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Abstract Optical properties of AlSb/InAs/GaInSb/InAs/AlSb quantum wells (QWs)

grown on an InAs substrate were investigated from the point of view of room temperature

emission in the mid- and long-wavelength infrared ranges. By means of two independent

techniques of optical spectroscopy, photoreflectance and temperature-dependent photolu-

minescence, it was proven that the main process limiting the performance of such InAs

substrate-based type II structures is related to the escape of carriers from the hole ground

state of the QW. Two nonradiative recombination channels were identified. The main

process was attributed to holes tunneling to the valence band of the GaAsSb spacing layer

and the second one with trapping of holes by native defects located in the same layer.
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Interband cascade lasers (ICLs) (Meyer et al. 1995; Yang 1995), emitting at room tem-

perature in the continuous-wave operation mode, are of interest for applications in optical

gas sensors (Bauer et al. 2010), utilized e.g. for human breath analysis (Tittel 2010) or

detection of harmful or toxic gases, like formaldehyde (Lundqvist et al. 2012), methane

(Dong et al. 2016) or nitric oxide (Von Edlinger et al. 2014). ICLs have been shown to be

efficient laser sources, with high power operation at room temperature (Jiang et al. 2014;

Kim et al. 2012) and low threshold currents, resulting in low power consumption (Vur-

gaftman et al. 2011). Nevertheless, there is still a huge demand for new generation devices

emitting in the long-wavelength infrared (LWIR) range, in particular to detect higher order

hydrocarbons. Such ICL devices are typically based on InAs substrates instead of GaSb,

resulting in employment of plasmon-enhanced claddings (Ohtani and Ohno 2002; Tian

et al. 2012). It has been shown that lasers based on such concept operate at temperatures

above ambient, up to 377 K, while lasing at *5 lm in pulsed mode. The LWIR emission,

including the nowadays record of 11 lm (Li et al. 2015), is mostly delivered by multimode

devices operating at low temperatures in pulsed-mode, limiting their possible application in

optical gas sensors. The longest emitted wavelength among the devices operating at room

temperature has been shown to be 7 lm (Dallner et al. 2015) in pulsed mode, thus there is

still plenty of room for further improvements and development of ICLs grown on InAs

substrates, especially for those operating at ambient temperature in a continuous-wave

mode. Therefore knowledge on carrier loss mechanisms reducing the maximum operation

temperature is of high interest.

In this paper, we have studied type-II W-design AlSb/InAs/GaInSb/InAs/AlSb quantum

wells (QWs) grown on an InAs substrate, designed to emit at ambient temperature in a

broad spectral range from the mid-(*5 lm) to long-wavelength (beyond 8 lm) infrared.

We have measured the temperature dependent photoluminescence in order to determine the

main carrier escape channels, which are usually being the main factors limiting the device

performance. The obtained results have been discussed and compared with previously

published results regarding GaSb-based quantum wells designed for emission below 4 lm

(Sȩk et al. 2011).

The investigated structures were grown on an (100) oriented InAs substrate, in a solid

source molecular beam epitaxy system equipped with valved cracker cells for both anti-

mony and arsenic. Four structures containing type II quantum wells as an optically active

region were studied. Samples A–C were designed in a common ‘‘W-shaped’’ scheme, with

two InAs layers for the electron confinement and one GaInSb layer for the confinement of

holes. Table 1 summarizes the QWs structural parameters obtained from the analysis of

high-resolution X-ray diffraction data and the growth calibration procedures. Each QW is

surrounded by 2.5 nm thick AlSb barriers. In order to enhance the overall optical response

each sample contains five such ‘‘W-like’’ quantum wells, separated by a 25 nm thick

GaAs0.08Sb0.92 layer lattice-matched to InAs. The entire structure is terminated by the

same GaAs0.08Sb0.92 layer.

Table 1 The layer structure of
the investigated QWs

Sample name InAs thickness
(nm)

Ga0.76In0.24Sb
thickness (nm)

Sample A 2.8 3

Sample B 2.95 3

Sample C 3.1 3
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In order to measure photoluminescence (PL) and photoreflectance (PR) in a wide

spectral range an evacuated Fourier-transform (FT) spectrometer Bruker Vertex 80v was

used and operated in step-scan mode (Firsov and Komkov 2013; Motyka et al. 2009b;

Motyka and Misiewicz 2010). A liquid-nitrogen cooled mercury cadmium telluride pho-

todetector and a KBr beamsplitter were employed. For both PL and PR measurements, the

pump beam was provided by a 640 nm 60 mW semiconductor laser diode, which was

mechanically chopped at a frequency of 275 Hz. The phase sensitive detection of the

optical response was performed using a lock-in amplifier. A similar FT-based approach has

been demonstrated to be an efficient tool for optical characterization in the mid-infrared

spectral range of narrow-band gap materials (Hosea et al. 2005; Shao et al. 2007) as well as

quantum cascade lasers (Dyksik et al. 2016; Pierscinski et al. 2014).

To calculate the electronic structure of the type-II W-design QWs we used the

8 9 8 k�p Hamiltonian defined for the [001] growth direction (Ryczko et al. 2013). The

model includes the strain effects after (Bir et al. 1976). The carrier wavefunctions and

subband energies were determined by numerically solving the Schrödinger equation and

employing the finite difference method (Thomas 1995). All material parameters were taken

from (Vurgaftman et al. 2001).

Figure 1a presents the band alignment of the InAs-based type II AlSb/InAs/GaInSb/

InAs/AlSb quantum well together with the latticed-matched spacing layer made of

GaAs0.08Sb0.92. The valence band edge of such layer is approx. 100 meV below the

valence band of GaSb (see Fig. 1b). It has been shown before that GaSb-based structures

with a GaSb spacing layer exhibit a nonradiative recombination channel attributed to the

tunneling of holes from the QW to the valence band of the GaSb spacer (Sȩk et al. 2011).

This process is expected to be eliminated in the case of InAs-based structures due to a

much deeper confinement potential for holes, with respect to the valence band edge of the

GaAs0.08Sb0.92 layer.

In general, the QW emission can be quenched by (i) an escape of carriers from the QW

through excited states; (ii) a direct escape of electrons (holes) from the respective QW

ground state to the electron (hole) band continuum; (iii) trapping of carriers by defect states

(e.g. in the barriers). In order to find out if a scenario with the first process is probable for

the given structures, the absorption-like photoreflectance measurements were performed to

probe the spectrum of the excited states. The second and third processes were investigated

by means of the temperature resolved photoluminescence and will be discussed below yet.

Fig. 1 Band alignment for
investigated type II QW with the
GaAsSb a and GaSb b spacing
layers
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Figure 2 presents the photoreflectance spectra for the samples A, B and C, measured at a

temperature of 77 K. For each spectrum the signal at 0.41 eV is related to the InAs band

gap optical transition, whereas the signal at lower energy side is associated with the

fundamental transition in the investigated quantum wells, between the first heavy hole and

the first electron states. A typical energy shift due to the thickness variation of the electron

confining InAs layer is visible. Similar behavior was also observed for the type II QWs

grown on a GaSb substrate (Motyka et al. 2012, 2009a). In this case, widening of an InAs

well from 2.8 to 3.1 nm allowed decreasing the transition energy from 240 to 210 meV,

which translates into an almost 1 lm shift in the wavelength scale. In the PR spectra no

evidence of additional features related to the excited states was found between the two

singularities separated by *200 meV. Although the calculations predict the presence of

the second confined electron state in such a broad InAs well, its wavefunction exhibits an

asymmetric nature thus the transition matrix element with the respective hole state is

negligible. The process of electrons escaping from the QW through the ground and/or

excited state is not relevant here, since, both states are below the QW edge by *480 and

*570 meV, respectively. At this point it is worth pointing out that according to calcu-

lations the energy distance between the first and the second electron levels is *90 meV for

samples A–C. Further widening of the InAs well in order to reach longer emission

wavelengths is subsequently reducing the distance between the respective electron states,

with 82 meV for the 3.5 nm wide InAs well. As a result, the reasonable spacing between

both states should not influence the selective injection of carriers into the upper lasing level

in an operational device.

Figure 3 compares room temperature PL spectra for the three investigated samples A, B

and C. The effect of the InAs layer thickness on the confinement of electrons is clearly

visible, in spite of very small QW width changes. Sample A exhibits a peak of emission at

Fig. 2 Low temperature (77 K)
photoreflectance spectra for
AlSb/InAs/GaInSb/InAs/AlSb
QWs with different InAs layers
width
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*6 lm, whilst sample C with *0.3 nm thicker InAs layer emits around 8 lm, i.e.

reaching the long-wavelength infrared region. This might be considered as an important

factor in the case of emitters in the LWIR spectral range where reduction of the funda-

mental transition by 10 meV allows obtaining hundreds of nanometers shift in the emitted

wavelength (Dyksik et al. 2015).

The integrated PL intensity was extracted from each individual spectrum I(E) by cal-

culating the I(E) dE integral, where E is the photon energy. The Arrhenius plot of the

integrated PL for sample A is presented in Fig. 4. The measurements were performed in a

wide range of temperatures, from 15 to 310 K, and a total energy shift of about 40 meV

was observed, which corresponds mainly to the shrinkage of the respective band gaps with

temperature. At this point it is worth to mention the sensor’s temperature read-out is

assumed to be identical to the sample’s active region temperature since (i) the sample is

mounted on the heat sink with the temperature sensor and heater just behind it and (ii) the

external pump beam (60 mW, spot size of 9 mm2) should not influence the sample tem-

perature due to the generated power density lower than 1 Wcm-2.

In order to investigate the mechanism of PL quenching, the integrated PL emission was

analyzed by means of the standard Arrhenius formula:

Fig. 3 Room temperature
photoluminescence for all
investigated QWs, with different
InAs layer thickness

Fig. 4 Analysis of
photoluminescence signal
intensities as the function of
inverse temperature with
activation energies presented in
inset
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IðTÞ ¼ Ið0Þ
1 þ

Pn
i¼1 Ci exp �Ei

kBT

ð1Þ

which can be interpreted in terms of n thermally activated processes, with activation

energies Ei and amplitude parameters Ci understood as the ratio of radiative to nonradiative

lifetimes (Fang et al. 2015). The solid line in Fig. 3 stands for the model from Eq. 1. In

order to perform the fitting procedure, two activation energies were assumed, reflecting

two independent carrier loss processes. Similar procedure was also performed for the

samples B and C, in order to determine the activation energies in the investigated quantum

wells.

The activation energies E1 and E2 as a function of the InAs thickness are presented in

the inset to Fig. 3. The first activation energy (black diamonds) remains nearly constant for

all the investigated samples and equals to approx. 120 meV. This energy is assigned to a

process of thermally activated carriers tunneling from the heavy hole state to the valence

band of the GaAs0.08Sb0.92 spacer (see Fig. 1). Although GaAsSb and GaInSb layers are

separated by a 2.5 nm thick AlSb barrier and *3 nm thick InAs layer, such tunneling

process was also reported in similar type II material systems (Liu et al. 1993; Longenbach

et al. 1990). In our case the calculated tunneling probability of a thermally activated hole

into the valence band edge of GaAsSb equals to 1.8 9 10-4, meaning every thousandth

hole would tunnel through the barrier. The nearly constant value of E1 is consistent with

theoretical predictions since the GaInSb layer for the hole confinement has the same

thickness in every measured sample, thus the energy distance between the heavy hole state

and the GaAsSb valence band edge is constant.

The second process affecting the PL intensity and manifested by another activation

energy E2, which equals to *20 meV for samples A–C, can be connected with a process of

trapping holes by the low-energy native defects in GaAsSb. This unintentionally doped

GaSb-based compound is always p-type due to antisite defects (Kujala et al. 2014; Suhandi

et al. 2011) (Ga atoms in Sb sites), providing an acceptor trapping state approx.

90–100 meV above the valence band edge, i.e. in the gap (dash-dot line in Fig. 1). In our

energy scale it is about 20–30 meV from the bottom of the confined hole subband.

Although the second process is present, the ratio C1/C2, reflecting the efficiency of each

process, equals to *100. Thus one can suppose that the holes are lost more effectively by

the tunneling to the band edge of the neighboring spacer layer than to be trapping by the

native defects in GaAsSb. Also, the density of states for the latter one is assumed to be

orders of magnitude lower, which affects the probability of the tunneling-assisted trapping

process of the holes.

In conclusion, we have performed optical measurements on a set of type II QW samples

grown on InAs substrates emitting in the range of 5–8 lm. Two channels of nonradiative

recombination were identified by means of photoreflectance and temperature resolved

photoluminescence measurements. The main process limiting the performance was

attributed to holes escaping from the valence band well via tunneling through the AlSb

barrier to the valence band of the GaAsSb spacing layer. Since the valence band of GaAsSb

is located approx. 100 meV below the respective valence band of GaSb, the deeper

potential for the confinement of holes with respect to GaSb is expected and manifested by

the activation energy of *120 meV. This value is almost one order of magnitude higher

than the value reported for GaSb-based structures, which might be beneficial in the case of

operational ICL devices. The second activation energy was connected with the escape of

holes to native defects in GaAsSb. The nonradiative process involving such carrier traps
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has a secondary impact due to a low density of states and the overall lower probability of

this process.
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