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Abstract
In this paper, we theoretically propose a novel magnetic field-dependent sensor using omni-
directional magnetized cold plasma photonic crystal in one dimension for TE polarization. 
The structure consists of asymmetric two periodic arrays from magnetized cold plasma and 
sample cavity layer. Between the periodic arrays, a sample cavity is sandwiched between 
two quartz layers. The methodology of the proposed detector depends on the appearance of 
a sensitive defect mode. The results clear that the defect mode frequency depends signifi-
cantly on the refractive index of the sample, and it is extremely sensitive to incident angle 
changes, applied magnetic field, the number density of electrons, and sample layer thick-
ness. The optimized proposed sensor has high sensitivity of 15.14 GHz/RIU, quality-factor 
of 527.32, and figure of merit of 1066.20  RIU−1, where RIU means refractive index unit. 
So, the proposed sensor can aid in solving many challenges in chemical and environmental 
applications.
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1 Introduction

Photonic crystal (PC) is an optical structure of alternative materials with high and low 
refractive indices (Yablonovitch 2001; Yablonovitch and Gmitter 1989; Zaky and Aly 
2021a; John 1987; Ayyub et  al. 2013; Kushwaha et  al. 2018). The periodicity of the 
refractive index causes forbidden frequency or wavelength region for photons that make 
it not allowed to propagate through the structure (John and Florescu 2001; Zaky et al. 
2020; Tammam et al. 2021; Auguié et al. 2014; Boopathi et al. 2018; Panda and Devi 
2020). Such forbidden frequency region is known as photonic bandgap (PBG) (Bikbaev 
et al. 2017; Zaky et al. 2021a; Aghajamali 2016; Zaky and Aly 2021b; Armstrong and 
O’Dwyer 2015; Afsari and Sarraf 2020; Abd El-Ghany et al. 2020). PC is used to modu-
late the flow of photons (Zaky and Aly 2020; Buswell et al. 2008; Zaky et al. 2021b; 
Gao et al. 2018; Aghajamali et al. 2015). According to the periodicity of the material, 
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PC can be studied as one-dimensional (1D-PC) (Aly et al. 2020, 2021a; Beheiry et al. 
2010; Aly and Zaky 2019; Zhou et  al. 2021; Zhang et  al. 2012; Zaky et  al. 2021c, d; 
Meradi et al. 2022), two-dimensional (2D-PC) (Akahane et al. 2003; Zegadi et al. 2019), 
and three -dimensional PC (3D-PC) (Tandaechanurat et al. 2011; Zakhidov et al. 1998). 
Introducing a defect layer into the PC breaks the regular periodic arrangement and gives 
rise to appearing a defect localized mode in the PBG region (Zaky et al. 2021e). The 
defect localized mode can be utilized in different applications by characterizing the size 
of the defect layer as well as the dielectric constant of the defect layer. PCs have been 
studied as many potential clinical, physical and chemical applications such as switches, 
optical filters, multiplexers, sensors, etc. (Zaky et al. 2021f; Pandey et al. 2017; Zaky 
and Aly 2021c).

Optical sensor is one of the most interesting applications of PC, which have advan-
tages over conventional devices as an ultra-fast response, ultra-compact size, and high 
sensitivity. Many kinds of sensors are investigated by scientists such as temperature 
detectors (Zaky and Aly 2021b), pressure sensors (Rajasekar and Robinson 2019), bio-
sensors (Aly et al. 2021b), chemical sensors (Kim et al. 2009), and gas sensors (Zaky 
et al. 2020; Hidalgo et al. 2010). Because some gases are toxic and hazardous for health 
and the environment like CO,  SO2,  CO2, and  N2O, optical gas sensors are safe to be 
used. Gas sensors have different applications in industries, home safety, environment 
monitor, the medical and agricultural field, etc.

Magnetized cold plasma (MCP) can be used as PC material by researchers (Liu and 
Wu 2021; Shiri et al. 2019; Sakai et al. 2007; Naderi Dehnavi et al. 2017; Nobahar et al. 
2018; Kamboj et  al. 2021; Askari et  al. 2015; Awasthi et  al. 2017, 2018; Lyubchan-
skii et al. 2003; Inoue et al. 2006). Chang et al. (2016) investigated magnetic field tun-
able filter application of 1D-PC using magnetized plasma and air multilayered structure 
in microwave frequency (Chang et al. 2016). Kumar et al. (2019) studied transmission 
properties of 1D-PC with magnetized plasma layers and used them as a tunable multi-
channel filter (Kumar et  al. 2018). Wang et  al. (2020) presented a multichannel filter 
device using a magnetized plasma layer in terahertz frequency (Wang et al. 2020).

In the present study, we propose a 1D-PC multilayered structure with MCP for gas 
sensing application. The defect layer as well as one of the regular layers are taken as a 
gas sample to detect the gas with the respective wavelength of the resonant mode.

2  Materials and simulation method

The proposed structure is a multilayered design of (AB)N/CDC/(AB)N/SiO2. N is the 
number of the unit cells (N = 4), as illustrated in Fig. 1. Layer A and C are considered 
as MCP and quartz, while layer B and defect layer D are considered as gas samples. 
The incident medium is considered as air whereas the substrate is  SiO2. The thick-
ness of layer A, layer B, layer C, and layer D are considered as  d1,  d2,  dq, and  dsample, 
respectively.

The transfer matrix method is used for computing the transmittance of the proposed 
1D-PC multilayered structure. The continuity condition of the electric and magnetic 
fields is used to obtain the field values. The matrix form of relations is utilized to obtain 
the field values on either side of each layer. The transfer matrix for jth layer is given as 
(Panda et al. 2021):
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where �j = 2πnjdj cos(φj)/λ.  nj,  dj, and φj are refractive index, thickness, and propagation 
angle of jth layer.  Qj =  nj cos (φj) for TE mode. As cleared in Ref (Zaky et  al. 2021e), 
higher performance was recorded using TE polarized mode than TM mode. So, we used 
TE mode. λ is the wavelength. The characteristic matrix of the whole structure is:

The value of transmittance of 1D-PC multilayered structure is given as:

where  qi and  qs are coefficients for incident and substrate medium.
The permittivity of MCP layer can be calculated in GHz as (Awasthi et al. 2018; King et al. 

2015; Nayak et al. 2017):

where γ is collision frequency and ωp is plasma frequency defined as ωp =
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Fig. 1  Schematic illustration of proposed 1D-PC multilayered gas sensor



 Z. A. Zaky et al.

1 3

217 Page 4 of 13

3  Results and discussions

Here, we consider the geometrical structure of the 1D-PC multilayered structure as clear 
in Fig. 1. The thicknesses of layers  d1,  d2,  dq,  dsample are considered as 15 mm, 15 mm, 
0.5 mm, 100 mm respectively. The refractive index of quartz  nq is taken as 2. The various 
parameters of MCP are considered as B,  ne, γ, e,  me and �0 equal to 0.5 T, 8 ×  10−17  m−3, 
4π ×  104 Hz, 1.6 ×  10−19 C, 9.1 ×  10−31 kg and 8.854 ×  10−12 F/m, respectively (King et al. 
2015). The transmission is calculated using Eq. 3, and the results are plotted without and 
with a defect layer as shown in Fig. 2A. In this case,  nsample is taken as 1 (refractive index of 
pure air). In the case of the defect layer, a defect mode appeared in the PBG region, which 
has a strong dependence on the refractive index and the defect layer thickness. The trans-
mittances at different refractive indices of the defect layer are plotted as shown in Fig. 2B. 
From Fig.  2B, it is seen that the resonant mode is shifted towards the lower frequency 
region with the increase of the dielectric constant of the sample layer.

The shift of defect mode transmittance peak with the dielectric constant of the sample 
layer can be used to detect the index of refraction of the sample taken as a defect. Such 

Fig. 2  The transmittance study, A without and with the sample layer  (nsample = 1.00), B for different values 
of  nsample at B = 0.5 T
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properties of 1D-PC can be used as a detector. The sensitivity of the optical sensor device 
is measured as the fractional change of frequency ( ΔfR) per change in the index of refrac-
tion of the sample ( Δns) . The mathematical form of sensitivity is defined as (Abadla and 
Elsayed 2020):

The figure of merit (FOM) is one of the other factors to study the quality of the detector, 
which is the sensitivity divided by the full width at half maximum (FWHM). The quality 
factor is another important parameter of any sensor. It is the ratio of the central frequency 
 (fR) to the FWHM. FOM provides information about the detection power of the optical 

(5)S =
ΔfR

Δns

(6)FoM =
S

FWHM

(7)Q =
fR

FWHM

Fig. 3  The impact of the angle of incidence on A sensitivity and FWHM, B FoM and Q-factor
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sensor. The FWHM, sensitivity, FOM, and quality factor (Q) are calculated in the follow-
ing figures.

From Fig.  3A, the sensitivity increases with the angle of incidence, whereas FHWM 
decreases and attain a minimum value at 50°, then again increases with the incident angle. 
Therefore, the FOM and Q-factor increase with the incident angle at lower values and 
attain maximum as shown in Fig. 3B. FOM is a measure of detection power of the sensor 
device and attains a maximum value at 60°. As the maximum sensitivity is at 64° and any 
further increase in the incident angle leads to the overlap between the resonant peaks, it 
will be used in the next study.

The sensitivity, FWHM, FoM and Q-factor are plotted with the  ne as clear in Fig.  4. 
From Fig. 4A, the sensitivity decreases with the increase of  ne, while the FWHM increases 
with  ne. Besides, both FOM and Q-factor decrease with the increase of  ne as clear in 
Fig. 4B. Therefore, the low value of  ne is good for the proposed sensor application as  ne = 6 
×  1017  m−3. By decreasing  ne lower than this value, the transmittance peaks overlap.

Further, the sensitivity, FWHM, FOM and Q- factor is plotted with changing B as clear 
in Fig. 5. From Fig. 5A, the sensitivity increases with the increase of the B and attains satu-
ration at 0.75 T, while the FWHM also varies with magnetic field and low value at same 
magnetic field 0.75 T. The FOM and Q-factor have large values at the lowest magnetic field 

Fig. 4  Effect of the number  ne on A sensitivity and FWHM, B FoM and Q-factor
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but just after that the values gets decrease and attain almost saturation as shown in Fig. 5B. 
Therefore, B = 0.75 T has an optimum value, where the sensitivity and FOM have com-
parative large values.

Next, the sensitivity, FWHM, FoM and Q-factor are plotted with the defect layer thick-
ness as clear in Fig. 6. From Fig. 6A, the sensitivity increases with the thickness of the 
defect layer and attains saturation at a higher value, whereas the FWHM shows variation 
with two peaks. Figure 6B shows almost a similar kind of pattern for FoM and Q-factor. 
Therefore, the optimum result for FoM is achieved at 60 mm and 100 mm. The sensitivity, 
FoM and Q-factor have the highest values at the thickness of defect layer  dsample = 100 mm. 
At 100 mm there is overlap between peaks. So,  dsample = 60 mm will be optimum.

The transmittance spectra for various samples are plotted with different optimum 
parameters as shown in Fig. 7. As clear in Fig. 7, the transmittance peak is shifted to the 
left (lower frequencies) with the increase of the sample index of refraction from 1.00 to 
1.10 from 7.86 to 6.33 GHz. Besides the resonant peak shift, the PBG is red-shifted. As 
clear in Table 1, the proposed detector has high performance compared to other references.

Fig. 5  Impact of applied magnetic field on A sensitivity and FWHM, B FoM and Q-factor
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Fig. 6  Impact of the thickness of defect layer on A sensitivity and FWHM, B FoM and Q-factor

Fig. 7  The transmittance study at optimum conditions



Gas sensing applications using magnetized cold plasma…

1 3

Page 9 of 13 217

4  Conclusion

In this study, a novel magnetic field-dependent detector using MCP using PC was pro-
posed. The sensor showed a high response to the thickness of the sample layer, the applied 
magnetic field, the number of electron densities, and the incident angle. The optimized 
sensor records sensitivity of, Q- factor and FoM of 15.14 GHz/RIU, 527.32, and 1066.20 
 RIU−1. We are convinced that the proposed sensor is a novel optical detector and can be 
used in different applications.
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Table 1  Comparison study of previous study (NC = not counted)

References S (GHz/RIU) Q-factor Materials

Ge and He (2014) 2.998 814 Positive and negative refractive index materials
Andueza et al. (2016) 2 NC Matrix of photonic molecules
Panghal et al. (2019) 12.78 NC Plasmonic hexagonal microstructured holes array in 

aluminum
Sun et al. (2020) 0.95 26.48 Enhanced toroidal localized spoof surface plasmons
Aly et al. (2021c) 0.496 NC Metamaterial for measuring electric permittivity
Qin et al. (2020) 0.78 162 Toroidal metasurface
This work 15.14 527.32 1D-PC using MCP
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