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Abstract
Using our own computer program, we determined the spatial distribution of lattice strains 
in the HgCdTe heterostructure grown on a GaAs substrate. Lattice stress resulting from lat‑
tice mismatch between the substrate and the epitaxial layer and bending of the heterostruc‑
ture is almost completely relaxed by misfit dislocations forming matrixes in the interfaces’ 
areas. The average distances between dislocation lines in individual interfaces were calcu‑
lated based on the minimum energy, i.e. elastic energy condition resulting from the interac‑
tion of stress fields and deformations caused by lattice misfit, bending and the presence of 
dislocation plus electrical energy of dislocations.

Keywords CdHgTe heterostructures · Lattice strain · Bending · Misfit dislocations

1 Introduction

Earlier, the basic research was focused on the growth, doping and characterization of MCT 
on lattice matched CdZnTe substrates because the highest crystal perfection is realized 
just for this material conjugation. But the crystal perfection and Zn content are not uni‑
form over the surface area. Also, CdZnTe substrates are expensive and is issue with pre‑
cise impurity control at growth. The alternative substrates (epilayers of CdTe on GaAs or 
Si substrate) have the advantages in comparison with CdZnTe substrates from the point 
of view of substrate dimension and low cost. The only problem is the mismatch between 

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Angela Thränhardt, Karin Hinzer, Weida Hu, Stefan Schulz, Slawomir Sujecki and 
Yuhrenn Wu.

 * Krzysztof Jóźwikowski 
 krzysztof.jozwikowski@wat.edu.pl

1 Faculty of Applied Informatics and Mathematics, Warsaw University of Life Science SGGW , 
Nowoursynowska 166 St., 02‑787 Warsaw, Poland

2 Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. S. 
Kaliskiego 2 St., 00‑908 Warsaw, Poland

http://orcid.org/0000-0001-8404-4972
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-020-02391-9&domain=pdf


 A. Jóźwikowska et al.

1 3

294 Page 2 of 14

GaAs and the epitaxial layer. The resulting lattice stress can be effectively reduced by mis‑
match dislocations. The use of a buffer layer with CdTe allows them to be isolated from the 
epitaxial CdHgTe layer. As substrates for epitaxial CdHgTe layers, GaAs with crystallo‑
graphic orientation (100) or (111) is often used (Ponce et al.1986). Other crystallographic 
orientations are also used. For example, (Sidorov et al. 2015) had grown epitaxial layers 
of MCT on GaAs (013) and Si (013) substrates and introduced the ZnTe and CdTe buffer 
layers which made it possible to retain the orientation close to that of the substrate in MCT 
despite of the large mismatch between the lattice parameters. By using the transmission 
electron microscopy, they found the network of misfit dislocations in substrate‑buffer inter‑
face and measured the angles of rotation of the lattice due to the formation of networks of 
misfit dislocations. It is probably one of the causes of generation of threading dislocations 
in the epitaxial layer. Undoubtedly, this mechanism is a real challenge for developing a 
method of determining the density of treading dislocations from the condition of mini‑
mum elastic energy. In this papier we managed to propose such a method for the case of 
misfit dislocation. In the joint laboratory of Military University of Technology (MUT) and 
Vigo‑System (V‑S), the CdHgTe heterostructures are growing by using the Metal Organic 
Chemical Vapor Deposition (MOCVD) method (Kopytko et  al. 2016). CdTe is used as 
the buffer layer. Strong lattice misfit between GaAs and CdTe is the cause of lattice stress 
causing the deformation of the crystal lattice of both the substrate and CdTe. Significant 
relaxation of stress occurs due to the misfit dislocations arising in the interfaces. Disloca‑
tions are generated in the form of a network with the same spacing between the dislocation 
lines lying in the planes of growth. If on CdTe we embed the  Cd1‑xHgxTe hererostructure, 
although the lattice misfit of the individual hetero‑structural layers is relatively small, mis‑
fit dislocations also occur in areas where there is a change in molar composition x (Yama‑
moto et al.1985; Nouruzi‑Khorasani et al. 1989). These dislocations and treading disloca‑
tions introduce additional energy states in the energy gap, and they create an additional 
channel for the generation and recombination processes described by the Shockley‑Hall‑
Read (SHR) mechanism (Yamamoto et al. 1985, Pelliciari and Baret 1987; Virt et al. 2001; 
Gopal and Gupta 2003; Jóźwikowski et al. 2012). Thus, if we perform numerical simula‑
tions of infrared detectors built from these heterostructures, we should evaluate the den‑
sity of these dislocations to properly calculate the generation and recombination rates of 
electric carriers. The rate of SHR processes is influenced by the polarization of the detec‑
tors, mainly through the trap assisted tunneling (TAT) mechanism. This effect is perfectly 
visible on the current–voltage characteristics of the devices being manufactured, and they 
confirm that in many cases the dislocation density determines photoelectric parameters of 
infrared detectors (Jóźwikowski et al. 2010). I our previous work (Jóźwikowska et al. 2019) 
we presented how to calculate pseudomorphic lattice strains in InAsSb heterostructures 
and deformations caused by bending the structure. In addition, we determined how thick‑
ness of the substrate and buffer affects the amount of lattice strain and density of the gen‑
erated dislocations. We are not aware of any other works in which the density of misfit 
dislocations in all interfaces of a multi‑layer heterostructure was theoretically determined. 
We verified the results of our calculations with the experimental data of (Kim and Raseghi 
1998) and (Xie et al. 2018). In this work, we used the same methods for a CdHgTe het‑
erostructure. The generated mismatch dislocations have both elastic energy and electrical 
energy. However, in our previous article we did not analyze the impact of electrical energy. 
We did it in this work. Our motivation for this work was to provide a theoretical expla‑
nation why in HgCdTe heterostructures embedded on GaAs substrates deformations are 
minimal, despite a large network mismatch. In addition, we wanted to determine the effect 
of electrical energy of misfit dislocations on their density.
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2  Results and simulation procedure

Now we analyze CdHgTe heterostructures in the form of an epitaxial layers deposited on (100) 
GaAs substrate. The modeled structure has a shape of a cylinder of a diameter of 300 μm. 
Material parameters are presented in Fig. 1. The structures in this configuration are grown 
in joint laboratory of MUT‑V‑S and used for the construction of infrared detectors. In real 
structures there are no abrupt changes in parameters due to the diffusion of the elements form‑
ing CdTe and  CdxHg1‑xTe with different molar compositions x. The GaAs‑CdTe interface is 
abrupt. This interface has the highest mismatch dislocation density. We can theoretically cal‑
culate it and determine the size of the lattice deformations relaxed by these dislocations. This 
is important when designing infrared detectors, because dislocations can significantly affect 
the lifetime of carriers and deformations change the position of the valence and conductiv‑
ity band edges. Using our own computer program, we calculated lattice strains, and deter‑
mined if there are pseudomorphic strains which give the same value of the lattice constant a∥ 
in the plane of layers growth in all structure. Then we calculate the bending to determine the 
additional change in the lattice constant caused by this effect. Emerging deformations of the 
crystalline lattice cause stresses that are greatly relaxed by the misfit dislocations arising in the 
interfaces.

If the epitaxial layer contains dislocations with the average inter‑dislocation distance p, the 
expression for strain becomes (Jóźwikowska et al. 2019).

(1)�∥(z) =
a∥ − a(z)

a(z)
+

z − hb

R
−

n∑
i=1

�
(
hi
)
b1
(
hi
)
∕p

(
hi
)

Fig. 1  HgCdTe photodetec‑
tor  P+nN+ structure grown on 
(001) GaAs substrate using the 
MOCVD method
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The first component describes the strain caused by the pseudomorphic lattice constant 
(a∥), parallel to the plain of interface, which remains the same throughout the structure and 
a(z) denotes the unstrained lattice constant. The second component specifies the deforma‑
tion caused by bending. Only the bending enables achieving the balance of momenta of the 
internal forces due to the appearance of an additional stress, which partially changes the 
stress responsible for the formation of a pseudomorphic structure. Some of the layers are 
subject to an additional tensile and some to an additional compression. There is precisely 
one layer that will retain its size.  hb is it’s distant from the bottom of the structure. The bot‑
tom of the heterostructure has curvature of radius R. In (Jóźwikowska et al. 2019) we have 
obtained the expressions:

where h is the thickness of the structure and G is the Young’s modulus.
Misfit dislocations generated in interface areas significantly reduce crystal lattice defor‑

mation (third component in formula (1). In this term b1 = −b sin � sin � and b is norm of 
the Burger’s vector, hi is the z coordinate of the i‑th interface, p

(
hi
)
 denotes the mean dis‑

tance between misfit dislocation lines in the i‑th interface.
For 60° dislocations

� takes values 1 or − 1, so that �∥ takes usually lower values than the values specified by the 
first two components in the expression (1).

All these quantities in Eq. 1 were derived in our earlier paper (Jóźwikowska et al. 2019).
The elastic energy per unit area of the heterostructure is expressed by the dependence 

(after Gosling et al. 1993; Jain et al. 1993, 1997; Jóźwikowska et al. 2019)

And electrical energy of misfit dislocations deposited in five interfaces of the hetero‑
structure shown in Fig. 1 per unit area reads
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where � is the electrical potential, �0 is the vacuum permittivity, and �(r) is the relative die‑
lectric permittivity. Counting the minimum energy Eelst + Eelctr as a function of p

(
hi
)
 , we 

numerically determine the values of p
(
h1
)
 , p

(
h2
)
 p
(
h3
)
,p
(
h4
)
 and p

(
h5
)
 and then using the 

expression (1) we obtain strain �∥(z) as a function of thickness. Earlier we performed simi‑
lar calculations for heterostructures with InAsSb deposited on a GaAs and GaAs substrate 
in two papers (Jóźwikowska et  al. 2019, Jóźwikowska, Suligowski. 2019). In the above 
works, we have described in detail the method used for calculating the edges of energy 
bands and the distances between misfit dislocation lines in the interfaces. In this paper, 
additionally we estimated the energy of the electric field generated around misfit disloca‑
tions. To do this we determined the spatial distribution of electrical potential by solving the 
Poisson equation in cylindrical regions around dislocations’ cores. However, this additional 
energy is small compared to the elastic energy and practically has no significant effect on 
the density of generated misfit dislocations. We have also determined the statistical distri‑
bution function for the electrons in the dislocation bands formed by dislocation electron 
states. Determination of the distribution function is very important if we want to consider 
the effect of the misfit dislocation on the carrier lifetime (Jóźwikowski et al. 2010).

Figure 2 shows the spatial distribution of the lattice strain in the GaAs substrate. Pseu‑
domorphic strains are constant and take values �∥ slightly above 0.05%. These are stretch‑
ing strains. The bending of the structure, necessary to achieve the condition of the equilib‑
rium of moments of internal forces, causes the deformation character in the bottom layer 
of the substrate to change, squeezing it, while the top layer is stretched (red line in Fig. 2). 
At a distance of hb = 550.4 µm from the bottom, there is the layer not deformed by bending.

The bending radius is 18.55 cm. Pseudomorphic strains in the epitaxial layer are com‑
pressive and amount to over 12%. The bending of the epitaxial structure slightly reduces 
strains by a fraction of a percent (blue line in Fig. 3).

The generated misfit dislocations have a very strong effect on the relaxation of the lat‑
tice stress and reduction of deformations in the individual layers of the heterostructure 

Fig. 2  Distribution of strains ε∥ at the GaAs substrate with a thickness of 1100 µm. Blue line refers to the 
pseudomorphic strains. Red line refers strains with additional bending of the structure
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(Fig. 3). Figure 3 also shows the parameter p, which is the average distance between mis‑
fit dislocation lines in the interface areas between the epitaxial layers. A very dense grid 
of dislocations (p = 2.66 nm) is at the border buffer‑substrate. However Ponce et al. stud‑
ied the interface structure of CdTe(100)/GaAs(100) obtained by growing thin CdTe films 
on GaAs (100) by molecular beam epitaxy. By using high‑resolution transmission elec‑
tron microscopy, they found the presence of two‑dimensional dislocation network at the 

Fig. 3  Spatial distribution of strains ε∥ at the HgCdTe epitaxial layer at 300 K deposited on GaAs (100) 
substrate

Fig. 4  Calculated band structure as a function of thickness in the epitaxial layer (solid lines). Dashed line 
shows spatial distribution of cut off wavelength λco
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interface. The dislocations run along 〈110〉 directions in the interface with periodicity of 
3.1 nm. The result of our calculations (p = 2.66 nm) is very similar to their experimental 
result. Fortunately, in the other interfaces of the heterostructure analyzed by us, the density 
of dislocations is by orders of magnitude smaller. Figure 4 shows the spatial distribution 
of the edges of energy bands and the cut off wavelength �co = 1.24∕Eg in the substrate and 
epitaxial layers, taking into consideration the influence of lattice deformations on the posi‑
tion of the band edges. The calculated distribution of electric charge of dislocation cores 
(see “Appendix”) enables to estimate the electric charge density of the order of  5x1012  cm2 
in the GaAs‑CdTe interface. However, the dislocation cores are substantially shielded by 
the free carriers and the ionized dopants which results in a significant reduction of the 
resultant electric charge in the interface area. Figure 4 does not include the impact of this 
charge on the potential distribution. It is expected that the overall charge is small enough 
that it will not significantly influence the shape of the obtained sheet. Even if we include it 
in our considerations, it will change the distribution of the band edges only in the GaAs‑
CdTe interface area and will not affect the course of the band structure in the other more 
important layers of the heterostructure.

Figure 5 presents the intensity of the electric field E as a function of the distance from 
the line of a dislocation α. The calculations were made for dislocations which could exist 
in the GaAs substrate and in all deposited layers shown in Fig. 1. The method of calculat‑
ing the electric field strength around the dislocation core is presented in the “Appendix”. 
Knowing it, we can calculate the electrical energy per unit area (see Eq.  (7) in “Appen‑
dix”). We assumed that the average electron energy in the dislocation bands in CdHgTe 
layers and CdTe buffer are above the apex of the valence band at a distance EDIS = 0.32Eg

.). After (Wosinski and Figielski 1993) we assumed that EDIS in GaAs substrate is lying 
0.68 eV below the conduction band.

The calculated electrical energies of dislocation per unit area fall within the range 
10−7 ÷ 10−5 J cm−2. These values are many orders of magnitude smaller than the elastic 
energy expressed by the relation (4). (Ciura et al.2016) had investigated the trap levels 

Fig. 5  The electric field intensity as a function of the distance from the dislocation lines, lying in particular 
layers of the heterostructure shown in Fig. 1
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in HgCdTe heterostructures which were MOCVD grown on (111) CdTe buffered (100) 
GaAs substrates at VIGO S.A. laboratories with low frequency noise spectroscopy. 
Apart from the hole traps, three electron traps were also found. Their energy levels fol‑
low the trend lines  ET = 0.75Eg and  ET = 0.35Eg. The first line is easy to identify as 
the line associated with mercury vacancies. The second line was not identified by the 
authors and is probably associated with dislocations. This trend line is very close to the 
value assumed by us EDIS = 0.32Eg . Using this value, we calculated the carrier lifetime 
and obtained a good fit to the experimental current–voltage characteristics of HgCdTe 
photodiodes in many of our previous works, e.g. (Jóźwikowski et al. 2010).

Physical parameters of GaAs used in the calculations were taken from work (Vurgaft‑
man et al. 2001), and of CdTe and HgCdTe from monographs (Capper 1994 and Capper 
and Garland 2011).

3  Conclusions

Including misfit dislocations in the calculations of strains allows to estimate the real mech‑
anisms of the lattice relaxation. By computing the minimum energy, we can numerically 
determine the values of average distances between misfit dislocations lines in the interfaces 
of HgCdTe heterostructures. The calculation methods used here are described in detail in 
our two earlier works. In this work as a novelty we presented the numerical method of 
calculating the spatial distribution of electrostatic potential around the dislocation core and 
calculating the statistical distribution function of electrons in the dislocation band. We also 
estimated the amount of electrical energy in the area surrounding the core of dislocations α 
and β in CdHgTe. We added it to the total elastic energy connected with the lattice stress. 
Its share, however, is insignificant and does not affect the density of misfit dislocations in 
interfaces of considered hererostructure.

Acknowledgements The work has been done under financial support of the Polish National Science Centre 
as research Projects No. 2016/23/B/ST7/03958 and 2016/23/N/ST7/03618.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix

Electrical energy of dislocations

Figure 6 shows a diagram of the dislocation band formed by energy states associated with 
unsaturated bonds of the dislocation core. We assumed that the distance between these 
bonds is equal to b, the length of the Burger’s vector, which for dislocation line of length 
equal to l gives, due to spin degeneration, the number of states in the band equal to 2 l

b
 . 

When the dislocation core is electrically neutral, some of these energy levels are filled with 

http://creativecommons.org/licenses/by/4.0/
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electrons in the amount resulting from the semiconductor type and equal to � l

b
 . And so, for 

atoms from the fourth group � =
1

2
 , for dislocation � in  AIIBVI compounds we should get 

� =
4

6
 , and for dislocation � � =

2

6
 , respectively. Similarly, for  AIIIBV compounds � =

5

8
 for 

� and � =
3

8
 for � . Due to the role of ionic bond in semiconductor compounds, the � param‑

eter may differ slightly from those given herein. For example, assuming the same ionicity 
of bonds for all  AIIIBV compounds, (Masut et al. 1982)] received �� ≅ 0.83 and �� ≅ 0.17 . 
It is possible to pass electrons from the areas surrounding the dislocation line to the dislo‑
cation band as well as from the dislocation band to the surrounding area. Then, instead of 
the parameter � , we will use the parameter nDIS specifying the number of electrons in the 
dislocation band. We assumed that the average energy value of the dislocation band is EDIS 
above the apex of the valence band (Jóźwikowski et al. 2012).

The energy accumulated in the electrical field formed by a dislocation core with the 
length l reads

The AB and CD segments contribute to the electrical energy of dislocations lying in a 
rectangular plane element marked with a dotted line. l = 2p. Thus, the amount of electrical 
energy per unit area reads (Figs. 7, 8)

(6)Eel =
1

2
�0l

rm

∫
0

(
��

�r

)2

�r2�rdr

(7)Ěel =
2𝜋

p
𝜀0

rm

∫
0

𝜀(r)
(
𝜕𝛹

𝜕r

)2

rdr

Fig. 6  A model of dislocation 
band formed by unsaturated 
bonds of atoms in the disloca‑
tion core

EC

EV

EDIS

Fig. 7  The electrical potential around the dislocation line is counted in a cylinder with a radius  rm equal to 
half the distance between the dislocation lines
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Calculation of the electrostatic potential

The free Helmholtz energy F = E − TS of the dislocation core per the unit of length reads

The first two components in the Eq. (8) refer to the energy of electrons, and the third is 
their entropy S multiplied by temperature T. nDIS is the number of occupied electron states in 
dislocation with length l.

From condition, that �F

�
(

nDIS

l

) = 0 and using the Strirling’s relation ln (n!) = n ⋅ ln (n) − n , 

one obtains the relation

where EV is the edge of the valence band, � is the Fermi energy, and b is the Burger vector 
assumed to be equal the lattice constant a.

To obtain nDIS
l

 we need to calculate the value of electrical potential � (0) , in the disloca‑
tion core. To do this, we must solve the Poisson equation in the area surrounding the dislo‑
cation core and consider the electrical charge that is there. The Poisson equation is solved 
iteratively by the Newton’s method:

Where �n+1(r) is the potential value after the n‑th iteration, and ��n(r) is the n‑th itera‑
tive correction. It is crucial to determine the initial potential values. We determine these 
from the local condition of electrical neutrality at every point of the structure. It also 
depends on the value of Fermi energy. Under conditions of thermal equilibrium, the value 
� = 0 should be used.

Electrical neutrality in the dislocation core will occur when:
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Fig. 8  A fragment of the grid 
created by misfit dislocations
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From here we get initial value of potential in dislocation core

However, in the area surrounding the dislocation line, the initial potential is determined 
numerically from the condition:

Where concentration of electrons, holes, ionized donors and ionized acceptors is 
expressed as below:

k is the wave vector, �k
V

 and �k
V

 is the kinetic energy of holes and electrons respec‑
tively, Eg is the width of the energy gap, T denotes temperature, kB is the Boltzmann’s 
constant, ED and EA is the ionization energy of donors and acceptors, respectively. BZ 
means integration in the first Brillouine’s zone, NA and ND is the concentration of the 
acceptors and donors, respectively.

To find coefficients g1 and g0 , you should know the type of orbitals present in the 
analyzed doping state. A thorough analysis of the degeneration of dopant states was 
made by D. Look in his book (Look 1989).

The potential was calculated numerically by solving the Poisson equation expressed 
by an equivalent diffusion equation (as in Jóźwikowska 2008):

where V denotes the volume of the ring of the ABCD cross‑section, A is the ring’s surface, 
� is the density of electric charge, ∇ is the gradient, and t is the pseudo time.

Due to the small volume of the ring we may, instead of integration, multiply ��
�t

 and 
� by the volume V of the ring. Similarly, �r∇�  is multiplied by the surface of the ring.
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[
1 +

g1D

g0D
exp

(
� − EV (r) − Eg(r) + e�1(r) + ED(r)

kBT

)]

(18)∫
V

��

�t
dV = �0∮ �r∇�dA + e∫

V

�dV
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But in the iterative equation we can write:

Thus, the Eq. (18) in the iterative form will be expressed as follows

which is the boundary condition at the point r = 0.
Potential �  was calculated in the central point S shown in Fig.  9. An example of 

cylindrical ring of a rectangular ABCD cross‑section around a segment of the disloca‑
tion core of the length dz. For these rings, the difference scheme expressed by the Gauss 
theorem of calculus (as in Jóźwikowska 2008) was constructed to solve Eq.  (17). The 
Neumann boundary condition for r = rm

(19)
�� (1)
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�a2 = �0�r∇�2�a + e
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�
1

b
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l

)

(20)

�� (1)
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�n+1(1) − �n(1)

�
=

��n(1)

�
= L

(
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)
≅

1

2
L
(
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)
+

1

2
L
(
�n

)
= L

(
�n

)
+

1

2

�L
(
�n

)
��n

��n

(21)where L(� ) =
2�0�r

a
∇� +

e

�a2

(
�
1

b
−

nDIS

lDIS

)

(22)

⎧⎪⎨⎪⎩
1

�
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�
0
�
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�

��
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Fig. 9  We divide the area around the dislocation core into cylindrical rings with rectangular cross‑sections. 
An example of such a ring with a rectangular section ABCD is shown in the picture. In these rings we solve 
the Poisson equation numerically. The area containing the core section of the dislocation core is a cylinder 
with a radius of a (lattice constant) containing an uncompensated electrical charge equal to 
−e

(
n
DIS

− �
l

b

)
dz

l
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in the calculations we have achieved the convergence of the iterative method for τ = 10−4.

References

Capper, P. (ed.): Narrow Gap Cadmium‑Based Compounds. INSPECT, IEE, London (1994)
Capper, P., Garlan, J. (eds.): Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley 

Series in Materials for Electronic & Optoelectronic Applications). Wiley, New York (2011)
Ciura, L., Kolek, A., Kębłowski, A., Stanaszek, D., Piotrowski, A., Gawron, W., Piotrowski, J.: Investigation 

of trap levels in HgCdTe IR detectors through low frequency noise spectroscopy. Semicond. Sci. Tech‑
nol. (2016). https ://doi.org/10.1088/0268‑1242/31/3/03500 4

Gopal, V., Gupta, S.: Effect of dislocations on minority carrier lifetime in HgCdTe. J. Appl. Phys. (2003). 
https ://doi.org/10.1063/1.16440 39

Gosling, T.J., Bullough, R., Jain, S.C., Willis, J.R.: Misfit dislocation distributions in capped (buried) 
strained semiconductor layers. J. Appl. Phys. (1993). https ://doi.org/10.1063/1.35344 5

Jain, U., Jain, S.C., Nijs, J., Willis, J.R., Bullough, R., Mertens, R.P., Van Overstraeten, R.: Calculation of 
critical‑layer‑thickness and strain relaxation in  GexSi1‑x strained layers with interacting 60 and 90° dis‑
locations. Solid State Electron. (1993). https ://doi.org/10.1016/0038‑1101(93)90084 ‑4

Jain, S.C., Willander, M., Pinardi, K., Maes, H.E.: A review of recent work on stresses and strains in semi‑
conductor heterostructures. Phys. Scr. (1997). https ://doi.org/10.1088/0031‑8949/1997/T69/009

Jóźwikowska, A.: Numerical solution of the nonlinear Poisson equation for semiconductor devices of a 
diffusion‑equation finite difference scheme. J. Appl. Phys. (2008). https ://doi.org/10.1063/1.29822 75

Jóźwikowska, A., Jóźwikowski, K., Ciupa, R., Suligowski, M.: Estimation of influence of lattice strain, 
bending and doping on the width of energy gap in InAsSb heterostructures. Infrared Phys. Technol. 
(2019a). https ://doi.org/10.1016/j.infra red.2019.04.020

Jóźwikowska, A., Suligowski, M., Jóźwikowski, K.: Enhanced numerical design of two‑barrier infrared 
detectors with III–V compounds heterostructures considering the influence of lattice strain and misfit 
dislocations on the band gap. Optical and Quantum Electron 51, 247 (2019b). https ://doi.org/10.1007/
s1108 2‑019‑1960‑3

Jóźwikowski, K., Kopytko, M., Rogalski, A., Jóźwikowska, A.: Enhanced numerical analysis of current‑
voltage characteristics of long wavelength infrared n‑on‑p HgCdTe photodiodes. J. Appl. Phys. (2010). 
https ://doi.org/10.1063/1.34839 26

Jóźwikowski, K., Jóźwikowska, A., Kopytko, M., Rogalski, A., Jaroszewicz, L.R.: Simplified model of dis‑
locations as a SRH recombination channel in the HgCdTe heterostructures. Infrared Phys. Technol. 
(2012). https ://doi.org/10.1016/j.infra red.2011.10.003

Kim, J.D., Razeghi, M.: Investigation of InAsSb infrared photodetectors for near room temperature opera‑
tion. Opto‑Electron. Rev. 6(3), 217–230 (1998)

Kopytko M., Jóźwikowski K., Martyniuk P., Gawron W., Madejczyk P., Kowalewski A., Markowska O., 
Rogalski A., Rutkowski.: J.:Status of HgCdTe barrier infrared detectors grown by MOCVD in Military 
University of Technology. J. Electron. Mater. (2016). https ://doi.org/10.1007/s1166 4‑016‑4702‑3

Look, D.C.: Electrical characterization of GaAs materials and devices. Wiley, New York (1989) (ch.1.4 and 
Apendix C)

Masut, R., Penchina, C.M., Farvacque, J.L.: Occupation statistics of dislocation deep levels in III‑V com‑
pounds. J. Appl. Phys. 53(7), 4964–4969 (1982). https ://doi.org/10.1063/1.33133 2

Nouruzi‑Khorasani, A., Jones, I.P., Dobson, P.S., Williams, D.J., Astles, M.G.: Transmission elec‑
tron microscopy of LPE grown CdHgTe. J. Crystal Growth. (1989). https ://doi.org/10.1016/0022‑
0248(89)90532 ‑0

Pelliciari, B., Baret, G.: Role of dislocations in n‐type annealed CdHgTe grown by liquid‐phase epitaxy. J. 
Appl. Phys. (1987). https ://doi.org/10.1063/1.33920 0

Ponce, F.A., Anderson, G.B., Balliangall, J.M.: Interface structure in heteroepitaxial CdTe on GaAs (100). 
Surf. Sci. (1986). https ://doi.org/10.1016/0039‑6028(86)90887 ‑3

Sidorov, YuG, Yakushev, M.V., Varavin, V.S., Kolesnikov, A.V., Trukhanov, E.M., Sabinina, I.V., Loshka‑
rev, I.D.: Density of Dislocations in CdHgTe Heteroepitaxial Structures on GaAs (013) and Si(013) 
Substrates. Phys. Solid State (2015). https ://doi.org/10.1134/S1063 78341 51103 11

(23)
�� (0)

�r

||||r=rm
= 0.

https://doi.org/10.1088/0268-1242/31/3/035004
https://doi.org/10.1063/1.1644039
https://doi.org/10.1063/1.353445
https://doi.org/10.1016/0038-1101(93)90084-4
https://doi.org/10.1088/0031-8949/1997/T69/009
https://doi.org/10.1063/1.2982275
https://doi.org/10.1016/j.infrared.2019.04.020
https://doi.org/10.1007/s11082-019-1960-3
https://doi.org/10.1007/s11082-019-1960-3
https://doi.org/10.1063/1.3483926
https://doi.org/10.1016/j.infrared.2011.10.003
https://doi.org/10.1007/s11664-016-4702-3
https://doi.org/10.1063/1.331332
https://doi.org/10.1016/0022-0248(89)90532-0
https://doi.org/10.1016/0022-0248(89)90532-0
https://doi.org/10.1063/1.339200
https://doi.org/10.1016/0039-6028(86)90887-3
https://doi.org/10.1134/S1063783415110311


 A. Jóźwikowska et al.

1 3

294 Page 14 of 14

Virt, I., Bilyk, M., Khlyap, G., Shkumbatiuk, P., Kuzma, M., Dumanski, L.: Photoelectric proper‑
ties of dislocations in  Hg1‑xCdxTe crystals. Proc. EDMO/Vienna (2001). https ://doi.org/10.1109/
EDMO.2001.97432 8

Vurgaftman, I., Mayer, J.R., Ram‑Mohan, L.R.: Band parameters for III‑V compound semiconductors and 
their alloys. J. Appl. Phys. (2001). https ://doi.org/10.1063/1.13681 56

Wosinski, T., Figielski, T.: Energy levels and electrical activity of dislocation electron states in GaAS. Acta 
Physica Polonica A (1993). https ://doi.org/10.12693 /APhys PolA.8351

Xie, C., Pusino, V., Khalid, A., Craig, A.P., Marshall, A., Cumming, D.R.S.: Monolithically integrated 
InAsSb‑based nBnBn heterostructure on GaAs for infrared detection. IEEE J. Sel. Top. Quantum Elec‑
tron. 24, 1–6 (2018). https ://doi.org/10.1109/JSTQE .2018.28281 01

Yamamoto, T., Miyamoto, Y., Takinawa, K.: Minority carrier lifetime in region close to the interface 
between the anodic oxide and CdHgTe. J. Crystal Growth (1985). https ://doi.org/10.1016/0022‑
0248(85)90156 ‑3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1109/EDMO.2001.974328
https://doi.org/10.1109/EDMO.2001.974328
https://doi.org/10.1063/1.1368156
https://doi.org/10.12693/APhysPolA.8351
https://doi.org/10.1109/JSTQE.2018.2828101
https://doi.org/10.1016/0022-0248(85)90156-3
https://doi.org/10.1016/0022-0248(85)90156-3

	Numerical estimation of lattice strain, bending and generation of misfit dislocations in CdHgTe heterostructures grown on GaAs substrate
	Abstract
	1 Introduction
	2 Results and simulation procedure
	3 Conclusions
	Acknowledgements 
	References




