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Abstract
A Bayesian optimization algorithm in combination with a scattering based simulation 
approach is used for the optimization of quantum cascade detectors (QCDs). QCDs oper-
ate in the mid-infrared and terahertz regime and are, together with quantum cascade lasers, 
appropriate for the integration into on-chip applications such as gas sensors. Our mode-
ling approach is based on a rate equation model and a Kirchhoff resistance network for 
noise modeling, using scattering rates calculated with Fermi’s golden rule, or alternatively 
extracted from an ensemble Monte Carlo transport approach. The appropriate surrogate 
model of Bayesian optimization is based on Gaussian process regression, which can han-
dle noisy offsets on the objective function evaluations inherent in ensemble Monte Carlo 
simulations. Here, we focus on the optimization of a matured mid-infrared QCD design 
detecting at 4.7 μm . For optimization we choose as figure of merit the specific detectiv-
ity, which is a measure for the signal-to-noise ratio. As the trade-off between high extrac-
tion efficiency and low detector conductance is important for good detection performance, 
we search for the perfect layer composition and vary the thicknesses of different cascade 
layers. Due to the high-temperature requirements interesting for cost-effective and mobile 
on-chip sensing applications, a simulation temperature of 300 K is selected. Our optimiza-
tion strategy yields an improvement of specific detectivity by a factor of ∼ 2 − 3 at room 
temperature using two different parameter sets. Furthermore, we investigate the sensitiv-
ity of our approach to fabrication tolerances, showing robustness of the optimized designs 
against growth fluctuations under fabrication conditions.
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1 Introduction

The quantum cascade detector (QCD)(Hofstetter et  al. 2002; Gendron et  al. 2004) is 
based on the matured quantum cascade laser (QCL) design principle (Faist et  al. 1994) 
and consists of a multiple quantum well heterostructure. In contrast to QCLs, where lasing 
is achieved due to stimulated emission between quantized states, in QCDs the stimulated 
absorption and thus photodetection is the relevant physical mechanism. Compared to quan-
tum well infrared photodetectors (QWIPs)(Levine et al. 1987; Liu 1993), which utilize a 
photoconductive operation, QCDs are based on an asymmetric conduction band profile, 
and thus exhibit photovoltaic detection behavior under zero bias operation. The unipolar 
character of both designs brings the advantage of high speed operation in comparison to 
interband devices (Hofstetter et al. 2006). In addition, the QCD exhibits a superior noise 
behavior accompanying the unbiased operation. In QWIPs, the main noise source is dark 
current noise, whereas QCDs are mainly limited by Johnson noise (Gendron et al. 2004; 
Giorgetta et al. 2009; Hofstetter et al. 2010). The reduced noise sensitivity in high-temper-
ature operation is an outstanding feature of QCDs and offers high potential for hand-held 
mobile applications, e.g. terrestrial staring systems or sensing systems (Hofstetter et  al. 
2010; Schwarz et al. 2012; Harrer et al. 2016; Schwarz et al. 2014). Furthermore, QCDs 
have the advantage of simple adaption and integration into the matured processing tech-
nique of QCLs for the material systems GaAs/AlGaAs and InGaAs/InAlAs, resulting in 
increased design freedom and reliability (Schwarz et  al. 2012). In order to optimize the 
detector performance, different designs have been tested, such as vertical (Giorgetta et al. 
2009), diagonal (Reininger et al. 2014) or coupled quantum well detectors (Dougakiuchi 
et al. 2016).

In Fig. 1, a schematic conduction band profile with the subband states of a QCD is rep-
resented. The working principle of such a device is based on intersubband transitions. As 
illustrated in Fig. 1, the absorption transition takes place between the ground state g and 
the absorption state a in the active well, followed by the extraction through phonon scat-
tering. The unilateral charge transport of photoexcited electrons is ensured by the graded 
quantum well composition of the extraction cascade.

The relevance of QCDs and thus the on-chip integration with QCLs is growing rap-
idly. Therefore, the modeling of such devices becomes a valuable tool for the design and 

g

a

g + N
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Fig. 1  Schematic conduction band profile of a QCD. Photovoltaic operation is ensured by absorption from 
ground level g to absorption level a and consecutive scattering through the extractor levels in the quantum 
cascade
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optimization process. Unfortunately, the adoption of QCL modeling methods, e.g. rate 
equation, ensemble Monte Carlo (EMC) methods, density matrix or non-equilibriums 
Green’s functions (NEGF) (Jirauschek and Kubis 2014; Wacker et  al. 2013; Iotti et  al. 
2005), is rather difficult due to the small photocurrents in QCDs. Models extracting scat-
tering rates from EMC simulations or by calculations using Fermi’s golden rule were 
introduced (Baumgartner et al. 2013; Harrer et al. 2016; Koeniguer et al. 2006; Popp et al. 
2020a). Here, a modeling approach based on a rate equation model and noise resistance 
model for the Kirchhoff equation system is used for the calculation of the figure of merit of 
QCDs (Popp et al. 2020a, b). An extended description about the methodology of our QCD 
modeling tool will be published soon.

A systematic design optimization of QCDs is an essential task for the development of 
highly sensitive detectors. Different optimization strategies have already been applied to 
QCL design processes. A genetic optimization algorithm in combination with a density 
matrix transport model was used to improve the wallplug efficiency of a mid-infrared (mid-
IR) QCL design (Bismuto et al. 2012). Recently, a Bayesian optimization (BO) algorithm 
with a NEGF transport model was used to improve the maximum operation temperature 
of a terahertz (THz) QCL to a new record value of 210 K (Bosco et al. 2019). Franckié 
and Faist (2020) published results for a comparison of the Bayesian optimization algorithm 
with an “information algorithm with parallel trials” (IAPT) algorithm and the aforemen-
tioned genetic algorithm. The three optimization tools were applied to a Gaussian process 
(GP) model, which was trained for a THz QCL using the QCL gain as merit function. The 
BO scheme shows best performance in terms of convergence and robustness.

In this paper, we present the Matlab Monaco framework for the simulation of quantum 
cascade devices, e.g. detectors and lasers. The Monaco framework is similar to the open 
source GitHub project aftershoq (Franckié 2019), which focuses on the optimization of 
QCLs. In contrast, the focus of the Monaco project is laid on QCD optimization. The Mat-
lab framework includes a Bayesian optimization algorithm for quantum cascade devices, 
utilizing self-consistent simulation tools such as EMC. The paper is organized as follows: 
Sect. 2 offers a short introduction to Bayesian optimization including Gaussian processes, 
acquisition functions and the Hilbert curve. In Sect. 3, a small summary about the imple-
mented QCD modeling tool containing the most important detector figures of merit is 
given. The structure of the Monaco framework is described in Sect. 4. In Sect. 5, results of 
the Bayesian optimization of a QCD using two different parameter sets are depicted. Here, 
we focus on the well-established mid-IR QCD design N1022 with a detection wavelength 
of 4.7 μm (Giorgetta et  al. 2009), and discuss the obtained results of improved spectral 
detectivity.

2  Bayesian optimization

For the optimization of quantum cascade devices using the existing simulation tools (e.g. 
EMC, density matrix or NEGF), which exhibit advanced complexity and accuracy, an 
efficient optimization strategy is necessary. The input space in such simulations can span 
from different layer variations of the active QCD period to changes in the doping density 
or material compositions. The Bayesian optimization algorithm is an appropriate statisti-
cal tool as it is applicable, in general, to an unknown objective function f(x), which can 
be expensive in sense of time and computational load. The algorithm is characterized by 
searching for the global minimum of the objective function f(x) on a high-dimensional 
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input space x ∈ IRd (Frazier 2018). Bayesian optimization basically consists of two main 
elements, a surrogate model and an acquisition function. The surrogate model is a Gauss-
ian process, which is trained by function evaluations. The acquisition function acts as a 
utility function and thus helps to interpret the posterior function distribution, and makes a 
decision for the next data points to be evaluated (Snoek et al. 2012).

2.1  Gaussian process

A Gaussian process is interpreted as a Gaussian distribution over functions, and fully 
described by its mean �(x) and covariance function k(x, x�) (Rasmussen 2004). It specifies a 
collection of random variables forming a joint Gaussian distribution. For randomly chosen 
input values xi , the function values can be drawn by the prior distribution of function val-
ues f (xi) , which is a Gaussian distribution. An appropriate choice for a simple covariance 
function k(x, x�) is the squared exponential covariance function

where �2
l
 is the characteristic length scale and �2

0
 the covariance amplitude. GPs account 

for noisy function values f (x) + � by an additional uncorrelated Gaussian noise term � with 
variance �2

n
 . After the evaluation of the objective function f at some input points �∗ , the 

posterior probability distribution is calculated by conditioning the joint distribution on the 
function evaluations �∗ = f (�∗):

with mean � = k(x, �∗) ⋅ [k(�∗, �∗) + �2
n
�]−1 ⋅ �∗ , covariance matrix K = k(x, x) − k(x, �∗) ⋅ [k(�∗, �∗)

+�2

n
�]−1 ⋅ k(�∗, x) and hyperparameters � = (�0, �l, �n) . The training data from all previous 

iterations are summarized in (�∗, �∗) . New function values y can thus be drawn for new ran-
dom test inputs x. By maximizing the marginal likelihood p(�∗|�∗, �) , the optimal values 
of hyperparameters � to describe the training data can be found.

2.2  Acquisition function

The acquisition function a(x) is a measure for the yield of the next evaluation input point 
xn and is defined as xn = argmaxx a(x) . As an example, we will introduce here the common 
acquisition function Expected Improvement ( EI ), which gives a sensitive weight for explo-
ration and exploitation. The EI acquisition function is defined as

with (t − y)
+
= max(0, t − y) , where t is a target value and is usually set to be the maximum 

of pre-evaluated function values. Here, exploration means to investigate domains in the 
input space with high uncertainty and exploitation means to evaluate the expected maxi-
mum of the predictive mean (Gelbart et al. 2014). To summarize, EI exhibits high function 
values for inputs x either with high predictive mean �(x) or high predictive variance �2

(x) , 
or both.

(1)k(x, x�) = �2
0
exp(−

1

2
�2
l
|x − x�|2),

(2)p(y|x, �∗, �∗, �) ∼ N(�, k)

(3)EI(x) = ⟨(t − y)
+
⟩ = ∫

∞

−∞

(t − y)
+
p(y�x, �)dy
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3  Modeling method

For the characterization of photodetector performance a key figure of merit is the specific 
detectivity D∗ . The Johnson noise limited detectivity for QCDs is given by (Giorgetta et al. 
2009)

where Rp is the peak responsivity, Ad the detector area, Rd the detector resistance, T the 
temperature and kB the Boltzmann constant.

The detector resistance is dominated by Johnson noise in QCDs and can be calculated 
by solving the Kirchhoff equations for a network consisting of noise equivalent resistances. 
The conductance per unit area dominated by Johnson noise, obtained by representing the 
subbands as nodes of an equivalent circuit (Delga et al. 2013), is given by

Here, ns is the sheet doping density per period, e the elementary charge, and rij describes 
the transition rate, taking into account all relevant scattering mechanisms from a state i 
with the level occupations pi to state j.

The frequency dependent responsivity, which is defined by the generated detector pho-
tocurrent Iout per incident optical power Pin , is calculated by

where Tf is the facet reflectivity, � the absorption coefficient, np the number of paths of the 
optical field through the absorbing region, Np the number of periods in the active region, 
Lp the length of one period, � = 2�c∕� the angular frequency and ℏ the reduced Planck 
constant (Harrer et al. 2016). In general, a mesa-structure with a double-pass waveguide is 
considered for the characterization of such detector devices. Here, the two facets are pol-
ished into 45◦ wedges. The light beam exhibits a propagation angle � = 45◦ relative to the 
growth direction to meet the quantum-mechanical polarization rule.

We have developed a robust method to calculate the extraction efficiency pe , utilizing 
a rate equation model in analogy to Jirauschek (2018) and calculating the absorption effi-
ciency using transition rates extracted either from Monte Carlo simulations or obtained 
directly by solving Fermi’s golden rule for elastic and inelastic scattering processes 
(Jirauschek and Kubis 2014; Jirauschek 2017). The wavefunctions and eigenenergies nec-
essary for the calculations of scattering rates in the EMC are generated by a Schrödinger-
Poisson solver based on the transfer matrix method (TMM) (Jirauschek 2009). The EMC 
simulation model (Jirauschek and Kubis 2014) takes into account optical as well as acous-
tic phonons, interface roughness (IF), impurity, alloy disorder and electron-electron (e-e) 
scattering mechanisms; evaluated self-consistently based on Fermi’s golden rule.

The simulation of photovoltaic QCDs differs from that of QCLs. Here we assume an 
operation in thermal equilibrium for zero bias and without illumination. The electron sheet 
density in a subband i at temperature T is then calculated using the 2D density of states 
n2D
i

= mi∕(�ℏ
2
):

(4)D∗
= Rp

√
AdRd

4kBT
,

(5)�ij = �ji =
e2ns

2kBT

(
rijpi + rjipj

)
.

(6)Rp(�) =
Iout(�)

Pin(�)
=

e

ℏ�

pe

Np

Tf[1 − exp(−�npNpLp sin �)],
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with the quantized subband energy Ei , the effective subband masses mi containing non-
parabolicity effects, and the chemical potential �.

The level spacing of the active region has to be chosen carefully to optimize the trade-
off between maximum extraction efficiency pe and high detector resistance Rd , indicating 
low Johnson noise. Our goal is to enhance the absorption efficiency, while keeping the 
Johnson noise low.

4  Implementation: Monaco framework

The Monaco framework is a tool for the simulation of quantum cascade devices, here used 
for the optimization of QCDs employing Bayesian optimization based on Gaussian process 
regression. For the implementation of this software project, we follow the guidelines of 
the bertha project skeleton (Riesch et al. 2020). The project is based on Matlab object-
oriented programming, the version control system git together with the appropriate project 
management tool GitLab are used for the development of new tool features. Furthermore, 
we use continuous integration for testing and CMake as buildsystem for external codes, 
such as the EMC code written in Fortran.

The Monaco framework consists of the following modules: optimizer, setup, backend, 
solver and post-processing. A schematic of the corresponding tool is illustrated in Fig. 2. 
The optimizer tool is based on the standard Matlab function bayesopt, which offers a sta-
tistical model for the optimization of expensive objective functions. The Matlab Bayesian 
optimization tool offers different options for the acquisition function, the kernel function of 
the GP or parallel function evaluations per step also known as batch Bayesian optimization 
(González et al. 2016). Additionally, a second choice for a BO toolbox can be integrated 
such as the open-source software tool GPyOpt from the machine learning group of the 

(7)ns,i =
mi

�ℏ2
kBT ln{1 + exp[(� − Ei)∕(kBT)]}

bayesopt

optimizer

Hilbert curve

merit function

setup

material waveguide

layer

device scenario

backend

Fortran writer

solver

sp-solver

calc-scatt

ext. solver

EMC

post-processing

calc eff-abs calc-pe calc-dRA plot-wf

Fig. 2  Overview of the Monaco framework. The project consists of five modules: optimizer, setup, back-
end, solver and post-processing
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University of Sheffield, which is written in Python (GPyOpt 2016). The project is available 
on GitHub and can easily be added as a submodule. The integration of Python code and 
interaction with our Matlab based framework is ensured by using the Matlab engine API 
for Python.

In the module optimizer one can choose between multi-dimensional input vectors and 
the application of the Hilbert curve for down conversion to a 1-dimensional optimization 
problem. The objective function can be selected for different figures of merit, e.g. specific 
detectivity D∗ or responsivity Rp . For the evaluation of the figure of merit, the objective 
function has to be forwarded to the modules setup, solver and post-processing. The module 
setup is responsible for the generation of a QCD device and a scenario containing informa-
tion about operation temperature T, simulation end time tsim and bias V. The class device 
has the two properties layer and waveguide, representing the simulated design. The two 
common material systems for quantum cascade devices in the mid-IR and THz regime, 
InGaAs/InAlAs and AlGaAs/GaAs, are included. Class instances of different materials 
such as InGaAs or GaAs inherit from their specific material class ternary or binary and 
represent subclasses of the abstract class material. For the different materials, the interest-
ing material parameters, e.g. band gap Eg , effective masses meff and conduction band off-
set, are calculated depending on the simulation scenario. Here, we consider also parameter 
changes due to operation temperature variations and the influence of compressive or tensile 
strain (Vurgaftman et al. 2001; Sugawara et al. 1993).

The generated objects of device and scenario form the investigated setup and serve as 
inputs for the module solver. For the calculation of wavefunctions and eigenenergies, the 
implemented Schrödinger-Poisson solver sp-solver is used. Here, we can simulate extended 
states or generate a tight-binding solution (Jirauschek and Kubis 2014; Jirauschek 2017). 
The calculated wavefunctions will then be used for the calculation of scattering rates either 
internally with the function calc-scatt based on Fermi’s golden rule, or by the EMC tool. 
Here, the module backend is used to write the input files containing setup, wavefunctions 
and nonparabolicity parameters (Jirauschek and Kubis 2014). The given post-processing 
tools are used for the characterization of the simulated setup and act as inputs for the objec-
tive function to determine the given figure of merit to be optimized.

The validity of bayesopt as an appropriate tool for the optimization of QCDs was tested 
and the results are illustrated in Fig. 3. Here, we executed 50 BO runs of the nominal QCD 
structure N1022, introduced (see Sect. 5), to characterize the convergence rate and uncer-
tainty of the optimization. The specific detectivity D∗ converges quite fast to a global maxi-
mum, which makes it also practical using the time-demanding EMC approach for efficient 
design optimization.

5  Results

In this section, we present a Bayesian optimization of a QCD device using our Monaco 
framework. The device N1022 detects at a wavelength of 4.7 μm and is based on the 
lattice-matched material system In0.53Ga0.47As∕In0.52Al0.48As grown on an InP substrate 
(Giorgetta et  al. 2009). The conduction band profile and the calculated wavefunctions 
are illustrated in Fig. 4a for the operation temperature 300 K. The QCD structure con-
sists of multiple periods comprising a doped active quantum well (QW) and an adjacent 
extraction cascade of QWs with varying thicknesses. Photo-excitation occurs between 
the ground level g and the two degenerate absorption levels a1, a2 in the active QW, 
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followed by the extraction through the staircase of subbands via longitudinal optical 
(LO) phonon assisted tunneling to the ground state of the adjacent period.

The structure N1022 was validated both with our scattering rate model and the 
EMC approach and the experimentally measured results compare well with the sim-
ulated ones (Giorgetta et  al. 2009). Here, we investigated the specific detectivity D∗ , 
the responsivity Rp , extraction efficiency pe and resistance Rd in the temperature range 
[100K, 300K] . At 300  K, we obtain a specific detectivity D∗

MATLAB
= 1.36 × 107 Jones 

and D∗

EMC
= 1.09 × 107 Jones , respectively. The simulation values show good agreement 

with measured values of D∗

exp.
∼ 2 × 107 Jones (Giorgetta et al. 2009).

The aim of this work is to improve the signal-to-noise ratio of the mid-IR QCD 
N1022 for the elevated temperature regime. Therefore, we decided to concentrate on the 
layer sequence [w1b1w2b2] indicated in Fig. 4a. To reduce the optimization complexity, 
the sequence was divided into two subsystems with each parameter set consisting of 
three consecutive layers. Furthermore, we can analyze the impact of the changes in indi-
vidual layer width on device parameters and thus have more flexibility in the selection 
of the best layer composition.

For the BO, we chose a stepwidth of 0.1 Å and a testing interval dW ∈ [−2Å, 2Å] 
added to the nominal layer width of each considered layer. As evaluation method, we 
used the Matlab function calc-scatt. We performed the BOs with 2000 evaluations 
using multiple cores to get enough training data for a GP, which is used to analyze the 
optimization results. The conduction band profile and wavefunctions of the most suc-
cessful scheme in each subset are illustrated in Fig. 4b, c. The optimization scheme is 
based on the parameter set 1, changing the layer sequence [b1w2b2] shown in Fig. 4b, 
and parameter set 2 by changing the layer sequence [w1b1w2] depicted in Fig. 4c. In the 
following, the results of both optimization results are explained in detail. In the con-
cluding discussion we compare both setups and justify the model accuracy and emerg-
ing challenges regarding fabrication tolerances.

5 10 15 20 25 30 35 40 45 50

1.5

2

2.5

·107

Simulation evaluations

D
∗
in

Jo
ne
s

Data points
Mean µ

Fig. 3  The optimized specific detectivity D∗ of the QCD test structure N1022 introduced in Fig. 4a. Here, 
the red line exhibits the mean value of 50 BO runs together with the data points (orange crosses). The 
gray area represents one standard deviation � from the mean � . The Bayesian optimization of each run was 
stopped after 50 evaluations. (Color figure online)
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5.1  Parameter set 1

The parameter set 1 consists of the three layers [b1w2b2] next to the active well. With the 
layer sequence we intend to increase the absorption efficiency �abs , while keeping John-
son noise low and the extraction efficiency pe high. The detection wavelength should 
only be slightly affected by the optimization, since the active well layer and thus the 
absorbing transition are not directly changed. The optimized structure r1_1, illustrated 
in Fig. 4b, exhibits a change of the investigated layer sequence by [1.2Å, 1.2Å,−0.9Å] . 
The simulation results of this structure are given in Table 1. We obtain an improvement 

(b)

(a)

(c)

Fig. 4  Calculated conduction band profile and probability densities of a the investigated mid-IR QCD 
structure N1022 (Giorgetta et  al. 2009) and the two optimized structures b r1_1 and c r2_1. The N1022 
layer sequence of one period with InAlAs barrier layers in boldface and n-doped layers ( 4 × 1017cm−3 ) 
underlined is �.�∕5.1∕�.�∕1.25∕�.�∕1.45∕�.�∕1.7∕�.�∕2∕�.�∕2.4∕�.�∕2.9∕�.�∕3.5 . The labeled layers 
[w1b1w2b2] in a are the investigated parameters for the optimization of the nominal structure N0122. The 
two optimization schemes b [b1w2b2] and c [w1b1w2] are illustrated by blue boxes, respectively
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of the simulated detectivity D∗

opt.
= 2.73 × 107 Jones by factor ∼ 2 . As illustrated in 

Fig. 4b, the change in layer composition results in a displacement of the two absorption 
levels. Here, the absorption maximum is shifted to the higher lying absorption level a2 , 
whereas the lower lying absorption level a1 acts then mainly as an extraction level. In 
this context, the oscillator strength between the ground level g and the absorbing level 
a2 is increased significantly. In summary, the peak responsivity is increased by 100% 
and accounts for the great improvement of the specific detectivity.

To analyze the obtained optimization results in more detail, we used a GP, trained 
with the simulation results of the BO run. Using GP regression, we can predict the 
changes in specific detectivity D∗ with variation of the given layer sequence. In Fig. 5, 
the dependence of the specific detectivity D∗ , peak responsivity Rp and resistance area 
product AdRd on pairs of layer thicknesses in the parameter set is shown. The position 
of the nominal structure N1022 is marked by a red pentagon. The specific detectivity D∗ 
is influenced mostly by the well width w2 , as depicted in Fig. 5a, b. Here, we obtain a 
maximum at the well width of w2 = 11.5Å and w2 = 13.5Å , respectively. The impact of 
barrier widths b1 and b2 on the specific detectivity D∗ is rather small. For characteriza-
tion, we can divide the specific detectivity D∗ in two parts: the responsivity, depending 
on the absorption and extraction efficiency, as a measure for the signal strength, and 
the detector resistance accounting for the current noise sensitivity. The optimized struc-
tures r1_1, representing the group of optimized structures at maximum w2 = 13.5Å , 
exhibits a significantly improved peak responsivity due to the increased absorption effi-
ciency. The structure r1_2 given in Table 1 belongs to the other group with maximum 
w2 = 11.5Å . Here, both the area resistance product AdRd as well as the peak responsiv-
ity Rp are increased (Fig. 5c–f). An increased resistance at the cost of reduced extraction 
efficiency leads to smaller responsivity values, which explains the difference between 
both maxima in Fig.  5c, d. In summary, both optimized structures listed in Table  1 
exhibit similar signal-to-noise behavior and an absorption wavelength of ∼ 4.7 μm , 
which is close to the absorption wavelength of the nominal structure N1022. Structure 
r1_1 seems to be more robust with respect to fluctuations in layer width w2 than struc-
tures r1_2 (Fig.  5a, b). As the first design r1_1 offers better signal strength and the 
second design r1_2 favors low noise behavior, one can choose the best-suited design for 
different applications.

Table 1  Layer sequence with barrier layers in boldface, peak wavelength �p , extraction efficiency pe , peak 
responsivity Rp , resistance-area product AdRd and specific detectivity D∗ of the nominal structure N1022 
and the optimized structures

ID layer sequence �p pe Rp AdRd D∗

[w1b1w2b2] (nm) (μm) (%) (mA W−1) (�cm2) (⋅107 Jones)

N1022 5.1∕�.�∕1.25∕�.� 4.77 19.14 1.22 2.07 1.37
r1_1 5.1∕�.��∕1.37∕�.�� 4.72 17.10 2.41 2.11 2.73
r1_2 5.1∕�.�∕1.15∕�.�� 4.71 14.45 2.19 2.56 2.73
r2_1 4.9∕�.��∕1.27∕�.� 4.57 24.34 3.03 2.32 3.58
r2_2* 4.8∕�.��∕1.23∕�.� 4.50 28.18 3.32 2.50 4.07
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5.2  Parameter set 2

The parameter set 2 consists of the three layers [w1b1w2] starting with the active well w1 . 
Here, we are also interested in the influence of the layer width of the active well w1 on the 
device performance. In order to keep the the absorption frequency shift small, we introduce 
a new figure of merit

where the specific detectivity D∗ is multiplied by a weighting factor including the peak 
absorption frequency f0 of the nominal structure N1022 and the peak absorption frequency 

(8)f (x) = D∗
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Fig. 5  Dependence of specific detectivity D∗ (a), (b), peak responsivity Rp (c), (d) and resistance-area prod-
uct AdRd (e), (f) on pairs of parameters, starting from the nominal structure N1022 and using the BO results 
of parameter set 1 with layer sequence [b1w2b2] . The red, yellow and blue pentagons indicate the layer 
sequence of the nominal design N1022 and the optimized structures r1_2 and r1_1, respectively. The labels 
are defined in Fig. 4. (Color figure online)
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of the sampled structure fp,opt. . The value x represents the parameter set consisting of the 
layer sequence [w1b1w2].

For the optimized design r2_1, a specific detectivity D∗
= 3.58 × 107 Jones is achieved, 

which implies even better results in absolute values as in BO run 1. The wavelength of 
4.57 μm for the optimized design r2_1 is slightly smaller as in BO run 1. Due to the change 
of well width w1 = 49Å , both the ground level g and the absorption level a2 are shifted 
to higher energy values. The change in energy of absorption level a2 exceeds that of the 
ground level g, which results in a lower absorption wavelength. For all investigated struc-
tures, the transition rate from the absorption level a2 to level a1 , as well as to the next 
extraction level, is dominated by interface roughness scattering. In case of structure r2_1 
we observe an increased scattering from a2 → a1 combined with an attenuated extrac-
tion from a1 to the next extraction level. By comparison of Fig. 4b and c, one identifies 
an increased energy gap between level a1 and the next extraction level of structure r2_1, 
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which implies a shift of the dominating scattering mechanism from interface roughness to 
longitudinal optical phonon emission. The extraction efficiency pe = 24.34% and the resist-
ance-area product AdRd = 2.32�cm2 can thus simultaneously be increased, which results 
in superior signal-to-noise behavior.

In Fig. 6 the specific detectivity D∗ , peak responsivity Rp and wavelength �p are shown 
for variation of pairs of parameters starting with the nominal structure values. Here, we 
see again a small dependence of the merit function on the layer width of barrier b1 . As 
explained before, the decrease of well width w1 results in a significant increase of the spe-
cific detectivity D∗ at the expense of a detection wavelength shift. For thicker well widths 
w1 , the opposite effect is observed. As illustrated in Fig. 6b, d and f, a strong correlation 
between the well widths w1 and w2 arises. Here, a balanced choice of these two layer widths 
is necessary for the optimization.

The optimization went to the edge of the parameter range for well width w1 (Fig. 6a, 
c). Therefore, we decided to extend the optimization range and did a third BO run starting 
from the optimized structure r2_1. By further decreasing the well width w1 = 4.8Å , the 
optimized structure r2_2* with a specific detectivity D∗

= 4.07 × 107 Jones can be found. 
The simulation parameters of structure r2_2* are detailed in Table 1. By shrinking the well 
width w1 , the specific detectivity can be substantially enhanced at the expense of an unde-
sired wavelength shift.

5.3  Discussion

In this paper, we focused on two different parameter sets for the Bayesian optimization 
of the detector design N1022 (Giorgetta et  al. 2009; Hofstetter et  al. 2010). The param-
eter set 1 with layer sequence [b1w2b2] ensures a stable optimization of the specific detec-
tivity without fluctuations or drifts in the detection wavelength. As a consequence of BO 
run 1, we identify the influence of barrier width variations ( b1 and b2 ) on the simulated 
device parameter to be rather small. The second parameter set includes the active well w1 
of the QCD. Here, we use specific detectivity multiplied with a weighting factor as new 
figure of merit to ensure a rather stable detection wavelength. The transitions from absorp-
tion level a2 to the following extractor levels are mainly based on interface roughness. By 
changing the well widths w1 and w2 , we can improve the extraction from level a2 to a1 and 
increase the energy gap from level a1 to the next extraction level, which induces a transi-
tion of the dominating scattering mechanism from IF to LO phonon scattering. Here, the 
reduced scattering leads to an increased detector resistance. Furthermore, we can improve 
the absorption efficiency of all optimized structures due to the increased oscillator strength 
of g → a2 . The important simulation parameters of the optimized structures are listed in 
Table 1, and the responsivity spectra of the different structures together with the nominal 
structure N1022 are displayed in Fig. 7a.

As mentioned before, the influence of specific layer widths on the wavefunctions and 
thus the detector behavior can vary significantly. Therefore, we decided to use smaller 
parameter sets, such that we can analyze correlations and sensitivities between layer widths 
and device parameters in more detail. The optimized structures of parameter set 2 implies 
better results than parameter set 1 in terms of signal to noise ratio. On the other hand, if a 
specific detection wavelength is crucial, one should concentrate more on parameter set 1. 
The defined goals of an optimization run are thus strongly dependent on the given con-
straints and thus the choice of the right input parameters is important.
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In this BO, we used the scattering model based on Fermi’s golden rule, which does not 
consider e-e scattering. EMC simulations including e-e scattering exhibit similar results 
for the mid-infrared detector N1022, which confirms the validity of our optimization. For 
simulations of terahertz structures in the low temperature regime, e-e scattering becomes 
more important and has to be considered (Popp et al. 2020a).

Furthermore, we investigated the sensitivity of our optimization results on variations 
in the parameter set (Franckié and Faist 2020). These variations can arise through growth 
fluctuations in the fabrication. Starting from the optimal structure of each parameter set, 
a GP was trained to predict changes in the specific detectivity with respect to fluctuations 
in the well and barrier widths of the investigated layer sequence. By sampling ∼ 500000 
points, we can visualize the sensitivity of our model by plotting the predicted specific 
detectivity D∗ over distance from the optimal structure r1_1 and r2_1, respectively. Here, 
the distance is the radius of a hypersphere in the three-dimensional parameter space. The 
results are illustrated in Fig.  7b and show the variation of specific detectivity D∗ when 
diverging from the optimal values to a distance of 2 Å. Within a radius of 1 Å the varia-
tions of both structures are small, which ensures robustness against fluctuations. Even for 
longer distances up to 2 Å, both structures promise better results than obtained with the 
nominal structure N1022. As reported in literature, small deviations of the period thick-
ness in the range of 1% to 2% can be accomplished with the modern molecular-beam-epi-
taxy technology (Bosco et al. 2019; Beere et al. 2005; Amanti et al. 2009). Applying this 
to the layer sequence [w1b1w2] , possible deviations in the range −1.4 Å to 1.4 Å for this 
layer sequence can occur during the device growth. Within this tolerance our optimization 
results are still reasonable, and the designs r2_1 and r1_1 show promising alternatives to 
the nominal design N1022.
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6  Conclusion

In this paper, the Monaco framework for simulation and optimization of quantum cascade 
devices is introduced. The Bayesian optimization approach for QCDs is based on Gauss-
ian process regression and exhibits precise and robust optimization results for the tested 
QCD design N1022 at 300 K. Investigating two different parameter sets, the specific detec-
tivity D∗ of the nominal structure can be improved by a factor of ∼ 2 − 3 . The oscillator 
strength between ground level g and absorption level a2 leads to a significantly increased 
absorption efficiency �abs , thus resulting in peak responsivities 2-3 times higher than for the 
nominal structure N1022. Using a GP trained with the simulation results of the BO runs, 
we can make assumptions about the sensitivity of the optimized designs regarding fabrica-
tion tolerances. The optimized structures of both parameter sets appear to be quite robust 
against growth layer variations. For this optimization approach, we have used a scattering 
model based on Fermi’s golden rule. For further optimizations, we will also use the self-
consistent EMC model for the evaluation of QCD figures of merit, and compare them with 
the scattering rate approach used in this paper. Additionally, an interesting optimization 
approach to enhance the extraction efficiency, while keeping Johnson noise low, could be 
the variation of layer compositions at the border of two periods.

In summary, the Bayesian optimization algorithm proves to be an efficient tool for the 
optimization of QCDs, and can be useful for the design and optimization of on-chip appli-
cations for environmental sensing at elevated temperatures based on quantum cascade 
devices.
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