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Abstract
Conventional blood pressure (BP) measurement methods have different drawbacks such as 
being invasive, cuff-based or requiring manual operations. There is significant interest in 
the development of non-invasive, cuff-less and continual BP measurement based on physi-
ological measurement. However, in these methods, extracting features from signals is chal-
lenging in the presence of noise or signal distortion. When using machine learning, errors 
in feature extraction result in errors in BP estimation, therefore, this study explores the use 
of raw signals as a direct input to a deep learning model. To enable comparison with the 
traditional machine learning models which use features from the photoplethysmogram and 
electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical 
characteristics (age, height, weight and gender) is developed. This hybrid model performs 
best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute 
error being 3.23 ± 4.75  mmHg and 4.43 ± 6.09  mmHg respectively. DBP and SBP meet 
the Grade A and Grade B performance requirements of the British Hypertension Society 
respectively.

Keywords Blood pressure (BP) · Cuff-less · Photoplethysmogram (PPG) · 
Electrocardiogram (ECG) · Deep learning

1 Introduction

Blood pressure (BP) is one of the most important and commonly measured clinical param-
eters and accurate measurement is crucial for therapeutic decisions. The World Health 
Organization (WHO) estimates that 1.13 billion people worldwide have hypertension 
which is a major cause of premature death. However, fewer than 1 in 5 people with hyper-
tension have the problem under control (World Health Organisation 2019). One of the 
global targets for noncommunicable diseases is to reduce the prevalence of hypertension by 
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25% by 2050 (baseline 2010). Regular BP monitoring is thus essential for prevention and 
control in the general population and for hypertensive patients.

Despite its importance, the existing non-invasive regular BP measure methods have 
downsides that can be ascribed to their measuring devices. The most popular cuff-based 
BP measurement requires user to follow protocols to obtain accurate BP values. Some cuff-
based devices, e.g., mercury sphygmomanometer, require frequent calibration. Other dis-
advantages include movement artefacts during physical activity (Ogedegbe and Pickering 
2010) and discomfort during cuff inflation. In addition, for some people, the act of going 
to the doctor triggers a response making their BP soar which clinicians recognize as white-
coat syndrome (Stergiou et al. 2018).

Due to the aforementioned factors, developing a cuff-less, continual or near real-time 
periodic, robust, comfortable, and wearable BP measurements system is desirable. Using 
physiological signals to conduct non-invasive and cuff-less BP measurement emerged in 
the past decade (Li et al. 2018; Liang et al. 2018a; Sharifi et al. 2019; Yoon et al. 2009). 
Two typical physiological signals used in BP estimation are the photoplethysmogram 
(PPG) and electrocardiogram (ECG). Pulse arrival time (PAT) is the time interval between 
the R-wave peak of the ECG and the systolic peak of the PPG. When the PAT is longer, it 
indicates a lower BP, while a shorter PAT indicates a higher BP, but the precise relation-
ship is uncertain due to the complexity of the cardiovascular system. This method requires 
a calibration protocol for stepwise increases in BP and several simultaneous measurements 
of ECG, PPG and a reference method (e.g. a mercury sphygmomanometer). Furthermore, 
individual calibrations are often needed to increase accuracy. Therefore, it is a challenge to 
use PAT for BP measurement under clinical conditions (Hennig and Patzak 2013).

Recently, there has been growing interest in cuff-less and non-invasive BP estimation 
using machine learning algorithms with the PPG and ECG (Chen et  al. 2019; Kachuee 
et al. 2017; Mousavi et al. 2019; Ribas Ripoll and Vellido 2019; Rundo et al. 2018). Most 
of the studies extracted specific features in the time domain or frequency domain and their 
results reveal the high correlation of these features with BP (Elgendi et al. 2019; Kachuee 
et  al. 2017; Tanveer and Hasan 2019; Wang et  al. 2018). The two main challenges with 
these approaches are the need for considerable signal processing and extraction of features 
associated with physiological signals.

These drawbacks, alongside the emerging methods of using raw signals as inputs into 
deep learning for different purposes (Gotlibovych et al. 2018; Slapničar et al. 2019), have 
motivated us to investigate this approach for non-invasive BP measurement. To ensure the 
high quality of the data, this research conducted a series of measurements on 45 partici-
pants to obtain a database of 315 records, each containing PPG, ECG, BP values and cor-
responding participant’s physical characteristics (i.e., age, height, weight and gender). This 
is suitable for the investigation of the use of deep learning with raw signals and physical 
characteristics for BP measurement for the first time to the authors’ knowledge. Moreover, 
another objective is to compare the accuracy of predictions between traditional machine 
learning methods and the novel hybrid deep learning model.

The novelty of this study is threefold. Firstly, although there have been attempts pre-
dicting BP values using deep learning methods, they rely on the use of physiological sig-
nals. To date, no one has tried to use both physiological signals and physical characteristics 
as inputs in a deep learning structure. This study presents the first attempt in this regard 
by devising a novel hybrid deep learning model. Secondly, this study provides a compre-
hensive comparison not only between traditional machine learning methods and hybrid 
deep learning models, but also between hybrid deep learning models with different struc-
tures. Thirdly, the methods used to collect data to predict BP are simple and replicable. 
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Combined with the automatic nature of the hybrid deep learning model, it largely reduces 
the complexity for the end user and has the potential of large-scale implementation.

The paper is organized as follows: Sect.  2 explains the experimental data processing 
procedures and all the algorithms used in this work. Section 3 demonstrate the experimen-
tal design for this study. Section 4 presents the results and finally, Sect. 5 concludes and 
discusses the research.

2  Methods

Before application of machine learning algorithms, the ECG and PPG are pre-processed 
and features are extracted. Several popular machine learning algorithms are then applied to 
estimate BP from signal features and physical characteristics. Unlike traditional methods, 
the proposed deep learning method does not require feature extraction and key information 
contained in the raw data are automatically extracted by the deep learning network by self-
learning. Data acquisition will be described in Sect. 3.

2.1  Data pre‑processing

The acquired PPG signal is processed by a Chebyshev II bandpass filter with the lower 
and upper cut off frequencies of 0.5 and 10 Hz respectively in order to reduce noise within 
the raw PPG signal (Liang et al. 2018b). For the ECG signal, baseline drift and high fre-
quency noise are removed using a Butterworth bandpass filter with lower and upper cut 
off frequencies of 0.5 and 40 Hz respectively (Shin et al. 2010). Afterwards, the PPG and 
ECG signals are normalized and their peaks in each period are obtained. The most stable 
segments are chosen from both signals by a calculation of the highest cross-correlation 
coefficient between periods which is defined by neighbouring peaks (Kachuee et al. 2015).

2.2  Feature extraction

2.2.1  PPG

In the literature, morphological features from PPG and complexity features from ECG are 
often used to predict BP (Elgendi 2012; Kachuee et al. 2017; Simjanoska et al. 2018; Yang 
et al. 2020). There are more than twenty features that can be extracted from a PPG signal 
and its first and second derivatives (Elgendi 2012). Twelve of them are selected and used 
for further estimation in this research. A PPG signal with labelled features is displayed in 
Fig. 1a and a PPG and its second derivative signals are shown in Fig. 1b. A summary of 
used features is listed in Table 1.

2.2.2  ECG

The extracted and used features in this research are listed in Table 2. Most of these features 
from ECG signals are obtained from complexity analysis, except heart rate which is calcu-
lated from the measurement of the peak-to-peak time interval of the ECG signals.
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2.2.3  Pulse arrival time (PAT)

PAT is extracted and applied as one of the features in this study. PAT is defined as the time 
interval between the electrical activation of the heart and arrival of the pulse pressure at a 
distal point measured as the time between the peaks of PPG and ECG (Chan et al. 2019). It 

Fig. 1  a A PPG signal with labelled features, adapted from (Kachuee et al. 2017). b Measured PPG sig-
nal (upper) and its second derivative (lower), indicating systolic and diastolic peaks, a-wave and b-wave. 
Adapted from (Elgendi 2012)

Table 1  Extracted PPG features used in the study

Feature no. Feature name Descriptions Figure

1 Systolic amplitude (Chua and 
Heneghan 2006) (Chua et al. 2010)

Systolic peak Figure 1a

2 Pulse width Width
3 Peak to peak interval Time difference two successive systolic 

peaks
4 Inflection point (Millasseau et al. 2002) Used to replace diastolic point
5 Augmentation index (Elgendi 2012) AuI =

x

y

6 Large arterial stiffness index Inversely related to the time interval ΔT
7 S1 Areas under the PPG signal
8 S2
9 S3
10 S4
11 Crest time (Alty et al. 2007) CT
12 Ratio of b/a (Baek et al. 2007) From 2nd derivative Figure 1b
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includes the pre-ejection period, which is the time it takes for blood to leave the heart after 
the heart’s electrical impulse.

2.3  Traditional machine learning methods

Several commonly used machine learning methods are used in this study to evaluate the 
effectiveness of different methods in predicting BP using features extracted from PPG and 
ECG signals and physical characteristics.

LASSO (least absolute shrinkage and selection operator) is a linear model with L1 prior 
as a regularizer (Friedman et al. 2010). As a large number of features are used to predict 
BP, it is important to add a regularization term in linear models to help with the variable 
selection. LASSO is able to perform both variable selection and regularization, leading to 
increase of prediction accuracy. The amount of regularization is controlled by α, the coeffi-
cient of the L1 term, and it can be determined experimentally using cross-validation during 
the training process. In this study, fivefold cross-validation is used to select α.

Support Vector Regression (SVR) is a popular machine learning model and has been 
proven to be an effective tool in real-value function estimation (Drucker et al. 1996). SVR 
uses a symmetrical loss function and errors with absolute values that are smaller than a 
certain threshold are ignored. As a result, the model produced by SVR depends only on a 
subset of the training data. A fivefold cross-validated grid-search is used to search for the 
optimal values for several important parameters, including kernel type (linear, polynomial, 
radial basis function), kernel coefficient (0.1, 0.01, 0.001, 0.0001), regularization param-
eter (1, 0.1, 0.01, 0.001, 0.0001) and epsilon-tube (0.1, 1, 5, 10, 20) which specifies the 
tolerance level.

AdaBoost, which is short for Adaptive Boosting, is an ensemble method and can be used 
to fit a sequence of weak learners (other types of learning algorithms) to improve perfor-
mance (Drucker 1997). The final output is a combination of a weighted sum of predictions 
generated by these weak learners. A commonly used weak learner, a decision tree regres-
sor is adopted in this study. A fivefold cross-validated grid-search is further used to search 
for the optimal values of the number of iterations (5, 50, 500), learning rate (1, 0.1, 0.01, 
0.001, 0.0001) and loss function (linear, square, exponential).

Random forest (RF) is another ensemble method that constructs a number of deci-
sion trees built from samples drawn with replacement (Breiman 2001). With the added 

Table 2  Extracted features from 
ECG (Yang et al. 2020)

Feature name Number of 
features

Autoregressive (AR) model coefficients of order 8 8
Multifractal wavelet leader
 Second cumulant of scaling exponents 1
 Holder exponents 1

Shannon Entropy (SE) values for the maximal overlap 
discrete wavelet packet transform at level 5

32

Hjorth parameters
 Signal mobility 1
 Signal complexity 1

Heart rate 1
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randomness, random forest can decrease the variance of the forest estimator. A fivefold 
cross-validated grid-search is used to search for the optimal values of several important 
parameters, namely the number of trees (100, 150, 200, 500, 1000), the criterion to meas-
ure the quality of a split (mean squared error, mean absolute error) and the minimum num-
ber of samples required to split an internal node (2, 3, 4, 5, 10).

K-Nearest Neighbours (KNN) is a non-parametric method that calculates the predicted 
value by taking weighted average values of k nearest neighbours. K is an integer value that 
needs to be specified, as well as weighting scheme and distance metric. In this study, a 
fivefold cross-validated grid-search is used to search for the optimal values of k (1, 5, 10, 
15, 20), weighting scheme (uniform, distance) and distance metric (Euclidean, Manhattan).

Multi-layer Perceptron (MLP) is a typical class of feedforward neural network and it has 
the capability to learn non-linear models. It consists of at least three layers, including input, 
hidden and output layers. A fivefold cross-validated grid-search is used to search for the 
optimal values of several important parameters, namely number of hidden layer (1, 2, 3), 
number of nodes in the hidden layers (5, 10, 20, 50), activation function in the hidden layer 
(logistic sigmoid, hyperbolic tangent, ReLU), coefficient for the L2 regularization term (1, 
0.1, 0.01, 0.001, 0.0001) and maximum number of iterations (100, 200, 500, 1000).

2.4  Proposed deep learning model

This study proposes a novel deep learning model to utilize the information contained in the 
PPG and ECG along with physical characteristics to predict BP. In contrast to the methods 
mentioned earlier, which require pre-processing and feature extraction from the PPG and 
ECG, deep learning models can take directly the raw signal data as input and the feature 
learning is essentially embedded in the modelling process. This novel hybrid deep learning 
model consists of various types of neural network models, such as Convolutional neural 
network (CNN), Long short-term memory (LSTM) and fully connected layer (Dense). The 
Dense layer is essentially a hidden layer in the MLP.

CNN was initially developed for image classification problems, where it receives two-
dimensional image pixels as input and generates output after a series of operations that 
involve pattern learning. Multiple CNN layers are often applied in problems like this so 
that simple patterns can first be identified in the lower layers and be used to form more 
complex patterns within higher layers (Krizhevsky et al. 2012). The same process can be 
applied to one-dimensional time series data, such as the PPG and ECG in this study. One-
dimensional CNN (1D CNN) can automatically learn to extract useful features from these 
signals and how to construct appropriate models to predict BP.

1D CNN applies the convolution operation on the input data with a number of fil-
ters (also called feature detector) (LeCun and Bengio 1995). The length of these filters 
can be specified and it is often referred to as kernel size. These filters are then moved 
along the signals and the shift size is referred to as strides, which is often chosen to be 
1. Different types of padding can be applied to determine the size of the output. Zero-
padding is often found to perform well in practice (Krizhevsky et  al. 2012), and it is 
also adopted in this study. An activation function is often applied to the results gener-
ated from the convolution operation. ReLU is very popular and found to perform well in 
practice (Jarrett et al. 2009). Convolutional layers are often followed by dropout layers 
for regularization, and then pooling layers, such as max pooling and average pooling 
(Krizhevsky et al. 2012; Srivastava et al. 2014). CNN models tend to learn very quickly 
and the dropout layer can help slow down the learning process and result in a potentially 
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better final model. The pooling layers can help reduce the dimension and consolidate 
learned features to the most essential elements. Pool length of 2 is often used in practice 
and it is also adopted in this study. Several convolutional layers can be stacked together 
to extract more complicated features. Hyperparameters that need to be determined for 
1D CNN layers include kernel size (3, 5, 7, 9), number of filters (64, 128, 256, 512) and 
number of epochs (20, 50, 100). In this study, the range of kernel sizes, number of fil-
ters and epochs is investigated using a cross-validation process in which an optimum is 
selected based on accuracy and convergence time.

LSTM network model is a special type of recurrent neural network (RNN) that is able 
to learn long-term dependencies (Hochreiter and Schmidhuber 1997). It has been proven 
to be effective for sequence prediction tasks such as speech recognition, natural language 
processing and machine translation (Chen et al. 2017; Cui et al. 2016; Tian et al. 2017).

A typical memory block in LSTM contains a memory cell and three gates, namely, 
input, output and forget gates. The activation functions associated with the gates are 
often logistic sigmoid function. LSTM can support multiple parallel sequences of input 
data, such as the PPG and ECG signals in this study. LSTM can be used to automati-
cally learn temporal dependencies in raw PPG and ECG signals and use them to predict 
BP values (Su et al. 2018). The parameter needs to be chosen for LSTM is the length of 
state vector (10, 50, 100).

CNN and LSTM are two types of deep learning structures that can be used separately 
to automatically learn from raw PPG and ECG signals to predict BP. They can also 
be stacked together in a way that the output from CNN is fed to the following LSTM 
layer. This stacked structure can be used to extract useful features and then learn the 
long-term temporal dependencies from the raw signals. This type of structure has been 
used for tasks such as detection of diabetes (Goutham et al. 2018), human activity rec-
ognition (Ordóñez and Roggen 2016), continuous cardiac monitoring (Saadatnejad et al. 
2020), atrial fibrillation detection (Gotlibovych et al. 2018) and classification of myo-
cardial infarction (Baloglu et al. 2019), and it is often found to perform well in practice.

In addition to the raw signals, this study investigates a novel deep learning structure 
that can also utilize useful information contained in physical characteristics to predict 
BP. This novel model consists of various types of models, including CNN, LSTM and 
Dense. This new structure can directly take raw signals and physical characteristics as 
input at the same time. It can learn to automatically pick up useful information con-
tained in different types of input data and find an optimal way to link to BP.

3  Experimental design

Two streams of experiments are conducted in this study. The first stream involves the 
use of physical characteristics and features extracted from PPG and ECG signals, which 
are then used as input in traditional machine learning methods, namely LASSO, SVR, 
AdaBoost, RR, KNN and MLP in this study. The second stream is the construction of 
novel hybrid models that consists of various deep learning methods such as CNN and 
LSTM and utilises physical characteristics and the raw PPG and ECG directly as inputs. 
Several different architectures of hybrid models are investigated which are comprised of 
different numbers of layers of CNN and LSTM. Experimental data is gathered using the 
set-up and protocol described in the next section.
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3.1  Data acquisition system

The proposed cuff-less BP estimation system is illustrated as Fig.  2 where BP, ECG 
and PPG are measured simultaneously. Acquisition of data with this system has been 
reviewed and approved according to the ethical review process in place.

The measurement system shown in Fig. 2 comprises three sections for measurement 
of BP, ECG and PPG. BP values are measured as a reference standard by a commercial 
device (Lloyds Pharmacy Fully Automatic Blood Pressure Monitor LBPK1) with meas-
urement accuracy of ± 3 mmHg (Lloyds 2021). The PPG signal is measured by infrared 
transmission through the finger via a finger clip sensor (HRM-2511E, Kyoto Electronic 
Co., China) with data transferred to a data acquisition board (Easy Pulse Sensor Ver-
sion 1.1, Elecrow, China) (Raj 2013). The ECG is measured with 3 disposable solid gel 
electrodes based on the lead I configuration placed on 2 wrists and an ankle connected 
to a data acquisition board (Analog devices, AD8232) (Lu et al. 2014). Due to availabil-
ity and convenience, the power for both circuit boards is supplied by an Arduino UNO 
board (Arduino Co., Italy).

The measured PPG and ECG are then transmitted to a data acquisition device (USB-
6211, National Instruments). The sample frequency for the data acquisition is 1 k sam-
ples/second in order to achieve a high-quality signal. The collected signals are sent to 
the processing unit which is a battery powered laptop for the benefit of minimum noise 
and to isolate the subject from mains power lines. All data were monitored and recorded 
through LabView (National Instruments).

Fig. 2  System for measurement of BP, ECG and PPG for cuff-less BP estimation

Table 3  Physical characteristics 
of participants in the experiment

Mean Max Min

Age (years) 23.24 61 21
Height (cm) 168.78 190.5 150
Weight (kg) 66.84 110 45
Gender 23 Males 22 Females
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3.2  Data collection protocol

Data collection is performed on 45 participants. A detailed description is listed in 
Table 3.

All participants are healthy adults with no apparent arterial disease or physiological 
abnormality. Informed consent is obtained from all participants and they are requested to 
not take drinks that contained caffeine or a heavy meal 4 h before the experiment to prevent 
a large variability in BP. For each participant, the data collection includes two measure-
ment sections occurring on the same day using the same data acquisition protocol. Each 
experiment takes less than 40 min to collect all relevant signals with the following protocol:

1. The participant stays still for 10 min, during which the consent forms are signed; the 
individual physical characteristics including age, height, weight and gender are recorded; 
the cuff of commercial BP measurement device is worn on the upper right arm; elec-
trodes are pasted on the limbs for ECG signal; and the clip is fixed on the index finger 
of the left hand for PPG signal acquisition. Participants are requested to keep still during 
the measurement because the PPG signal is sensitive to movement.

2. The PPG and ECG are recorded continuously for a period of 3 min. At the same time, 
BP is also measured. This procedure is repeated 3 times.

3. To induce a change in BP, the participant is asked to go downstairs from the 4th floor 
to the 1st floor and then return as rapidly and safely as possible.

4. Once the participant returns, the same procedure in step (2) is repeated, but for 4 times.

Hence, there are 7 sets of data collected from each participant within around 40  min. 
Accordingly, there is a total number of 315 records of data obtained. For each record 
of the data, it includes PPG, ECG, BP and the corresponding participant’s physical 
characteristics.

While raw PPG and ECG signals are fed directly into the hybrid deep learning model, 
pre-processed and extracted features from PPG and ECG signals are used as inputs for tra-
ditional machine learning methods. As detailed in Sect. 2.2, 12 features are extracted from 
PPG and 45 features are extracted from ECG. In addition, PAT is also extracted, which 
involves the use of both PPG and ECG. As a result, there are 58 features extracted from 
PPG and ECG in total. Combined with four physical characteristics, the input dimension 
for each observation in traditional machine learning models is 62. As models for DBP and 
SBP are separately built, the output for each observation in traditional machine learning 
models is 1, which is the corresponding DBP or SBP value.

3.3  Cross validation experiments

To generate a model with good generalization ability, this study conducts fivefold cross-
validation (CV) experiments where the training and testing samples are from different sets 
of subjects. Since there are 45 participants in this study, data samples from 9 random par-
ticipants are used as testing samples and the rest are used as training samples in each CV 
experiment. CV experiments are repeated 20 times and the evaluation results are averaged 
over these 20 experiments. Separate models are built for systolic blood pressure (SBP) 
and diastolic blood pressure (DBP). Such an experimental design provides robust results 
as it involves multiple experiments to tackle the potential instability in a particular CV 
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experiment. In addition, CV can also help avoid dependence of results on the choice of the 
split in each experiment.

During the training process of each CV experiment, the hyperparameters of traditional 
machine learning methods are determined using a fivefold CV on the training data set. 
For hybrid deep learning models, as they take a lot more time to train, their hyperparam-
eters are determined in the first CV experiment where there are 5 different train-test splits. 
The best hyperparameters are decided to be the ones that are chosen most times in these 5 
splits.

3.4  Hybrid model architectures

A general representation of the architecture of the hybrid model is shown in Fig. 3.
In contrast to traditional machine learning methods, this newly proposed hybrid 

model can take raw PPG and ECG signals and physical characteristics as simultaneous 
inputs by combining different deep learning structures. This hybrid model does not need 
any feature extraction from the raw signals and can learn to extract the optimal fea-
tures itself. The input consists of two main parts, namely raw PPG and ECG signals and 
physical characteristics. The dimension of the signal part for each sample observation 

1D CNN

Dropout

Maxpooling

CNN 
Block 1

1D CNN

Dropout

Maxpooling

CNN 
Block n

Raw PPG and ECG signals

…...

Physical characteris�cs

Dense

LSTM

Dropout

Concatenate

Dense

BP

Fig. 3  The architecture of the hybrid model



Non‑invasive cuff‑less blood pressure estimation using a hybrid…

1 3

Page 11 of 20 93

is (5000, 2), which means it is 5 s of data (sampling rate 1000/s) and 2 channels (PPG 
and ECG), while the dimension of physical characteristics is 4, including age, height, 
weight and gender. Again, as the models for DBP and SBP are separately built, the out-
put dimension is 1.

CNN blocks and LSTM are used to extract features from raw signals while dense is 
used to extract features from physical characteristics. The features learnt are then con-
catenated and fed to another Dense layer. Finally, this dense layer is followed by output 
layer with no (linear) activation function as the target variable BP is continuous. Mean 
absolute error (MAE) is used as the loss function.

CNN layers can be stacked together to extract more complicated features, different 
numbers of CNN blocks are used to form several different architectures. The number 
of CNN blocks is set to vary from 1 to 5, which leads to 5 different architectures. We 
denote hybrid models with 1–5 CNN blocks as Hybrid Model 1–5 respectively.

Each CNN block is comprised of 1D CNN, dropout and maxpooling layers. Dropout 
layer is also used following LSTM because it can impose regularization and prevent 
overfitting. The dropout rate defines the probability of a randomly selected neuron being 
dropped out. The dropout is only implemented during the training and not used in the 
testing. The dropout rate is chosen from 0.1, 0.2 and 0.5 during the training, when other 
hyperparameters are being chosen for the hybrid model, including the number of hidden 
nodes for the Dense layers (10, 50, 100).

4  Results

4.1  Measured BP

Histograms of the BP data obtained from sphygmomanometer are presented in Fig. 4. 
The measured DBP and SBP ranged from 56–106 mmHg to 84–170 mmHg respectively. 
The relatively large range of BP values is driven by interval measurement after physical 
exercise in order to test the robustness of the prediction of BP values.

Fig. 4  Histogram of the BP values measured of: a SBP; b DBP
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4.2  Training and prediction results

After the first CV experiment, the hyperparameters are all chosen for hybrid models. Then 
after 20 repetitions of CV experiments, the model with the best prediction performance is 
Hybrid Model 3 with the following configuration details:

• CNN parameters: kernel size 7, number of filters 128 and number of epochs 20.
• Dropout rate: 0.5
• Pool length of Maxpooling layer: 2
• Length of state vector of LSTM: 50
• Number of hidden nodes for the Dense layers: 50

The BP prediction results of traditional machine learning methods and newly proposed 
hybrid models are shown in Table  4. Criteria for performance evaluation are MAE and 
standard deviation (STD) of estimation.

The MAE and STD are calculated over 20 repetitions of CV experiments. According 
to Table  4, some comparisons can be made. For instance, what stands out in the table 
is that Hybrid Model 3 performs best in terms of both DBP and SBP with the results of 
3.23 ± 4.75  mmHg and 4.43 ± 6.09  mmHg respectively. It is closely followed by Hybrid 
Model 4 and Hybrid Model 5. It suggests that 3 CNN blocks are sufficient to extract useful 
features from the raw signals.

It is clear that in all models, hybrid models achieved lower SBP and DBP errors than 
traditional machine learning methods. It indicates that this newly proposed hybrid model 
architecture can extract more information from the raw signals than manually extracted fea-
tures, which leads to a more accurate prediction of BP when combined with physical char-
acteristics. This also alludes to the possible misrepresentation of information by manually 
extracted features due to challenges encountered with distorted waveforms. Deep learning 
models seem to be more robust in this regard.

In addition to the comparisons within traditional machine learning methods, SVR is 
found to perform best in terms of DBP with the result of 5.05 ± 7.26 mmHg and followed 

Table 4  Mean absolute error 
(MAE) and standard deviation 
(STD) achieved by traditional 
machine learning methods and 
novel hybrid models. Hybrid 
Model n denotes n CNN blocks 
in the model

Diastolic blood pressure 
(mmHg)

Systolic blood pres-
sure (mmHg)

MAE STD MAE STD

LASSO 8.27 10.47 10.28 13.49
SVR 5.05 7.26 7.66 9.87
AdaBoost 7.82 8.08 8.92 10.95
RF 6.99 8.38 8.01 9.82
KNN 6.18 7.93 8.74 10.37
MLP 5.82 7.29 6.92 9.11
Hybrid model 1 4.98 5.85 6.73 8.02
Hybrid model 2 4.12 5.76 5.35 7.72
Hybrid model 3 3.23 4.75 4.43 6.09
Hybrid model 4 3.94 4.97 4.89 6.73
Hybrid model 5 3.83 5.01 5.22 7.28
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by MLP and KNN. In terms of SBP, MLP, with 6.92 ± 9.11 mmHg, performs best among 
traditional machine learning methods, followed by SVR and RF. LASSO is found to per-
form worst regarding both DBP and SBP, and it can be inferred that there exist strong non-
linear relationships between features used and BP which can lead to inferior performance 
of LASSO. In addition, the inherent complexity in this problem necessitates using power-
ful regression algorithms, like hybrid models.

In order to further understand the origins of the improvements provided by the proposed 
hybrid model, the performance of models without physical characteristics is investigated. 
This investigates whether the superior performance of the hybrid models is mainly driven 
by automatic feature extraction of raw signals or due to inclusion of the physical character-
istics of the subject.

The number of CNN blocks of these deep learning models are again set to vary from 1 
to 5, and we denote these models by DP 1–5 respectively. The same procedure applied for 
hybrid models is used for training.

The results of DP are shown in Table 5. Regarding DBP prediction, the accuracy of DP 
models improves quickly when the number of CNN blocks increases from 1 to 3. However, 
as the number further increases from 3 to 5, the performance does not improve. A similar 
pattern can be observed for the case of SBP prediction by DP model, except that the lowest 
MAE and STD are obtained when the number of CNN blocks is equal to 4. When compar-
ing DP and hybrid model with the same number of CNN blocks, the results indicate that 
the hybrid model always perform better than DP. This indicates that the inclusion of physi-
cal characteristics increases the prediction accuracy.

The results from the 3 best performing models, which are Hybrid Models with 3, 4 and 
5 CNN blocks are further compared with British Hypertension Society (BHS) standard as 
shown in Table 6. This standard requires that the cumulative percentage of error is under 
5 mmHg, 10 mmHg and 15 mmHg (O’Brien et al. 2001). In this work, the predicted value 
of DBP obtained from the Hybrid Model with 3 CNN blocks is consistent with Grade A 
and the other two models meet Grade C. In addition, the hybrid model with 3 CNN blocks 
is in congruence with Grade B and that with 4 CNN blocks meet Grade C in the estimation 
of SBP values. However, the estimation of SBP from the Hybrid model with 5 CNN blocks 
is not consistent with the BHS standard.

The Association for the Advancement of Medical Instrumentation (AAMI) standard 
requires BP measurement devices to have MAE and STD values lower than 5 mmHg and 
8 mmHg, respectively. According to Table 6, all hybrid models achieve the requirements 
when estimating DBP. However, only Hybrid Model 3 and 4 is consistent with the stand-
ard in SBP estimation. Also, the MAE and STD values of all traditional machine learning 
models are outside the stipulated limits.

Table 5  Mean absolute error 
(MAE) and standard deviation 
(STD) of DP, Dense and new 
hybrid models

Diastolic blood pressure 
(mmHg)

Systolic blood pres-
sure (mmHg)

MAE STD MAE STD

DP 1 6.53 7.32 8.03 9.78
DP 2 5.29 6.13 6.98 8.15
DP 3 4.32 5.11 5.51 7.89
DP 4 4.33 5.18 5.37 7.60
DP 5 4.40 5.24 5.63 7.97
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Table 7 compares the proposed approach in this paper and other works in the literature, 
which use PPG, ECG and machine learning algorithms for BP estimation. In general, it is 
difficult to compare related work in this field because of different and inadequately speci-
fied databases, different signal pre-processing procedures, and different evaluation methods 
with different machine learning algorithms. In addition, some authors mixed all data and 
split randomly for training and testing, but they did not explicitly report whether any data 
of test subjects were included in the training data. Thus far, it is difficult to perform an 
objective comparison between different research.

However, from a general perspective, most previous research applies traditional 
machine learning algorithms, and the best results of DBP estimation ranges from about 4 
to 6 mmHg. The best SBP estimation results vary from 5 to 12 mmHg. Although the BP 
estimation results of traditional algorithms in this work have no obvious advantages com-
pared with the results from previous research, it is evident that hybrid models provide more 
accurate prediction of BP.

5  Discussion and conclusions

In this paper, a novel hybrid deep learning model is proposed to predict BP using raw PPG, 
ECG signals and some physical characteristics. Traditional machine learning methods used 
in predicting BP involve extracting features from signals and it often presents challenges 
when the quality of the signal is not good. This novel hybrid deep learning model consists 
of several different types of deep learning layers which enable the automatic feature extrac-
tion and can learn to extract optimal features in the modelling process. The hybrid models 
are tested on the data set collected and provide superior prediction results compared with 
traditional machine learning models. Deep learning models have shown high performance 
in many research areas and this study has shown its enormous potential in its application 
in predicting BP. Because of its flexible structure, deep learning models can receive vari-
ous combinations of different types of inputs. This is a very useful feature as incorporating 
more physiological data that can be relevant to BP is likely to increase the prediction accu-
racy. The best performance of hybrid model achieves 3.23 ± 4.75 mmHg for DBP estima-
tion and 4.43 ± 6.09 mmHg for SBP estimation. This result is consistent with Grade A and 
Grade B in the estimation of DBP and SBP respectively. In line with this, this model also 
achieves the requirements of the AAMI standard. It indicates that hybrid models with raw 
PPG and ECG signals have high potential in cuff-less BP estimation.

Different number of CNN blocks are used in this study and three CNN blocks are found 
to provide the best prediction results. Compared with its application in other areas such as 
image processing, which often benefits from many more CNN layers, the useful features 
contained in the physiological signals are not as complex. Therefore, the hybrid model 
does not have to be very deep. Indeed, hybrid models with four and five CNN blocks are 
outperformed by the hybrid model with three CNN blocks.

LSTM is included after CNN blocks as it is very useful in finding the important tem-
poral features in time series data and is suitable in processing signals. After LSTM the 
features extracted from signals are combined with physical characteristics, which are age, 
height, weight and gender in this study.

With the automatic learning of optimal features in the training stage, this hybrid model 
minimizes the risk of omitting important features contained in the signals. Traditional 
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feature extraction entails professional knowledge of specific signals and it is not often pos-
sible to extract all features that are potentially useful.

Despite the promising results found in this study, many important research questions 
remain. The focus was on developing a general hybrid model whose hyperparameters are 
determined using a pool of data from a number of individuals. A more accurate model can 
be estimated by tuning these hyperparameters based on the data of each individual. After 
this process, these models can be further calibrated to provide potentially more accurate 
prediction for different people as their associated optimal structure and hyperparameters 
may vary. The data used in this study is collected by the authors and there are 315 samples 
in total. As deep learning models often require a big data set, more data is likely to further 
improve the prediction accuracy. Therefore, in the next stage, we intend to further test the 
novel hybrid model on bigger data sets, including those that are publicly available. In addi-
tion, this paper focuses on improving the prediction accuracy of BP, however, before deep 
learning approaches are widely adopted it is important to consider the causality and rela-
tive importance of various features in predicting BP values (Holzinger et al. 2019). Due to 
deep learning models’ multilayer and nonlinear structure, the relationship between input 
and output is not transparent and predictions are often not traceable. This causes problems 
in the interpretability of the deep learning models and make them of limited use in cases 
where causalities are of great importance in the study. Although beyond the scope of this 
work, this is a future direction that should be investigated.
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