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Abstract
This article retrieve lump, lump with one kink and rogue wave soliton for the time frac-
tional resonant nonlinear Schrödinger equation with parabolic law having weak nonlocal 
nonlinearity. According to theory of dynamical systems, Schrödinger equation may be con-
verted into plane systems. We use Hirota bilinear method to obtained these solutions. At 
the end, we present graphical representation of our results in various dimensions.

Keywords Multiple lump solitons · Nonlinearities · Fractional NLSE

1 Introduction

Nonlinear partial differential equations (NLPDE) play a basic role to solve various 
issues appear in different fields of mathematical and physical sciences such as phys-
ics, chemistry, biology and engineering (Ahmed et  al. 2019; Akhmediev et  al. 2009; 
Akram et al. 2021). In NLPDEs, higher order nonlinear Schrödinger equations (NLSEs) 
are main sectors for nonlinear optics which interpret the proliferation specifically short 
pulse in optical fibers and have large appliances in telecommunication system and ultra-
fast signal routing etc. The NLSE have a huge impact on nonlinear mathematical model 
in condensed matter physics, fluid mechanics and nonlinear optics (Ali et al. 2020; Bis-
was et al. 2018; Chabchoub et al. 2011; Chen et al. 2020; Dianchen et al. 2018). There 
are so many renowned NLSEs such as Kundu Mukherjee Naskar model (Dong et  al. 
2019), derivative NLSE (Dysthe et al. 2008), Fokas–Lenells equation (Ekici et al. 2017) 
and so many other. Nowadays fractional NLSE has so many applications in different 
fields of sciences particularly in the field of optics, where the fractional order may be 
fractional diffraction effect, space fractional order or t-fractional order (Eslami et  al. 
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2013; Farah et al. 2020; Foroutan et al. 2018; Gaber et al. 2019; Ghaffar et al. 2020). 
Since last two decades, so many integration schemes have been used to get soliton solu-
tions for various NLSEs like; the semi-inverse method (Dong et al. 2019), Kudryashove 
scheme (Ghanbari et  al. 2020), extended mapping method (He 2020), HBM (Ismael 
et  al. 2020), generalized exponential rational function scheme (Kumar et  al. 2014), 
extended auxiliary equation method (Longhi 2015), (G�∕G) expansion method (Ma and 
Zhou 2018), exp((−� �∕�)�)-expansion method (Ozkan et al. 2020) and Seadawy tech-
niques (Rizvi et al. 2020a, b; Sarwar and Rashidi 2016; Seadawy and Cheemaa 2019a, 
b). Here we consider TFRNLSE under parabolic law with weak nonlocal nonlinearity to 
obtain multiple lump and rogue wave solutions. The governing model for TFRNLSE is 
given by Seadawy and Cheemaa (2019a)

where �
�u

�t�
, is conformable derivative operator in t-direction and � ∈ (0, 1) . Eq. (1) describes 

the proliferation of optical pulse in nonlinear optical fibers, where u = u(x, t) is a complex 
function which show a normalized complex amplitude of the pulse envelope in nonlinear 
optical fibers, x is the normalized proliferation distance, t represents the related time, while 
a,  b and c are nonzero real constants.

Conformal Derivative: Let h ∶ (0,∞) → R, then conformable fractional derivative 
(CFD) of h order � is defined as Seadawy and Cheemaa (2019a),

∀ t > 0, � ∈ (0, 1).

If the CFD of h order � exists, then h is �-differentiable. Let � ∈ (0, 1) and h, g be �
-differentiable at t > 0, then some properties of CFD are as follows: 

 (i)   S�(xh + yg) = xS�(h) + yS�(g), x, y ∈ R;

 (ii)  S�(hg) = hS�(g) + gS�(h);

 (iii)  S�(
h

g
) =

gS� (g)−hS� (g)

g2
;

 (iv)  S�(t�) = �t�−� , � ∈ R;

 (v)  S�(�) = 0, ∀ constant function h(t) = �;

 (vi)  S�(h)(t) = t1−�
dh

dt
;

 (vii)  Suppose h, g ∶ [0,∞) → R, then S�(h◦g)(t) = t1−�g�(t)h�(g(t)).

Consider the fractional transformation (Seadawy et al. 2019), given by:

Now after using Eq. (3) into Eq. (1), we get the following NLSE:

(1)i
𝜕𝛽u

𝜕t𝛽
+ auxx + b

{
c1|u|2 + c2|u|4 + c3(|u|2)xx

}
u + c

{|u|xx
|u|

}
u = 0, 0 < 𝛽 < 1,

(2)S�(h)(t) = lim
�→0

h(t + �t1−�) − h(t)

�

(3)� =
t�

�

(4)i
𝜕u

𝜕𝜏
+ auxx + b

{
c1|u|2 + c2|u|4 + c3(|u|2)xx

}
u + c

{|u|xx
|u|

}
u = 0, 0 < 𝛼 < 1,
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Now we will study the above model for multiple lump and interaction solutions (Seadawy 
et  al. 2019a, b, 2020; Singh et  al. 2016; Solli et  al. 2008). Lump solitons are rationally 
localised in all space directions. The applications of lump waves are very wide, such as 
various ghost waves which appear and disappear unexpectedly and unpredictably, particu-
larly, covid-19. Lump solutions, studied in various fields like biology, finance, engineering, 
non-linear optics, chemistry, atmosphere and physics etc. HBM is a very helpful technique 
to compute algorithms for formulation of multiple solitons (Suret et al. 2016; Trki et al. 
2012; Wazwaz 2008; Younas et al. 2020). The main purpose is to find multiple lump solu-
tion for Eq. (4), based on bilinear method.

In order to solve Eq. (4), we substitute u = p + iq , where �u� = √
p2 + q2 . Thus the 

Eq. (4) may be converted into real and imaginary parts given as:

where A = p2 + q2, B = ppxx + qqxx + p2
x
+ q2

x
, C = ppx + qqx, while p(x, �), and q(x, �) 

are complex wave dependent variables appeared in the physical systems, including plasma 
physics, nonlinear optics and others.

The contents of this paper are organised as: In Sect. 2, we evaluate the lump solu-
tions for TFRNLSE. In Sect. 3, we find out lump one stripe interactional solutions. In 
Sect. 4, the brief discussion of rogue wave solutions for Eq. (4) will be given. In Sect. 5, 
results and discussions about our newly obtained and previous results will be presented 
and in Sect. 6, we give concluding remarks.

2  Lump solution

To find lump solutions of Eq. (5), we use transformation (Younas et al. 2021),

Which transforms Eq. (5) in bilinear form,

Now the function g and h in Eq. (8) can be assumed as Zhang and Pang (2019), we set g 
and h in the bilinear form (7) as,

where �1 = a0x + �, �2 = a1x + � . However, aj (0 ≤ j ≤ 3) are all real parameters to be 
measured. Now, putting g and h into Eq. (8) and associating the coefficients of the x and � , 
then we use Eq. (6) and find p and q which relate to u(x, t),  having fractional transforma-
tion Eq. (3), implies us the subsequent result on parameters:

(5)
{

−A2q� + A2apxx + A2bp{Ac1 + A2c2 + 2Bc3} + cp{−C2 + AB} = 0,

A2p� + A2aqxx + A2bq{Ac1 + A2c2 + 2Bc3} + cq{−C2 + AB} = 0.

(6)p =
6

�
(ln g)x , q =

6

�
(ln h)x .

(7)

⎧
⎪⎪⎨⎪⎪⎩

36bc1�
2�8g2h8g7

x
+ 2a�4�8g2h8g7

x
+ 2c�4�8g2h8g7

x
+ 1296bc2�

8h8g9
x
+…+

c�8�4g8h4gxh
3
x
hxxx + 144bc3�

6�4g6h4g3
x
h3
x
hxxx + 72bc3�

8�2g8h2gxh
5
x
hxxx = 0,

�3�9g2h9g�g
5
x
− 36bc1�

2�8g2h8g6
x
hx − 2c�4�8g2h8g6

x
hx − 1296bc2�

8h8g8
x
hx −…

−c�8�4g8h4h4
x
hxxx − 144bc3�

6�4g6h4g2
x
h4
x
hxxx − 72bc3�

8�2g8h2h6
x
hxxx = 0.

(8)g = �2
1
+ �2

2
+ a2, h = �2

1
+ �2

2
+ a3.
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 Set I  When a0 = 0, we get the following solutions:

parameters in Eq. (9), leads the lump solutions to Eq. (5):

 Set II

parameters in Eq. (11), implies the lump solutions to Eq. (5):

3  Lump‑one stripe soliton interaction solution

For the purpose of mixed lump and soliton solutions, the g and h in bilinear equation can be 
assumed as,

where �1 = a0x + �, �2 = a1x + �, �1 = m1x + �, �2 = m2x + �, However, ai(0 ≤ i ≤ 3),c0 
and m1, m2 are all real parameters to be found. Now, inserting g and h in Eq. (6) which 
relate to u(x, t),  having fractional transformation Eq. (3), implies us the subsequent result 
on parameters:

 Set I When a1 = m2 = 0, we get the following solutions:

(9)

⎧⎪⎨⎪⎩
a1 = a1, a2 = a2, a3 = a3, � =

6

�
−

−2a2
3
bc1+2bc1a

2
2

a+c

a2
,� =

6

�
−

2a2
3
bc1−2bc1a

2
2

a+c

a3
,

a1 = a1, a2 = 0, a3 = a3,� = �, � =
1

10

�
−350 + 10

√
385� .

(10)

⎧⎪⎪⎨⎪⎪⎩

u11(x, t) =
2a1a2

�
a1x+

t�

�

�
�

−
2a2

2
bc1−2a2

3
bc1

a+c

�
a2+

�
a1x+

t�

�

�2

+
t2�

�2

� +
2ia1a3

�
a1x+

t�

�

�
�

−
−2a2

2
bc1+2a2

3
bc1

a+c

�
a3+

�
a1x+

t�

�

�2

+
t2�

�2

� ,

u12(x, t) = −
120ia1

�
a1x+

t�

�

�
√

350−10
√
385

��
a1x+

t�

�

�2

+
t2�

�2

�
�

+
12ia1

�
a1x+

t�

�

�
�
a3+

�
a1x+

t�

�

�2

+
t2�

�2

�
�

.

(11)

⎧⎪⎨⎪⎩

a1 = a1, a2 = −
25

72
a3, a3 = a3,� = �, � =

√
−1�,

a1 = a1, a2 = 0, a3 = a3,� = 36
√
130

�
−

bc1

122528a+58373c
, � = 18

�
−

10bc1

17504a+8339c
.

(12)

⎧⎪⎪⎨⎪⎪⎩

u21(x, t) = −
12ia1

�
a1x+

t�

�

�
�
−

25a3

72
+
�
a1x+

t�

�

�2

+
t2�

�2

�
�

+
12ia1

�
a1x+

t�

�

�
�
a3+

�
a1x+

t�

�

�2

+
t2�

�2

�
�

,

u22(x, t) =

√
2

5
a1

�
a1x+

t�

�

�

3

√
−

bc1

17504a+8339c

��
a1x+

t�

�

�2

+
t2�

�2

� +
ia1

�
a1x+

t�

�

�

3
√
130

√
−

bc1

122528a+58373c

�
a3+

�
a1x+

t�

�

�2

+
t2�

�2

� .

(13)g = �2
1
+ �2

2
+ a2 + c0exp(�1), h = �2

1
+ �2

2
+ a3 + c0exp(�2).
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parameters in Eq. (14), leads the required solutions to Eq. (5):

where Δ = e

2

√
−

i
c
x

√
351∕4

+
t�

� ,

 Set IIWhen a1 = m1 = 0, we get the following solutions:

parameters in Eq. (16), implies the required solutions to Eq. (5):

4  Rogue wave solutions

For rogue wave solution, g and h in bilinear form can be assumed as Zhang and Pang 
(2019),

where �1 = a0x + �, �2 = a1x + �, �1 = n1x + �, �2 = n2x + �,

However, ai(0 ≤ i ≤ 3),b0, n1 and n2 are all real parameters to be measured. Now, insert-
ing g and h in Eq. (6), which relate to u(x,  t),   having fractional transformation Eq. (3), 
implies us the subsequent result on parameters:

 Set I When a1 = 0, we get the following solutions:

(14)

⎧
⎪⎨⎪⎩

a0 = a0, a2 = a2, a3 = 0, c0 = c0,m1 = m1,� = �, � =
�

−
a+c

a
�,

a0 = a0, a2 = 0, a3 = a3, c0 = c0,� = �,m1 = 2

�
−

1

15

√
−1

√
5

c
, � =

3

5

√
−1

√
5�.

(15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u11(x, t) =

6

�
c0e

m1x+
t�

� m1+2a0

�
a0x+

t�

�

��

√
−

a+c

a

�
a2+c0e

m1x+
t�

� +
�
a0x+

t�

�

�2

+
t2�

�2

�
�

+
12ia0

�
a0x+

t�

�

�
�
c0e

t�

� +
�
a0x+

t�

�

�2

+
t2�

�2

�
�

,

u12(x, t) =
12ia0

�
a0x+

t�

�

�
�
a3+c0e

t�

� +
�
a0x+

t�

�

�2

+
t2�

�2

�
�

−

2i
√
5

⎛⎜⎜⎝
2

√
−

i
c
c0Δ√

351∕4
+2a0

�
a0x+

t�

�

�⎞⎟⎟⎠�
c0Δ+

�
a0x+

t�

�

�2

+
t2�

�2

�
�

.

(16)

⎧⎪⎨⎪⎩

a0 = a0, c0 = c0,m2 = m2,� = �, � =
1

3

√
−5�, a2 = a3 = −

4224

5

a
2
0
bc3

�2(8a+13c)
,

a0 = a0, a2 = 0, c0 = c0,m2 = m2,� = 2

�
−

58bc1+18bc3m
2
2

24a+29c
, � = 6

�
−

−58bc1−18bc3m
2
2

120a+145c
, a3 = −

480a2
0
(c+a)

(8a−27c)m2
2

.

(17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u21(x, t) =

6i

�
c0e

m2x+
t�

� m2+2a0

�
a0x+

t�

�

��

�
c0e

m2x+
t�

� +
�
a0x+

t�

�

�2

+
t2�

�2
−

4224a2
0
bc3

5(8a+13c)�2

�
�

−
36ia0

�
a0x+

t�

�

�

√
5

�
c0e

t�

� +
�
a0x+

t�

�

�2

+
t2�

�2
−

4224a2
0
bc3

5(8a+13c)�2

�
�

,

u22(x, t) =

3i

�
c0e

m2x+
t�

� m2+2a0

�
a0x+

t�

�

��

�
−

58bc1+18bc3m
2
2

24a+29c

�
c0e

m2x+
t�

� −
480a2

0
(c+a)

(8a−27c)m2
2

+
�
a0x+

t�

�

�2

+
t2�

�2

� +
2a0

�
a0x+

t�

�

�
�

−
−58bc1−18bc3m

2
2

120a+145c

�
c0e

t�

�

�
a0x+

t�

�

�2

+
t2�

�2

� .

(18)g = �2
1
+ �2

2
+ a2 + b0cosh(�1), h = �2

1
+ �2

2
+ a3 + b0cosh(�2).
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parameters in Eq. (19), leads the required Rogue wave solutions to Eq. (5):

where Δ =

�√
−

51025a+17199c

c
n2x

5
√
274

+
t�

�

�
.

5  Result and discussions

In this segment, we will give a detailed comparison of our freshly obtained outcomes with 
the earlier one. Many scientists used distinct schemes to obtain quantum solutions for NLSEs. 
Chen et al. obtained bell shaped, periodic waves, kink shaped, anti kink, Jacobi elliptic solu-
tions and other solitary wave solutions using bifurcation theory for TFRNLSE with parabolic 
law nonlinearity (Seadawy and Cheemaa 2019a). Triki et  al. obtained used so many non-
linearities to get drk and bright solitons with the aid of ansatz method for time dependent 
RNLSE (Zhang et al. 2015). Ekici et al. studied Kerr-law and parabolic-law nonlinearity for 
RNLSE by using (G�∕G)-expansion norm (Zhao and Ma 2017). Eslami et al. obtained new 
exact 1-soliton solutions by using simplest equation technique for RNLSE (Zheng et al. 2019), 
Biswas et al. achieved dark and singular optical soliton for RNLSE with dual-power law non-
linearity (Zhong et al. 2016), etc. In this work, we construct lump, lump with one kink and 
rogue wave solutions for TFRNLSE with the help of HBM. Figures 1 and 2 represent the first 
geometric lump solution for Eq. (1) graphically. Figure 1(i) at � = 0.95 u expressed 3D shape 
making one bright and two dark lump solutions and one bright lump also appearing which is 
small in size. Figure 1(ii) we observe two lump solution of equal size and shape at � = 0.48 , 

(19)

⎧
⎪⎨⎪⎩

a0 = a0, a2 = 0, b0 = b0, n1 = n1, n2 = n2,� = �, � =
1

14

√
−15

√
14�, a3 =

1

210

a0 (182a0�
2+630n2�

2+195a0�
2+375n2�

2 )

n
2
2
�2

,

a0 = a0, a3 = 0, b0 = b0, n2 = n2,� = �, � =
1

5

√
−42�, a2 =

1096

3

a
2
0
c

n
2
2
(1323c+3925a)

, n1 =

�
−

1

6850

17199c+51025a

c
n2.

(20)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

u11(x, t) = −
2i
√

42

5

�
2a0

�
a0x+

t�

�

�
+b0n1sinh

�
n1x+

t�

�

��

�

��
a0x+

t�

�

�2

+
t2�

�2
+b0n1cosh

�
n1x+

t�

�

�� +
6i
�
2a0

�
a0x+

t�

�

�
+b0n2sinh

�
n2x+

t�

�

��

�

�
4a0

3n2
+
�
a0x+

t�

�

�2

+
t2�

�2
+b0n2cosh

�
n1x+

t�

�

�� ,

u12(x, t) =
6i
�
2a0

�
a0x+

t�

�

�
+b0n2sinh

�
n2x+

t�

�

��

�

��
a0x+

t�

�

�2

+
t2�

�2
+b0cosh

�
n2x+

t�

�

�� −

5i
√

6

7

⎛⎜⎜⎝
2a0

�
a0x+

t�

�

�
+

b0

√
−
51025a+17199c

c
n2sinh[Δ]

5
√
274

⎞⎟⎟⎠
�

�
1096a2

0
c

3(3925a+1323c)n2
2

+
�
a0x+

t�

�

�2

+
t2�

�2
+b0cosh[Δ]

� .

Fig. 1  The graphs of the solution u11(x, t) in Eq. (10) are shown via suitable parameters 
a1 = −3, a2 = −1, a3 = b = 5, a = −1, c1 = 1, c = 2 . Three-dimensional graphs at (i) � = 0.95 , (ii) 
� = 0.48 , and (iii) a1 = −1, a2 = 1, a3 = 6, b = 7, a = −2, c1 = 3, c = 4, � = 0.55 respectively
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one is bright and one is dark. In Fig. 3(iii) we change all parametric values and see three lump 
solution one is bright which is disappearing and two dark solutions. Figure 2(i) for � = 0.18 
we observe three bright lump solutions one is at their maximum value and remanning two 
are small in size. Figure 2(ii) at � = 0.718 only one bright lump solution is appeared. Fig-
ure 2(iii) we achieved two bright lump solutions of equal sizes at different parametric values. 
Figures 5 and 6 represented the contour profiles of Figs. 1 and 2 respectively. Figures 3 and 

Fig. 2  The graphs of the solution u12(x, t) in Eq. (10) are shown via suitable parameters 
a1 = 0.1, a3 = −0.4,� = 3 . Three-dimensional graphs at (i) � = 0.18 , (ii) � = 0.718 , and (iii) 
a1 = −5, a3 = 1,� = 3, � = 0.008 respectively

Fig. 3  The profiles of the solution u21(x, t) in Eq. (12) are shown by different choices of param-
eters a1 = −3, a3 = 1,� = 5 . Three-dimensional graphs at (i) � = 0.008 , (ii) � = 0.558 , and (iii) 
a1 = −1, a3 = 3,� = 10, � = 0.88 respectively

Fig. 4  The profiles of the solution u22(x, t) in Eq. (12) are shown by different choices of parameters 
a1 = −5, a3 = 1, a = 2, b = −3, c = 1.5, c1 = 2 . Three-dimensional graphs at (i) � = 0.006 , (ii) a3 = −6, 
� = 0.45 , and (iii) a1 = 1, a3 = −3, a = 1, b = −2, c = 2, c1 = 1, � = 0.76 respectively
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4 represented the second geometric lump solution for Eq. (1) graphically. In Fig. 3 we study 
the behaviour of two bright lump solutions in (i) two bright lump solution where u has maxi-
mum. In (ii) one lump solution is at their max. and the other is disappearing and in (iii) we see 
again two bright solution where u has max. at different parametric values. In Fig. 4 we seen 
the behaviour of bright lump solution (i) u has max (ii) waves disappearing (iii) continuous 
flow with hight and low amplitude at different sets of values. Figures 7 and 8 represented the 
contour profiles of Figs. 3 and 4 respectively. Figures 9 and 10 represent the first geometric 
Lump-one stripe solution for Eq. (1) graphically. Figure 9(i) at � = 0.15 we observe two dark 
lump solution having equal amplitude but different in shape and one bright lump solution of 
large amplitude. By increasing � we see two bright lump solutions of equal size and shapes 
and one dark lump solution of large amplitude appears (ii). In (iii) we see the crest surface of 
two bright lump solutions for different sets of values. Figure 10(i) we observe a continuous 
flow of large and small amplitude of bright and dark lump solutions. In (ii) at � = 0.66 , we 

Fig. 5  The corresponding contour profiles for Fig. 1 successively

Fig. 6  The corresponding contour profiles for Fig. 2 successively

Fig. 7  The associating contour graphs for Fig. 3 respectively
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see the parallel flow of bright lump solutions. we see three bright lump solution for different 
parametric values in (iii). Figures 13 and 14 represent the contour profile of Figs. 9 and 10 
respectively. Figures 11 and 12 represented the second geometric Lump-one stripe solution 
for Eq. (1) graphically. In Figs. 11 and 12 (i) (ii) and (iii) we observe the breakdown of bright 
lump solution from large to small-amplitude waves for different sets of values, where some 
times a large-amplitude wave appear rapidly and very next instant it disappears. Figures 15 
and 16 represent the contour profile of Figs. 11 and 12 respectively. Figures 17 and 18 repre-
sented the first geometric rogue wave solution for Eq. (1) graphically. Figure 17(i) we see the 
multiple dark and bright lump solutions having different sizes. Figure 17(ii), By increasing � 

Fig. 8  The corresponding contour profiles for Fig. 4 successively

Fig. 9  The profiles of the solution u11(x, t) in Eq. (15) via various choices of parameters 
a0 = 1, a2 = −0.3, c0 = 0.8, a = −0.6, c = −0.5,m1 = −0.3,� = 8 . Contour profiles at (i) � = 0.15 , (ii) 
� = 0.489 , and (iii) a0 = −5, a2 = 2, c0 = 3, a = 1, c = −2,m1 = 4,� = 7, � = 0.99 respectively

Fig. 10  The profiles of the solution u12(x, t) in Eq. (15) via various choices of parameters 
a0 = −0.8, a3 = −0.1, c0 = 0.5, c = −2,� = 5 . Contour profiles at (i) � = 0.15 , (ii) � = 0.66 , and (iii) 
a0 = −1, a3 = 3, c0 = 1, c = −2,� = 12, � = 0.85 respectively
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Fig. 11  The shapes of the solution u21(x, t) in Eq. (17) are shown by various choices of parameters 
a0 = −4, c0 = 4, a = −2, b = 1, c = 2, c3 = −3,m2 = 3,� = 5 . 3D graphs at (i) � = 0.098 , (ii) � = 0.89 , 
and (iii) a0 = −1, c0 = 1, a = −1, b = −1, c = 1, c3 = 3,m2 = 2,� = 9, � = 0.898 successively

Fig. 12  The shapes of the solution u22(x, t) in Eq. (17) are shown by various choices of parameters 
a0 = −5, c0 = 3,m2 = 1, a = 1, b = −1, c = 2, c1 = 3, c3 = 4 . 3D graphs at (i) � = 0.115 , (ii) � = 0.665 , 
and (iii) a0 = −1, c0 = 5,m2 = 3, a = −2, b = 4, c = −3, c1 = 1, c3 = 2, � = 0.85 successively

Fig. 13  The relating contour graphs for Fig. 9 respectively

Fig. 14  The relating contour graphs for Fig. 10 respectively
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Fig. 15  The associating contour profiles for Fig. 11 respectively

Fig. 16  The relating contour graphs for Fig. 12 respectively

Fig. 17  The profiles of the solution u11(x, t) in Eq. (20) via various choices of parame-
ters a0 = −5, b0 = 4, n1 = 1, n2 = 3,� = 5 . 3D graphs at (i) � = 0.15 , (ii) � = 0.665 , and (iii) 
a0 = −3, b0 = 5, n1 = −1, n2 = 1,� = 10, � = 0.965 respectively

Fig. 18  The profiles of the solution u12(x, t) in Eq. (20) via various choices of parameters 
a0 = 5, b0 = 3, a = −3, c = 5, n2 = 4,� = 9 . 3D graphs at (i) � = 0.25 , (ii) � = 0.65 , and (iii) 
a0 = −0.3, b0 = 0.1, a = −0.6, c = 3, n2 = −1,� = 5, � = 0.94 successively
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dark lump solution disappears only bright solutions remaining having different in sizes. In (iii) 
we have seen the upper face of two bright solutions for a different set of values. Figure 18(i) 
at � = 0.25, we achieve one bright and one dark lump solution having a different shape. In (ii) 
we see one dark and two bright solutions for � = 0.65 which are different in size and shape. In 
(iii) multiple lump solutions appear rapidly having the same shape but different in amplitude. 
Figures 19 and 20 represent the contour profile of Figs. 11 and 12 successively.

6  Concluding remarks

In this manuscript, we obtained the lump, multiple lumps and rogue wave solutions for TFRN-
LSE by Hirota bilinear approach. We got various forms of lump solition solutions, like one 
bright and dark, one bright with two dark and multiple bright lump solitons. For observing 
the physical performance of our model we set up 3D and contour plots for different sets of 
values. We also explained the structure of our results graphically for more understanding. The 
obtained results show that expected method is stable.

Fig. 19  The relating contour graphs for Fig. 17 respectively

Fig. 20  The relating contour graphs for Fig. 18 respectively
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