
Vol.:(0123456789)

Optical and Quantum Electronics (2021) 53:568
https://doi.org/10.1007/s11082-021-03192-4

1 3

Realization of best practices in software engineering
and scientific writing through ready‑to‑use project skeletons

Michael Haider1 · Michael Riesch1 · Christian Jirauschek1

Received: 2 November 2020 / Accepted: 13 August 2021 / Published online: 4 September 2021
© The Author(s) 2021

Abstract
Efforts in providing high-quality scientific software are hardly rewarded, as scientific output
is typically measured in terms of publications in high ranking journals. As a result, scientific
software is often developed without proper documentation and support of modern software
design patterns. Ready-to-use project skeletons can be employed to accelerate the develop-
ment process, while at the same time taking care of the implementation of best practices
in software engineering. In this work, we revisit best practices in software engineering and
review existing project skeletons. Special emphasis is given on the realization of best prac-
tices. Finally, we present a new project skeleton for scientific writing in LATEX, which takes
care of the attainment of best practices, adapted for being used in academic publications.

Keywords Software engineering · Scientific writing · Project skeleton · LATEX

1 Introduction

Scientific software is frequently developed around well-established mathematical libraries
that provide implementations of common algebraic and numerical methods. There are also
more specialized packages that aim to simplify the numerical modeling and subsequent
data analysis in scientific computing. Although these libraries and software packages are
omnipresent in scientific software, acquiring funding for their continuous development and
maintenance is notoriously difficult (Nowogrodzki 2019). Additionally, the time-consum-
ing efforts put in the development of open-source toolboxes that form the basis of other
scientific projects are hardly acknowledged.

The development of scientific software, may it be a general-purpose library to be used
in other projects or a specific implementation to answer a certain scientific question,

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Stefan Schulz, Silvano Donati, Karin Hinzer, Weida Hu, Slawek Sujecki, Alex Walker
and Yuhrenn Wu.

 * Michael Haider
 michael.haider@tum.de

1 Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstr. 21,
80333 Munich, Germany

http://orcid.org/0000-0002-5164-432X
https://orcid.org/0000-0002-4030-2818
https://orcid.org/0000-0003-0785-5530
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-021-03192-4&domain=pdf

 M. Haider et al.

1 3

568 Page 2 of 17

requires knowledge and formal training in both, the associated scientific discipline and
software engineering in general (Nowogrodzki 2019; Wilson et al. 2014, 2017). Scientists
from other fields than computer science occasionally lack the latter, which too often leads
to poorly maintained software projects of at least questionable quality. However, there
is plenty of literature available on how to produce good quality code, such as Hunt and
Thomas (1999) on software engineering in general and Bangerth and Heister (2013), Prlić
and Procter (2012), Wilson et al. (2014, 2017) in a more scientific computing oriented con-
text. On top of that, the German Aerospace Center (DLR) (Schlauch et al. 2018) and the
Netherlands eScience Center (Netherlands eScience Center 2019) provide a collection of
development guidelines and best practices for the implementation of small to large-scale
computational science projects. The former guideline distinguishes between four applica-
tion classes, which reflect the scope and criticality of a planned software project, while the
latter gives insights on best practices for different programming languages. However, those
collections are exhaustive and intentionally kept general in order to apply to a wide range
of software projects.

The final realization of best practices for a new software project comes along with tedi-
ous and time-consuming setup tasks. These tasks can be automatized in the context of
ready-to-use project skeletons for a given programming language, where the skeleton takes
care of the realization of most best practices, allowing scientists to focus more on the actual
implementation. Of course, a project skeleton alone cannot implement all best practices as
lined out in the comprehensive list by Schlauch et al. (2018). However, using predefined
routines outlined by a project skeleton may reduce the level of required expertise in soft-
ware engineering, while at the same time improving code-quality. As an example, we have
already presented bertha (Riesch et al. 2020, 2020), an open-source project skeleton for
C++ libraries with a Python interface.

The best practices from software engineering can also be applied to scientific writing
in a slightly modified form. In many academic disciplines, scientific publications are typi-
cally typeset in LATEX, which follows a coding cycle similar to writing software in a com-
piled programming language. Therefore, in terms of project management, coding style,
independence of interests, and automation of repetitive tasks, scientific writing projects in
LATEX have similar characteristics to software engineering projects. Hence, one can com-
pare the creation of a scientific LATEX document, whether it is a large book or lecture pro-
ject, or a small conferences abstract to a classical software design cycle. Both, maintaining
a code base for scientific computing and the creation of articles, books, lecture notes, etc.
in LATEX start with a planning phase, in which the structure of the respective project is
figured out. Afterward, the build system and compiler toolchains are set up, such that one
arrives at a useable output, such as an executable in the case of software engineering or a
printable document for scientific writing. Finally, there is the actual implementation phase,
where the elements that have been planned are realized in terms of code, text, figures, snip-
pets, etc. Arguably, the implementation phase in software engineering differs considerably
from writing a scientific document, however, from a project management perspective, both
can be treated equally as the stages where things get real. Additionally, depending on the
size and scope of the respective project, there might be a long-term maintenance phase,
which is also true for both, scientific writing and software engineering. Large and interme-
diate scientific writing projects are often authored by different people, possibly from differ-
ent institutions. Hence, one requires some sort of project management, and one requires to
agree on a common style in order to keep a document or a set of documents editable over
an extended timeframe. When it comes to the development of new LATEX packages, mac-
ros, classes and functions, which can indeed be considered to be a software engineering

Realization of best practices in software engineering and…

1 3

Page 3 of 17 568

project, also documentation, testing, and deployment become important. Hence, with the
same reasoning, a ready-to-use project skeleton for scientific writing in LATEX will be use-
ful to facilitate the collaboration between researchers in the scope of scientific publications.

The present paper is organized as follows. After revisiting a non-exhaustive collection
of best practices in software engineering in Sect. 2, we focus on the use of project skel-
etons like the aforementioned bertha project (Riesch et al. 2020) in scientific computing in
Sect. 3. Finally, we introduce bertha-tex, a ready-to-use project skeleton for scientific writ-
ing in LATEX, as suggested in (Riesch et al. 2020), in Sect. 4. In Sect. 5, the necessary steps
for creating an instance of the bertha-tex project skeleton are outlined.

2 Best practices in software engineering

From the related literature (Bangerth and Heister 2013; Hunt and Thomas 1999; Neth-
erlands eScience Center 2019; Nowogrodzki 2019; Prlić and Procter 2012; Wilson et al.
2014, 2017; Schlauch et al. 2018), we can summarize a list of 15 best practices in scien-
tific software engineering, that can be grouped into seven categories (Riesch et al. 2020).
The best practices and associated paradigms are language agnostic and can hence also be
applied to software engineering as well as to scientific paper writing using LATEX. This
includes projects with the goal of creating a set of typesetting macros, i.e. LATEX document
classes and typesetting packages. In the following, we quickly go through the best practices
that have been identified from the related literature. For a more exhaustive overview, see
Riesch et al. (2020).

2.1 Project management

Project management is crucial, even for small software projects with only a single devel-
oper. Within the project management category, best practices include the use of a version
control system, employing a collaboration platform, and agreeing on a specific workflow. A
version control system (VCS) stores incremental changes to the source code of a project in
a so-called project repository. The use of a version control system was independently rec-
ommended by all best practice guidelines that have been considered for the present paper,
which highlights its importance. Furthermore, it is even recommended to use a VCS for
small scripts that are intended for personal use only, regardless of the size and significance
of the code. Among others, Git is a very prominent example of a VCS, which is regularly
used and recommended by the authors of the present paper. We also use Git later on when
introducing our project skeletons bertha and bertha-tex.

Along with a VCS, the use of a collaboration platform is recommended. Typically, web-
based ticketing systems, also known as bug-tracking systems, are used to request code
changes and report errors and mistakes in the project sources. The collaboration platform is
the central project management tool, where the workload is distributed among the associ-
ated developers, while the archived change requests provide rudimentary documentation of
discussions and design decisions that have been made in the course of the project. Collabo-
ration platforms often come as all-in-one solutions with a possibility to host a version-con-
trolled project repository with an associated issue tracking system and other related project
management tools. We refer to collaboration platforms like GitHub or GitLab that provide
a git-based VCS, allong with productivity tools for issue-tracking and documentation.

 M. Haider et al.

1 3

568 Page 4 of 17

A collaboration platform together with a VCS, however, is just a set of tools gathered in
the same place. To take full advantage of the tools and the VCS provided by the collabora-
tion platform, it is essential to agree on a specific workflow, i.e. when and how a particular
tool is used and to what extent. There are different paradigms and different recommenda-
tions for software engineering workflows that depend on the size and scope of the project.
It is, however, beneficial to a project’s success to agree on a respective workflow from the
very beginning. The workflow, however, should be regularly reviewed and adapted to the
current context if necessary. Often a scientific software or writing project starts in a small
scope with only a limited number of contributors. If such a project scales later on, a more
complex workflow can be chosen to fit the project’s size and needs. For a specific collabo-
ration platform, a workflow describes how issues are created and handled within the VCS
in use. We suggest documenting the workflow in a specific CONTRIBUTING.md file in the
root of your project’s repository and would like to refer to established Git-workflows such
as the GitHub flow or the GitLab flow (GitLab Inc. 2020).

2.2 Coding style

Depending on the specific programming language, the coding style, i.e. the formatting of
the source code is most often irrelevant for the functionality of the built executables. How-
ever, following the paradigm ”Write programs for people, not computers” (Wilson et al.
2014), it is the responsibility of the individual developer to produce easy-to-read and mod-
ular code. Especially but not exclusively for open-source projects, the source code needs
to be seen as the developer’s published work, similar to a scientific publication. As such,
it should comply with the coding style of the whole project to form an easy-to-read and
consistent source code, similar to a scientific paper that needs to be formatted according to
a journal’s style guide. The coding style typically includes two different things, the actual
formatting of the source code, and language-specific styles and paradigms. The tedious
task of maintaining a predefined coding style among several different source files, probably
edited by a lot of different developers, can be automatized by means of so-called code for-
matting tools. Such tools are available for many different programming languages and, as
such, also for the LATEX typesetting system. However, one still needs to take care of appro-
priate function and variable names. In addition to the mere formatting of the code, it is also
recommended to perform static code analysis, in order to avoid errors and bugs already
while writing the source code. Tools that perform static code analysis are called linters.
Linters find and highlight programming errors and bugs in the source code before the pro-
ject is compiled into an executable. Most modern integrated development environments
provide support for static code analysis for a variety of different programming languages.

2.3 Independence

Ideally, a project should be independent of any other interests. Thus, it is highly recom-
mended to use open file formats and open-source libraries, unless there is a good reason
not to. This not only concerns formats and libraries but also interpreters, compilers, and
operating system support. The general recommendation is to support the most common
operating systems and compiler toolchains in the respective domain.

Scientific software typically produces some numerical output data that needs to be
stored for further post-processing. In the post-processing step, problem-specific scripts are

Realization of best practices in software engineering and…

1 3

Page 5 of 17 568

applied to the raw binary data to create e.g. visual representations of simulation results for
further interpretation. In between the simulation and post-processing steps, which are to
some degree independent from each other, the data is stored using a suitable file format.
Some guidelines (Netherlands eScience Center 2019) recommend using open file formats,
such as CSV or HDF5 for large data sets. This way, one can ensure that the results can be
accessed independently of licensing and legal interests. For a lot of problems encountered
during the development process, there are already well-established solutions in form of
libraries and toolsets. However, some of these libraries are only distributed in binary form
and often depend on restrictive licensing agreements. To ensure the operability of the code
for an extended period of time, and to prevent vendor lock-in situations, it is highly recom-
mended to rely on open-source libraries, as long as they provide a viable alternative to
closed-source and commercial libraries and tools. This practice agrees well with the inter-
operability and reusability part of the FAIR principle (Lamprecht et al. 2020; Wilkinson
et al. 2016) for scientific research software.

2.4 Automation

Repetitive tasks, such as building, testing, and deploying the software should be autom-
atized as far as possible. Dependencies should be detected and dynamically linked in a
platform-independent way. The platform-independent handling of dependencies can be
accomplished using build automation tools, that provide the necessary build information
for the respective platform. The software should be built and tested after each meaningful
incremental change to the code, which can be performed automatically by means of contin-
uous integration pipelines. Different platforms store common software libraries in different
locations. It is recommended to use a build automation tool that detects whether a certain
dependency is installed on the target platform, and if so, where the library is located on the
system for the dynamic linking process. This way, one can maintain platform-independ-
ence through an additional build automation step. Here, each target platform is provided
with the necessary build information in order to compile and link the code there. Each
meaningful incremental code change should have an associated entry in the VCS, i.e. an
associated git commit. Hence, build and test tasks can be triggered, as changes are com-
mitted to the project repository. This process is referred to as continuous integration. The
description of the individual tasks that can be grouped into pipelines requires additional
configuration, which depends on the continuous integration system in use. Ideally, the code
is built and tested for all target platforms, and instant feedback is provided accordingly. It is
recommended to set up continuous integration pipelines early in the development process,
thereby detecting bugs and regressions effectively. Also, the deployment of the software
can be automatized by means of continuous deployment. Here, specially marked versions
of the software in the VCS are packaged and sent to a package repository that is either
internal or publically available.

2.5 Documentation

The importance of documentation in scientific software projects cannot be highlighted
enough (Bangerth and Heister 2013; Hunt and Thomas 1999; Netherlands eScience Center
2019; Nowogrodzki 2019; Prlić and Procter 2012; Wilson et al. 2014, 2017; Schlauch et al.
2018), especially if the scope of the project involves a broader audience. That said, good
documentation involves descriptions for users and developers alike. The documentation

 M. Haider et al.

1 3

568 Page 6 of 17

should be decomposed into different levels of abstraction, i.e. ”big-picture” documentation,
presenting an overview of the project, and a detailed function reference that gives insights
on how to use specific parts of the software.

A function reference is typically generated automatically from code comments using
a specific annotation. The function reference should provide abstract documentation of
classes and functions, where individual methods are seen as black boxes with respective
inputs and outputs, regardless of the actual implementation. Regarding the actual imple-
mentation, simple code comments should be used to document the design and purpose of
individual code snippets. One should refrain from commenting on simple mechanics and
specific language constructs.

Within the ”big picture” documentation, an overview of the individual modules in the
code should be given, that describes the larger scope of the software, including the aim of
the project, installation notes, and dependencies. Additionally, for providing a clear history
of changes, it is recommended to include a changelog that documents the features added to
certain versions (Wilson et al. 2017).

2.6 Tests

Creating software is prone to errors and bugs. Thus, regular tests of individual modules
of the source code help to improve the overall code quality. This requires that the code is
structured into individual independent units that interact with each other. The effectiveness
of tests can be monitored using code coverage tools, that create reports on which parts
of the code are (not) covered by the applied test procedures. Depending on the program-
ming language, there are different frameworks available which facilitate the creation of
test routines for given chunks of code, called modules or units. As already mentioned in
Subsect. 2.4, the execution of the test routines can be triggered by respective continuous
integration pipelines, which ensure that code that is committed to the project repository is
tested accordingly. As the writing of test routines for a certain module remains to be a man-
ual task, it cannot be guaranteed that all individual parts of the source code are effectively
tested. Therefore, it is useful to get an overview of the effectiveness of the tests performed
by means of a so-called code coverage report. These reports can be generated by special
code coverage tools (Schlauch et al. 2018).

2.7 Deployment

Depending on the scope of the project, also scientific software is often intended to be used
by a larger community. Therefore, a way to distribute software packages to the users is
often necessary, which should ideally be an established package repository (Nowogrodzki
2019). The necessary steps to create a ready-to-use package out of the bare source code
involve building and bundling individual components. This step is platform-dependent
and should be carried out using continuous deployment, as previously mentioned in Sub-
sect. 2.4. This step automatizes the package creation for different platforms and pushes the
resulting packaged software to a respective distribution environment.

As discussed in Subsect. 2.5, documentation is an integral part of a software project in
the scope of scientific computing. The aforementioned function reference can be automati-
cally generated within a continuous integration pipeline. The documentation, however, also
needs to be deployed such that the target audience can access the respective documents.
This is ideally accomplished through a project-specific website that hosts the project’s

Realization of best practices in software engineering and…

1 3

Page 7 of 17 568

documentation. Some collaboration platforms provide the option to host a project-specific
website within the project repository. Publishing the online documentation is then also
embedded in a continuous deployment pipeline.

3 Project skeletons for scientific software

In this section, we review existing project skeletons for common programming languages
in scientific computing. The skeletons are investigated concerning the best practices in
software engineering compiled in Sect. 2. Similar to Riesch et al. (2020), we consider three
different types of scientific software projects. Highly optimized and performant code for
numerical simulations is typically written in a compiled language such as C++, which con-
stitutes our first exemplary project. Data analysis and visualization tasks, on the other hand,
are most often implemented using an interpreted programming language such as Python,
equipped with the respective modules. Hence, a Python project as an example of an inter-
preted language constitutes our second exemplary project. Finally, we consider a scientific
writing project in LATEX as our third and last example. For all three types of projects, we
would like to review existing project skeleton approaches with respect to their implementa-
tion of best practices. It shall be noted, however, that there also exist project skeletons for
other programming languages, such as MATLAB, GNU R, Java, etc. just to mention a
few (Carré 2012; White 2021; Poizat 2020).

While for C++ and Python projects, there are several project skeletons publically avail-
able, there is, to the authors’ best knowledge, not a single implementation available for
scientific writing projects in LATEX, that takes into account the best practices from Sect. 2.
Due to this fact, we will present a project skeleton for scientific writing in LATEX in Sect. 4.
Regarding C++ projects, we consider the work by Kracejic (2015) as the most complete
solution with respect to the implementation of best practices. For Python, the approach in
Ioannides (2018) is very helpful. Apart from that, we have recently demonstrated the most
comprehensive project skeleton for C++ with Python bindings (Riesch and Jirauschek
2019), which implements all best practices mentioned in Sect. 2, while it is also capable of
building and installing an associated Python interface module using SWIG.

3.1 CleanCppProject (Kracejic 2015)

The cleanCppProject skeleton by Kracejic implements almost all best practices, apart from
generating a code coverage report. This skeleton provides a formidable starting point for
general purpose C++ projects in the scientific context. In Table 1, the respective imple-
mentations of best practices are listed. Note that the use of open file formats and open-
source libraries depends on the respective instance of the skeleton. Hence, we have given
some common recommendations in the respective rows. The same holds for online docu-
mentation and the aforementioned code coverage report. Table 1 and the following tables 2
and 3 are structured in the following way. The leftmost column provides a list of best prac-
tices from Sect. 2. The following column describes, how these best practices are imple-
mented by the respective project skeleton under consideration. The rightmost column pro-
vides insight on how a user project as an instance of a skeleton is supposed to implement
the respective recommendations in the first column.

 M. Haider et al.

1 3

568 Page 8 of 17

3.2 Python package template project (Ioannides 2018)

Starting off with a new Python project can be drastically simplified using the Python
Package Template Project skeleton by Ioannides. The skeleton is distributed via PyPI, the
Python Package Index, and features project management, continuous integration, docu-
mentation, unit testing, and deployment support. Overall, the project template takes care

Table 1 Implementations of best practices within the cleanCppProject skeleton by Kracejic

Best practice C++ (Kracejic 2015) User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Clang-format
Static code analysis Clang-tidy
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Doxygen
Documentation Markdown
Unit test framework Catch2
Code coverage report Not implemented e.g., gcov
Deployment CPack
Online documentation Not implemented e.g., GitLab Pages, GitHub Pages

Table 2 Implementations of best practices within the Python Package Template Project skeleton by Ioan-
nides

Best practice Python (Ioannides 2018) User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Not implemented e.g., black
Static code analysis Not implemented e.g., pylint
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation Not required
Continuous integration Travis CI
Function reference Sphinx
Documentation ReStructuredText
Unit test framework Pytest
Code coverage report Not implemented e.g., pytest-cov
Deployment PyPI
Online documentation Not implemented e.g., GitLab Pages, GitHub Pages

Realization of best practices in software engineering and…

1 3

Page 9 of 17 568

of most of the tedious setup steps, which facilitates the realization of best practices for
new Python projects. Additionally, we suggest the use of black (Python Software Founda-
tion 2020) as a code formatting tool, together with pylint (Python Code Quality Authority
2020) for static code analysis. For code coverage report generation, the pytest-cov pack-
age can be used. We have summarized the implementation of best practices in the Python
Package Template Project by Ioannides (2018) in Table 2, along with our additional rec-
ommendations for user projects.

3.3 Bertha (Riesch and Jirauschek 2019)

Rather than considering Python and C++ separately, the bertha project skeleton (Riesch
et al. 2020) provides best practice implementations for a C++ library with Python bind-
ings. Such a combination is quite common in scientific computing, as it combines the com-
putational performance of C++ with the clarity and brevity of Python (Riesch et al. 2020).
Within bertha, the focus lies on creating a highly performant library in C++ while the
associated Python interface is generated automatically with the help of the SWIG (SWIG
2020) project. The bertha project skeleton implements all key elements from Sect. 2, which
makes it the most comprehensive project skeleton for a standalone C++ project. Addition-
ally, the quite intricate steps to build and install an associated Python interface module are
implemented within CMake. Finally, the package is deployed via a conda feedstock (conda-
forge 2019). The respective choices for the implementations of best practices in bertha are
given in Table 3.

The bertha project skeleton has served as a template for creating an internal software
project for the simulation of rapidly tunable Fourier domain mode-locked (FDML) fiber
lasers (Jirauschek and Huber 2015, 2017). The permissive license of the skeleton also
allows for internal projects that are not going to be published. Third-party packages, like
scientific libraries or libraries for storing output data, can be conveniently installed using
conda and are automatically detected by the CMake build system. The bertha template

Table 3 Implementations of best practices within the bertha project skeleton (Riesch et al. 2020)

Best practice Bertha User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Clang-format
Static code analysis Clang-tidy
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Doxygen
Documentation Markdown
Unit test framework Catch2
Code coverage report Gcov
Deployment Conda
Online documentation GitLab Pages, GitHub Pages

 M. Haider et al.

1 3

568 Page 10 of 17

originated from mbsolve Riesch et al. 2018; Riesch and Jirauschek 2017, 2021, an open-
source solver for the Maxwell-Bloch equations (Jirauschek et al. 2019). Here, mbsolve
serves as a reference implementation of best practices, that are handled by the bertha pro-
ject skeleton.

4 Bertha‑tex: project skeleton for scientific writing inLATEX

To the authors’ best knowledge, there is no extensive project skeleton available that han-
dles and encourages the implementation of best practices in software engineering with
respect to scientific writing in LATEX. However, we believe that the availability of such
a skeleton will facilitate the collaboration between researchers in the scope of scientific
publications, especially for projects that involve researchers from different institutions.
Therefore, we created bertha-tex, a project skeleton for scientific writing in LATEX. An
overview of the project skeleton is presented in Fig. 1. Similar to the skeletons that
we have reviewed in Sect. 3, bertha-tex implements best practices in scientific software
engineering that are adapted for being used in scientific writing. Similar to the previous
section, where we have reviewed existing project skeletons in the scope of scientific

Fig. 1 Overview of the bertha-tex project skeleton. The source code and the respective dependencies are
depicted using orange color. The dependencies are provided by the developers or authors, respectively. The
project skeleton takes care of build and formatting steps. The CMake build system provides for different
targets that either build or format the corresponding source code. The artifacts of the associated continuous
integration pipelines (build, format) are marked using green color. The arrows connecting the individual
blocks represent the individual tools that are being used

Realization of best practices in software engineering and…

1 3

Page 11 of 17 568

software development, Table 4 presents an overview of the implementations of best
practices and design choices for the bertha-tex skeleton.

Clearly, not all best practices described in Sect. 2 have a direct counterpart for all
scientific writing processes, as we will explain in the following. While project man-
agement in terms of a version control system and a collaboration platform is certainly
beneficial to any LATEX codebase, the implementation of other best practices depends
on the individual scope and reusability of the respective project. Scientific writing and
general LATEX projects can be categorized according to their lifetime and scope. We pro-
pose three different categories, i.e. short-lived, long-lived, and code-centered projects.
Short-lived scientific writing projects include manuscripts and abstracts that are to be
submitted to a journal or conference, as well as slides or posters for conference pres-
entations. While there can be some sort of reusability, such writing projects typically
end with the manuscript being submitted or revised/accepted, or the presentation being
held. Note, however, that also short-lived publications might have a significant number
of contributors, which necessitates efforts to enable collaborative writing. Long-lived
scientific writing projects, on the other hand, distinguish themselves by a large degree
of reusability. For example, a large book proposal, possibly involving different authors
is an example for a long-lived project. Also lecture notes, presentations, exercise sheets,
tutorial sheets, exams, etc., that are part of a course taught at a university belong to the
second category, where one or several changing authors create content over timespans
of multiple years. Finally, we have code-centered LATEX projects, that can be more or
less associated with standard software development. These include the development of
new LATEX classes, packages, and macros, with associated testing, documentation, and
deployment. These categories, of course, have different scopes and needs for the imple-
mentation of best practices. With bertha-tex, however, we want to provide a common
framework for all three categories, which means that we want to address as many best
practices as possible. In the end, it is the user’s choice to which extent the best practice
implementations in the skeleton are finally made use of.

Table 4 Implementations of best practices within the bertha-tex project skeleton

Best practice bertha-tex User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Latexindent
Static code analysis Lacheck
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., CTAN Packages, Templates
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Docstrip
Documentation LaTeX, Markdown
Unit test framework Not required
Code coverage report Not required
Deployment CTAN
Online documentation e.g., GitLab Pages, GitHub Pages

 M. Haider et al.

1 3

568 Page 12 of 17

In recent years, web-based collaborative LATEX editing and building tools, such as e.g.
Overleaf (Writelatex Ltd. 2021) have become very popular. Those tools have a predefined
build mechanism and integrate well with the git version control system. Hence, they natu-
rally implement a lot of best practices for collaborative writing, especially for the first cat-
egory of short-lived LATEX projects. For larger-scale scientific writing projects that belong
to the second category of long-lived projects, however, controlled build automation and
increased performance through local builds become more important, which renders the use
of web-based collaborative writing tools less suitable. Finally, for code-centered projects,
such as the development of new LATEX classes, online editors are completely inept. As soon
as building multiple documents within a single project is desired, which might be the case
for conference proceedings with an associated presentation, or when creating multiple doc-
uments like lecture notes, exercise sheets, etc., for a university course, the CMake build
automation with continuous integration in bertha-tex is superior to other approaches.

The bertha-tex project skeleton for scientific writing in LATEX is publically availa-
ble (Haider et al. 2020) and can be used under the Apache 2.0 open-source license. In the
following, we want to comment on the design choices that have led to the implementation
of bertha-tex.

4.1 Project management

The bertha-tex project is hosted on the GitLab collaboration platform with a mirror reposi-
tory on GitHub. Thus, we use the popular open-source git version control system together
with the advanced project management tools of GitLab and GitHub, respectively. This is
also encouraged for new scientific writing projects. Also if you do not intend to make the
LATEXmarkup code publically available, one can make use of private repositories within
the respective platforms. As a workflow, we chose the GitLab Flow (GitLab Inc. 2020),
which uses feature branches for the implementation of new features, where every non-triv-
ial change starts with an issue in the associated issue tracking system.

4.2 Coding style

Within bertha-tex, we implemented code formatting as targets in CMake, which can handle
formatting of LATEX documents, packages, and classes through the open-source latexindent
project (Hughes 2020) as well as formatting of the respective CMake files using cmake-
format. The user can modify the predefined coding styles by editing the respective configu-
ration file in the project source code. For static code analysis, we recommend lacheck.

4.3 Automation

Scientific writing projects supported by bertha-tex are built using the CMake build system,
together with UseLATEX (Moreland 2020). A respective build pipeline has been imple-
mented for being used with GitLab CI. Also, targets for code formatting of both CMake
and LATEX code have been made available within CMake. Subsequent continuous integra-
tion pipelines that check for compliance with the respective coding style are implemented
as well.

Realization of best practices in software engineering and…

1 3

Page 13 of 17 568

4.4 Documentation

Currently, the bertha-tex project intends to provide a clean and solid basis for scientific
paper writing in LATEX. It enables the use of predefined templates, such that researchers
can easily contribute to different scientific journals or conferences that typically require
their own specific templates. Thus, there is currently no need for automated generation
of documentation. However, bertha-tex can also be used for the development of new
LATEX packages, document classes, and macros, with only slight modifications in the
CMake configuration. Therefore, automated documentation generation using docstrip
shall be implemented in the near future.

4.5 Deployment

The bertha-tex project serves as a template for new scientific writing projects, and
as such, it should be effectively deployed to the user. After the first stable version is
released, distribution through the comprehensive TEX Archive Network is targetted.

5 Creating a skeleton instance

Starting a new paper is as simple as cloning bertha-tex using the mechanisms of GitLab
or GitHub. Alternatively, the respective files can be copied manually into a new reposi-
tory. The skeleton, however, might also be used as a starting point of more advanced
academic writing projects, such as theses or books. It is also useful for scientific presen-
tations, created with LATEX beamer. Additionally, bertha-tex provides the required infra-
structure for creating new packages, macros, and document classes in LATEX. In the fol-
lowing, we restrict ourselves to the most common scenario of a user that wants to write
a new academic paper. The necessary steps for this scenario can be decomposed into
three stages that are briefly outlined hereafter.

5.1 Setup stage

After cloning or copying bertha-tex into a new and empty git repository that should host
the LATEX source code of the scientific article that is to be written, the project needs to
be configured accordingly. Hence, it is useful to give the project a meaningful name,
such as the abbreviation of the journal or conference the paper is to be submitted to,
together with a keyword, describing the content of the article. The next step is to replace
”bertha-tex” with the given project name in all CMake configuration files. One might
also want to rename the main document file ”bertha-tex.tex” accordingly. Then the
LATEX template, which is typically provided by the publisher, must be copied into the
”templates” directory, where it is automatically included by the CMake build system.

 M. Haider et al.

1 3

568 Page 14 of 17

5.2 Writing stage

The actual document is created within the main document file. Includes and figures with
external file references must be added to the respective CMake configuration file. The
CMake build system then provides the necessary build information for the respective
build environment. This is achieved by running CMake inside a special build directory,
i.e.

mkdir -p build
cd build
cmake ..

One can then build the respective targets depending on the build-environment in use.
There are specialized build targets called ”format_latex” and ”format_cmake”, as well as
a general target ”format”, which take care of the automated code formatting. Once the
changes are pushed to the remote repository, continuous integration pipelines build the
document and check the committed code for proper formatting.

5.3 Publication stage

As far as standalone documents are concerned, the deployment is typically handled by the
publisher. The publication process is thus too diverse to create a continuous deployment
pipeline that fits the needs of more than a single publisher. On the other hand, LATEX pack-
ages, document classes, and macros are routinely distributed via the Comprehensive TEX
Archive Network (CTAN). A continuous delivery pipeline for automated deployment via
CTAN within bertha-tex shall be developed in the near future.

5.4 Examples and summary

Suppose now that we want to start writing a new article. We clone bertha-tex from (Haider
et al. 2020) into a new blank git repository. Now we start by configuring the project name
in the README.md and CMakeLists.txt files in the repository’s root folder. In a next step,
the template provided by the targetted journal is either installed within the LATEX distri-
bution or the respective LATEX classes are copied to the templates directory. Finally, we
rename the bertha-tex.tex in order to give our document a meaningful title and edit the
respective add_latex_document entry in the CMakeLists.txt file. Now we are ready to start
with writing the actual article. Building the article is done by creating a build folder and
configuring the CMake project within it. Depending on the preferred CMake generator, the
project targets can be built within this folder. It is useful to setup lacheck within a suitable
editor for performing static code analysis. Code formatting is accomplished through run-
ning the make format command in the build directory. Figures and external references
can be included and need to be referenced accordingly in the CMakeLists.txt file. In this
way, dependencies are handled, i.e. as soon as an included file changes, the respective build
job will be executed at the next build of the target.

If we now shift our focus away from creating a single article to maintaining a whole sys-
tem of documents, as encountered e.g. when compiling documents for a university course,

Realization of best practices in software engineering and…

1 3

Page 15 of 17 568

we can finally make full use of the skeleton’s features. In this case, each individual docu-
ment has an associated build target in a CMakeLists.txt file, which can be distributed into
several folders. In this way, figures and data visualizations can be reused among different
documents, which are all built and maintained in a single code repository. For long term
code maintenance, code formatting and checking pipelines provide for proper readability
and reusability of code fragments. This means, that future changes that are incorporated
into the project will be ensured to comply with the project’s styleguide by the skeleton’s
predefined pipelines.

6 Conclusion

To this point, we have revisited a non-exhaustive list of best practices in software engi-
neering in a language-agnostic form. The best practices then served as a benchmark for a
review of existing project skeletons for both compiled and interpreted software. Within this
review, we have presented bertha, our own project skeleton for C++ projects with Python
bindings, where special emphasis was given to the fulfillment of all best practices that have
been discussed in the beginning. As there are, however, various types of software projects
without a corresponding skeleton, such as it was the case for a LATEX project, we have
introduced bertha-tex, a project skeleton for scientific writing. It should be noted, that the
bertha-tex project skeleton is continuously developed. Thus, important features, like auto-
mated documentation generation and deployment to CTAN, will be implemented soon.
Overall, the use of project skeletons facilitates the realization of best practices for software
development as well as scientific writing. Project skeletons successfully help to overcome
the barrier for implementing best practices by reducing the amount of knowledge needed
and automating tedious setup steps for new projects.

Acknowledgements The authors would like to acknowledge the contributions of the LaTeX4EI project
team to the bertha-tex project. A lot of the ideas and discussions from the TUM-Templates project influ-
enced the creation of bertha-tex. Special thanks go to Michael Rinderle for stimulating discussions on the
realization of the formatting pipeline.

Funding Open Access funding enabled and organized by Projekt DEAL.

Code availability The project skeletons bertha for C++ projects with Python bindings, as well as bertha-tex
for scientific writing projects inLATEXare publically available in the respective GitLab repositories: bertha:
https:// gitlab. com/ cph- tum/ bertha bertha-tex: https:// gitlab. com/ cph- tum/ bertha- tex

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://gitlab.com/cph-tum/bertha
https://gitlab.com/cph-tum/bertha-tex
http://creativecommons.org/licenses/by/4.0/

 M. Haider et al.

1 3

568 Page 16 of 17

References

Bangerth, W., Heister, T.: What makes computational open source software libraries successful? Comput.
Sci. Disc. 6, 015010 (2013). https:// doi. org/ 10. 1088/ 1749- 4699/6/ 1/ 015010

Carré, J.B.: MathWorks MATLAB project template. https:// github. com/ spere denn/ matlab- proje ct- templ ate
(2012)

conda-forge: Conda feedstock for bertha. https:// github. com/ conda- forge/ bertha- feeds tock (2019)
GitLab Inc: Introduction to GitLab Flow. https:// docs. gitlab. com/ ee/ topics/ gitlab_ flow. html (2020)
Haider, M., Riesch, M., Jirauschek, C.: bertha-tex: Project skeleton for scientific writing in LaTeX. https://

gitlab. com/ cph- tum/ bertha- tex (2020)
Hughes, C.: latexindent.pl. https:// github. com/ cmhug hes/ latex indent. pl (2020)
Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master, 1st edn. Addison-Wesley,

Boston (1999)
Ioannides, A.: Python package template project for kick-starting new Python projects. https:// github. com/

AlexI oanni des/ py- packa ge- templ ate (2018)
Jirauschek, C., Huber, R.: Modeling and analysis of polarization effects in Fourier domain mode-locked

lasers. Opt. Lett. 40(10), 2385–2388 (2015). https:// doi. org/ 10. 1364/ OL. 40. 002385
Jirauschek, C., Huber, R.: Efficient simulation of the swept-waveform polarization dynamics in fiber spools

and Fourier domain mode-locked (FDML) lasers. J. Opt. Soc. Am. B 34(6), 1135–1146 (2017). https://
doi. org/ 10. 1364/ JOSAB. 34. 001135

Jirauschek, C., Riesch, M., Tzenov, P.: Optoelectronic device simulations based on macroscopic Maxwell-
Bloch equations. Adv. Theor. Simul. 2(8), 1900018 (2019). https:// doi. org/ 10. 1002/ adts. 20190 0018

Kracejic: Clean C++ project for you to use. https:// github. com/ krace jic/ clean CppPr oject (2015)
Lamprecht, A.L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., Dominguez Del

Angel, V., van de Sandt, S., Ison, J., Martinez, P.A., et al.: Towards FAIR principles for research soft-
ware. Data Sci. 3, 37–59 (2020). https:// doi. org/ 10. 3233/ DS- 190026

Moreland, K.: UseLATEX. https:// gitlab. kitwa re. com/ kmorel/ UseLA TEX (2020)
Netherlands eScience Center (2019) Software development guide. https:// guide. escie ncece nter. nl
Nowogrodzki, A.: How to support open-source software and stay sane. Nature 571(7763), 133–134 (2019).

https:// doi. org/ 10. 1038/ d41586- 019- 02046-0
Poizat, P.: template-java-project. https:// github. com/ Kento nWhite/ Proje ctTem plate (2020)
Prlić, A., Procter, J.B.: Ten simple rules for the open development of scientific software. PLoS Comput.

Biol. 8(12), e1002802 (2012). https:// doi. org/ 10. 1371/ journ al. pcbi. 10028 02
Python Code Quality Authority: pylint. https:// github. com/ PyCQA/ pylint (2020)
Python Software Foundation: black. https:// github. com/ psf/ black (2020)
Riesch, M., Jirauschek, C.: mbsolve: An open-source solver tool for the Maxwell-Bloch equations. https://

github. com/ mries ch- tum/ mbsol ve (2017)
Riesch, M., Jirauschek, C.: bertha: Project skeleton for scientific software (C++ with Python interface).

https:// gitlab. com/ cph- tum/ bertha (2019)
Riesch, M., Jirauschek, C.: mbsolve: An open-source solver tool for the Maxwell-Bloch equations. Comput.

Phys. Commun. 4, 108097 (2021).
Riesch, M., Tchipev, N., Senninger, S., Bungartz, H.J., Jirauschek, C.: Performance evaluation of numerical

methods for the Maxwell-Liouville-von Neumann equations. Opt. Quant. Electron. 50(2), 112 (2018).
https:// doi. org/ 10. 1007/ s11082- 018- 1377-4

Riesch, M., Haider, M., Jirauschek, C.: Project skeletons for scientific software. In: International Conference
on Numerical Simulation of Optoelectronic Devices (NUSOD), pp 111–112 (2020). https:// doi. org/ 10.
1109/ NUSOD 49422. 2020. 92177 56

Riesch, M., Nguyen, T.D., Jirauschek, C.: bertha: Project skeleton for scientific software. PLOS ONE
15(3),e0230557 (2020). https:// doi. org/ 10. 1371/ journ al. pone. 02305 57

Schlauch, T., Meinel, M., Haupt, C.: DLR software engineering guidelines. https:// doi. org/ 10. 5281/ zenodo.
13446 12 (2018)

SWIG: SWIG. https:// github. com/ swig/ swig (2020)
White, K.: Projecttemplate. https:// github. com/ Kento nWhite/ Proje ctTem plate (2021)
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N.,

Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The FAIR guiding principles for scientific data
management and stewardship. Sci. Data 3, 160018 (2016). https:// doi. org/ 10. 1038/ sdata. 2016. 18

Wilson, G., Aruliah, D.A., Brown, C.T., Chue Hong, N.P., Davis, M., Guy, R.T., Haddock, S.H.D., Huff,
K.D., Mitchell, I.M., Plumbley, M.D., Waugh, B., White, E.P., Wilson, P.: Best practices for scientific
computing. PLoS Biol. 12(1), e1001745 (2014). https:// doi. org/ 10. 1371/ journ al. pbio. 10017 45

https://doi.org/10.1088/1749-4699/6/1/015010
https://github.com/speredenn/matlab-project-template
https://github.com/conda-forge/bertha-feedstock
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://gitlab.com/cph-tum/bertha-tex
https://gitlab.com/cph-tum/bertha-tex
https://github.com/cmhughes/latexindent.pl
https://github.com/AlexIoannides/py-package-template
https://github.com/AlexIoannides/py-package-template
https://doi.org/10.1364/OL.40.002385
https://doi.org/10.1364/JOSAB.34.001135
https://doi.org/10.1364/JOSAB.34.001135
https://doi.org/10.1002/adts.201900018
https://github.com/kracejic/cleanCppProject
https://doi.org/10.3233/DS-190026
https://gitlab.kitware.com/kmorel/UseLATEX
https://guide.esciencecenter.nl
https://doi.org/10.1038/d41586-019-02046-0
https://github.com/KentonWhite/ProjectTemplate
https://doi.org/10.1371/journal.pcbi.1002802
https://github.com/PyCQA/pylint
https://github.com/psf/black
https://github.com/mriesch-tum/mbsolve
https://github.com/mriesch-tum/mbsolve
https://gitlab.com/cph-tum/bertha
https://doi.org/10.1007/s11082-018-1377-4
https://doi.org/10.1109/NUSOD49422.2020.9217756
https://doi.org/10.1109/NUSOD49422.2020.9217756
https://doi.org/10.1371/journal.pone.0230557
https://doi.org/10.5281/zenodo.1344612
https://doi.org/10.5281/zenodo.1344612
https://github.com/swig/swig
https://github.com/KentonWhite/ProjectTemplate
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pbio.1001745

Realization of best practices in software engineering and…

1 3

Page 17 of 17 568

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., Teal, T.K.: Good enough practices in sci-
entific computing. PLoS Comput. Biol. 13(6), e1005510 (2017). https:// doi. org/ 10. 1371/ journ al. pcbi.
10055 10

Writelatex Ltd: Overleaf. https:// github. com/ overl eaf/ overl eaf (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://github.com/overleaf/overleaf

	Realization of best practices in software engineering and scientific writing through ready-to-use project skeletons
	Abstract
	1 Introduction
	2 Best practices in software engineering
	2.1 Project management
	2.2 Coding style
	2.3 Independence
	2.4 Automation
	2.5 Documentation
	2.6 Tests
	2.7 Deployment

	3 Project skeletons for scientific software
	3.1 CleanCppProject (Kracejic 2015)
	3.2 Python package template project (Ioannides 2018)
	3.3 Bertha (Riesch and Jirauschek 2019)

	4 Bertha-tex: project skeleton for scientific writing in
	4.1 Project management
	4.2 Coding style
	4.3 Automation
	4.4 Documentation
	4.5 Deployment

	5 Creating a skeleton instance
	5.1 Setup stage
	5.2 Writing stage
	5.3 Publication stage
	5.4 Examples and summary

	6 Conclusion
	Acknowledgements
	References

