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Abstract
Efforts in providing high-quality scientific software are hardly rewarded, as scientific output 
is typically measured in terms of publications in high ranking journals. As a result, scientific 
software is often developed without proper documentation and support of modern software 
design patterns. Ready-to-use project skeletons can be employed to accelerate the develop-
ment process, while at the same time taking care of the implementation of best practices 
in software engineering. In this work, we revisit best practices in software engineering and 
review existing project skeletons. Special emphasis is given on the realization of best prac-
tices. Finally, we present a new project skeleton for scientific writing in LATEX, which takes 
care of the attainment of best practices, adapted for being used in academic publications.

Keywords Software engineering · Scientific writing · Project skeleton · LATEX

1 Introduction

Scientific software is frequently developed around well-established mathematical libraries 
that provide implementations of common algebraic and numerical methods. There are also 
more specialized packages that aim to simplify the numerical modeling and subsequent 
data analysis in scientific computing. Although these libraries and software packages are 
omnipresent in scientific software, acquiring funding for their continuous development and 
maintenance is notoriously difficult (Nowogrodzki 2019). Additionally, the time-consum-
ing efforts put in the development of open-source toolboxes that form the basis of other 
scientific projects are hardly acknowledged.

The development of scientific software, may it be a general-purpose library to be used 
in other projects or a specific implementation to answer a certain scientific question, 
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requires knowledge and formal training in both, the associated scientific discipline and 
software engineering in general (Nowogrodzki 2019; Wilson et al. 2014, 2017). Scientists 
from other fields than computer science occasionally lack the latter, which too often leads 
to poorly maintained software projects of at least questionable quality. However, there 
is plenty of literature available on how to produce good quality code, such as Hunt and 
Thomas (1999) on software engineering in general and Bangerth and Heister (2013), Prlić 
and Procter (2012), Wilson et al. (2014, 2017) in a more scientific computing oriented con-
text. On top of that, the German Aerospace Center (DLR) (Schlauch et al. 2018) and the 
Netherlands eScience Center (Netherlands eScience Center 2019) provide a collection of 
development guidelines and best practices for the implementation of small to large-scale 
computational science projects. The former guideline distinguishes between four applica-
tion classes, which reflect the scope and criticality of a planned software project, while the 
latter gives insights on best practices for different programming languages. However, those 
collections are exhaustive and intentionally kept general in order to apply to a wide range 
of software projects.

The final realization of best practices for a new software project comes along with tedi-
ous and time-consuming setup tasks. These tasks can be automatized in the context of 
ready-to-use project skeletons for a given programming language, where the skeleton takes 
care of the realization of most best practices, allowing scientists to focus more on the actual 
implementation. Of course, a project skeleton alone cannot implement all best practices as 
lined out in the comprehensive list by Schlauch et al. (2018). However, using predefined 
routines outlined by a project skeleton may reduce the level of required expertise in soft-
ware engineering, while at the same time improving code-quality. As an example, we have 
already presented bertha  (Riesch et  al. 2020, 2020), an open-source project skeleton for 
C++ libraries with a Python interface.

The best practices from software engineering can also be applied to scientific writing 
in a slightly modified form. In many academic disciplines, scientific publications are typi-
cally typeset in LATEX, which follows a coding cycle similar to writing software in a com-
piled programming language. Therefore, in terms of project management, coding style, 
independence of interests, and automation of repetitive tasks, scientific writing projects in 
LATEX have similar characteristics to software engineering projects. Hence, one can com-
pare the creation of a scientific LATEX document, whether it is a large book or lecture pro-
ject, or a small conferences abstract to a classical software design cycle. Both, maintaining 
a code base for scientific computing and the creation of articles, books, lecture notes, etc. 
in LATEX start with a planning phase, in which the structure of the respective project is 
figured out. Afterward, the build system and compiler toolchains are set up, such that one 
arrives at a useable output, such as an executable in the case of software engineering or a 
printable document for scientific writing. Finally, there is the actual implementation phase, 
where the elements that have been planned are realized in terms of code, text, figures, snip-
pets, etc. Arguably, the implementation phase in software engineering differs considerably 
from writing a scientific document, however, from a project management perspective, both 
can be treated equally as the stages where things get real. Additionally, depending on the 
size and scope of the respective project, there might be a long-term maintenance phase, 
which is also true for both, scientific writing and software engineering. Large and interme-
diate scientific writing projects are often authored by different people, possibly from differ-
ent institutions. Hence, one requires some sort of project management, and one requires to 
agree on a common style in order to keep a document or a set of documents editable over 
an extended timeframe. When it comes to the development of new LATEX packages, mac-
ros, classes and functions, which can indeed be considered to be a software engineering 
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project, also documentation, testing, and deployment become important. Hence, with the 
same reasoning, a ready-to-use project skeleton for scientific writing in LATEX will be use-
ful to facilitate the collaboration between researchers in the scope of scientific publications.

The present paper is organized as follows. After revisiting a non-exhaustive collection 
of best practices in software engineering in Sect. 2, we focus on the use of project skel-
etons like the aforementioned bertha project (Riesch et al. 2020) in scientific computing in 
Sect. 3. Finally, we introduce bertha-tex, a ready-to-use project skeleton for scientific writ-
ing in LATEX, as suggested in (Riesch et al. 2020), in Sect. 4. In Sect. 5, the necessary steps 
for creating an instance of the bertha-tex project skeleton are outlined.

2  Best practices in software engineering

From the related literature  (Bangerth and Heister 2013; Hunt and Thomas 1999; Neth-
erlands eScience Center 2019; Nowogrodzki 2019; Prlić and Procter 2012; Wilson et al. 
2014, 2017; Schlauch et al. 2018), we can summarize a list of 15 best practices in scien-
tific software engineering, that can be grouped into seven categories (Riesch et al. 2020). 
The best practices and associated paradigms are language agnostic and can hence also be 
applied to software engineering as well as to scientific paper writing using LATEX. This 
includes projects with the goal of creating a set of typesetting macros, i.e. LATEX document 
classes and typesetting packages. In the following, we quickly go through the best practices 
that have been identified from the related literature. For a more exhaustive overview, see 
Riesch et al. (2020).

2.1  Project management

Project management is crucial, even for small software projects with only a single devel-
oper. Within the project management category, best practices include the use of a version 
control system, employing a collaboration platform, and agreeing on a specific workflow. A 
version control system (VCS) stores incremental changes to the source code of a project in 
a so-called project repository. The use of a version control system was independently rec-
ommended by all best practice guidelines that have been considered for the present paper, 
which highlights its importance. Furthermore, it is even recommended to use a VCS for 
small scripts that are intended for personal use only, regardless of the size and significance 
of the code. Among others, Git is a very prominent example of a VCS, which is regularly 
used and recommended by the authors of the present paper. We also use Git later on when 
introducing our project skeletons bertha and bertha-tex.

Along with a VCS, the use of a collaboration platform is recommended. Typically, web-
based ticketing systems, also known as bug-tracking systems, are used to request code 
changes and report errors and mistakes in the project sources. The collaboration platform is 
the central project management tool, where the workload is distributed among the associ-
ated developers, while the archived change requests provide rudimentary documentation of 
discussions and design decisions that have been made in the course of the project. Collabo-
ration platforms often come as all-in-one solutions with a possibility to host a version-con-
trolled project repository with an associated issue tracking system and other related project 
management tools. We refer to collaboration platforms like GitHub or GitLab that provide 
a git-based VCS, allong with productivity tools for issue-tracking and documentation.
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A collaboration platform together with a VCS, however, is just a set of tools gathered in 
the same place. To take full advantage of the tools and the VCS provided by the collabora-
tion platform, it is essential to agree on a specific workflow, i.e. when and how a particular 
tool is used and to what extent. There are different paradigms and different recommenda-
tions for software engineering workflows that depend on the size and scope of the project. 
It is, however, beneficial to a project’s success to agree on a respective workflow from the 
very beginning. The workflow, however, should be regularly reviewed and adapted to the 
current context if necessary. Often a scientific software or writing project starts in a small 
scope with only a limited number of contributors. If such a project scales later on, a more 
complex workflow can be chosen to fit the project’s size and needs. For a specific collabo-
ration platform, a workflow describes how issues are created and handled within the VCS 
in use. We suggest documenting the workflow in a specific CONTRIBUTING.md file in the 
root of your project’s repository and would like to refer to established Git-workflows such 
as the GitHub flow or the GitLab flow (GitLab Inc. 2020).

2.2  Coding style

Depending on the specific programming language, the coding style, i.e. the formatting of 
the source code is most often irrelevant for the functionality of the built executables. How-
ever, following the paradigm ”Write programs for people, not computers”  (Wilson et  al. 
2014), it is the responsibility of the individual developer to produce easy-to-read and mod-
ular code. Especially but not exclusively for open-source projects, the source code needs 
to be seen as the developer’s published work, similar to a scientific publication. As such, 
it should comply with the coding style of the whole project to form an easy-to-read and 
consistent source code, similar to a scientific paper that needs to be formatted according to 
a journal’s style guide. The coding style typically includes two different things, the actual 
formatting of the source code, and language-specific styles and paradigms. The tedious 
task of maintaining a predefined coding style among several different source files, probably 
edited by a lot of different developers, can be automatized by means of so-called code for-
matting tools. Such tools are available for many different programming languages and, as 
such, also for the LATEX typesetting system. However, one still needs to take care of appro-
priate function and variable names. In addition to the mere formatting of the code, it is also 
recommended to perform static code analysis, in order to avoid errors and bugs already 
while writing the source code. Tools that perform static code analysis are called linters. 
Linters find and highlight programming errors and bugs in the source code before the pro-
ject is compiled into an executable. Most modern integrated development environments 
provide support for static code analysis for a variety of different programming languages.

2.3  Independence

Ideally, a project should be independent of any other interests. Thus, it is highly recom-
mended to use open file formats and open-source libraries, unless there is a good reason 
not to. This not only concerns formats and libraries but also interpreters, compilers, and 
operating system support. The general recommendation is to support the most common 
operating systems and compiler toolchains in the respective domain.

Scientific software typically produces some numerical output data that needs to be 
stored for further post-processing. In the post-processing step, problem-specific scripts are 
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applied to the raw binary data to create e.g. visual representations of simulation results for 
further interpretation. In between the simulation and post-processing steps, which are to 
some degree independent from each other, the data is stored using a suitable file format. 
Some guidelines (Netherlands eScience Center 2019) recommend using open file formats, 
such as CSV or HDF5 for large data sets. This way, one can ensure that the results can be 
accessed independently of licensing and legal interests. For a lot of problems encountered 
during the development process, there are already well-established solutions in form of 
libraries and toolsets. However, some of these libraries are only distributed in binary form 
and often depend on restrictive licensing agreements. To ensure the operability of the code 
for an extended period of time, and to prevent vendor lock-in situations, it is highly recom-
mended to rely on open-source libraries, as long as they provide a viable alternative to 
closed-source and commercial libraries and tools. This practice agrees well with the inter-
operability and reusability part of the FAIR principle  (Lamprecht et al. 2020; Wilkinson 
et al. 2016) for scientific research software.

2.4  Automation

Repetitive tasks, such as building, testing, and deploying the software should be autom-
atized as far as possible. Dependencies should be detected and dynamically linked in a 
platform-independent way. The platform-independent handling of dependencies can be 
accomplished using build automation tools, that provide the necessary build information 
for the respective platform. The software should be built and tested after each meaningful 
incremental change to the code, which can be performed automatically by means of contin-
uous integration pipelines. Different platforms store common software libraries in different 
locations. It is recommended to use a build automation tool that detects whether a certain 
dependency is installed on the target platform, and if so, where the library is located on the 
system for the dynamic linking process. This way, one can maintain platform-independ-
ence through an additional build automation step. Here, each target platform is provided 
with the necessary build information in order to compile and link the code there. Each 
meaningful incremental code change should have an associated entry in the VCS, i.e. an 
associated git commit. Hence, build and test tasks can be triggered, as changes are com-
mitted to the project repository. This process is referred to as continuous integration. The 
description of the individual tasks that can be grouped into pipelines requires additional 
configuration, which depends on the continuous integration system in use. Ideally, the code 
is built and tested for all target platforms, and instant feedback is provided accordingly. It is 
recommended to set up continuous integration pipelines early in the development process, 
thereby detecting bugs and regressions effectively. Also, the deployment of the software 
can be automatized by means of continuous deployment. Here, specially marked versions 
of the software in the VCS are packaged and sent to a package repository that is either 
internal or publically available.

2.5  Documentation

The importance of documentation in scientific software projects cannot be highlighted 
enough (Bangerth and Heister 2013; Hunt and Thomas 1999; Netherlands eScience Center 
2019; Nowogrodzki 2019; Prlić and Procter 2012; Wilson et al. 2014, 2017; Schlauch et al. 
2018), especially if the scope of the project involves a broader audience. That said, good 
documentation involves descriptions for users and developers alike. The documentation 
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should be decomposed into different levels of abstraction, i.e. ”big-picture” documentation, 
presenting an overview of the project, and a detailed function reference that gives insights 
on how to use specific parts of the software.

A function reference is typically generated automatically from code comments using 
a specific annotation. The function reference should provide abstract documentation of 
classes and functions, where individual methods are seen as black boxes with respective 
inputs and outputs, regardless of the actual implementation. Regarding the actual imple-
mentation, simple code comments should be used to document the design and purpose of 
individual code snippets. One should refrain from commenting on simple mechanics and 
specific language constructs.

Within the ”big picture” documentation, an overview of the individual modules in the 
code should be given, that describes the larger scope of the software, including the aim of 
the project, installation notes, and dependencies. Additionally, for providing a clear history 
of changes, it is recommended to include a changelog that documents the features added to 
certain versions (Wilson et al. 2017).

2.6  Tests

Creating software is prone to errors and bugs. Thus, regular tests of individual modules 
of the source code help to improve the overall code quality. This requires that the code is 
structured into individual independent units that interact with each other. The effectiveness 
of tests can be monitored using code coverage tools, that create reports on which parts 
of the code are (not) covered by the applied test procedures. Depending on the program-
ming language, there are different frameworks available which facilitate the creation of 
test routines for given chunks of code, called modules or units. As already mentioned in 
Subsect. 2.4, the execution of the test routines can be triggered by respective continuous 
integration pipelines, which ensure that code that is committed to the project repository is 
tested accordingly. As the writing of test routines for a certain module remains to be a man-
ual task, it cannot be guaranteed that all individual parts of the source code are effectively 
tested. Therefore, it is useful to get an overview of the effectiveness of the tests performed 
by means of a so-called code coverage report. These reports can be generated by special 
code coverage tools (Schlauch et al. 2018).

2.7  Deployment

Depending on the scope of the project, also scientific software is often intended to be used 
by a larger community. Therefore, a way to distribute software packages to the users is 
often necessary, which should ideally be an established package repository (Nowogrodzki 
2019). The necessary steps to create a ready-to-use package out of the bare source code 
involve building and bundling individual components. This step is platform-dependent 
and should be carried out using continuous deployment, as previously mentioned in Sub-
sect. 2.4. This step automatizes the package creation for different platforms and pushes the 
resulting packaged software to a respective distribution environment.

As discussed in Subsect. 2.5, documentation is an integral part of a software project in 
the scope of scientific computing. The aforementioned function reference can be automati-
cally generated within a continuous integration pipeline. The documentation, however, also 
needs to be deployed such that the target audience can access the respective documents. 
This is ideally accomplished through a project-specific website that hosts the project’s 
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documentation. Some collaboration platforms provide the option to host a project-specific 
website within the project repository. Publishing the online documentation is then also 
embedded in a continuous deployment pipeline.

3  Project skeletons for scientific software

In this section, we review existing project skeletons for common programming languages 
in scientific computing. The skeletons are investigated concerning the best practices in 
software engineering compiled in Sect. 2. Similar to Riesch et al. (2020), we consider three 
different types of scientific software projects. Highly optimized and performant code for 
numerical simulations is typically written in a compiled language such as C++, which con-
stitutes our first exemplary project. Data analysis and visualization tasks, on the other hand, 
are most often implemented using an interpreted programming language such as Python, 
equipped with the respective modules. Hence, a Python project as an example of an inter-
preted language constitutes our second exemplary project. Finally, we consider a scientific 
writing project in LATEX as our third and last example. For all three types of projects, we 
would like to review existing project skeleton approaches with respect to their implementa-
tion of best practices. It shall be noted, however, that there also exist project skeletons for 
other programming languages, such as MATLAB, GNU R, Java, etc.   just to mention a 
few (Carré 2012; White 2021; Poizat 2020).

While for C++ and Python projects, there are several project skeletons publically avail-
able, there is, to the authors’ best knowledge, not a single implementation available for 
scientific writing projects in LATEX, that takes into account the best practices from Sect. 2. 
Due to this fact, we will present a project skeleton for scientific writing in LATEX in Sect. 4. 
Regarding C++ projects, we consider the work by Kracejic (2015) as the most complete 
solution with respect to the implementation of best practices. For Python, the approach in 
Ioannides (2018) is very helpful. Apart from that, we have recently demonstrated the most 
comprehensive project skeleton for C++ with Python bindings  (Riesch and Jirauschek 
2019), which implements all best practices mentioned in Sect. 2, while it is also capable of 
building and installing an associated Python interface module using SWIG.

3.1  CleanCppProject (Kracejic 2015)

The cleanCppProject skeleton by Kracejic implements almost all best practices, apart from 
generating a code coverage report. This skeleton provides a formidable starting point for 
general purpose C++ projects in the scientific context. In Table 1, the respective imple-
mentations of best practices are listed. Note that the use of open file formats and open-
source libraries depends on the respective instance of the skeleton. Hence, we have given 
some common recommendations in the respective rows. The same holds for online docu-
mentation and the aforementioned code coverage report. Table 1 and the following tables 2 
and 3 are structured in the following way. The leftmost column provides a list of best prac-
tices from Sect.  2. The following column describes, how these best practices are imple-
mented by the respective project skeleton under consideration. The rightmost column pro-
vides insight on how a user project as an instance of a skeleton is supposed to implement 
the respective recommendations in the first column.
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3.2  Python package template project (Ioannides 2018)

Starting off with a new Python project can be drastically simplified using the Python 
Package Template Project skeleton by Ioannides. The skeleton is distributed via PyPI, the 
Python Package Index, and features project management, continuous integration, docu-
mentation, unit testing, and deployment support. Overall, the project template takes care 

Table 1  Implementations of best practices within the cleanCppProject skeleton by Kracejic

Best practice C++ (Kracejic 2015) User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Clang-format
Static code analysis Clang-tidy
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Doxygen
Documentation Markdown
Unit test framework Catch2
Code coverage report Not implemented e.g., gcov
Deployment CPack
Online documentation Not implemented e.g., GitLab Pages, GitHub Pages

Table 2  Implementations of best practices within the Python Package Template Project skeleton by Ioan-
nides

Best practice Python (Ioannides 2018) User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Not implemented e.g., black
Static code analysis Not implemented e.g., pylint
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation Not required
Continuous integration Travis CI
Function reference Sphinx
Documentation ReStructuredText
Unit test framework Pytest
Code coverage report Not implemented e.g., pytest-cov
Deployment PyPI
Online documentation Not implemented e.g., GitLab Pages, GitHub Pages
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of most of the tedious setup steps, which facilitates the realization of best practices for 
new Python projects. Additionally, we suggest the use of black (Python Software Founda-
tion 2020) as a code formatting tool, together with pylint (Python Code Quality Authority 
2020) for static code analysis. For code coverage report generation, the pytest-cov pack-
age can be used. We have summarized the implementation of best practices in the Python 
Package Template Project by Ioannides (2018) in Table 2, along with our additional rec-
ommendations for user projects.

3.3  Bertha (Riesch and Jirauschek 2019)

Rather than considering Python and C++ separately, the bertha project skeleton  (Riesch 
et al. 2020) provides best practice implementations for a C++ library with Python bind-
ings. Such a combination is quite common in scientific computing, as it combines the com-
putational performance of C++ with the clarity and brevity of Python (Riesch et al. 2020). 
Within bertha, the focus lies on creating a highly performant library in C++ while the 
associated Python interface is generated automatically with the help of the SWIG (SWIG 
2020) project. The bertha project skeleton implements all key elements from Sect. 2, which 
makes it the most comprehensive project skeleton for a standalone C++ project. Addition-
ally, the quite intricate steps to build and install an associated Python interface module are 
implemented within CMake. Finally, the package is deployed via a conda feedstock (conda-
forge 2019). The respective choices for the implementations of best practices in bertha are 
given in Table 3.

The bertha project skeleton has served as a template for creating an internal software 
project for the simulation of rapidly tunable Fourier domain mode-locked (FDML) fiber 
lasers  (Jirauschek and Huber 2015, 2017). The permissive license of the skeleton also 
allows for internal projects that are not going to be published. Third-party packages, like 
scientific libraries or libraries for storing output data, can be conveniently installed using 
conda and are automatically detected by the CMake build system. The bertha template 

Table 3  Implementations of best practices within the bertha project skeleton (Riesch et al. 2020)

Best practice Bertha User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Clang-format
Static code analysis Clang-tidy
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., FFTW, GNU Scientific Library
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Doxygen
Documentation Markdown
Unit test framework Catch2
Code coverage report Gcov
Deployment Conda
Online documentation GitLab Pages, GitHub Pages
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originated from mbsolve Riesch et al. 2018; Riesch and Jirauschek 2017, 2021, an open-
source solver for the Maxwell-Bloch equations  (Jirauschek et  al. 2019). Here, mbsolve 
serves as a reference implementation of best practices, that are handled by the bertha pro-
ject skeleton.

4  Bertha‑tex: project skeleton for scientific writing inLATEX

To the authors’ best knowledge, there is no extensive project skeleton available that han-
dles and encourages the implementation of best practices in software engineering with 
respect to scientific writing in LATEX. However, we believe that the availability of such 
a skeleton will facilitate the collaboration between researchers in the scope of scientific 
publications, especially for projects that involve researchers from different institutions. 
Therefore, we created bertha-tex, a project skeleton for scientific writing in LATEX. An 
overview of the project skeleton is presented in Fig.  1. Similar to the skeletons that 
we have reviewed in Sect. 3, bertha-tex implements best practices in scientific software 
engineering that are adapted for being used in scientific writing. Similar to the previous 
section, where we have reviewed existing project skeletons in the scope of scientific 

Fig. 1  Overview of the bertha-tex project skeleton. The source code and the respective dependencies are 
depicted using orange color. The dependencies are provided by the developers or authors, respectively. The 
project skeleton takes care of build and formatting steps. The CMake build system provides for different 
targets that either build or format the corresponding source code. The artifacts of the associated continuous 
integration pipelines (build, format) are marked using green color. The arrows connecting the individual 
blocks represent the individual tools that are being used
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software development, Table  4 presents an overview of the implementations of best 
practices and design choices for the bertha-tex skeleton.

Clearly, not all best practices described in Sect.  2 have a direct counterpart for all 
scientific writing processes, as we will explain in the following. While project man-
agement in terms of a version control system and a collaboration platform is certainly 
beneficial to any LATEX codebase, the implementation of other best practices depends 
on the individual scope and reusability of the respective project. Scientific writing and 
general LATEX projects can be categorized according to their lifetime and scope. We pro-
pose three different categories, i.e. short-lived, long-lived, and code-centered projects. 
Short-lived scientific writing projects include manuscripts and abstracts that are to be 
submitted to a journal or conference, as well as slides or posters for conference pres-
entations. While there can be some sort of reusability, such writing projects typically 
end with the manuscript being submitted or revised/accepted, or the presentation being 
held. Note, however, that also short-lived publications might have a significant number 
of contributors, which necessitates efforts to enable collaborative writing. Long-lived 
scientific writing projects, on the other hand, distinguish themselves by a large degree 
of reusability. For example, a large book proposal, possibly involving different authors 
is an example for a long-lived project. Also lecture notes, presentations, exercise sheets, 
tutorial sheets, exams, etc., that are part of a course taught at a university belong to the 
second category, where one or several changing authors create content over timespans 
of multiple years. Finally, we have code-centered LATEX projects, that can be more or 
less associated with standard software development. These include the development of 
new LATEX classes, packages, and macros, with associated testing, documentation, and 
deployment. These categories, of course, have different scopes and needs for the imple-
mentation of best practices. With bertha-tex, however, we want to provide a common 
framework for all three categories, which means that we want to address as many best 
practices as possible. In the end, it is the user’s choice to which extent the best practice 
implementations in the skeleton are finally made use of.

Table 4  Implementations of best practices within the bertha-tex project skeleton

Best practice bertha-tex User project

Version control system Git
Collaboration platform GitLab, GitHub
Workflow GitLab Flow, GitHub Flow
Code formatting tool Latexindent
Static code analysis Lacheck
Open file formats User responsibility e.g., JSON, CSV, HDF5
Open-source libraries User responsibility e.g., CTAN Packages, Templates
Build automation CMake
Continuous integration GitLab-CI, Travis CI
Function reference Docstrip
Documentation LaTeX, Markdown
Unit test framework Not required
Code coverage report Not required
Deployment CTAN
Online documentation e.g., GitLab Pages, GitHub Pages
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In recent years, web-based collaborative LATEX editing and building tools, such as e.g. 
Overleaf (Writelatex Ltd. 2021) have become very popular. Those tools have a predefined 
build mechanism and integrate well with the git version control system. Hence, they natu-
rally implement a lot of best practices for collaborative writing, especially for the first cat-
egory of short-lived LATEX projects. For larger-scale scientific writing projects that belong 
to the second category of long-lived projects, however, controlled build automation and 
increased performance through local builds become more important, which renders the use 
of web-based collaborative writing tools less suitable. Finally, for code-centered projects, 
such as the development of new LATEX classes, online editors are completely inept. As soon 
as building multiple documents within a single project is desired, which might be the case 
for conference proceedings with an associated presentation, or when creating multiple doc-
uments like lecture notes, exercise sheets, etc., for a university course, the CMake build 
automation with continuous integration in bertha-tex is superior to other approaches.

The bertha-tex project skeleton for scientific writing in LATEX is publically availa-
ble (Haider et al. 2020) and can be used under the Apache 2.0 open-source license. In the 
following, we want to comment on the design choices that have led to the implementation 
of bertha-tex.

4.1  Project management

The bertha-tex project is hosted on the GitLab collaboration platform with a mirror reposi-
tory on GitHub. Thus, we use the popular open-source git version control system together 
with the advanced project management tools of GitLab and GitHub, respectively. This is 
also encouraged for new scientific writing projects. Also if you do not intend to make the 
LATEXmarkup code publically available, one can make use of private repositories within 
the respective platforms. As a workflow, we chose the GitLab Flow  (GitLab Inc. 2020), 
which uses feature branches for the implementation of new features, where every non-triv-
ial change starts with an issue in the associated issue tracking system.

4.2  Coding style

Within bertha-tex, we implemented code formatting as targets in CMake, which can handle 
formatting of LATEX documents, packages, and classes through the open-source latexindent 
project  (Hughes 2020) as well as formatting of the respective CMake files using cmake-
format. The user can modify the predefined coding styles by editing the respective configu-
ration file in the project source code. For static code analysis, we recommend lacheck.

4.3  Automation

Scientific writing projects supported by bertha-tex are built using the CMake build system, 
together with UseLATEX (Moreland 2020). A respective build pipeline has been imple-
mented for being used with GitLab CI. Also, targets for code formatting of both CMake 
and LATEX code have been made available within CMake. Subsequent continuous integra-
tion pipelines that check for compliance with the respective coding style are implemented 
as well.
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4.4  Documentation

Currently, the bertha-tex project intends to provide a clean and solid basis for scientific 
paper writing in LATEX. It enables the use of predefined templates, such that researchers 
can easily contribute to different scientific journals or conferences that typically require 
their own specific templates. Thus, there is currently no need for automated generation 
of documentation. However, bertha-tex can also be used for the development of new 
LATEX packages, document classes, and macros, with only slight modifications in the 
CMake configuration. Therefore, automated documentation generation using docstrip 
shall be implemented in the near future.

4.5  Deployment

The bertha-tex project serves as a template for new scientific writing projects, and 
as such, it should be effectively deployed to the user. After the first stable version is 
released, distribution through the comprehensive TEX Archive Network is targetted.

5  Creating a skeleton instance

Starting a new paper is as simple as cloning bertha-tex using the mechanisms of GitLab 
or GitHub. Alternatively, the respective files can be copied manually into a new reposi-
tory. The skeleton, however, might also be used as a starting point of more advanced 
academic writing projects, such as theses or books. It is also useful for scientific presen-
tations, created with LATEX beamer. Additionally, bertha-tex provides the required infra-
structure for creating new packages, macros, and document classes in LATEX. In the fol-
lowing, we restrict ourselves to the most common scenario of a user that wants to write 
a new academic paper. The necessary steps for this scenario can be decomposed into 
three stages that are briefly outlined hereafter.

5.1  Setup stage

After cloning or copying bertha-tex into a new and empty git repository that should host 
the LATEX source code of the scientific article that is to be written, the project needs to 
be configured accordingly. Hence, it is useful to give the project a meaningful name, 
such as the abbreviation of the journal or conference the paper is to be submitted to, 
together with a keyword, describing the content of the article. The next step is to replace 
”bertha-tex” with the given project name in all CMake configuration files. One might 
also want to rename the main document file ”bertha-tex.tex” accordingly. Then the 
LATEX template, which is typically provided by the publisher, must be copied into the 
”templates” directory, where it is automatically included by the CMake build system.
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5.2  Writing stage

The actual document is created within the main document file. Includes and figures with 
external file references must be added to the respective CMake configuration file. The 
CMake build system then provides the necessary build information for the respective 
build environment. This is achieved by running CMake inside a special build directory, 
i.e.

mkdir -p build
cd build
cmake ..

One can then build the respective targets depending on the build-environment in use. 
There are specialized build targets called ”format_latex” and ”format_cmake”, as well as 
a general target ”format”, which take care of the automated code formatting. Once the 
changes are pushed to the remote repository, continuous integration pipelines build the 
document and check the committed code for proper formatting.

5.3  Publication stage

As far as standalone documents are concerned, the deployment is typically handled by the 
publisher. The publication process is thus too diverse to create a continuous deployment 
pipeline that fits the needs of more than a single publisher. On the other hand, LATEX pack-
ages, document classes, and macros are routinely distributed via the Comprehensive TEX 
Archive Network (CTAN). A continuous delivery pipeline for automated deployment via 
CTAN within bertha-tex shall be developed in the near future.

5.4  Examples and summary

Suppose now that we want to start writing a new article. We clone bertha-tex from (Haider 
et al. 2020) into a new blank git repository. Now we start by configuring the project name 
in the README.md and CMakeLists.txt files in the repository’s root folder. In a next step, 
the template provided by the targetted journal is either installed within the LATEX distri-
bution or the respective LATEX classes are copied to the templates directory. Finally, we 
rename the bertha-tex.tex in order to give our document a meaningful title and edit the 
respective add_latex_document entry in the CMakeLists.txt file. Now we are ready to start 
with writing the actual article. Building the article is done by creating a build folder and 
configuring the CMake project within it. Depending on the preferred CMake generator, the 
project targets can be built within this folder. It is useful to setup lacheck within a suitable 
editor for performing static code analysis. Code formatting is accomplished through run-
ning the make format command in the build directory. Figures and external references 
can be included and need to be referenced accordingly in the CMakeLists.txt file. In this 
way, dependencies are handled, i.e. as soon as an included file changes, the respective build 
job will be executed at the next build of the target.

If we now shift our focus away from creating a single article to maintaining a whole sys-
tem of documents, as encountered e.g. when compiling documents for a university course, 
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we can finally make full use of the skeleton’s features. In this case, each individual docu-
ment has an associated build target in a CMakeLists.txt file, which can be distributed into 
several folders. In this way, figures and data visualizations can be reused among different 
documents, which are all built and maintained in a single code repository. For long term 
code maintenance, code formatting and checking pipelines provide for proper readability 
and reusability of code fragments. This means, that future changes that are incorporated 
into the project will be ensured to comply with the project’s styleguide by the skeleton’s 
predefined pipelines.

6  Conclusion

To this point, we have revisited a non-exhaustive list of best practices in software engi-
neering in a language-agnostic form. The best practices then served as a benchmark for a 
review of existing project skeletons for both compiled and interpreted software. Within this 
review, we have presented bertha, our own project skeleton for C++ projects with Python 
bindings, where special emphasis was given to the fulfillment of all best practices that have 
been discussed in the beginning. As there are, however, various types of software projects 
without a corresponding skeleton, such as it was the case for a LATEX project, we have 
introduced bertha-tex, a project skeleton for scientific writing. It should be noted, that the 
bertha-tex project skeleton is continuously developed. Thus, important features, like auto-
mated documentation generation and deployment to CTAN, will be implemented soon. 
Overall, the use of project skeletons facilitates the realization of best practices for software 
development as well as scientific writing. Project skeletons successfully help to overcome 
the barrier for implementing best practices by reducing the amount of knowledge needed 
and automating tedious setup steps for new projects.
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