
Non-destructive carrier concentration determination
in InAs thin films for THz radiation generating devices
using fast differential reflectance spectroscopy

Michał A. Kozub1
• Marcin Motyka1

• Mateusz Dyksik1
•

Grzegorz Sęk1
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Abstract We present a fast and robust optical method of determining carrier concentrations in

heavily doped layered structures. We discuss several advantages of the technique as compared

to other, more commonly applied methods using as an example InAs based devices used for

THz radiation generation. Our approach leads to a more accurate estimation of doping levels in

the investigated structures and aids the standard Hall measurements in precise predictions of

radiative efficacy in the THz region. Predicted enhancement factors reproduce THz-Time

Domain Spectroscopy (TDS) experiment results within a 2 % accuracy.

Keywords FDR � Doping density � Carrier concentration � THz � InAs

1 Introduction

The knowledge of doping levels in semiconductor structures may be considered paramount

from the point of view of fabrication of many devices requiring either n- or p-type doped

layers. This is the case for both lasers and detectors based on p-n junctions. The same is
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true for photonic devices where obtainable improvement is largely dependent on doped

layers owing to the plasmon enhancement effect (N’Tsame Guilengui et al. 2012). Finally,

it is an extremely significant factor in the case of terahertz emitters utilizing InAs doped

layers (Kozub et al. 2015) and also in case of mid infrared semiconductor lasers (both

Quantum Cascade Lasers (QCLs) Ohtani and Ohno 2003; Teissier et al. 2004 as well as

Interband Cascade Lasers (ICLs) Yang 1995), where doped InAs layers are used for a

plasmon-based enhancement of waveguiding properties (Tian et al. 2010). The method of

our choice for the determination of carrier concentrations is the Fast Differential Reflec-

tivity (FDR) method (Motyka and Misiewicz 2010). In the paragraphs to follow we discuss

it’s advantages above other commonly used techniques. In this work we focus on InAs

based THz emitters utilizing the Photo–Dember effect for radiation generation (Kozub

et al. 2015). They can be classified among semiconductor surface generation methods

which constitute one branch of THz sources beside the commonly used low temperature

(LT) grown GaAs antennas and organic crystals (4-N,N-dimethylamino-40-N0-methyl

stilbazolium tosylate (DAST) crystals being perhaps the most notable). One significant

advantage of these generation methods is the ease of pump beam alignment when com-

pared to LT-GaAs antennas and lower average pump beam power then usualy present in

organic crystals. This makes InAs emitters enticing for various THz applications, however

to efficiently characterize them one needs to know the level of carrier concentration within

one of it’s layers.

2 Sample and experiment description

For the aforementioned application we fabricated a series of samples consisting of InAs

grown on SI-GaAs in a Anelva molecular beam epitaxy (MBE) reactor. We can dis-

tinguish two layers of InAs in our structures: the top one—serving as an active layer—

where generation of THz frequency radiation occurs; and a bottom one—directly

adjacent to GaAs—that serves as a reflection layer and is highly doped. Additionally,

doping of the bottom (reflection) layer was done with two distinct doping techniques:

uniform- and d(delta)-doping (the efficacy of this generation method, including experi-

mental details, has been discussed elsewhere Kozub et al. 2015). Silicon was used as the

doping agent in order to achieve high, n-type, conductivity of InAs—the proper Si cell

temperature, corresponding to any particular requested carrier concentration (what is

referred to later in text as ’nominal’ or ’intended’), was determined by a callibration curve

from a doped InAs test structure. Multiple samples have been investigated: the first two,

where the nominal concentration was 5 � 1018 cm�3 (samples 1 and 2); another, where it

was 5 � 1019 cm�3 (sample 3); and finaly, sample 4, where d-doping was utilized, with an

intended density of 1 � 1020 cm�3 – sample critical parameters have been sumed up in

Table 1.

Table 1 Investigated sample
characteristics, where wA is the
active layer, wR - reflection layer,
n - nominal carrier concentration

Sample wA (nm) wR (nm) n (cm-3)

1 1000 500 5 9 1018

2 1000 500 5 9 1018

3 1000 500 5 9 1019

4 1200 200 1 9 1020
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Since post growth characterization can be an issue in a strictly manufacturing enviro-

ment, usually due to limited experimental options, there is a strong need for optimization

of employed measurement facilities. At present there is a limited number of experiments

allowing for the acquisition of information regarding carrier concentration in semicon-

ductor layers or low dimensional semiconductor structures. We can distinguish electrical

methods like Hall measurements or capacity-voltage (CV) measurements—unfortunately

they all require special sample preparation, i.e. proper contact fabrication and also, as is the

case in Hall measurements, the additional application of an external magnetic field. In

contrast to electrical approaches, the existance of contactless methods should also be noted.

Optical spectroscopy experiments utilizing e.g. reflectance (Hinkey et al. 2011; Berreman

1966), transmittance (Ye et al. 2013) and ellipsometry (Raman et al. 2011) measurements

should be mentioned here and can be broadly classified as such.

We use a modified reflectance approach at the origin of which lies the phenomenon first

described by Berreman (1966) in the context of dielectric films deposited on metals. Due to

the enhancement of the normal electric field component of incident light, that occurs when

the permitivity � xð Þ approaches 0 at the plasmon frequency, we can observe a charac-

teristic change in the absorption spectrum. At the microscopic level these changes where

ascribed to losses C of the phonons. However, in the contex of metals, absorption is due to

the free carriers of the surface plasmon polariton mode, in turn named the ’Brewster’ mode

(Vassant et al. 2012)—which is more appropriate in our case. We present this effect in a

reflectance measurement in Fig. 1. Since there is a need for the electric field of the

incoming light to have non-zero components in the sample growth direction, therefore

measurements at oblique angles are preferable—in our case at a 45� angle.

Our experimental setup is based on a Bruker Vertex 80 spectrometer. The measure-

ments have been performed utilizing a rather complex experimental configuration (Motyka

et al. 2009a), as it has also many other functionalities, but in principle the same results

should be possible to obtain by using the simplest fourier spectrometer and a modulating

laser. The laser itself is a CW, single mode semiconductor laser giving 40 mW of average

power at the 661nm wavelength with a spot size of 1 mm2. Such conditions yield

� 1015cm�3 photogenerated carriers, a value greatly below our measured densities, thus

having no effect on obtained results. In the FDR approach (Motyka and Misiewicz 2010;

Fig. 1 Experimental
manifestation of the Brewster
mode as observed in a reflection
measurement. The typical
absorption dip disappears only in
the case of one particular
polarisation of incident radiation,
whereas it should be visible in
others
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Motyka et al. 2011) a rapid scan experiment mode greatly limits the acquisition time of

experimental data—typically to the order of single minutes—which is of high importance,

especialy when similar methodology is used on an industrial level.

The wavenumber position of the p-polarisation dip is obtained through a third

derrivative Lorentzian fit of the spectra. As we have shown in our previous work

(Motyka et al. 2009b), such a fit can give us a spectral resolution better then 10 meV—

which means that even in the worst case scenario, of overlaping spectral features, we

can separate two carrier concentration signals differing by about 1 � 1018cm�3. In the

case, however, of a single doped layer—which is what we are dealing with—the source of

the signal is easy to pin-point and a more accurate estimation of the peak position is

possible.

3 Results and discussion

Figure 2 shows a comparison of obtained results between a standard reflectivity

measurement (panel A) and the FDR (panel B) method for the same sample. The

standard reflectivity measurement displays a plethora of spectral features, however,

important information might end obfuscated or even unextractable to the untraind eye.

Therefore the most notable difference between those two are the very well pronounced

optical transitions in the FDR method signifying the base transition of InAs at 0.35 eV

and the plasma edge at around 0.11 eV. As we should only expect these two features in

the measured spectra, it is possible to extract carrier densities without the need for

polarizers, further simplifying the experiment. Panel C of Fig. 2 shows FDR spectra of

a single sample of each set exhibiting the greatest span in wavenumbers corresponding

to their plasma edge. Each sample shows the plasma edge absorption in a different spot

on the wavenumber (and energy) scale corresponding to the samples factual carrier

density.

Given the results of FDR measurements we can determine carrier concentrations based

on the plasma resonance position by cross-referance comparison with the experiment of

Hinkey et al. (2011). Therein the authors show a clear dependancy between carrier con-

centration and the plasma edge absorption feature position based on reflectance mea-

surements. Their findings (black squares), together with a power law fit of experimental

data, have been shown in panel A of Fig. 3. By using the aforementioned fit function, we

can project the positions of the plasma edge absorption of our samples, gathered through

FDR measurements, onto the exctracted dependancy and thereby obtain their corre-

sponding carrier concentration. The result of such a comparison has been depicted in panel

B of Fig. 3. We can clearly see a high divergence between intended and actual concen-

tration values in the higher carrier density region.

Given the knowledge we aquired through FDR measurements and compared with Hall

in Table 2—we can see greater discrepancy between the two in the higher density region.

For a Hall measurement in the van der Pauw configuration, uncertainty is usually ascribed

to imperfections of geometry of the system under investigation, i.e. the finite contact length

along and perpendicular to sample edges but also a non-zero distance of the contact from

the periphery. Taking this into account it is common to expect accuracy better then 5 %

when given enought care to sample preparation. However, noise can often exceed this

level, especially for low carrier concentration samples or low mobility ones—the letter

may be the case for our samples with the highest carrier concentrations, where mobility is
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the lowest. We may now move on to quantify the efficiency of THz radiation generation of

our samples. There is a manifold of approaches that may give us insight into the

improvement introduced by the incorporation of a reflection layer, and, thanks to the

results of Hall measurements, i.e. the fact that we have access to mobility/density pair

values for each of the sample, we may calculate the enhancement factor, defined as the

ratio between peek electric field amplitude of our samples’ emission to the peek electric

field amplitude of a bulk InAs crystal under same excitation conditions. This value can be

expressed as a function of reflectivity of the air/active layer interface and active/reflection

layer interface:

B

A

C

Fig. 2 Panel a Reflectance
measurement of sample 2 with a
barely showing absorption

feature at 853 cm�1. Panel b The
same sample in an FDR
experiment—plasma absorption
becomes well pronounced and
distinguishable, the same is true
for InAs base transition. Panel
c FDR results for two samples
exhibiting extreame plasma edge
positions and therefore extreme
carrier concentrations. InAs base
transitions have been included to
show the static nature of this
feature despite changing dopant
densities
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Fig. 3 Panel A Optical
determination of carrier
concentration obtained via
reflectance measurements by
Hinkey et al. (2011). Panel B
Projection of our experimental
data onto the power law fit seen
in panel A. Hall carrier
concentration values have also
been projected onto this
dependancy to show their
expected wavenumber values

Table 2 Summary of carrier concentrations in the investigated structures and a comparison between
experimental methods

Sample Carrier concentration ðcm�3Þ

Intended FDR Hall

1 5 9 1018 5.18 9 1018 4.33 9 1018

2 5 9 1018 5.34 9 1018 6.64 9 1018

3 1 9 1019 3.43 9 1019 1.44 9 1019

4 1 9 1020* 3.26 9 1019 7.8 9 1019

In the case of sample 4 (marked with *) delta doping was used and the number given would be the
equivalent carrier concentration for uniform doping
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F ¼ It

Ib
¼ 1 þ Rb

1 � RbRt

; ð1Þ

where It is the THz emission intensity from a thin film of InAs, Ib is the intensity of

emission from bulk InAs and Rb;t are the reflectivities of the bottom and top interfaces

respectively. This formula, used previously in Kozub et al. (2015), allows for a rough

estimation of refelctivity in the Drude model taking mobility/density pairs as input, and

returning the expected enhancement factor as a result, which was in fair agreement with

THz-TDS measurements.

To make predictions about the expected enhancement factor in our samples we use

carrier concentration numbers obtained through the FDR experiment combined with

mobility values steming from Hall measurements. Since in the Hall experiment both the

mentioned values are laden with some uncertainty, therefore a more accurate determination

of one of them should be reflected in a more realistic prediction of the enhancement factor.

The divergance between FDR- and Hall-originating reflectivity values has been

depicted in Fig. 4, for samples 1 to 4—the circles correspond to FDR measured carrier

concentrations and it’s corresponding reflectivity and squares denote results obtained by

Hall measurements. Two of the samples should exhibit similar values of enhancement as

they lie nearly on the same isopleth—these do not add to our understanding. On the other

hand, for the last two samples there should be a significant difference observable. For

sample #4 these points represent a reflectivity shift from 0.774 to 0.673 that further leads to

THz enhancement factors of 2.15 instead of the expected 2.38 when one would only be

using Hall measurements. Similarly, for sample #3, the expected reflectivity will get

upgraded from 0.49 to 0.63 leading to an enhancement factor rise -1.78 up to 2.07. This is

summarized in Table 3, where we compare the expected (calculated) enhancement factors

with ones obtained through THz-TDS. In this table we also included a comparison of

values obtained by the adherance to the approach of Talierco et al. (2014) as opposed to

the ones from Hinkey et al. (2011). The difference between the two beeing the dependancy

of wavenumber position of the plasma edge on carrier density—for Talierco it shifts

slightly towards higher densities at any given wavenumber which ultimately leads us to
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Fig. 4 Reflectivity between the top InAs active layer and the reflection layer calculated in the Drude model.
The reflectivity is calculated for a frequency of 1 THz given the following assumptions: mobility of top

InAs layer is 4000 cm2=V � s and its carrier density 1 � 1015 cm�3. The shapes show results obtained for
our samples, the squares and circles represent Hall- and FDR-originating carrier concentrations; mobility
values in both cases have been taken from Hall experiment
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greater enhancement factor values. This divergence is the result of a sligthly different take

on the effective mass modification due to the non-parabolicity of the conduction band in

both papers. The approach of Hinkey et al. was slightly more theoretical and used the 8k � p
model at it’s basis, where the non-parabolicity coefficient a is related to the degree of

admixture of s-like conduction band states and p-like valence band states. Taliercos’

approach on the other hand obtained it’s kp on N relationship empirically, i.e. by a power

law fit of InAs data from ref. Mikhailova (1996). It should be noted, however, that we in no

way try to adjudicate about be validity of one approach above the other—since the THz-

TDS experiment, that we are using as the basis of comparison, is in itself laden with some

uncertainty.

Thanks to Fig. 4 we can understand the discrepancy between the expected radiation

enhancement factor (from Hall) and actual enhancement (Table 3) at higher carrier con-

centrations due to differences in reflectivity–reflectivity values can be either under- or

overestimated because of the high uncertainy of the measured carrier concentration

obtained through Hall measurements, especially in the higher density region. Fortunetaly,

in either case, with FDR one can get a more realistic estimation of carrier densities and

thus, of the radiation enhancement itself—an enhancement that can only be ascribed to the

presence of a higly doped reflection layer.

4 Summary

In this work we determined the carrier concentrations of a set of samples intended for THz

generating devices by using the Fast Differential Reflectivity method. This allowed us to

more accurately predict the generated THz field intensity as compared to a standard Hall

measurement—from an 17 % discrepancy to one of around 2 %—and above that, our

procedure did not require any post processing of the samples. We compared the afore-

mentioned technique with a standard reflectivity measurement to highlight the advantages

of our approach, i.e. ease of analysis, impunity to background noise and material features

as well as set-up characteristics. Therefore we argue that the FDR method should become

the go–to method for quickly (on the order of single minutes per sample) determining

carrier concentrations in layered semiconductor structures.

Table 3 Enhancement factors for investigated samples based on: FM—direct determination via THz-TDS
experiment; FH —Hall measurements; FR1

—FDR approach based on Hinkey et al. (2011); FR2
—FDR

approach based on Talierco et al. (2014); DH—relative divergence of Hall-experiment based enhancement
factor from measured one; DRi

—relative divergence of FDR-originating enhancement factor from experi-
mental value for two approaches: Hinkey’s and Talierco’s

Sample FM FH FR1
FR2

3 2.15 1.78 2.07 2.11

4 2.22 2.38 2.15 2.20

Sample FM DHð%Þ DR1
ð%Þ DR2

ð%Þ

3 2.15 17 3.9 1.7

4 2.22 7.3 3.1 1.0
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