Skip to main content
Log in

Design of novel sensitive terahertz metamaterial absorbers based on graphene-plasmonic nanostructures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, four different configurations of sensitive metamaterial absorbers based on graphene-plasmonic combinations are designed and proposed. The nanostructures are made of graphene, SiO2, aluminum and gold layers on a silicon substrate. Graphene-ring shaped structures with diagonal strips in vertical and horizontal directions are considered in the structures which greatly affect the absorption characteristics (absorption peak value and wavelength). Aluminum layer is used in the structure to prevent the transmission of light throughout some layers and improve the absorption factor. To promote the functionality of the structures, effects of the structural parameters (R1 and R2) and chemical potentials (Ef1, Ef2, Ef3 and Ef4) on the absorption peak are also studied. The four individual configurations with different layers and strip directions demonstrate distinct and different wavelength ranges; structure-1: 45–60 µm, structure-2: 50–70 µm, structure-3: 70–85 µm, and structure-4: 80–100 µm. Thus, they can be utilized for wide categories of applications. Sensitivities of 1500 nm/RIU, 2250/RIU, 3750 nm/RIU and 4850 nm/RIU are obtained for four types, respectively. The proposed structures can be categorized as refractive index biosensors, which indicate acceptable sensitivities and can be used for detection of different elements like hemoglobin and glucose in blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Arik, K., et al.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12, 1–6 (2017)

    Article  Google Scholar 

  • Cai, Y., et al.: Graphene-based biosensors for detection of composite vibrational fingerprints in the mid-infrared region. Nanomaterials 9(10), 1496 (2019)

    Article  ADS  Google Scholar 

  • Chen, X., et al.: Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon. J. 10(1), 6800709 (2018)

    Google Scholar 

  • Chen, J., et al.: Emerging mineral-coupled composite phase change materials for thermal energy storage. Energy Convers Manag. 183, 633–644 (2019)

    Article  Google Scholar 

  • Emami, F., et al.: Design and simulation of a novel nano plasmonic split ring resonator filter. J. Electromagn. Waves Appl. 32, 1925–1938 (2018)

    Article  Google Scholar 

  • Emami, F., et al.: Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019)

    Article  ADS  Google Scholar 

  • Farmani, H., et al.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E. 116, 113730 (2020)

    Article  Google Scholar 

  • Hajati, Y.: Tunable broadband multiresonance graphene terahertz sensor. Opt. Mater. 101, 109725 (2020)

    Article  Google Scholar 

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Article  ADS  Google Scholar 

  • Hossain, M.B., Rana, M.M.: Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. ASP Sensor Lett. 14, 1–8 (2016)

    Article  Google Scholar 

  • Jablan, M., Buljan, H., Solhacic, M.: Plasmonics in graphene at infrarerd frequencies. Phys. Rev. B. 80, 245435 (2009)

    Article  ADS  Google Scholar 

  • Li, H., et al.: Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range. Results Phys. 13, 102313 (2019)

    Article  Google Scholar 

  • Liu, C., et al.: Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26, 9039 (2018)

    Article  ADS  Google Scholar 

  • Ouyang, Q., Zeng, S., Jiang, L., Hong, L., Xu, G., Dinh, X.-Q., Qian, J., He, S., Qu, J., Coquet, P., Yong, K.-T.: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 6, 28190 (2016)

    Article  ADS  Google Scholar 

  • Panda, A et al.: Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A. 126(3), 1–12 (2020)

    Article  Google Scholar 

  • Rafiee, E., Emami, F., Negahdari, R.: Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019a)

    Article  ADS  Google Scholar 

  • Rafiee, E., Emami, F., Negahdari, R.: Design and analysis of the novel plasmonic split ring resonator power splitter appropriate for photonic integrated circuits. J. Optoelectron. Adv. Mater. 21, 163–170 (2019b)

    Google Scholar 

  • Rahman, M.S., et al.: Enhanced Performance of SnSe-Graphene Hybrid Photonic Surface Plasmon Refractive Sensor for Biosensing Applications. Photon. Nanostruct. Fundam. Appl. 39, 100779 (2020)

    Article  Google Scholar 

  • Sharma, A.K., et al.: Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood. Opt. Fiber Technol. 41, 125–130 (2018)

    Article  ADS  Google Scholar 

  • Tian, C., et al.: An electro chemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta 191, 103–108 (2019)

    Article  Google Scholar 

  • Vafapour, Z., et al.: Graphene-based mid-infrared biosensor. J. Opt. Soc. Am. 34, 2586–2592 (2017)

    Article  ADS  Google Scholar 

  • Wang, Y., et al.: Structural and electrochemical studies of functionalization of reduced graphene oxide with alkoxyphenylporphyrin mono- and tetra- carboxylic acid: application to DNA sensors. Electrochimica Acta 357, 136852 (2020)

    Article  Google Scholar 

  • Wei, W. et al.: An infrared biosensor based on graphene plasmonic for integrated nanofluidic analysis. In: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9278, p. 92780f (2014)

  • Xu, Z et al.: Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Nanoscale Res. Lett. 13(1), 143 (2018)

  • Zhang, L., et al.: Negative index materials using simple short wire pairs. Phys Rev B. 73, 041101 (2006)

    ADS  Google Scholar 

  • Zhang, J., et al.: A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photon. J 10, 4800512 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Emami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahkoutahi, A., Emami, F. Design of novel sensitive terahertz metamaterial absorbers based on graphene-plasmonic nanostructures. Opt Quant Electron 53, 491 (2021). https://doi.org/10.1007/s11082-021-03142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03142-0

Keywords

Navigation