Skip to main content
Log in

Propagation characteristics of circular-linear edge dislocation beams

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Due to atmospheric turbulence, the wavefront phase and the light intensity distribution would change, and the information carried by beams may be damaged or even lost. Hence, using the non-Kolmogorov spectrum and the generalized Huygens-Fresnel principle, the propagation characteristics of circular-linear edge dislocation beams are studied in this paper. The results show that the light intensity distribution of the beams eventually evolves into the light intensity distribution of Gaussian-like beams. Circular edge dislocation and linear edge dislocation evolve into two pairs of optical vortices. When the beams propagate far enough, two pairs of optical vortices will annihilate. With the decrease of the inner scale of turbulence and the general exponent, and the increase of the general structure constant, the evolution of the beams will be accelerated. The effect of the outer scale of turbulence on the evolution can be negligible. The results obtained provide theoretical guidance for optical communications and spatial modulation of optical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, L., Beijersbergen, M., Spreeuw, R., Woerdman, J.: Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992)

    Article  ADS  Google Scholar 

  • Andrews, L. C., Phillips, R. L.: Laser Beam Propagation through Random Media. SPIE Press, Bellingham (2005)

  • Brullot, W., Vanbel, M., Swusten, T., Verbiest, T.: Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2(3), e1501349 (2016)

    Article  ADS  Google Scholar 

  • Chen, H., Gao, Z., Yang, H., Xiao, H., Wang, F., Huang, X., Liu, X.: Evolution behavior of two edge dislocations passing through an astigmatic lens. J. Mod. Opt. 59(21), 1863–1872 (2012)

    Article  ADS  Google Scholar 

  • Gbur, G., Visser, T.D.: Coherence vortices in partially coherent beams. Opt. Commun. 222, 117–125 (2003)

    Article  ADS  Google Scholar 

  • Gecevičius, M., Drevinskasa, R., Beresna, M., Kazansky, P.G.: Single beam optical vortex tweezers with tunable orbital angular momentum. Appl. Phys. Lett. 104(23), 288–299 (2014)

    Article  Google Scholar 

  • Gbur, G., Tyson, R.K.: Vortex beam propagation through atmospheric turbulence and topological charge conservation. J. Opt. Soc. Am. A 25(1), 225–230 (2008)

    Article  ADS  Google Scholar 

  • Hamedi, H.R., Ruseckas, J., Paspalakis, E., Juzeliunas, G.: Transfer of optical vortices in coherently prepared media. Phys. Rev. A 99(3), 033812 (2019)

    Article  ADS  Google Scholar 

  • Hnatovsky, C., Shvedov, V.G., Shostka, N., Rode, A.V., Krolikowski, W.: Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses. Opt. Lett. 37(2), 226–228 (2012)

    Article  ADS  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties infractional Fourier transform optical system. Opt. Quant. Electron. 52, 296 (2020)

    Article  Google Scholar 

  • Karahroudi, M.K., Moosavi, S.A., Mobashery, A., Parmoon, B., Saghafifar, H.: Performance evaluation of perfect optical vortices transmission in an underwater optical communication system: publisher’s note. Appl. Opt. 57(30), 9148–9154 (2018)

    Article  ADS  Google Scholar 

  • Kraus, M., Ahmed, M.A., Michalowski, A., Voss, A., Weber, R., Graf, T.: Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express 18(21), 22305–22313 (2010)

    Article  ADS  Google Scholar 

  • Kuo, C.F., Chu, S.C.: Numerical study of the properties of optical vortex array laser tweezers. Opt. Express 21(22), 26418–26431 (2013)

    Article  ADS  Google Scholar 

  • Li, L., Li, F.: Beating the rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography. Phys. Rev. E 88(3), 033205 (2013)

    Article  ADS  Google Scholar 

  • Li, J.H., Gao, P.H., Cheng, K., Duan, M.L.: Dynamic evolution of circular edge dislocations in free space and atmospheric turbulence. Opt. Express 25(3), 2895–2908 (2017)

    Article  ADS  Google Scholar 

  • Liu, K., Cheng, Y., Gao, Y., Li, X.: Super-resolution radar imaging based on experimental OAM beams. Appl. Phys. Lett. 110(16), 164102 (2017)

    Article  ADS  Google Scholar 

  • Liu, J., Li, S., Zhu, L., Wang, A., Chen, S., Klitis, C., Du, C., Mo, Q., Sorel, M., Yu, S., Cai, X., Wang, J.: Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl. 7(3), 17148 (2018)

    Article  Google Scholar 

  • Mandel, L., Wolf, E.: Optical coherence and quantum optics. Cambridge University Press, England (1995)

    Book  Google Scholar 

  • Nye, J.F., Berry, M.V.: Dislocations in wave trains. Proc. R. Soc. Lond. A: Math. Phys. Sci. 336(1605), 165–190 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Pascucci, M., Tessier, G., Emiliani, V., Guillon, M.: Superresolution imaging of optical vortices in a speckle pattern. Phys. Rev. Lett. 116(9), 093904 (2016)

    Article  ADS  Google Scholar 

  • Petrov, D.V.: Splitting of an edge dislocation by an optical vortex. Opt. Quant. Electron. 34(8), 759–773 (2002)

    Article  Google Scholar 

  • Porfirev, A.P., Kirilenko, M.S., Khonina, S.N., Skidanov, R.V., Soifer, V.A.: Study of propagation of vortex beams in aerosol optical medium. Appl. Opt. 56(11), E8–E15 (2017)

    Article  ADS  Google Scholar 

  • Sheng, X., Zhang, Y., Wang, X., Wang, Z., Zhu, Y.: The effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation in a slant channel. Opt. Quant. Electron. 43, 121–127 (2012)

    Article  Google Scholar 

  • Soskin, M., Vasnetsov, M.: Singular Optics. Prog. Opt. 42, 219–276 (2001)

  • Srinivas, P., Perumangatt, C., Nijil, L., Singh, R.P., Srinivasan, B.: Investigation of propagation dynamics of truncated vector vortex beams. Opt. Lett. 43(11), 2579–2582 (2018)

    Article  ADS  Google Scholar 

  • Sun, C., Lv, X., Ma, B., Zhang, J., Deng, D., Hong, W.: Statistical properties of partially coherent radially and azimuthally polarized rotating elliptical gaussian beams in oceanic turbulence with anisotropy. Opt. Express 27(8), A245–A256 (2019)

    Article  ADS  Google Scholar 

  • Toselli, I., Andrews, L.C., Phillips, R.L., Ferrero, V.: Angle of arrival fluctuations for free space laser beam propagation through non kolmogorov turbulence. Proc. SPIE 6551, 65510E (2007)

    Article  ADS  Google Scholar 

  • Vasnetsov, M.V., Basistiy, I.V., Soskin, M.S.: Free-space evolution of monochromatic mixed screw-edge wavefront dislocations. Proc. SPIE 3487, 29–33 (1998)

    Article  ADS  Google Scholar 

  • Wang, S.C.H., Plonus, M.A.: Optical beam propagation for a partially coherent source in the turbulent atmosphere. J. Opt. Soc. Am. 69(9), 1297–1304 (1979)

    Article  ADS  Google Scholar 

  • Yuan, Y., Yang, Y.: Propagation of anomalous vortex beams through an annular apertured paraxial ABCD optical system. Opt. Quant. Electron. 47, 2289–2297 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant (No.61875156, U20B2059) and also partly supported by the 111 Project (B17035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Bai, L. Propagation characteristics of circular-linear edge dislocation beams. Opt Quant Electron 53, 310 (2021). https://doi.org/10.1007/s11082-021-02887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02887-y

Keywords

Navigation