Skip to main content
Log in

Design and development of tilted fiber Bragg grating (TFBG) chemical sensor with regression analysis of grating parameters for sensitivity optimization

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Cladding modes excited in tilted fiber Bragg grating (TFBG) structures, are highly susceptible to changes with variation of surrounding refractive index, grating parameters and fiber structure and are thus often studied for optimising design of simple, cost-effective biochemical sensors. Since the cladding resonances are primarily tracked for sensing, the nature of their distribution highly governs the specifics of sensing, like dynamic range, sensitivity, controllability, etc. In this paper, a comprehensive and exhaustive analysis has been presented to regressively elucidate the correlation between various grating parameters in a TFBG structure and achievable sensitivities, by defining appropriate mathematical models. Subsequently, a TFBG sensor structure with maximum sensitivity of 348.69 nm/RIU has been fabricated and its practical sensing abilities have been compared to theoretical models with identical parameters. Parameter optimization is emphatically crucial to design any efficient fiber optic sensor structure. This study is intended to facilitate the design of optimized TFBG sensor structures complying with pre-defined measures of sensitivity and dynamic range of operation, by enabling reasonable predictions using regression analysis, bolstered by experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, J., Liu, T., Jin, Y.: Fiber optic vibration sensor based on the tilted fiber bragg grating. Adv. Mater. Sci. Eng. 2013 (2013)

  • Bekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., Molardi, C., Tosi, D.: Etched fiber bragg grating biosensor functionalized with aptamers for detection of thrombin. Sensors 18(12), 4298–4314 (2018)

    Article  ADS  Google Scholar 

  • Bhowmik, K., Peng, G.-D., Luo, Y., Ambikairajah, E., Lovric, V., Walsh, W.R., Rajan, G.: High intrinsic sensitivity etched polymer fibre bragg grating pair for simultaneous strain and temperature measurements. IEEE Sens. J. 16(8), 2453–2459 (2016)

    Article  ADS  Google Scholar 

  • Caucheteur, C., Voisin, V., Albert, J.: Near-infrared grating-assisted spr optical fiber sensors: design rules for ultimate refractometric sensitivity. Opt. Express 23, 2918–2932 (2015)

    Article  ADS  Google Scholar 

  • Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D.J., Albert, J.: Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 46(7), 1142–1149 (2007)

    Article  ADS  Google Scholar 

  • Chen, C., Yu, Y.-S., Yang, R., Wang, C., Guo, J.-C., Xue, Y., Chen, Q.-D., Sun, H.-B.: Reflective optical fiber sensors based on tilted fiber bragg gratings fabricated with femtosecond laser. J. Lightwave Technol. 31(3), 455–460 (2013)

    Article  ADS  Google Scholar 

  • Chen, X., Du, F., Guo, T., Lao, J., Zhang, X., Zhang, Z., Liu, F., Li, J., Chen, C., Guan, B.-O.: Liquid crystal-embedded tilted fiber grating electric field intensity sensor. J. Lightwave Technol. 35(16), 3347–3353 (2017)

    Article  ADS  Google Scholar 

  • Chen, X., Xu, J., Zhang, X., Guo, T., Guan, B.-O.: Wide range refractive index measurement using a multi-angle tilted fiber bragg grating. Photonics Technol. Lett. 29(9), 719–722 (2017)

    Article  ADS  Google Scholar 

  • Corotti, R.P., Jr., Thaler, J., Kalinowski, H.J., Muller, M., Fabris, J.L., Kamikawachi, R.C.: Etched fbg written in multimode fibers: sensing characteristics and applications in the liquid fuels sector. J. Microwaves Optoelectron. Electromagn. Appl. 14(1), 51–59 (2015)

    Article  Google Scholar 

  • Dong, X., Zhang, H., Liu, B., Miao, Y.: Tilted fiber bragg gratings: principle and sensing applications. Photonic Sens. 1(1), 6–30 (2011)

    Article  ADS  Google Scholar 

  • Erdogan, T.: Fiber grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)

    Article  ADS  Google Scholar 

  • Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., Sun, Y.: Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620, 8–26 (2008)

    Article  Google Scholar 

  • Floris, I., Madrigal, J., Sales, S., Adam, J.M., Calderón, P.A.: Experimental study of the inuence of fbg length on optical multicore shape sensors performance. OSA Technical Digest (2019)

  • Floris, I., Madrigal, J., Sales, S., Adam, J.M., Calderón, P.A.: Experimental study of the influence of fbg length on optical shape sensor performance. Opt. Lasers Eng. 126, 0143–8166 (2019)

    Google Scholar 

  • Guo, T., Liu, F., Guan, B.-O., Albert, J.: Polarimetric multi-mode tilted fiber grating sensors. Opt. Express 22(6), 7330–7336 (2014)

    Article  ADS  Google Scholar 

  • Guo, T., Liu, F., Liu, Y., Chen, N.-K., Guan, B.-O., Albert, J.: In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors. Biosens. Bioelectron. 55, 452–458 (2014). https://doi.org/10.1016/j.bios.2013.12.054

    Article  Google Scholar 

  • Guo, T., Liu, F., Guan, B.-O., Albert, J.: [INVITED] tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 78, 19–33 (2016). https://doi.org/10.1016/j.optlastec.2015.10.007

    Article  ADS  Google Scholar 

  • Ioannou, A., Theodosiou, A., Kalli, K., Caucheteur, C.: Sensing capabilities of higher order cladding modes. In: Optical Sensing and Detection V, vol. 10680, p. 106801S. International Society for Optics and Photonics (2018)

  • Ivanov, O.V., Nikitov, S.A., Gulyaev, Y.V.: Cladding modes of optical fibers: properties and applications. Phys. Usp. 49(2), 167 (2006)

    Article  ADS  Google Scholar 

  • Jiang, B., Zhou, K., Wang, C., Zhao, Y., Zhao, J., Zhang, L.: Temperature-calibrated high-precision refractometer using a tilted fiber bragg grating. Opt. Express, 25(21), 25 910–25 918 (2017)

  • Jiang, B., Lu, X., Mao, D., Wang, Y., Zhang, W., Gan, X., Zhao, J.: Carbon nanotube-deposited tilted fiber bragg grating for refractive index and temperature sensing. Photonics Technol. Lett. 28(9), 994–997 (2016)

    Article  Google Scholar 

  • Konnova, K.A., Frolova, E.A., Gribaeva, A.I., Zakharova, V.V., Mikhnevaa, A.A., Novikovaa, V.A., Varzhel, S.V.: Inscription and visualization of tilted fiber bragg gratings. Opt. Spectrosc. 125(1), 54–59 (2018)

    Article  ADS  Google Scholar 

  • Laffont, G., Ferdinand, P.: Tilted short-period fibre-bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 12(7), 765 (2001)

    Article  ADS  Google Scholar 

  • Li, Y., Froggatt, M., Erdogan, T.: Volume current method for analysis of tilted fiber gratings. J. Lightwave Technol. 19(10), 1580–1591 (2001)

    Article  ADS  Google Scholar 

  • Li, Z., Ruan, X., Dai, Y.: Leaky mode combs in tilted fiber bragg grating. J. Lightwave Technol. 37(24), 6165–6173 (2019)

    Article  ADS  Google Scholar 

  • Loyez, M., Albert, J., Caucheteur, C., and Wattiez, R.: Cytokeratins biosensing using tilted fiber gratings, biosensors, vol. 8, no. 74 (2018)

  • Lu, Y.-C., Geng, R., Wang, C., Zhang, F., Liu, C., Ning, T., Jian, S.: Polarization effects in tilted fiber bragg grating refractometers. J. Lightwave Technol. 28(11), 1677–1684 (2010)

    Article  ADS  Google Scholar 

  • Márquez-Cruz, V., Albert, J.: High resolution nir tfbg-assisted biochemical sensors. J. Lightwave Technol. 33(16), 3363–3373 (2015)

    Article  ADS  Google Scholar 

  • Shao, L.-Y., Albert, J.: Compact fiber-optic vector inclinometer. Opt. Lett. 35(7), 1034–1036 (2010)

    Article  ADS  Google Scholar 

  • Villanueva, G.E., Jakubinek, M.B., Simard, B., Oton, C.J., Matres, J., Shao, L.-Y., Pérez-Millán, P., Albert, J.: Linear and nonlinear optical properties of carbon nanotub e-coated single-mode optical fiber gratings. Opt. Lett. 36(11), 2104–2106 (2011)

    Article  ADS  Google Scholar 

  • Wolfbeis, O.S.: Fiber-optic chemical sensors and biosensors. Anal. Chem. 80, 3859–3874 (2006)

    Article  Google Scholar 

  • Xue, M., Jiang, Q., Zhang, C., Lin, J.: A kind of biomolecular probe sensor based on tfbg surface plasma resonance. Photonic Sensors 5(2), 102–108 (2015)

    Article  ADS  Google Scholar 

  • Zhou, K., Simpson, G., Chen, X., Zhang, L., Bennion, I.: High extinction ratio in-fiber polarizers based on \(45^\circ\) tilted fiber bragg gratings. Opt. Lett. 30(11), 1285–1287 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project titled “Development of Field Deployable Fiber Bragg Grating Based Sensor for monitoring of Hazardous Toxic Chemicals” funded by Department of Atomic Energy (DAE), Board of research in nuclear science (BRNS) India with Sanction Number: 34/14/15/2018-BRNS/10105 [DAE (6)/2018-19/575/ECE]. The authors would like to thank Shri S. V. Nakhe, Director, Laser Group RRCAT; Dr. S. K. Dixit, Head, Fiber Sensors and Optical Spectroscopy Section (FSOSS) for fabricating TFBG with desired specifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadvendra Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Raghuwanshi, S.K., Prakash, O. et al. Design and development of tilted fiber Bragg grating (TFBG) chemical sensor with regression analysis of grating parameters for sensitivity optimization. Opt Quant Electron 53, 664 (2021). https://doi.org/10.1007/s11082-021-03328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03328-6

Keywords

Navigation