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Abstract
Accurate and rapid cloud detection is exceedingly significant for improving the downlink 
efficiency of on-orbit data, especially for the microsatellites with limited power and com-
putational ability. However, the inference speed and large model limit the potential of on-
orbit implementation of deep-learning-based cloud detection method. In view of the above 
problems, this paper proposes a lightweight network based on depthwise separable convo-
lutions to reduce the size of model and computational cost of pixel-wise cloud detection 
methods. The network achieves lightweight end-to-end cloud detection through extracting 
feature maps from the images to generate the mask with the obtained maps. For the visible 
and thermal infrared bands of the Landsat 8 cloud cover assessment validation dataset, the 
experimental results show that the pixel accuracy of the proposed method for cloud detec-
tion is higher than 90%, the inference speed is about 5 times faster than that of U-Net, 
and the model parameters and floating-point operations are reduced to 12.4% and 12.8% of 
U-Net, respectively.

Keywords Fully convolutional network · Depthwise separable convolution · Cloud 
detection · Semantic segmentation · Lightweight network

1 Introduction

According to the results of the International Satellite Cloud Climatology Project (ISCCP), 
clouds cover two-thirds of the land surface on earth (Rossow and Schiffer 1991), and high 
cloud coverage will reduce the accuracy and application of remote sensing data, resulting 
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in changes in the texture and spectral information of remote sensing images and affecting 
the radiation correction, geometric calibration and distortion correction (Li et  al. 2019). 
Since the time window for satellite data downlink transmission is only 5 to 10 min, cloud 
detection preprocessing of the data before transmission can improve the quality and effi-
ciency of the remote sensing images (Williams et al. 2002). With the continuous develop-
ment of remote sensing technology, miniaturization of satellites has limited the computing 
power and power consumption of electronic systems. Therefore, a lightweight cloud detec-
tion model with low computing power requirements is necessary.

Spectral analysis method is widely used in cloud detection. Radiance and reflectance of 
cloud in visible, short-wave infrared, thermal infrared and other wave bands are used for 
cloud detection through threshold method. Irish et al. (2006) proposed a cloud detection 
algorithm called Automatic Cloud Cover Assessment (ACCA) for Landsat 7 images, which 
used cloud reflectance in different wavebands to implement cloud detection. Li and Li 
(2011) converted the pseudo-color composite images of bands 1, 6, and 26 of the MODIS 
images into HSV, and used the H channel as threshold to obtain cloud detection results. 
Zhu and Woodcock (2012) used the physical properties of the cloud to obtain potential 
cloud pixels, and then combined the normalized temperature, spectral variability, and 
brightness probabilities to further determine the potential cloud pixels as cloud or non-
cloud. It is hard to detect clouds using limited spectral information of small satellites (Li 
et al. 2017). Therefore, spectral analysis method cannot show satisfactory performance on 
small satellites.

Since 2016, deep learning has been applied to cloud detection research (Mateo-García 
et  al. 2017). Shi et  al. (2016) combined superpixels with convolutional neural networks 
to complete cloud detection of Quickbird data. Zi et al. (2018) used the SLIC algorithm 
to extract superpixels from Landsat 8 band 6, 3, 2 images, then input the superpixel patch 
into a double-branch PCANet to determine whether the superpixel patch was cloud or non-
cloud, and finally applied a conditional random field for post-processing. Chen et al. (2018) 
applied multi-convolutional neural networks to classify the superpixels generated by the 
adaptive SLIC algorithm to complete cloud detection. Although deep learning networks 
combined with superpixels can obtain a good accuracy for cloud detection, the methods 
mentioned above are difficult to be implemented on-orbit and cannot complete pixel-wise 
cloud detection.

Semantic segmentation was introduced into cloud detection research in 2018 and 
became a hot spot in current research. Wieland et al. (2019) applied U-Net (Ronneberger 
et al. 2015) to the data of Landsat and Sentinel 2 to complete the pixel-wise segmentation 
of cloud and cloud shadow, with an accuracy of 89%. Gao et al. (2019) applied the neural 
network based on dilated convolution to complete the end-to-end cloud detection of ZY-3 
image. Li et al. (2019) proposed the MSCFF network, which can detect clouds on images 
of different sensors with a resolution of 0.5 to 50 m. Although the cloud detection methods 
mentioned above can complete pixel-wise end-to-end cloud detection with a good result, 
the size and the computational cost of the networks cannot meet the demands of small sat-
ellites with limited computing power and power consumption.

In this paper, we propose a lightweight network based on U-Net to reduce the size of 
model and computational cost of the pixel-wise cloud detection method and improve the 
portability of the cloud detection method on embedded platforms. The proposed method 
improves the pixel accuracy of the visible bands on the Landsat 8 cloud cover assessment 
(L8 CCA) validation dataset, and greatly reduces the size of the network, computing power 
requirements and inference time. Further experiments validated that the method is also 
suitable for cloud detection in the thermal infrared band.
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2  Methodology

2.1  U‑Net based on depthwise separable convolutions

As shown in Fig. 1, the process of the proposed method consists of two parts: training 
and testing. In this paper, the L8 CCA data set is divided into training set, validation set, 
and test set. In the training phase, the images with the corresponding ground truth of the 
training set and the validation set are input into the network, and the model is trained 
by a backpropagation (BP) algorithm to obtain the parameters with minimal loss. In the 
testing phase, the model outputs the probability tensor of the test set images, and the 
cloud detection result is obtained by the ARGMAX function.

The network used in this paper is a fully convolutional network based on an encod-
ing–decoding architecture improved by depthwise separable convolutions (Howard et al. 
2017), as shown in Fig. 2. The input data is processed by encoders based on depthwise 
separable convolution to generate high-dimensional feature maps of different scales; 
then, the decoders continuously upsample the feature maps and concatenate the feature 
maps of encoders and decoders with same scale; finally, the network outputs a tensor 
containing the classification probability of each pixel, and the class with the highest 
probability is used as the label of the pixel.

U-Net (Ronneberger et  al. 2015) is originally used for segmentation of biomedical 
images. With the characteristics of simple model, easy to train, and more suitable for 
small data sets, U-Net is currently widely used in medical diagnosis, remote sensing and 
other fields. The convolutional layers in U-Net are calculated using standard convolu-
tions which are the most important component of convolutional neural networks. The 
operation of standard convolution can be divided into two parts. First, the input feature 
maps are convolution filtered, and then the convolution filtered results are combined 
into output feature maps. Figure  3a shows the process of standard convolutions. Sup-
pose that a feature map with a size of H ×W  and a channel number of M is input into a 
standard convolution, and after the calculation of N filters with a kernel size of K × K , a 
feature map with a size of H ×W  and a channel number of N is output. Then the param-
eters of standard convolution are

Fig. 1  Flowchart of the proposed method
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Fig. 2  Architecture of U-Net based on depthwise separable convolution

Fig. 3  Process of convolutions. a Standard convolution; b depthwise convolution; c pointwise convolution
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The computational cost is

Depthwise separable convolution divides standard convolution into depthwise convolu-
tion and pointwise convolution to complete filtering and channel combination respectively 
(Howard et  al. 2017). As shown in Fig.  3b, depthwise convolution with a K × K kernel 
processes the input feature map of size H ×W ×M into a feature map of M channels, then 
the parameters of depthwise convolution is

The computational cost is

The parameters and cost are 1∕N of the standard convolution.
Figure 3c shows the process of pointwise convolutions. The pointwise convolution is a 

standard convolution with a kernel size of 1 × 1, which is mainly used to change the dimen-
sion of the output feature map of the depthwise convolution in order to complete the com-
bination operation of the standard convolution. The parameters of pointwise convolution 
are

The computational cost is

The computational cost of depthwise separable convolution is

which is the sum of depthwise convolution and pointwise convolution. According to the 
computational cost of standard convolution shown in Eq. (2), the relationship between the 
computational cost of the depthwise separable convolution and the standard convolution is:

The size of the convolution kernel used in this article is 3 × 3, therefore the computa-
tional cost of the depthwise separable convolution is about one-ninth to one-eighth of the 
standard convolution. By breaking the interaction between the number of output channels 
and the size of the kernel with depthwise separable convolution, the parameters and com-
putational cost are greatly reduced.

In order to prevent the gradient disappearing during training, a batch normalization 
layer and a ReLU are added after each depthwise convolution and pointwise convolution. 
The stride of the depthwise convolution can be 1 or 2, and the stride of the pointwise con-
volution is fixed at 1.

The optimization of U-Net in this article includes two aspects: replacement of stand-
ard convolutions and modification of sampling method. U-Net is composed of four encod-
ers and four decoders between which are the corresponding skip connections. The network 
includes 18 layers of 3 × 3-kernel-sized convolution operations, and there is much room for 

(1)K ⋅ K ⋅M ⋅ N

(2)H ⋅W ⋅ K ⋅ K ⋅M ⋅ N

(3)K ⋅ K ⋅M

(4)H ⋅W ⋅ K ⋅ K ⋅M

(5)M ⋅ N

(6)H ⋅W ⋅M ⋅ N

(7)H ⋅W ⋅ K ⋅ K ⋅M + H ⋅W ⋅M ⋅ N

(8)
H ⋅W ⋅ K ⋅ K ⋅M + H ⋅W ⋅M ⋅ N

H ⋅W ⋅ K ⋅ K ⋅M ⋅ N
=
1

N
+

1

K2
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improvement in the size of model and computational cost. As mentioned above, depthwise 
separable convolutions can reduce the parameters and computational cost of standard convolu-
tion, so replacing the standard convolution with depthwise separable convolutions can reduce 
the size of model and floating-point operations(FLOPs) of U-Net. Sampling methods include 
upsampling and downsampling. According to Springenberg et al. (2014), max-pooling does 
not always improve the performance of deep neural networks, and the use of convolutions 
with stride instead of pooling helps reduce the information loss of feature maps caused by 
downsampling. Therefore, this paper replaces the downsampling method of the encoders in 
U-Net from the max-pooling layer to a depthwise separable convolution with a kernel size 
of 3 × 3 and a stride of 2. The upsampling method uses bilinear interpolation which is easier 
to train than the deconvolution in U-Net. The comparison between the proposed method and 
U-Net is shown in Table 1. The parameters of this method are 3.9 Million, and the FLOPs are 
11,002.5 Million, which are 12.4% and 12.8% of U-Net, respectively.

The proposed network is still an encoder-decoder architecture, consisting of four encoders 
and four decoders. The encoders consist of two depthwise separable convolutions with kernel 
size of 3 × 3 and stride of 1 and one depthwise separable convolutions with kernel size of 3 × 3 
and a stride of 2. The decoders consist of one layer of bilinear interpolation and two depthwise 
separable convolutions with kernel size of 3 × 3 and stride of 1. The skip connections between 
encoders and decoders enable the network to combine the high-level and low-level semantic 
features extracted from the image to improve the segmentation effect (Long et al. 2015). The 
structure of the proposed method is shown in Fig. 2, and the specific parameters are shown in 
Table 2.

2.2  Metrics

Metrics used in this paper are pixel accuracy (PA), mean pixel accuracy (mPA) and mean 
intersection over union (mIoU) (Garcia-Garcia et al. 2017). PA is the ratio of correctly classi-
fied pixels and all pixels. mPA is the mean value of PA of all classes. mIoU is the mean value 
of IoU of all classes, where IoU is the ratio of the intersection and union of the prediction and 
the ground truth. The metrics can be solved by the confusion matrix shown in Table 3, where 
TP, FP, FN, and TN stand for True Positive, False Positive, False Negative, and True Negative.

Therefore, the formulas of PA, mPA, and mIoU are as follow:

(9)PA =
TP + TN

TP + FN + FP + TN

(10)mPA =
1

2

(
TP

TP + FN
+

TN

FP + TN

)

(11)mIoU =
1

2

(
TP

TP + FN + FP
+

TN

FP + FN + TN

)

Table 1  Algorithm efficiency 
comparison of proposed method 
and U-Net

Parameters/million FLOPs/million

U-Net 31.4 85,683.9
Proposed method 3.9 11,002.5
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Table 2  Parameters of U-Net based on depthwise separable convolution

Layer name Input size Information of blocks Output size

Encoder1 224 × 224 × 3 ⎡
⎢
⎢
⎢⎣

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s2)

⎤
⎥
⎥
⎥⎦

112 × 112 × 64

Encoder2 112 × 112 × 64 ⎡
⎢
⎢
⎢⎣

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s2)

⎤
⎥
⎥
⎥⎦

56 × 56 × 128

Encoder3 56 × 56 × 128 ⎡
⎢
⎢
⎢⎣

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s2)

⎤
⎥
⎥
⎥⎦

28 × 28 × 256

Encoder4 28 × 28 × 256 ⎡
⎢
⎢
⎢⎣

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s2)

⎤
⎥
⎥
⎥⎦

14 × 14 × 512

Bridge 14 × 14 × 512
[
ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

]
14 × 14 × 1024

Decoder1 14 × 14 × 1024 ⎡
⎢
⎢
⎢⎣

UpSampling,Concat

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

⎤
⎥
⎥
⎥⎦

28 × 28 × 256

Decoder2 28 × 28 × 256 ⎡
⎢
⎢
⎢⎣

UpSampling,Concat

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

⎤
⎥
⎥
⎥⎦

56 × 56 × 128

Decoder3 56 × 56 × 128 ⎡
⎢
⎢
⎢⎣

UpSampling,Concat

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

⎤
⎥
⎥
⎥⎦

112 × 112 × 64

Decoder4 112 × 112 × 64 ⎡
⎢
⎢
⎢⎣

UpSampling,Concat

ConvDwSep(3 × 3, s1)

ConvDwSep(3 × 3, s1)

⎤
⎥
⎥
⎥⎦

224 × 224 × 64

Output 224 × 224 × 64 Conv(1 × 1) 224 × 224 × 2

Table 3  Confusion matrix Ground truth Predicted class

Cloud Non cloud

Cloud TP FN
Non cloud FP TN
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3  Experimental results and discussion

3.1  Experimental images and parameter setting

In this paper, the visible bands 4, 3, and 2 of the Landsat 8 Cloud Cover Assignment (L8 
CCA) dataset (Foga et al. 2017) are used as RGB channels to merge true color images. 72 
images from Landsat 8 CCA were selected as the data set and processed into 28,800 patches 
with size of 224 × 224, 24,000 of which were used as the training set, and 2400 of which were 
used as the validation set. 6 images of 4480 × 4480 size were used as test set. The same pro-
cess is performed on band 11 in the L8 CCA data set to verify the applicability of this method 
in the thermal infrared band.

The experimental environment of this study is shown in Table 4. All methods are imple-
mented using Python. The deep learning framework, PyTorch (Paszke et al. 2017), is used 
for model training and testing. The training epoch is 70. Adam (Kingma and Ba 2014) is used 
as optimizer. Batch size is set to 16. The initial value of the learning rate is 0.001, and it is 
updated every 10 epochs with a decrease factor of 0.5. As shown in the Eq.  (12), the loss 
function is the weighted average of the Dice loss (Milletari et al. 2016) and the Binary Cross 
Entropy (Zhang and Sabuncu 2018). The weight of the Binary Cross Entropy is 0.8. Dice loss 
and Binary Cross Entropy are shown in Eqs. (13) and (14), respectively, where P is the predic-
tion result and T is the ground truth.

(12)L = w ⋅ L
Bce

+ (1 − w) ⋅ L
Dice

(13)L
Dice

= 1 −
2|P ∩ T|
|P| + |T|

(14)L
Bce

= −
∑

i
T
i
ln
(
P
i

)
+
(
1 − T

i

)
ln
(
1 − P

i

)

Table 4  Experimental environment

CPU Memory GPU Operating system

E5-2620 v4 32 GB GeForce 1080 Ti with 11 GB memory Ubuntu 16.04

Fig. 4  Training procedure. a Loss change curves versus the number of epochs; b metrics change curves 
versus the number of epochs
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Fig. 5  Examples of cloud detection in band 2, 3, and 4. From top to bottom, the examples are from 
scenes of LC81590362014051LGN00, LC80310202013223LGN00, LC81320352013243LGN00, 
LC81390292014135LGN00, LC80630152013207LGN00 and LC81620432014072LGN00. From left to 
right are the true-color input images, the ground truth, the results of our method, and the results of U-Net
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3.2  Experimental results and analysis

The loss and metrics changes of proposed method within 70 epochs are shown in Fig. 4, where 
Fig. 4a is the loss change of the network on the training set and the validation set, and Fig. 4b 
is the metrics change on validation set. It can be seen from the curve in the figure that the loss 
and metrics fluctuate greatly before epoch 20, and gradually smooth after epoch 30. The loss 
gradually decreases and stabilizes with the increase of the epoch, and the metrics gradually 
increases and stabilizes with the increase of the epoch. This change trend shows that the model 
gradually converges. The model of epoch 40 with the highest metrics in the validation set after 
convergence is chosen to test the network.

Table 5  Results comparison of 
proposed method and U-Net in 
band 2, 3, and 4

Methods PA/% mPA/% mIoU/% Inference 
time/(s/
patch)

U-Net 88.17 83.86 75.44 10.25
Proposed method 90.54 91.36 81.53 2.18

Table 6  Detail results of test set in band 2, 3, and 4

Scene ID Detection algorithm PA/% mPA/% mIoU/%

LC81590362014051LGN00 U-Net 83.34 80.47 69.21
Proposed 95.00 94.46 90.20

LC80310202013223LGN00 U-Net 92.58 92.87 86.19
Proposed 88.40 87.85 78.81

LC81320352013243LGN00 U-Net 82.51 78.47 65.92
Proposed 93.21 92.06 85.18

LC81390292014135LGN00 U-Net 92.73 86.98 82.15
Proposed 94.50 95.06 87.53

LC80630152013207LGN00 U-Net 82.30 73.15 62.71
Proposed 94.81 92.81 88.69

LC81620432014072LGN00 U-Net 95.54 91.24 86.45
Proposed 77.35 85.91 58.79

Fig. 6  Examples of cloud detection in thermal infrared. From top to bottom, the examples are from 
scenes of LC81590362014051LGN00, LC80310202013223LGN00, LC81320352013243LGN00, 
LC81390292014135LGN00, LC80630152013207LGN00 and LC81620432014072LGN00. From left to 
right are the Band 11 input images, the ground truth, and the results of our method

▸
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Figure  5 shows the cloud detection results of the proposed method and U-Net. It 
can be seen that the overall results of the proposed method are better than U-Net. In 
the boxed areas in Fig. 5a, d, e, the detection results of the proposed method are more 
complete, while U-Net does not detect clouds in these areas. In the boxed area of 
Fig. 5c, the proposed method misses some broken clouds, and U-Net has a larger range 
of misclassification. The result of U-Net in the thin cloud box area in Fig. 5b is better 
than the proposed method. Although the result of proposed method completely covers 
the true value in that area, the non-cloud pixels around the cloud are misclassified as 
cloud. The proposed method has a large area of misclassification in the box and the 
surrounding area of Fig. 5f. This problem may be due to the existence of underwater 
reefs in this area in the original image. Some features of these reefs are similar to thin 
clouds. The proposed method is more sensitive than U-Net in thin cloud area, therefore 
misclassifies these reefs as thin cloud.

To objectively evaluate the cloud detection results of the proposed method, the 
trained model is used to infer the test set images. Table 5 shows the average results of 
the test set and its comparison with the U-Net results, where the inference time is the 
time it takes the algorithm to complete the cloud detection of a patch of 224 × 224 on 
the CPU. Table 6 shows the detailed results of the images in the test set. The exper-
imental results show that the overall pixel accuracy of proposed method is 90.54%, 
which is 2.37% higher than U-Net’s 88.17%; the mPA is 91.36%, which is 7.5% higher 
than U-Net; the mIoU is 81.53%, which is 6.09% higher than U-Net. The inference 
time of proposed method is 2.18  s/patch, and the inference speed is about 5 times 
faster than that of U-Net.

In order to verify the applicability of this method in the thermal infrared band, 
we apply this method to the band 11 of L8 CCA. Figure 6 shows the cloud detection 
results of the proposed method for band 11, and Table 7 shows the detailed results of 
the images in the test set. Experimental results show that for thermal infrared images, 
the pixel accuracy of proposed method can reach 90.99%. However, because the ther-
mal infrared band of Landsat 8 has a resolution of 100 meters, and the input data is a 
single-channel image, the thermal infrared image has less information than the visible 
image. The mPA and mIoU of this method drop to 87.36% and 80.16%, respectively.

Table 7  Detail results of test set 
in band 11

Scene ID PA/% mPA/% mIoU/%

LC80630152013207LGN00 91.69 88.86 82.42
LC80310202013223LGN00 88.86 88.37 79.62
LC81320352013243LGN00 89.15 85.09 76.66
LC81390292014135LGN00 93.74 91.90 85.43
LC81590362014051LGN00 91.51 90.39 83.75
LC81620432014072LGN00 91.00 79.56 73.07
Average 90.99 87.36 80.16
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4  Conclusion

In this paper, a lightweight deep learning network for cloud detection of visible and 
thermal infrared remote sensing images is proposed. Depthwise separable convolutions 
is applied to compress the model of U-Net and accelerate the inference speed of the 
neural network. The proposed method is verified on Landsat 8 remote sensing images. 
Experimental results show that the proposed method can efficiently detect clouds on vis-
ible and thermal infrared images with high inference speed and low computational cost. 
Compared with U-Net, the cloud detection results of the proposed network in visible 
bands are greatly improved; And although the mPA and mIoU decreased in the thermal 
infrared images, the PA still remained at a high level. The parameters and FLOPs of the 
network are reduced to 12.4% and 12.8% of U-Net, respectively, and the inference speed 
increases by nearly 5 times. In the future, the pruning, quantization, and knowledge dis-
tillation will be adopted to improve the effectiveness and further compress the model.
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