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Abstract In this paper, we consider the model of a nonlinear system subjected simulta-
neously to a random telegraph noise and a white noise. By using the formulae of differen-
tiation introduced by Shapiro and Loginov (Physica 91:563–574, 1978), an exact equation
for the steady state probability distribution of fluctuation in this system is derived. As an
example of its application, we calculate analytically the steady state probability distribution
of fluctuation and show the existence of noise induced phase transitions (Wódkiewicz et al.
in J. Opt. Soc. Am. 1:398–405, 1984a) in Raman Ring Laser. Moreover, we show explic-
itly the so-called noise reduction considered in Lewenstein and Rzążewski (Opt. Commun.
63:174–178, 1987) for this system. It follows that the Stokes output of this laser tends to
the stabilization under influence of the broad-band telegraph pump. This phenomenon could
be realized experimentally in a much easer manner than for the case of Gaussian pump,
because the construction of the injected telegraph pump signal is much easer than in the case
of Gaussian signal. The recent paper is an extended version of Doan and Van (1991).

Keywords Exact soluble stochastic equations · Noise reduction · Raman Ring-laser

1 Introduction

It is well-known that it is very difficult, sometimes even impossible, to obtain exact analyt-
ical solutions for stochastic differential equations in the general case of arbitrary probabil-
ity properties, in particular when we have arbitrary spectral characteristics of the external
noises. Only in some special cases, as for white noise or pre-gaussian noise, the problem is
exactly soluble. In this paper we consider a nonlinear system in which two these noises exist.
For the sake of simplicity we restrict ourselves to the case when the pre-gaussian noise is
just one dichotomous (telegraph) noise. In Sect. 2 following Wódkiewicz (1983) the exact
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equation for the steady state distribution for such system will be derived by using “formulae
of differentiation” given in Shapiro and Loginov (1978).

In a typical problem of quantum optics, we have the resonance interaction of several lasers
with an atomic (molecular) system, where the laser lights are fluctuating in amplitude and
phase. Because of the very complicated (in many cases even obscure) microscopic nature of
all relevant relaxation mechanisms, we model the laser lights by classical time-dependent
random processes. The dynamical equations involved in the problem become stochastic dif-
ferential equations. As it was emphasized above, except for some special cases the problem
of obtaining an exact solution of such stochastic equations is a very difficult task. One of the
most useful stochastic models has been introduced by Wódkiewicz et al. (1984a,b), Eberly
et al. (1984), Cao Long and Wódkiewicz (1986) which is based on the so-called pregaussian
process. It is composed of a finite number of independent telegraph signals mentioned above.
The strength of the pregaussian formalism derives from exact solubility of wide classes of
the stochastic equations. It follows from Sect. 2 that even in the case of one telegraph noise
one can obtain several interesting results. Using the equation derived there we will consider
in Sect. 3 the noise induced phase transitions of the type introduced in Kitahara et al. (1980)
for Raman Ring Laser using the stochastic equation given in Lewenstein and Rzążewski
(1987). As a consequence we will obtain the so-called noise reduction in this system. This
phenomenon has been signed by one of us sometimes ago in the paper Doan and Van Long
(1991). Section 4 contains our conclusions.

2 The steady state probability distribution of fluctuation in a nonlinear system
under the influence of telegraph noise

We consider the nonlinear system which is described by the following generalized Langevin
stochastic equation:

dx

dt
= F(x, α(t)) + β(t)h(x), (2.1)

where F(x, α(t)) is a arbitrary nonlinear function of the investigated dynamical variable x
and the random process α(t). This random process is a telegraph noise with properties:

〈α(t)〉 = 0, 〈α(t)α(t ′)〉 = �2 exp(−γ |t − t ′|), (2.2)

whereas β(t) is the white noise, which is independent with α(t) and

〈β(t)β(t ′)〉 = 2Dδ(t − t ′). (2.3)

Using the method described in Sancho and Miguel (1983), Wódkiewicz (1983) for Eq. (2.1),
we can obtain an exact general equation for the steady state probability distribution of the
dynamical variable x , as we will see below.

Following Wódkiewicz (1983) we introduce the quantity ρ of x with

ρ(ξ, t) = δ(ξ − x(t)). (2.4)

Then the stochastic average of x can be written by the probability distribution P(ξ, t) of x :

〈x〉 =
∫

dξξ P(ξ, t). (2.5)
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Application to the noise reduction in Raman Ring Laser 139

P(ξ, t) is expressed by a path integration with a functional measure given in Wódkiewicz
(1983). From definition (2.4) and Eq. (2.1) we obtain the Liouville equation in the form:

∂ρ(ξ, t)

∂t
= − ∂

∂ξ
[F(ξ, α(t)) + β(t)h(ξ)]ρ(ξ, t). (2.6)

It follows from definition that the telegraph noise α(t) can have two values � and −� (the
dichotomous Markovian process). Then we have the formula Kliatskin (1980)

F(ξ, α(t)) = f (ξ) + g(ξ)α(t), (2.7)

where

f (ξ) = (F(ξ,�) + F(ξ,−�))/2, g(ξ) = (F(ξ,�) − F(ξ,−�))/2� (2.8)

are the even and odd parts of the function F(ξ, α(t)), respectively.
Taking the stochastic average of the Liouville equation (2.6) we obtain the Fokker–Planck–

Stratonovitch equation for P(ξ, t):

∂ P(ξ, t)

∂t
= − ∂

∂ξ
f (ξ)P(ξ, t) − ∂

∂ξ
g(ξ)P1(ξ, t) − ∂

∂ξ
h(ξ)〈β(t)ρ(ξ, t)〉, (2.9)

with P(ξ, t) = 〈ρ(ξ, t)〉, P1(ξ, t) = 〈α(t)ρ(ξ, t)〉. Using the differential formula in Shapiro
and Loginov (1978) leads to:

∂ P1(ξ, t)

∂t
= −

(
γ + ∂

∂ξ
f (ξ)

)
P1(ξ, t)

−�2 ∂

∂ξ
g(ξ)P(ξ, t) − ∂

∂ξ
h(ξ)〈β(t)α(t)ρ(ξ, t)〉. (2.10)

As a consequence of the Novikov theorem (1965) we have:

〈β(t)ρ(ξ, t)〉 = −D
∂

∂x
h(ξ)P(ξ, t), (2.11)

〈β(t)α(t)ρ(ξ, t)〉 = −D
∂

∂ξ
h(ξ)P1(ξ, t). (2.12)

Inserting Eqs. (2.11) and (2.12) into Eqs. (2.9) and (2.10), we obtain the following system
of differential equations

∂ P(ξ, t)

∂t
= − ∂

∂ξ
f (ξ)P(ξ, t) − ∂

∂ξ
g(ξ)P1(ξ, t) + D

∂

∂ξ
h(ξ)

∂

∂ξ
h(ξ)P(ξ, t), (2.13)

∂ P1(ξ, t)

∂t
= −

(
γ

∂

∂ξ
f (ξ)

)
P1(ξ, t)

−�2 ∂

∂ξ
g(ξ)P(ξ, t) + D

∂

∂ξ
h(ξ)

∂

∂ξ
h(ξ)P1(ξ, t). (2.14)

It follows from Eq. (2.13) that in the stationary regime we obtain

J (ξ) = f (ξ)Ps(ξ) + g(ξ)P1s(ξ) − Dh(ξ)
∂

∂ξ
h(ξ)Ps(ξ) = const, (2.15)

where J (ξ) is the statistical current. The formula (2.5) justifies the change ξ into x in
Eq. (2.15). Then we have

J (x) = f (x)Ps(x) + g(x)P1s(x) − Dh(x)
∂

∂x
h(x)Ps(x) = const. (2.15′)
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In almost all interesting physically cases in quantum optics we have x ≥ 0, because x is
usually the amplitude or the intensity of the electric (laser) field, so we specify the boundary
condition J (x)|x=0 = 0. This means that the statistical current should vanish in the region
which is not physically meaningful (const = 0). Inserting Eq. (2.15′) with const = 0 into
Eq. (2.14), we obtain finally a differential equation for Ps(x):

{
�2 d

dx
g(x) +

[
γ + d

dx
f (x)−D

d

dx
h(x)

d

dx
h(x)

]
Dh(x) d

dx h(x) − f (x)

g(x)

}
Ps(x)=0.

(2.16)

The Eq. (2.16) is the exact cubic differential equation, which is difficult to be solved in
the general case, so we can only solve it exactly in some simple cases. If in the stochastic
differential equation (2.1) the white noise is neglected, the Eq. (2.14) now becomes:{

�2 d

dx
g(x) −

[
γ + d

dx
f (x)

]
f (x)

g(x)

}
Ps(x) = 0, (2.17)

which leads to the general solution

Ps(x)= N

[
g(x)

�2g(x)2− f (x)2

]
exp

(
−γ

2

∫ x [
1

f (x ′)−�g(x ′)
+ 1

f (x ′)+�g(x ′)

]
dx ′

)
.

(2.18)

This expression of the stationary probability density is exactly the same what has been
obtained by Kitahara et al. (1980). The zeroes of �2g(x)2 − f (x)2 constitute the bound-
aries of the support of Ps(x). Let x1 and x2 stand for the zeroes of the functions F1,2(x) =
f (x) ∓ �g(x). Then Ps(x) in the vicinities of x1 and x2 is estimated (Kitahara et al. 1980)

Ps(x1,2 + δx) ∝ |δx |−γ /2F ′
1,2(x1,2)−1 (2.19)

for F1(x1) = F2(x2) = 0, F1(x2) �= 0 and F2(x1) �= 0. The condition for the system to be
deterministically stable is that F ′

1(x1) < 0 and F ′
2(x2) < 0. It thus follows from Eq. (2.19)

that Ps(x) is normalizable. Furthermore we conclude from Eq. (2.19) that the stationary
probability density Ps(x) behaves near the boundary x1,2 as follows:

Ps(x) = ∞ if − γ

2F ′
1,2(x1,2)

− 1 < 0, (2.20)

Ps(x) = 0 and P ′
s (x) = ∞ if 0 < − γ

2F ′
1,2(x1,2)

− 1 < 1, (2.21)

Ps(x) = 0 and P ′
s (x) = 0 if 1 < − γ

2F ′
1,2(x1,2)

− 1. (2.22)

One can easily verify from (2.18) that the extrema x0 of Ps(x) obey the following equation:

f (x0) − �2

γ
g(x0)g

′(x0) + 2

γ
f (x0) f ′(x0) − 1

γ
f (x0)

2 g′(x0)

g(x0)
= 0, (2.23)

Provided that g(x0)
{
�2g(x0)

2 − f (x0)
2
} �= 0. These extrema are usually identified with

the macroscopic steady states and give us further information on the shape of Ps(x). Our intu-
ition frequently tells us that external noises destroy different effects related to the behavior
of the system, but this is true only for the case of linear systems. In the case of the nonlinear
systems, we have sometimes a very interesting phenomenon, namely the so-called the noise
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Application to the noise reduction in Raman Ring Laser 141

reduction, when the stationary distribution shrinks for increasing value of some parameter
involved in the problem. This effect has been considered in a single mode Raman laser in a
ring cavity (Lewenstein and Rzążewski 1987), where for certain regime of relaxation con-
stants characterizing this laser, it is possible to achieve an efficient action via stimulated
Raman scattering using a colored chaotic pump: The broader is the band pump, the less
fluctuating is the Stokes output! As it has been emphasized by the authors in Lewenstein
and Rzążewski (1987), the nonlinear stochastic equation derived there is rather difficult to
analyze and a further simplification has been made. In the next Section we will analyze this
equation exactly without any simplification for the case of the dichotomous noise.

3 Noise reduction in a Raman Ring Laser

The lasers based on the stimulated Raman scattering are pumped usually by a coherent light
source. A special type of these lasers is so called Raman Ring Laser (see for example Roos
et al. 2003; Luo et al. 2010; Zamzuri et al. 2011). The following question is very interesting: It
is possible to create an efficient laser action by using an incoherent pump. As it is emphasized
in Teubel and Rzążewski (1989), this question not only has theoretical relevance, but also
has practical meaning, namely some ring Raman lasers have low threshold intensity. One can
predict that the laser action with the help of conventional thermal sources can be achieved.
Thus Raman Ring Lasers with a noisy pump is worth to study.

A single mode Raman laser in a ring cavity is described by the following system of
differential equations:

dE p(t)

dt
= −Es(t) − λ

[
E p(t) − Y (t)

]
dEs(t)

dt
= E p(t)Q∗(t) − μEs(t)

dQ(t)

dt
= E p(t)E∗

s (t) − νQ(t), (3.1)

where Q(t) is the atomic polarization, E p(t) is the pump field, Es(t) is the Stokes field, Y (t)
is the injected pump inside the cavity, 1/λ and 1/μ are the lifetimes of cavity eigenmodes
corresponding to the Pump and Stokes fields respectively, 1/ν is the polarization dephasing
time. If Y (t) represents a colored light we have:

〈Y (t)〉 = 0, 〈Y (t)Y ∗(t ′)〉 = �2 exp(−γ |t − t ′|), (3.2)

where 1/γ is the coherence time of the injected Pump. Under typical experimental conditions:

λ � ν, μ, γ. (3.3)

Therefore Pump field may be eliminated adiabatically from (3.1). we restrict ourselves to the
case that

ν � μ, γ. (3.4)

Under the condition (3.4) Q(t) can be eliminated adiabatically too. These eliminations with
the notation x = E∗

s (t)Es(t) lead to the following stochastic equation:

dx

dt
= −2

[
μ − νλ2|Y (t)|2

(x + νλ)2

]
x . (3.5)
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It has been emphasized in Lewenstein and Rzążewski (1987) that the stochastic equation (3.5)
is rather difficult to solve and some further assumption should be proposed. In Teubel and
Rzążewski (1989) a numerical approach has been introduced which is more powerful than the
analytical tools used in Lewenstein and Rzążewski (1987). We show now that this equation is
exactly solved for the telegraph noise. For this purpose we assume that Y (t) = 1√

2
(Y1 + iY1),

where Y1 = Y0 + It , It is a telegraph noise, in which It can receive two values � and −�.
Then we obtain the equation of the type

dx

dt
= f (x) + It g(x)

with

f (x) = −2μx + 2νλ2(Y 2
0 + �2)

(x + νλ)2 x, (3.6)

g(x) = 4νλ2Y0

(x + νλ)2 x . (3.7)

Substituting Eqs. (3.6) and (3.7) into thw expression (2.18), we obtain the following stationary
probability density,

Ps(x) = N x
γ ν2λ2

4μ

(
1

x1x ′
1
+ 1

x2x ′
2

)
−1

(H1 + H2), (3.8)

where

x1 = λ
[√

ν
μ
|Y0 − �| − ν

]
, x ′

1 = −λ
[√

ν
μ
|Y0 − �| + ν

]
,

x2 = λ
[√

ν
μ
|Y0 + �| − ν

]
, x ′

2 = −λ
[√

ν
μ
|Y0 + �| + ν

]
,

H1 = (x1+νλ)2

4μ�
|x−x1|

γ
8μ

(1+ νλ
x1

)−1|x−x ′
1|

γ
8μ

(
1+ νλ

x ′
1

)
−1|x−x2|

γ
8μ

(
1+ νλ

x2

)
|x−x ′

2|
γ

8μ

(
1+ νλ

x ′
2

)
,

H2 = (x2+νλ)2

4μ�
|x−x1|

γ
8μ

(
1+ νλ

x1

)
|x−x ′

1|
γ

8μ

(
1+ νλ

x ′
1

)
|x−x2|

γ
8μ

(
1+ νλ

x2

)
−1|x−x ′

2|
γ

8μ

(
1+ νλ

x ′
2

)
−1

.

We restrict ourselves to the case x2 > 0, because x is the Stokes intensity. Then the support
of Ps(x) is given by the interval U = [max(0, x1), x2].

Let us now study the behaviour of the stationary probability density in the neighbour-
hood of the boundaries of U by using Eq. (2.19). For the upper boundary x = x2, we
have: Ps(x2) = ∞ if x2 >

γνλ
8μ−γ

, Ps(x2) = 0 and P ′
s (x2) = ∞ if γ νλ

16μ−γ
< x2 <

γνλ
8μ−γ

,

Ps(x2) = 0 and P ′
s (x2) = 0 if x2 <

γνλ
16μ−γ

. For x1 > 0 the lower boundary is given by x1 and

we have: Ps(x1) = ∞ if x1 >
γνλ

8μ−γ
, Ps(x1) = 0 and P ′

s(x1) = ∞ if γ νλ
16μ−γ

< x1 <
γνλ

8μ−γ
,

Ps(x1) = 0 and P ′
s (x1) = 0 if x1 <

γνλ
16μ−γ

. For x1 < 0 the lower boundary is given by
zero. Since x = 0 is a steady state of the deterministic equation (3.5) for all values of Yt ,
obviously F1(0) = F2(0) = 0 for x1 < 0 and hence Eq. (2.19) cannot be used to discuss the
behavior of Ps(x) near the lower boundary of the support U for this case. Analyzing directly
with the explicit expression (3.8) for Ps(x), we obtain: Ps(0) = ∞ if ( 1

x1x ′
1
+ 1

x2x ′
2
) <

4μ

γν2λ2 ,

Ps(0) = 0 and P ′
s(0) = ∞ if 4μ

γν2λ2 <
(

1
x1x ′

1
+ 1

x2x ′
2

)
<

8μ

γν2λ2 , Ps(0) = 0 and P ′
s(0) = 0 if(

1
x1x ′

1
+ 1

x2x ′
2

)
>

8μ

γν2λ2 .
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Fig. 1 Phase diagram for the steady state behavior of the model (3.5) as a function of intensity � and the
coherence time of the injected pump 1/γ of the colored noise, with lifetimes of cavity eigenmodes corre-
sponding to the pump and Stokes fields 1/λ = 10−6 and 1/μ = 102, respectively. The polarization dephasing

time is chosen as 1/ν = 10−2. Curves a, b and c are drawn correspondingly for: x1 = γ νλ
8μ−γ

, x2 = γ νλ
8μ−γ

and

(
1

x1x ′
1

+ 1
x2x ′

2

)
= 4μ

γν2λ2 . In order not to burden the figure, the curves, where P ′
s (x1,2) changes from

zero to infinity, have not been included. The shape of Ps (x) (in Y 2
0 units), as concerns the extrema, is sketched

for the different regions

Using Eq. (2.23), we see that the extrema of Ps(x) obey the algebraic equation:

[z − νλ]
[
μ

(
6μ

γ
− 1

)
z5 − 4νλμ2

γ
z4 + νλ2

(
1 − 4μ

γ

)
(Y 2

0 + �2)z3

−2ν2λ4

γ
(Y 2

0 − �2)2z + 4ν3λ5

γ
(Y 2

0 − �2)2

]
= 0. (3.9)

An analysis of the extrema of the function Ps(x) and its behavior near the boundaries of the
support U permits us to construct a phase diagram of the steady state behavior of the system.
According to different values of the parameters λ, ν, μ, γ,�, Y0 we have corresponding
graphic forms of the function Ps(x). We construct the phase diagram for the constant param-
eters λ, ν, μ, because we are interested in the influence of the pump width on Ps(x). Phase
diagram for the steady state behavior of the model (3.5) in the plane of γ,� is displayed in
Fig. 1. Thus, the nonlinear system subjected to the telegraph (colored) noise may undergo
phase transitions with the change of intensity and the correlation time of the noise. Following
Kitahara et al. (1980) these transitions are called noise induced phase transitions.

In Fig. 2 we have plotted the steady probability distribution for a few values of γ when the
rest of the parameters are constant. In fact the distribution is narrower for increasing γ . Thus
similar to the case of Gaussian colored noise, The Stokes output tends to be stabilized by the
broad band pump, In our opinion, for the construction of a Raman laser with a broad-band
pump which has been considered in Jones et al. (1985), Hefter et al. (1982), our results are of
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Fig. 2 The function Ps (x) (in
Y 2

0 units) which behaves near the
boundaries x1 and x2 with the
other values of the coherence
time of the injected pump 1/γ . In
which intensity of the noise
� = 8, λ = 0.1, ν = 10−4,
μ = 10−7

γ = 10-6

γ = 5.10-6 

γ = 10-5 

x1             2

x 
x

Ps(x) 

more direct experimental relevance than in the case of Gaussian noise, because the creation
of the telegraph noise is much easer than Gaussian one. It is worth to note that a similar noise
reduction has been considered for the lasers of an other type Hu and Peng (1998), where
the effects of the finite pump bandwidth on the linewidth of a laser withour inversion have
been presented. The authors have shown that under certain operating conditions the finite
pump bandwidth does not lead to linewidth widening but to linewidth narrowing. This is
not “surprising” as they have emphasized there: The same effect has been discovered almost
eleven years earlier in Lewenstein and Rzążewski (1987).

4 Conclusions

In this paper we derived the exact equation for the steady probability distribution in the case
of a nonlinear system influenced by two noises simultaneously: the telegraph noise and the
white noise. As a byproduct we construct the phase diagram of Noise Induced Transition
for the Raman ring-laser. It follows that the Stokes output of this laser tends to the stabiliza-
tion under influence of the broad-band telegraph pump. This phenomenon could be realized
experimentally in a much easer manner than for the case of Gaussian pump, because the
construction of the injected telegraph pump signal is much easer than in the case of Gaussian
signal.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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