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Abstract In this paper, a new and an accurate artificial neural network approach (ANN)
is presented for the analysis and design of photonic crystal fibers (PCFs). The new ANN
approach is based on the radial basis functions which offer a very quick convergence and
high efficiency during the ANN learning. The accuracy of the suggested approach is demon-
strated via the excellent agreement between the results obtained using the presented approach
and the results of the full vectorial finite difference method (FVFDM). In addition, a new
design of highly birefringence PCF with low losses for the two polarized modes is presented
using the proposed approach.

Keywords Photonic crystal fibers · Optimization · Artificial neural network ·
Radial basis function

1 Introduction

Due to their unusual optical properties, photonic crystal fibers (PCFs) (Benabid 2006;
Broeng et al. 1999) have attracted the interest of many researchers in recent years. PCFs
can be endlessly single mode over a wide wavelength range (Birks et al. 1997), have a large
effective mode area (Knight et al. 1998) and can be tailored to achieve nearly zero and flat
dispersion over a wide range of wavelengths (Gander et al. 1998). PCFs are usually made of
a silica background which contains a regular array of air holes running through the length of
the fibre acting as a cladding. This structure creates bandgaps where propagation at certain
optical frequencies is forbidden. If the central hole is enlarged (low index core) (Benabid
2006) or removed (high index core) (Broeng et al. 1999), a defect will be produced in the
periodic structure. High and low index core PCFs are very promising structures in terms
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of properties and possible applications. The low index core PCF can guide the light by the
photonic bandgap effect, which allows the confinement of light in its low index core. How-
ever this type of PCFs has a narrow wavelength range in which the light is guided and a
good accuracy of the periodicity of the lattice is required to obtain a clear bandgap effect.
On the other hand, the high index core PCF guides the light by the modified total internal
reflection which is much easier to achieve than bandgap guidance. This is due to the fact that
the average effective index of the cladding is lower than that of the core.

During the last few years, various accurate modelling methods have been developed for
modal analysis of PCFs. These methods included the finite difference time domain (FDTD)
(Lizier and Town 2001) which is a powerful technique in dealing with arbitrary-shaped wave-
guides due to its accuracy and simple implementation. However, it requires large memory and
suffers from discretization problems such as staircasing. The finite element method (FEM)
(Koshiba and Saitoh 2003; Obayya et al. 2001, 2005) can provide high accuracy by means of
flexible triangular and curvilinear meshes to represent the waveguide cross section. However,
this accuracy results in an algorithm that is complex to implement. On the contrary the mode
solvers based on finite difference method (FDM) (Fallahkhair et al. 2008; Lusse et al. 1994;
Yu and Chang 2004) and the multipole method (Campbell et al. 2004; White et al. 2001) are
very attractive because of their simple implementations.

The above numerical modal solution techniques are mostly accurate and able to deal
with many complex structures including PCFs. However, they are time consuming since
they rely on fine meshes for an acceptable accuracy. Saitoh and Koshiba (2005) proposed
empirical relations for a simple design of triangular PCFs based on curve fitting technique.
In this approach, the normalized frequency V and normalized transverse attenuation con-
stant W were calculated by a vector FEM for PCFs with circular air holes with the same
diameter d. Then, empirical relations were invoked to fit the calculated data using the curve
fitting. These relations are able to calculate the effective index of the fundamental mode
neff , effective index of the fundamental space-filling mode nFSM and confinement losses of
PCFs without using numerical modelling methods. However, these relations are functions
only of the wavelength λ and d/� ratio (where � is the distance between two neighbour-
ing holes) making them useless for elliptical hole PCFs or doped PCFs. In this case, new
empirical relations will be required to include the radii of the elliptical holes or refractive
index of the doped holes. In addition, the accuracy of the method is restricted to some fit-
ting requirements (Saitoh and Koshiba 2005) such as λ/� ≤ 2, W ≥ 0.1 and V ≥ 0.85
which limit the applicability of the method. In fact, when the fitting requirements are not
satisfied, the empirical relations give values for V and W which deviates from the correct
values.

In this paper, a generic analytical approach is proposed for accurately predicting the various
mode properties of PCFs such as the effective index, dispersion and confinement losses. The
suggested approach depends on using an artificial neural network with radial basis function
(ANN-RBF) (Christodoulou and Georgiopoulos 2001). This approach consists of two main
steps: training and calculation. In the training stage, the FVFDM is used to calculate the neff

and nFSM for PCF structures with different d/� ratios within a certain range of wavelengths.
The calculated data will be used in the training process of the ANN-RBF. In the calculation
stage, the trained ANN-RBF can be used to calculate the neff and nFSM of PCF structures for
a given d/� ratio and wavelength within the trained range without any additional time cost.
Consequently, the other modal properties such as the dispersion and confinement losses can
be obtained. The use of the radial basis function guarantees a very quick convergence and
high efficiency during the ANN training process. In addition, the proposed technique can be
used for PCFs with circular, elliptical or doped holes.
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Fig. 1 a Cross section of two ring-PCF of 18 air holes (gray area) which are arranged in a silica background
(white area). Each hole has a diameter d and the distance between two neighbouring holes is the hole pitch �.
The corresponding doubly clad fiber is shown in Fig . 1b

In order to prove the efficiency and accuracy of the proposed method, a highly birefringent
PCF with low losses for the two polarized modes is proposed and analyzed. The proposed
structure offers high birefringence of 0.014 at λ = 1.55 µm with low losses for the two
polarized modes which have been found to be 5.1 × 10−7 and 2.3 × 10−7 dB/m for the TE
and TM modes respectively. Moreover, a broad band large normal dispersion which can be
used for broad band dispersion compensation is obtained.

The paper is organized as follows. Following this introduction, a brief mathematical treat-
ment of the analytical approach is introduced in Sect. 2. The accuracy and numerical results
obtained using the proposed approach will be discussed in detail in Sect. 3. Finally, conclu-
sions are drawn.

2 Analysis

Figure 1 shows the cross section of a PCF with a silica background. The air holes are arranged
in a triangular lattice of a hole pitch � with the same diameter d. In the proposed approach,
the FVFDM (Fallahkhair et al. 2008) is used to obtain the effective index of the fundamental
mode neff and the effective index of the fundamental space-filling mode (FSM) nFSM (Birks
et al. 1997; Obayya et al. 2005) for PCF structures with different d/� ratios within a certain
range of wavelengths. The FSM is defined as the fundamental mode propagating in an infi-
nitely periodic array of air holes in a silica background with no central defect. In this case,
only one periodic cell with the appropriate electric and magnetic wall boundary conditions
is applied, as shown in Fig. 2. The calculated values of neff and nFSM are used in the training
process of the ANN-RBF. The trained ANN-RBFs can be used to evaluate the neff and nFSM

of PCF structures accurately for a given d/� ratio and wavelength within the trained range.
Then, V, U and W can be evaluated, as given in the equations below (1)–(3) (Marcuse 1982;
Cohen et al. 1982).

V = 2π

λ
aeff

√
n2

co − n2
FSM =

√
U2 + W2 (1)

U = 2π

λ
aeff

√
n2

co − n2
eff (2)
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Fig. 2 Schematic diagram of
unit cell of the infinitely periodic
PCF considered in the FSM mode
calculation where EW is a Perfect
electric Wall and MW refers to a
Perfect magnetic Wall
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W = 2π

λ
aeff

√
n2

eff − n2
FSM (3)

where, nco = 1.45 is the core index value at λ = 1.55 µm, aeff is the effective core radius
which is assumed to be �/

√
3 (Russell 2003) and the parameter U is the normalized trans-

verse phase constant.
Our aim is to find an accurate method to calculate the neff and nFSM and hence obtain the

other modal properties such as V, U, W, dispersion and confinement losses. It is found that
the artificial neural network (ANN) fits for this purpose successfully. The ANN is widely
used in many applications (Sood 2004; Christodoulou and Georgiopoulos 2001) such as tele-
communications, signal and image processing and control engineering. It consists of input,
hidden and output layers. In the suggested approach, the input layer has two neurons in order
to define the input parameters λ and d/� ratio. The two input parameters and interconnection
weights are processed by a summation function and passed first to the transfer function in the
hidden layer and then to the output layer. The output layer contains only one neuron in order
to define the required parameter, neff or nFSM. It should be noted that the neural networks
must be trained before using them in any calculation. This process is called the learning or
training process. Among many types of the learning process, the supervised learning process
(Christodoulou and Georgiopoulos 2001) is used in the proposed approach. This process can
be described by the following steps:

1. The input parameters are applied at the input layer of the ANN;
2. Initial values for the weights from the hidden to output layers are set to the input

parameters;
3. The outputs of the nodes in the hidden and output layers of the ANN are calculated;
4. The mean square error between the calculated outputs of the ANN and the desired out-

puts is evaluated. If this error is less than a defined error limit, the learning process is
terminated. Otherwise, the input weights on each neuron are adjusted by an amount �ωij

according to the following relation:

�ωij = η[d2
j (p) − y2

j (p)]gi(x(p)) (4)

where dj(p) and yj(p) are the calculated and desired outputs, respectively, for node j in the
output layer, η is the learning rate and gi(x(p)) is the output of the node i at the input layer
corresponding to the input x(p).
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Fig. 3 Schematic diagram of the ANN-RBF

In this paper, two different ANN procedures will be discussed thoroughly, the
conventional ANN and ANN-RBF. The conventional ANN contains a linear transfer func-
tion in the input and output layers, while the hidden layer consists of a number of neurons
with a Log sigmoid transfer function defined as f(x) = 1/(1 + e−x). The ANN-RBF used in
the suggested approach, as shown in Fig. 3, uses Gaussian transfer function as radial basis
function in the hidden layer. The output of the hidden layer of the ANN-RBF is given by
Sood (2004) as:

Ok = exp

(
−[x − ck]T[x − ck]

2σ 2k

)
(5)

where k = 1, 2, . . ., N (where N is the number of hidden nodes), Ok is the output of the kth
node of the hidden layer, x is the input pattern vector, ck is the centre of RBF of kth node of
hidden layer and σk is the spread of the kth RBF. Figure 3 shows also that the output layer
of the ANN-RBF contains a linear transfer function. The output of the jth ANN-RBF is

Yj = ωjOj (6)

where j = 1, 2, . . ., M (where M is the number of output nodes), Yj is the output of jth node,
ωj is the weight vector for node j and Oj is the vector output from the jth hidden layer. On
the contrary of conventional ANN which uses a fixed number of neurons in the hidden layer,
during the learning process of the ANN-RBF a new neuron is added to the hidden layer until
the error condition is fulfilled.

3 Results

The suggested approach with the conventional ANN and ANN-RBF has been applied ini-
tially to different PCF structures in order to compare their numerical performances. In order
to start the training process, neff of a PCF with �= 2.3 µm for d/� ratios equal to 0.5, 0.6 and
0.7 are computed using the FVFDM over a range of wavelengths from 0.1 µm to 1.9 µm with
step 0.3 µm for each d/� ratio. The calculated data are then used for the training process
of the conventional ANN. Once the training process is completed, the trained ANN will be
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Fig. 4 The variation of the mean square error between the desired output and output of the conventional ANN
for the neff with the number of iterations during the training process with different number of neurons at the
hidden layer as a parameter. The inset figure shows the variation using the ANN-RBF for neff and nFSM

able to calculate the neff at a given d/� ratio within the range from 0.5 to 0.7 at a particular
wavelength within the trained range. For this example, the input layer of the conventional
ANN consists of a linear transfer function and two input neurons which represent the input
parameters λ and d/� ratio, respectively. The hidden layer consists of 16 neurons with a Log
sigmoid transfer function, while the output layer consists of a linear transfer function and
one neuron in order to define the neff . To test the consistency and accuracy of the trained
ANN, the neff for the trained value d/� = 0.6 and untrained value 0.63, both over the range
of wavelengths from 0.1 µm to 1.9 µm, are calculated using the trained ANN and compared
with those obtained using the FVFDM. The comparison was performed using the error per-
centage in neff defined as (neff FVFDM − neff ANN) × 100%/neff FVFDM. The computed error
percentages for d/� = 0.6 and 0.63 were within 10−6% and 3% respectively. The percentage
error values reveal that the trained ANN is consistent which is indicated by the very low error
obtained for d/� = 0.6 which means that a correct result is obtained every time a trained
data is used as an input. However, the trained ANN has low accuracy at d/� = 0.63 which
is pointed out by its large error which means that poor accuracy is obtained every time an
untrained data is used as an input. In order to investigate the effect of increasing the number
of neurons in the hidden layer on the accuracy of the conventional ANN, two other different
ANNs, with 32 and 64 neurons in the hidden layer, were used. The two new ANNs are trained
and in Fig. 4 the training curves are shown and compared with the case of 16 neurons. As seen
from this figure, the mean square error between the output of the conventional ANN and the
desired output during the training process decreases with increasing the number of neurons.
Therefore, the performance of the designed ANN is enhanced by increasing the number of
the neurons in the hidden layer. The error percentages in neff for d/� = 0.6 have been found
to be 1 × 10−6, 0.3 × 10−6 and 0.17 × 10−6% using 16, 32 and 64 neurons respectively.
However, the error percentages for d/� = 0.63 were 3, 0.04 and 0.005% using 16, 32 and
64 neurons respectively. It is apparent from the error values that the trained conventional
ANN with 64 neurons in the hidden layer offers the highest accuracy for both trained and
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untrained data. The learning process using 64 neurons takes about 876.4 s of CPU time using
a personal computer (Pentium(R) D CPU 2.8-GHz, 2.79 GHZ, 1 GB of RAM) until the mean
square error between the calculated output of ANN-RBF and desired output reaches a fixed
error limit. It should be noted that the time taken by the FVFDM is not included. In order to
decrease the time taken in the learning process, another ANN technique was required.

The ANN-RBF is widely used in many applications (Sood 2004; Christodoulou and
Georgiopoulos 2001) such as telecommunications, signal and image processing, and control
engineering. To the best of the authors’ knowledge, this is the first time that the ANN-RBF
is employed in the analysis of photonic devices. An ANN-RBF was trained using the cal-
culated neff of a PCF with � = 2.3 µm for d/� ratios equal to 0.5, 0.6 and 0.7 over a
range of wavelengths from 0.1 µm to 1.9 µm with step 0.3 µm for each d/� ratio. It is found
that the learning process takes only about 0.44 s of CPU time with 45 neurons at the hidden
layer until the mean square error between the calculated output from the ANN-RBF and
the desired output reaches a fixed error limit. This shows clearly that the learning process
of the ANN-RBF takes mush shorter time compared to the conventional ANN. The same
procedure was carried out for designing ANN-RBF for calculating nFSM. The inset of Fig. 4
shows the training curves of the neff and nFSM using the ANN-RBF. As shown from this
figure, that the learning process needs only 45 and 53 iterations (epochs) for the neff and
nFSM respectively to reach the required error limit which points out the fast learning process
of the ANN-RBF. The percentage errors for d/� = 0.6 and 0.63 between the neff , nFSM and
dispersion calculated by the FVFDM and those obtained by the two ANNs; conventional
ANN with 64 neurons in the hidden layer and ANN-RBF are presented in Tables 1 and 2.
It can be observed from these tables that both ANNs have a comparable accuracy while, the
ANN-RBFs have a very quick convergence. In addition, both ANNs offer high accuracy for
d/� = 0.6 and 0.63 which ensures that they are consistent and accurate. The trained ANNs
can then evaluate neff and nFSM accurately at a given d/� ratio from 0.5 to 0.7 at a particu-
lar wavelength from 0.1 µm to 1.9 µm without any extra time. This overcomes the meshing
problems and computational time of the other modelling methods. A limit of the suggested
approach is that a numerical method is still required to obtain accurate modal properties for
PCF structures for the training process.

In order to prove that the suggested approach can deal accurately with more than two
dimensional problems, the following example will be introduced. In this case, the input layer
has three neurons in order to define the input parameters λ, d/� ratio and � while the output
layer contains only one neuron in order to define the required parameter neff . In this example,

Table 1 The percentage errors for d/� = 0.6 between the calculated values of neff , nFSM and dispersion by
the FVFDM and those which are obtained by the two ANNs; conventional ANN and ANN-RBF. The included
time is the time required for the learning process. In addition, the indicated numbers of neurons are the number
of neurons in the hidden layer. The hole pitch of the PCF is kept constant at 2.3 µm

Parameter Conventional ANN ANN-RBF

Number of Error (%) CPU time Number of Error (%) CPU time

neurons (s) neurons (s)

neff 64 ±1.7 × 10−7 876.4 45 ±3.0 × 10−8 0.44

nFSM 64 ±2.0 × 10−7 945.5 53 ±1.5 × 10−7 0.64

Dispersion – ±2.0 × 10−3 – – ±1.0 × 10−3 –
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Table 2 The percentage errors
for d/� = 0.63 between the
calculated values of neff , nFSM
and dispersion by the FVFDM
and those which are obtained by
the two ANNs; conventional
ANN and ANN-RBF. The hole
pitch of the PCF is kept constant
at 2.3 µm

Parameter Error (%)

Conventional ANN ANN-RBF

neff ± 0.005 ± 0.006

nFSM ± 0.03 ± 0.034

Dispersion ±1 ±1

Fig. 5 The variation of the effective index neff of four-ring PCF with the wavelength at two different d/�

ratios, 0.45 and 0.55, while � is kept constant at 2.1 µm

the suggested approach deals with a three dimensional problem. In order to start the training
process, neff of PCF structures with different hole pitch �, 2.0 µm, 2.2 µm and 2.4 µm, are
computed using the FVFDM. Each hole pitch is used over a range of wavelengths from
0.1 µm to 1.9 µm with step 0.3 µm for d/� ratios equal to 0.4, 0.5 and 0.6. The calculated
data are then used for the training process of the ANN-RBF. Once the training process is
completed, the trained ANN-RBF will be able to calculate the neff for PCF structures with a
given d/� ratio in the range from 0.4 to 0.6 with a selected hole pitch within the range from
2.0 µm to 2.4 µm at a particular wavelength in the range from 0.1 µm to 1.9 µm. Figure 5
illustrates the variation of the neff with the wavelength at d/� ratio equals to 0.45 and 0.55
with � fixed to 2.1 µm. It should be noted that the previous values do not represent a trained
data. It is evident from this figure that there is a good agreement between the data calculated
by the FVFDM and that obtained from the ANN-RBF which proves the accuracy of the
trained ANN-RBF.

Next, the proposed approach using the ANN-RBF has been applied for studying the other
modal properties of PCFs such as confinement losses, birefringence and dispersion. The
confinement loss in dB/m can be obtained using

Confinement loss = 4.342945(2α)dB/m (7)
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Fig. 6 The variation of the effective index neff of four-ring PCF with the wavelength at different d/� ratios,
0.4, 0.5 and 0.6, while � is kept constant at 2.0 µm

where 2α is the power leakage loss which can be calculated using the following relation
(Cohen et al. 1982; Marcuse 1982)

2α = 2λU3W

neff a2
eff V4K2

1(W)
exp

(
−2bW

aeff

)
(8)

where K1 is the modified Bessel function of the second kind and b is the effective inner-clad-
ding radius. In order to calculate the value of b, the PCF structure is replaced by a doubly
clad fiber as shown in Fig. 1.b, where n1, n2 and n3 are the refractive indices of the core,
inner cladding, and outer cladding respectively, and aeff is the effective core radius. The
outer cladding index is assumed to be the same as the core index n1 = n3 = nco = 1.45 at
λ = 1.55 µm. In addition, the inner cladding index is expressed by the effective index of the
so called fundamental space filling mode, n2 = nFSM. Using this approximation, the value
of b can be obtained from

SN = π(b2 − a2
eff ) =

(√
3

2

)
�2

N∑

I=1

6I (9)

where SN is the area of the inner-cladding and N is the number of hole rings. Figures 6 and 7
illustrate the variation of the neff and confinement loss of four-ring PCF with the wavelength
for different d/� ratios, 0.4, 0.5 and 0.6, while � is kept constant at 2.0 µm using ANN-RBF,
FVFDM and those obtained from the empirical relations (Saitoh and Koshiba 2005). From
these figures, it is clear that there is a good agreement between the ANN-RBF results and
those obtained from the numerical modal techniques.

The birefringence has also been studied using the proposed approach. The birefringence
can be defined as the difference between the effective indices of the two fundamental modes
Hy

11and Hx
11 as given below:

B = ∣∣ny − nx
∣∣ (10)
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Fig. 7 The variation of the confinement loss of four-ring PCF with the wavelength at different d/� ratios,
0.4, 0.5 and 0.6, while � is kept constant at 2.0 µm

where nx and ny are the effective indices of the two fundamental polarized modes. The bire-
fringence would be enhanced by introducing asymmetry in the structure of the PCF. This
can be achieved either by using elliptical holes (Hansen et al. 2001; Yue et al. 2006, 2007)
or by the material of the fibre itself (Tsai et al. 1991). PCFs with high birefringence are
commonly used in many applications such as optical communication systems and polariza-
tion maintaining fibers in sensing applications (Nakazawa 1985). There are many structures
which have been reported previously in the literature to achieve high birefringence in PCFs
at the operating wavelength λ = 1.55 µm. Suzuki et al (Suzuki et al. 2001) introduced two
bigger holes in the first ring which gave a birefringence of 1.4 × 10−3. In addition, the use
of elliptical holes (Steel and Osgood 2001) results in a birefringence of 2.035 × 10−3. Fur-
thermore, the elliptical PCF with two bigger holes in the first ring (Yue et al. 2006) produces
a birefringence of 5.494 × 10−3. Moreover, Yang Yue et al. (Yue et al. 2007) reported the
birefringence of 3.78 × 10−2 at λ = 1.55 µm for a squeezed hexagonal lattice with elliptical
holes. Although the above structures exhibit a highly birefringence, there are some limitations
in using elliptical holes due to the difficulty of their fabrication.

The cross section of the proposed highly birefringence PCF is shown in Fig. 8. It consists
of a squeezed four ring-PCF with �y = 1.7 µm and �x = 1.65 µm where, �x and �y are
the hole pitches in x and y direction respectively. Also, two bigger holes are introduced in the
first ring with radius rb equals to 0.99 µm. As shown in Fig. 8, the radius of the holes in each
ring differs from each other and their values are r1 = 0.55 µm, r2 = 0.62 µm, r3 = 0.77 µm
and r4 = 0.814 µm. This structure has been analyzed by the suggested analytical ANN-RBF
approach and found to yield a high birefringence value of 0.014 at λ = 1.55 µm by using
circular holes only. Fig. 9 a shows the variation of the birefringence with �x while �y and λ

are kept fixed at 2.2 µm and 1.55 µm respectively. As �x increases from 1.65 µm to 2.2 µm,
the birefringence decreases from 7.6 × 10−3 to 2.2 × 10−3. This is due to the fact that the
increase in the �x decreases the asymmetry in the structure of the PCF which, in turn, reduces
the difference between the effective indices of the two polarized modes. The variation of the
birefringence with �y whilst �x and λ are held constant at 2.2 µm and 1.55 µm respec-
tively is demonstrated in Fig. 9b. As �y increases from 1.65 µm to 2.2 µm, the birefringence
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Fig. 8 Cross section of the
suggested highly birefringence
PCF. The diameters of the holes
in each ring are d1, d2, d3 and d4.
However, db is the diameter of
the two bigger holes in the first
ring. �x and �y are the hole
pitch in x and y direction
respectively

Λx

d1

db

d2

d3

d4

Λy

Fig. 9 The variation of the birefringence at λ = 1.55 µm with a the hole pitch in x-direction �x while the
hole pitch in y-direction �y fixed to 2.2 µm b �y while �x fixed to 2.2 µm

decreases slightly from 3.1×10−3 to 2.2×10−3. It can be concluded from Fig. 9a and b that
the squeeze in the x-direction produces higher birefringence than that in the y direction. It
should be noted that the birefringence at �y = �x = 2.2 µm is produced by the two bigger
holes in the first ring. Figure 10 a shows that the birefringence decreases with increasing
the hole pitch �x from 1.65 µm to 2.2 µm while �y and λ are kept fixed at 1.65 µm and
1.55 µm respectively. The same effect occurs when increasing �y from 1.65 µm to 2.2 µm
at constant �x = 1.65 µm as shown in Fig. 10b. The variation of the birefringence with the
hole pitch �y = �x = � is shown in Fig. 10c. It is found that the birefringence decreases by
increasing the hole pitch � at the operating wavelength λ = 1.55 µm. It is also evident from
Fig. 10a,b and c that the birefringence which occurs due to the squeeze in any direction, is
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Fig. 10 The variation of the
birefringence at λ = 1.55 µm
with a the hole pitch in
x-direction �x while �y fixed to
1.65 µm b �y while �x fixed to
1.65 µm c hole pitch (�x = �y)

Fig. 11 The variation of the confinement loss of the TE and TM modes with the wavelength while �x and
�y fixed to 1.65 µm and 1.7 µm respectively

greater than the birefringence occurring when �y equals to �x. The proposed structure with
�x = 1.65 µm and �y = 1.7 µm offers high birefringence of 0.014 at λ = 1.55 µm with
low losses for the two polarized modes by using four rings only. The confinement losses for
the TE and TM modes are found to be 5.1 × 10−7dB/m and 2.26 × 10−7dB/m respectively
at the operating wavelength 1.55 µm. It is observed that the use of different hole radius in
each ring decreases the confinement loss with only four rings. In addition, the losses will be
further decreased if additional rings are added. The variation of the confinement losses for
the two polarized modes for the proposed PCF with the wavelength is shown in Fig. 11.

The chromatic dispersion which is an important parameter in optical communication sys-
tems is considered next. The chromatic dispersion D of a PCF can be calculated from the
neff values versus the wavelength using
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Fig. 12 The variation of the dispersion of the TE mode with the wavelength at different �y values,
1.70 µm, 1.75 µm, 1.85 µm and 2.2 µm, while �x is kept constant at 1.65 µm

Fig. 13 The variation of the dispersion of the TM mode with the wavelength at different �y values,
1.70 µm, 1.75 µm, 1.85 µm and 2.2 µm, while �x is kept constant at 1.65 µm

D = −λ

c

d2neff

dλ2 (11)

where c is the velocity of light in the vacuum. The material dispersion given by Sellmeier’s
formula (Agrawal 1997) is included in the calculation. Figures 12 and 13 show the total
dispersion curves of the TE and TM polarized modes, respectively at different �y values
while �x is kept constant at 1.65 µm. It is evident from these figures that the shapes of the
dispersion curves for both TE and TM modes, show a normal dispersion over a wide range
of wavelengths which is believed to be useful for a broadband dispersion compensation. In
addition, the normal dispersion for both orthogonal polarizations over a long wavelength
ranges decreases with increasing �y. Moreover, the absolute value of the TE dispersion is
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larger than that of the TM dispersion. These results agree with those reported previously for
elliptical-hole PCF with squeezed lattice (Yue et al. 2007).

4 Conclusion

A new and an accurate artificial ANN-RBF has been suggested for the analysis and design
of PCFs. The radial basis function provides a rapid and an accurate learning process. This
approach overcomes the meshing problems and time consuming of other numerical model-
ling methods. A squeezed circular-hole PCF with two big circular air holes adjacent to the
core has been proposed which offers a high birefringence of 0.014 at λ = 1.55 µm with low
losses for the two polarized modes. In addition, a broadband normal dispersion that can be
used for broad band dispersion compensation has also been obtained.
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