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Abstract
The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semi-
conductors such as Si, Ge and SixGe1−x in a cheap, fast and nondestructive manner. LPS 
relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting 
the band profiles of the sample. LPS finite volume simulation using commercial software 
suffer from long simulation times and convergence instabilities. We present here an open-
source finite volume simulation for a 2D Si sample using the ddfermi simulator. For 
low injection conditions we show that the LPS voltage is proportional to the doping gradi-
ent. For higher injection conditions, we directly show how the LPS voltage and the doping 
gradient differ and link the physical effect of lower local resolution to the screening effect. 
Previously, the loss of local resolution was assumed to be only connected to the enlarge-
ment of the excess charge carrier distribution.

Keywords Lateral photovoltage scanning method (LPS) · Semiconductor simulation · Van 
Roosbroeck system · Finite volume simulation · Crystal growth

1 Introduction

Semiconductor crystals are the very basis for any (opto)electronic component such as tran-
sistors, LEDs or solar cells. To grow crystals, two well-established techniques dominate 
the market for single crystalline silicon. On the one hand, Czochralski grown crystals ( 95% 
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market share) are cheap to produce but systematically introduce oxygen and carbon into 
the crystal, thus limiting their quality severely Zulehner (1994). On the other hand, floating 
zone crystals ( 5% market share) produce purer crystals, however, significantly increase the 
production cost Becker et al. (2010).

In order to improve the crystal growth design, it is crucial to predict the temperature 
distribution of the coils which heat up the raw material. Along the solid-liquid interface 
microscopic variations in the crystal appear, see Fig. 1 (left and middle). These so-called 
striations can be measured even in the cooled-down crystal.

These striations can be measured via the lateral photovoltage scanning method (LPS) 
Lüdge and Riemann (1997). LPS excites the semiconductor crystal with a laser, creating a 
voltage difference at the sample edges which is proportional to the local doping variation. 
This opto-electrical measurement procedure detects doping inhomogeneities at wafer-scale 
and room temperature in a non-destructive fashion, see Fig. 1 (right). Interestingly, besides 
being very cost-effective and fast, this tabletop setup is—unlike other methods—especially 
suitable for low doping concentrations ( 1012 cm−3 to 1016 cm−3 ) and thus applies to a 
large range of doping concentrations.

Even though we focus in this paper on measuring striations via the LPS method, the 
method itself may be applied in a considerably broader context. Any quantity that has an 
influence on the band edge energies may be visualized such as, for example, mechanical 
strain. Tauc predicted already in the 1950ies that the bulk photovoltaic effect, on which 
LPS relies, could be used to measure any physical quantity which affects the band struc-
ture of the material. This shows the potential of the LPS method. Unfortunately Tauc’ 
assumptions (he considers for example a 1D sample) are not adequate for real measure-
ments standards. To overcome these limitations Kayser et al. Kayser et al. (2018) simulate 
the LPS method for a given doping profile via a finite volume discretization of the van 
Roosbroeck system based on the commercial COMSOL Multiphysics toolbox. Eventually, 
one needs reconstruct the doping from the LPS measurements. However, for now we focus 
on computing the LPS voltage for a given doping. This step needs to be understood well 
before tackling the more complicated inverse problem. Unfortunately, the forward COM-
SOL simulation already requires long computation times to solve for the electron and hole 
densities, n, p, as well as the electric potential � . Additionally, it was not possible to simu-
late low doping concentrations.

To overcome these obstacles, we will rewrite the LPS model in terms of quasi Fermi 
potentials �n,�p and the electric potential � . We then proceed to introduce the laser pro-
file, the sample inherent parameters of the recombination mechanisms and the charge 
carrier mobility model by Arora. We will also explicitly describe how we implement the 
nonlinear boundary conditions which models the circuit. We will discretize the nonlinear 

Fig. 1  Striations from LPS measurement (left); temperature field simulation created by a coil (the black line 
represents the solid-liquid interface at 1687K ) (middle); LPS measurement setup (right). Temperature field 
simulation courtesy of Robert Menzel (Leibniz-Institut für Kristallzüchtung)
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PDE system using a Voronoi finite volume method which we then implement via the 
open-source software tool ddfermi Doan et  al. (2018). Our discretization approach is 
explained in greater detail in Farrell et al. (2020).

The aim of this paper is to study the underlying assumption of the LPS method that 
the LPS voltage is proportional to the doping variation. In particular, it is known that only 
for low injection conditions this proportionality can be mathematically justified. Here, we 
investigate for which laser powers this relationship is no longer true Farrell et al. (2020). 
In practice, understanding the limits of the LPS method is important because the method 
is known to produce unphysical output near the boundaries of the sample. In theory, 
this problem could be solved by choosing very large samples. However, to speed up the 
measurement process, one needs to choose the sample as small as possible. Hence, it is 
important make sure that boundary effects do not pollute the measurements for such small 
samples. Typically, there are two unphysical boundary effects: First, if both sample edges 
where the contacts are placed have different sizes, one needs to correct the signal accord-
ingly. Second, the signal is distorted if too many charge carriers reach the contacts via 
diffusion. We focus on the second effect here which can also be simulated by increasing 
the laser power for a sample of fixed size. Finally, we provide an argument that lower local 
resolution for higher laser powers is caused by the screening effect of the generated charge 
carriers.

The rest of this paper is organized as follows: In Sect. 2 we introduce the model and in 
Sect. 3 its discretization. Finally, we present our results in Sect. 4 before we conclude in 
Sect. 5.

2  The van Roosbroeck model

In this section, we describe first the charge transport model. We model the silicon crystal 
as a bounded domain 𝛺 ⊂ ℝ

2 . Its doping profile is given by the difference of donor and 
acceptor concentrations, ND(�) − NA(�) , where � = (x, z)T ∈ �.

The current densities for electrons and holes are given by Jn(�) , Jp(�) . These variables 
satisfy the following steady-state system, the so-called van Roosbroeck model,

The first equation is a nonlinear Poisson equation. The following two continuity equations 
describe the charge transport in a semiconductor crystal. Assuming Boltzmann statistics, 
the relations between the quasi-Fermi potentials and the densities of electrons and holes are 
given by

Here, we have denoted the conduction and valence band densities of states with Nc and Nv , 
the Boltzmann constant with kB and the temperature with T. Furthermore, Ec and Ev refer to 

(1)

−∇ ⋅ (�∇�) = q(p(� ,�p) − n(� ,�n) + ND(�) − NA(�))

−

1

q
∇ ⋅ Jn = G(�) − R(� ,�n,�p), Jn = −q�nn(� ,�n)∇�n,

1

q
∇ ⋅ Jp = G(�) − R(� ,�n,�p), Jp = −q�pp(� ,�p)∇�p.

(2)n(� ,�n) = Nc exp

(
q(� − �n) − Ec

kBT

)
, p(� ,�p) = Nv exp

(
q(�p − �) + Ev

kBT

)
.
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the constant conduction and valence band-edge energies, respectively. Using relations (2) 
the current densities can be written in the following drift-diffusion form

where UT = kBT∕q is the thermal voltage. The intrinsic carrier density ni is defined via

If we neglect both transport equations, and only solve the nonlinear Poisson equation in 
(1) when no bias is supplied for the built-in potential �eq and fixed quasi Fermi potentials 
�n = �p = 0 , we say that the semiconductor is in equilibrium. The corresponding equi-
librium charge densities neq and peq satisfy neqpeq = n2

i
. Thus the doping concentrations 

enter the built-in potential �eq . More informations regarding computational aspects of this 
approach can be found in Farrell et al. (2017). The stationary van Roosbroeck system is 
usually supplied with Dirichlet-Neumann type of boundary conditions.

2.1  Geometries

We will consider a 2D domain of silicon crystal. The sample has to be sufficiently longer than 
the mean free path of the electrons. Its necessary length depends on the assumed charge car-
rier life times but it can reach millimeter scale. The active region is highly centralized. For 
large charge carrier life times (millisecond range) it might be necessary to increase the sample 
length. The height of the sample is directly related to the penetration depth of the laser. For a 
laser with wave length � = 685nm , the penetration depth is approximately 15nm . Thus our 
domain is given by

with � = 3mm and height h = 5 × 10−5mm . It is visualized in Fig. 2.

2.2  Generation rate

When a laser hits the crystal, some photons are reflected with constant reflectivity R . The 
other impinged photons create electron and hole, resulting in a generation rate defined as 
follows

Jn = −q�n(n∇� − UT∇n), Jp = −q�p(p∇� + UT∇p),

(3)n2
i
= NcNv exp

(
−

Ec − Ev

kBT

)
.

� = {(x, z) ∈ ℝ
2
∣ x ∈ [−�∕2,�∕2], z ∈ [−h, 0]}

(4)G(�) = Nph(1 −R)S(�),

Fig. 2  2D geometry of the simulated sample. The laser penetrates via T  . In z-direction the laser power 
decreases with exponentially, see Eq. 5. In x-direction a Gaussian laser profile is assumed, see Eq. 6
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where S(�) is the shape function of the laser (normalized by ∫
�
S(�)d� = 1 ) and Nph the 

impinging photon rate on the whole surface of the sample given by Nph =
PL�L

hc
. Here, PL 

denotes the laser power, �L the wave length of the laser, c = 3 × 108 m∕s the speed of light 
in vacuum and h = 6.6 × 10−34 m 2kg∕s = 6.6 × 10−34Js the Planck constant.

The shape function in 2D is given by S(x, z) = Sx(x) ⋅ Sz(z) where in z direction the 
absorption of the laser is assumed to decay exponentially

Here dA is the penetration depth, or in other words 1∕dA is the absorption coefficient, which 
heavily depends on the laser wave length. The shape function in x-direction is given by

where x0 denotes the position of the laser along the x axis and �L the laser spot radius.

2.3  Recombination rates

The total recombination rate is given by the sum of the following three recombination rates,

i.e. the direct Rdir , Auger RAug and Shockley-Read-Hall RSRH recombination rates.

2.4  Arora mobility model

The Arora mobility model takes into account the scattering of charge carriers with ionized 
impurities, most likely by doping. The electron and hole mobilities are given by

2.5  Coupling the device to an external circuit

So far we have modeled the silicon crystal but not the LPS setup itself. The electric current 
jDi

 flowing through the i-th ohmic contact �Di
 is defined by the surface integral

According to the conservation of charge, the currents in (9) satisfy the relation 
∑2

i=1
jDi

= 0 . 
For notational convenience we define

(5)Sz(z) =
1

dA
exp

[
−

|z|
dA

]
.

(6)Sx(x) =
1

√
2��L

exp

�
−

1

2

�
x − x0

�L

�2
�
,

(7)

R = Rdir + RAug + RSRH

= Cd(np − n2
i
) + Cnn(np − n2

i
) + Cpp(np − n2

i
) +

np − n2
i

�p(n + nT ) + �n(p + pT )
,

(8)

�n = 89cm2
∕Vs +

1323 cm2
∕Vs

1 +
(

ND+NA

1×17 cm−3

)0.88
and �p = 55 cm2

∕Vs +
429 cm2

∕Vs

1 +
(

ND+NA

1×17 cm−3

)0.88
.

(9)jDi
= −∫

�Di

� ⋅ (Jn(�) + Jp(�))d�(�), i = 1, 2.
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We model now the voltage meter as a simple circuit having a resistance R. The network has 
two nodes, in which the potentials are respectively uD1

 and uD2
 . Using the formalism of the 

Modified Nodal Analysis (MNA) we have that the difference between the electric poten-
tials at the nodes is given by

where iD is defined in (10). Usually one of the nodes of an electric circuit is assumed to 
have an electric potential equal to the ground. This means in our case that we can arbitrar-
ily set uD1

= uref = 0 , and thus (11) reduces to

where ��0 ∶= �0|�D2

− �0|�D1

.
Notice that (12) is an implicit equation for uLPS ∶= uD2

 since iD depends implicitly on 
uD2

 , via the van Roosbroeck system (1). Once we have found a solution (� ,�n,�p) to the 
van Roosbroeck system where uD2

 enters as a Dirichlet boundary condition, we compute 
the current iD via (9). More details on this LPS model can be found in Farrell et al. (2020). 
More complicated models were analyzed analytically in Alì and Rotundo (2010).

3  Finite volume discretization

We partion our domain � into Voronoï cells �K such that � =

⋃N

K=1
�K . Each control 

volume is associated with a node �K ∈ �K . Via the divergence theorem we obtain after 
integration over each control volume a discrete version of the continuity equation in (1). 
Consistent with the continuous van Roosbroeck system, this finite volume discretization 
describes the change of the carrier density within a control volume. The corresponding 
numerical electron flux jn describing the flow between neighboring control volumes can be 
expressed as a function, depending nonlinearly on the values �K ,�L, �K , �L such that

Here a function with subindex, e.g. K, denotes evaluation of the function at the node 
�K . More details can be found in Farrell et al. (2017),Farrell et al. (2017),Patriarca et al. 
(2018). We implement this discretization within the open-source software tool ddfer-
miDoan et al. (2018), which solves the nonlinear boundary condition (12) using a secant 
method Farrell et al. (2020).

4  Results

Tauc Tauc (1955) predicted, that the bulk photovoltaic effect, on which the LPS method 
relies, is proportional to small resistivity variations under low injection conditions. In par-
ticular, recently mathematical investigations Farrell et al. (2020) showed that

(10)iD ∶= jD1
= −jD2

.

(11)uD2
+ �0|�D2

− (uD1
+ �0|�D1

) = R iD(uD2
),

(12)uD2
+ ��0 = R iD(uD2

),

jn(�K ,�L, �K , �L) ≈
1

|��K ∩ ��L| ∫��K∩��L

Jn ⋅ � dS.
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The authors concluded that if the integral in the above equation is approximately constant, 
then under certain assumptions specified in Farrell et  al. (2020) the LPS voltage uLPS is 
proportional to the doping gradient. Yet, especially close to the extrema of the doping gra-
dient small discrepancies could be observed which the authors attributed to the approxima-
tions and assumptions used in deriving the approximate proportionality (13). In this paper, 
we are interested in how far the proportionality between LPS voltage and doping gradient 
is still satisfied even for extreme cases such as relatively high laser powers. Understanding 
this is also important for real LPS measurements as the signal will be polluted if too many 
charge carriers diffuse into the contacts. This may happen either if the sample is too small 
or the laser power too high. Figure 3 shows real LPS measurement data. Near the sample 
boundaries visual artifacts appear. The only reason that they are relatively modest in size 
is that the sample is relatively large. In practice, however, one would like to use relatively 
small samples to speed up the measurements. However, charge carrier diffusion imposes a 
natural limit on how small the samples may be chosen because if the charge carriers diffuse 
out of the sample one introduces an artificial dipole, resulting into these visual artifacts.

To understand the limits of (13), we investigate the effect of the laser power P on 
the LPS voltage uLPS . Changing the laser power will change the conductivity variation 
��(x − x0) for a constant average doping concentration ND0 . For sufficiently large laser 
powers, we will eventually violate the low injection conditions which was needed to prove 
(13). In Fig. 4a–d we show the behavior of simulated LPS scans with respect to the local 
doping gradient (right axis, red line) for various laser powers and the sinusoidal doping 
profile in (1) of the form

with an average doping value ND0 = 1 ×16 cm−2 , an amplitude of A = 0.2 and a period of 
L = 100 μm . As can be seen in Fig. 4 (a) the simulated LPS voltage perfectly matches the 
doping variation, which in turn is proportional to the resistivity variations Farrell et  al. 
(2020). We present the LPS voltages without a non-physical offset, which as previously 
stated in Kayser et al. (2018) can be related to the sample geometry.

However, in Fig. 4b it can already be seen that the peak maxima and minima do not 
perfectly match the doping variation profile anymore. This effect even increases for higher 
laser powers, see Fig. 4c–d. The sinusoidal variation is superposed with an envelope func-
tion. This function might be explained by the larger diffusion of charge carriers, which are 
now able to reach the ohmic contacts. Therefore, the scan depends on the distance to the 
closest ohmic contact. Both contacts are placed at x = ±1.5mm.

(13)uLPS(x0) ∝ −N�

D
(x0)∫

x0+�∕2

x0−�∕2

1

ND0

��(x − x0)dx.

ND(x) = ND0

(
1 + A sin

(
2�

x

L

))

Fig. 3  Details from 2D LPS measurements for a 3D floating zone Silicon crystal performed at Leib-
niz-Institut für Kristallzüchtung (IKZ) with resistivity � = 20Ωcm , average doping concentra-
tion of N

A0
= 6.51 ×

14
cm

−3 and a carrier life time of � = 900�s . The dimensions of the xy plane are 
100mm × 100mm . At the top of the boundary sample (left figure), near the boundary, one can see visual 
artifacts in black. At the bottom of the boundary sample (right figure) one can see visual artifacts in white
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Experimental results have shown that the local resolution of the LPS method is 
decreasing when increasing the laser power Lüdge and Riemann (1997). The behavior 
was attributed to an enlargement of the charge carrier cloud generated by a larger laser 
power. But as long as the mean free path for charge carriers remains constant, the con-
volving effect of this charge carrier cloud stays constant.

In Fig. 5, we show the ratio of LPS voltages and corresponding laser powers. For 
small laser powers ( 0.2 �� − 2 �� ) the profiles are nearly overlapping, which indi-
cates a linear dependency of the LPS voltage on the laser power in this regime. Only 
slightly reduced is the amplitude of the 20 �� profile (the same power used in Fig. 4b. 
For higher laser powers a large decrease in the amplitude can be observed, clearly 
showing that in this case the LPS voltage does not depend linearly on the laser power. 
It was shown analytically that this behavior is logarithmic and due to the screening 
effect of charge carriers Tauc (1955); Farrell et al. (2020).

Since in Fig.  4b the LPS profile begins to no longer match the doping variations 
and additionally in Fig. 5 the amplitude of the LPS voltage laser power ratio begins to 
decrease, these underlying physical effects might be connected. Therefore it is likely 
that the lower local resolution for higher laser powers is caused by the screening effect 
of the generated charge carriers. This also corroborates similar observations regarding 
the logarithmic relationship between LPS signal and laser power Tauc (1955),Farrell 
et al. (2020).

Fig. 4  Simulation of 1D LPS scans of a 2D silicon sample for different laser powers (a–d). The geometries 
and physical parameters are given in Sect. 2. In every plot, one finds the LPS signal in black (left x axis) 
and the spatially varying doping gradient in red (right x axis). For low laser powers around P = 20 nW 
the LPS voltage follows the doping gradient directly (a). In (b) for P = 200 nW small deviations can be 
observed. For high laser powers ( P = 500 nW and P = 2�W ) the screening effect will shield the LPS volt-
age resulting in a distorted signal(c–d)
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5  Conclusion

We presented simulations of the LPS measurement technique used to predict inhomogenei-
ties in semiconductor crystals, using the open source software ddfermi. Due to flexibility 
of our approach, we were able to overcome efficiency and stability problems that a simulator 
based on commercial code has. By simulating several LPS profiles using low laser powers we 
could verify Tauc’ assumptions that the bulk photovoltage is proportional to the doping gradi-
ent under certain conditions. Furthermore, we showed the limits of this proportionality with 
respect to higher laser powers. It appears that the loss in local resolution with increased laser 
power is connected to the screening effect of the generated charge carriers.
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