4 − 4A2 + 1

�
K2(� − �)2 + 2

�
2A2 − 1

�
Kr2(� − �)(3�K − �)

+ r4(� − 3�K)2).

(43)𝜇 >
𝛾
(
A2𝛾 − c − 3𝛽K2 + 2𝛼K − r2

)
3A2

, 𝛾 >
c + 3𝛽K2 − 2𝛼K + r2

A2
.

(44)k̄ =
∬

ℝ×ℝ+
||w(x, t)x||dxdt

∬
ℝ×ℝ+ |w(x, t)|dxdt

, �̄� =
∬

ℝ×ℝ+
||w(x, t)t||dxdt

∬
ℝ×ℝ+ |w(x, t)|dxdt

.

(45)W(�, t) =
1

2�
∣ ∫

ℝ

e−i�xw(x, t)dx ∣ .
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Here, by using (44) and (45), we illustrate the spectral analysis of the solutions in (16). 
This is demonstrated in Fig. 7(i)–(iv).

In Fig. 7 (i) � = 2.5, � = 1.8 In Fig. 7(ii) � = 0.5, � = 0.8

In Fig.  7(iii) � = 0.5, � = 0.9 . The same hold in Fig.  7(iv)–(vi). In Fig.  7(vii) 
� = 2.5,� = 0.5, � = 0.8

In Fig. 7(i)–(iii) the wave number is displayed. In Fig. 7 (iv)–(vi) the frequency is dis-
played. The spectrum is shown in Fig. 7(vii).

After Fig. 7 (i)–(vi), we the values of k̄and �̄� do not vary significantly when varying the 
parameters �, � and �.

Figure 7(vii) shows that the spectrum exhibits soliton with periodic waves background.

6  Conclusions

The perturbed Chen–Lee–Liu equation with third order dispersion is studied for the objec-
tive of investigating the effects of the self-steepening, Raman scattering, self -phase modu-
lation, and the extra dispersion on the configuration of pulses propagation in optical fibers. 
This is inspected via the exact solutions, which are found by using the unified method. 
The results obtained are evaluated numerically and the are represented in figures which 
demonstrate the behavior of the solutions with relevance with the aforementioned phenom-
ena. Also, it is found that self phase modulation occurs currently. While self-steepening is 
triggered by modulation instability. Also, highly dispersive oscillatory waves are observed 
which may be argued to the presence of an extra dispersion. These results are new. Further, 
pulses compression are, also, currently remarked. The modulation instability is studied and 
it is established that when it holds, it triggers self-steepening which progresses to shock 
waves. It is remarked that the wave spectrum exhibits soliton with background periodic 

c ∶= 0.7,�:7, k = 4;�:=0.7, a1 = 1.7, b1 = 1.3, c2 = 1,A0 = −10.

Fig. 7  (i)–(vii). When c = 0.7,�7, k = 4;�:=0.7, a1 = 1.7, b1 = 1.3, c2 = 1,A0 = −10.
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waves. In a future work, the perturbed Chen–Lee–Liu equation with time dependent coef-
ficients will be studied.
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