
Optimization and Engineering
https://doi.org/10.1007/s11081-024-09888-2

RESEARCH ART ICLE

Novel solution strategies for multiparametric nonlinear
optimization problems with convex objective function and
linear constraints

Diogo A. C. Narciso1,2,3 · Efstratios N. Pistikopoulos4,5

Received: 27 September 2023 / Revised: 28 March 2024 / Accepted: 29 March 2024
© The Author(s) 2024

Abstract
This paper expands the multiparametric quadratic programming (mp-QP) framework
presented in Narciso et al. (Comput Chem Eng 164:107882, 2022. https://doi.org/10.
1016/j.compchemeng.2022.107882) to the more general multiparametric nonlinear
programming (mp-NLP) case. First, the vector of parameters in mp-NLP problems
is recast so that a unique transformed parameter is implicitly assigned to each of the
inequality constraints. Maps of critical regions in this transformed space of parameters
feature a set of 1-dimensional parametric edges (two per inequality constraint), which
then greatly facilitate solution calculation. In the mp-NLP case, however, parametric
edges define nonlinear semi-infinite lines; this requires an adaptation to the mp-QP
algorithm (deals with linear parametric edges only), to enable a suitable calculation
path to the more general nonlinear case. Three routes are proposed to mp-NLPs: the
first route delivers solutions in compact form (same format as inmp-QP) using a single
reference point per edge; the second route delivers explicit solutions using a hybrid
approach for critical region construction, where all active sets not detected in the
parameters space are excluded from the solution (equivalent to first route concerning
accuracy); the third route builds on the initial explicit solution and further partitions

B Diogo A. C. Narciso
diogo.narciso@tecnico.ulisboa.pt

1 CERENA - Centro Recursos Naturais e Ambiente, Departmento de Engenharia Química,
Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa,
Portugal

2 LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy,
Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3 ALICE - Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering,
University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

4 Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA

5 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
77843, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-024-09888-2&domain=pdf
http://orcid.org/0000-0002-2776-7477
http://orcid.org/0000-0001-6220-818X
https://doi.org/10.1016/j.compchemeng.2022.107882
https://doi.org/10.1016/j.compchemeng.2022.107882

D. A. C. Narciso, E. N. Pistikopoulos

the parameters space until all solution fragments satisfy an error check. Five algo-
rithms were coded for these routes, and tested in a large range of mp-NLP problems.
These strategies enable significant improvements in terms of solution accuracy, algo-
rithm efficiency, and interpretability when compared to the state-of-the-art mp-NLP
algorithms.

Keywords Multiparametric programming · Nonlinear optimization · Critical
regions · Explicit parametric solutions

1 Introduction

Multiparametric programming deals with a special class of optimization problems,
where a vector of parameters is defined independently of the optimization variables
and bounded in a real space of parameters. These parameters are typically posed as a set
of right-hand side dependencies on the definition of the inequality constraints, enabling
the contraction and expansion of the feasible space. These problems are inherently
infinite in size, and their solutions are commonly delivered as a set of partitions of the
parameters space (the critical regions) and their optimizer functions (Pistikopoulos
et al. 2020).

In muliparametric linear and quadratic programming (mp-LP and mp-QP, respec-
tively), optimizer functions are obtained exactly from the Karush–Kuhn–Tucker
(KKT) conditions for all active sets (Gal and Nedoma 1972; Dua et al. 2002). The
matching critical regions are then obtained via a set of additional optimality and feasi-
bility constraints imposed on the solution of theKKTconditions. This solution strategy
is generally infeasible inmultiparametric nonlinear programming (mp-NLP): theKKT
conditions in mp-NLP problems typically define a nonlinear system of equations,
which cannot be solved explicitly for the independent vector of parameters. As a result,
while in mp-LP and mp-QP the solution paradigm is based on the exact calculation
of optimizer functions and critical regions per active set, in mp-NLP, approximation-
based strategies rely on some pre-defined parameters space partitioning strategy.

In Dua and Pistikopoulos (1999), a multiparametric outer approximation (mp-OA)
algorithm is proposed, which relies on local linearizations of the objective function
to deliver the solutions of mp-NLPs via mp-LP. In Johansen (2002), a multiparamet-
ric quadratic approximation (mp-QA) algorithm is presented, iterating between the
solutions of NLP and mp-QP problems. In Bemporad and Filippi (2006), an approx-
imate multiparametric (AM) algorithm is proposed, where the parameters space is
divided sequentially via a set of convex hulls, and optimizer functions are obtained
from interpolation until a pre-defined tolerance is satisfied. A geometric vertex search
(GVS) algorithm is presented in Narciso (2009), where critical regions are also deliv-
ered as convex hulls via a careful selection of vertices to improve solution accuracy
and compactness. A review of the state-of-the-art mp-NLP algorithms is presented
in Domínguez et al. (2010), where an improvement to the mp-QA algorithm is also
discussed.

The primary goal of mp-NLP algorithms is to deliver optimizer functions such that
for all combinations of parameters in the parameters space, the estimated optimizers

123

Novel solution strategies for multiparametric...

match as closely as possible the exact optimizers (within a pre-defined tolerance).
All algorithms above achieve this with distinct levels of success: this depends mainly
on the strategy used to partition the parameters space, which may favor or hinder
the calculation of solutions compactly and efficiently. It is noted in Narciso (2009)
that the critical regions obtained from mp-NLP algorithms frequently bear little or
no resemblance with the actual optimal active sets maps. These maps are often very
complex and feature critical regions where no noticeable patterns can be identified,
which makes the task of delivering the solutions of mp-NLP problems with the lowest
complexity possible and preserving the actual optimal active set maps a challenging
objective.

A new solution strategy for convex mp-QP was proposed in Narciso et al. (2022),
which is particularly relevant to address the problem of how to partition the param-
eters space in mp-NLP problems: given an mp-QP problem including p inequality
constraints, it is shown that the full map of critical regions may be described in a con-
cise form via a set of 2p vectors of directions in IRp, rather than up to a total of 2p sets
of parameters space bounds defining the critical regions for as many active sets. This
is achieved after transforming the original vector of parameters, which renders highly
structured optimal active sets maps in the new space of parameters. These principles
are also applicable to mp-NLP, and in this work, we explore how to adapt them from
the mp-QP to the mp-NLP case.

The rest of the paper is organized as follows: Sect. 2 motivates the need for more
efficient mp-NLP algorithms and highlights the methodology used in this work. In
Sect. 3, a formal framework and five new algorithms are proposed to solve mp-NLP
problems. In Sect. 4, two mp-NLP problems are solved, and a comparison with the
state-of-the-art mp-NLP algorithms and a computational study on the dimension of
mp-NLP problems are presented. The proposedmethodology and results are discussed
in Sect. 5.

2 Motivating example

Consider the following mp-NLP problem:

min
x

1/2x41 + 1/6x31 + 2x21 − 13/2x1 + 1/4x42 + 1/3x32 + x22 − 4x2

s.t .

[
1 1/3
1 3

] [
x1
x2

]
≤

[
1
1

]
+

[−1 −1/10
1/10 −1

] [
θ1
θ2

]
(c1)
(c2)⎡

⎢⎢⎣
1 0

−1 0
0 1
0 −1

⎤
⎥⎥⎦

[
θ1
θ2

]
≤

⎡
⎢⎢⎣
2
1
2
4

⎤
⎥⎥⎦

x ∈ X ⊂ IR2

θ ∈ � ⊂ IR2

(1)

where x and θ are the vectors of optimization variables and parameters, respectively.
For any x ∈ IR2, the objective function’s Hessian is a positive diagonal matrix, from

123

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 1 Critical regions map for motivating example via AM: (A) initial set of convex hulls; (B) final set of
convex hulls. The exact optimal active set map is defined via the black dotted lines

where it follows that Eq. 1 is a convex mp-NLP. The application of the AM algorithm
to this problem is illustrated in Fig. 1.

Two regions (CR1 and CR2) are created initially using the corners of � (Fig. 1A),
and optimizer functions are obtained via interpolation of the corresponding optimizers
and parameters. The accuracy of optimizer functions is tested, and critical regions are
partitioned sequentially as many times as necessary until all optimizer functions for
all partitions satisfy a pre-defined tolerance (B). Note that the final map includes
10 regions and bears little resemblance to the actual optimal active sets map. This
partitioning scheme depends mainly on the corners of � and delivers a somewhat
artificialmap of critical regions. While the AM algorithm ensures optimizer functions
for all critical regions are within a pre-defined tolerance, this strategy may require a
number of partitions substantially larger than the total number of active sets: these
partitions may span across several of the actual regions per optimal active set; in turn,
in these regions, optimizer sensitivities may be significantly different which requires
the creation of many partitions to achieve optimizer accuracy and leads unavoidably
to algorithm and solution complexity.

It is reported in Domínguez et al. (2010) that the improvedmp-QA algorithm solves
mp-NLPs more efficiently as illustrated via the solution of a benchmark problem. Yet,
the GVS algorithm is the only mp-NLP algorithm known to the authors focusing
specifically on building a more natural set of critical regions: it aims to deliver accu-
rate optimal active set maps, via a computationally expensive partitioning scheme
(applicable only to a subset of mp-NLP problems). Overall, and while the state-of-
the-art mp-NLP algorithms do deliver accurate laws for optimizer calculation, we
argue that the calculation of solutions minimizing algorithm complexity and more
consistent with the exact optimal active set maps remains an open research subject.

123

Novel solution strategies for multiparametric...

Fig. 2 Critical regions for motivating example: (A) exact optimal active set map; (B) 1-dimensional edges
between critical regions estimated from optimizer sensitivities

Using the framework presented in Narciso et al. (2022), this new partitioning strat-
egy may also be adapted to the mp-NLP case. A brief illustration is presented next;
first, Eq. 1 is recast using z = Fθ :

min
x

1/2x41 + 1/6x31 + 2x21 − 13/2x1 + 1/4x42 + 1/3x32 + x22 − 4x2

s.t .

[
1 1/3
1 3

] [
x1
x2

]
≤

[
1
1

]
+

[
z1
z2

]
(c1)
(c2)⎡

⎢⎢⎣
−0.990 0.099
0.990 −0.099

−0.099 −0.990
0.099 0.990

⎤
⎥⎥⎦

[
z1
z2

]
≤

⎡
⎢⎢⎣
2
1
2
4

⎤
⎥⎥⎦

x ∈ X ⊂ IR2

z ∈ Z ⊂ IR2

(2)

where z is a vector of transformed parameters and Z the corresponding space of
parameters. The exact map of optimal active sets in Z is depicted in Fig. 2 (A).

In mp-QP, after recasting z = Fθ , it suffices to calculate the objective function’s
global optimum (x∗), and the (constant) sensitivities of all single-constraint active
sets, from where the full solution is obtained via a set of trivial algebraic operations.
The same principles apply to mp-NLP; the main difference resides in the fact that the
sensitivities of single-constraint active sets are not constant as highlighted in Fig. 3A.
To circumvent this, a single representative optimizer is used per each of the single-
constraint active sets via the corresponding KKT conditions with z < z∗ (x∗,1 and

123

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 3 Optimizers for single-constraint active sets in motivating example: (A) exact calculation via the KKT
conditions using multiple z < z∗; (B) representative (constant) gradients using a single optimizer per active
set (x∗,1 and x∗,2) and the global optimum (x∗)

x∗,2), as depicted in Fig. 3B. Constant estimations for all gradients (V x) are obtained
trivially from the reference optimizers.

The estimated 1-dimensional edges between all critical regions are then obtained
from V z,a = AV x . Their calculation is depicted in Fig. 2B. Note that the critical
regions obtained this way match very closely the optimal active set maps since this
partitioning scheme explores very efficiently the topology of critical regions in Z . It
also contributes to capturing optimizer sensitivities more efficiently, thus offering a
promising path for mp-NLP. Section3 presents a formal framework.

3 New solution strategies for convexmp-NLP

In this work, we address convex mp-NLP problems of the following class:

min
x

f (x)

s.t . Ax ≤ b + Fθ

PAθ ≤ Pb
x ∈ X ⊂ IRn

θ ∈ � ⊂ IRm

(3)

where x and θ are the vectors of optimization variables and parameters, respectively,
and f (x) is a convex nonlinear function with a unique global optimizer at x∗. A ∈
IR(p×n), b ∈ IR(p×1), F ∈ IR(p×m), PA ∈ IR(r×m) and Pb ∈ IR(r×1) are constant real
matrices and vectors. Constant integersm, n, p, and r denote the number of parameters,
optimization variables, feasible space’s inequality constraints, and parameters space’s
bounds, respectively.

Active sets are referred to in thisworkvia twoalternative notations: (i) as a collection
of abbreviated constraints of the form {c j }, where j is any collection of constraint
indexes between 1 and p, or (ii) as a binary vector y of size p, where y j = 0 or 1 denotes
the j th constraint is inactive/active, respectively. The empty active set or yempty =

123

Novel solution strategies for multiparametric...

[0, 0, ..., 0] ({}), and the full active set or y f ull = [1, 1, ..., 1] ({c1, c2, ..., cp}) are
defined as particular cases of this notation.

Equation 3 is recast in two steps; first, a new vector of transformed parameters
z = Fθ is defined:

min
x

f (x)

s.t . Ax ≤ b + z
PAθ ≤ Pb
z = Fθ

x ∈ X ⊂ IRn

θ ∈ � ⊂ IRm

z ∈ Z ⊂ IRp

(4)

In those mp-NLP problems where F is a square invertible matrix, θ = F−1z and
an explicit definition of Z via a set of halfspaces is possible (excluding θ from Eq.4).
We refer to Eq.4 as the transformed mp-NLP. In a second recasting step, Z is defined
unbounded:

min
x

f (x)

s.t . Ax ≤ b + z
x ∈ X ⊂ IRn

z ∈ Z ⊂ IRp

(5)

We refer to Eq.5 as the expanded mp-NLP. It follows directly from the discussion
in Sections 3.1.1 and 3.1.2 in Narciso et al. (2022) that the expanded mp-NLP and
the recast mp-QP problems share the same topology properties. Namely, the solutions
of both problems include: (i) a unique optimizer vertex, (ii) p optimizer edges, (iii)
a unique parametric vertex, and (iv) 2p parametric edges. In mp-NLP, the optimizer
vertex is the global optimum of f (x) and the optimizer edges include the full set
of optimizers (xopt) for all single-constraint active sets defining 1-dimensional semi-
infinite lines in X ; the parametric vertex and the parametric edges are obtained from
the corresponding optimizers using z = Axopt − b as illustrated in Figs. 2 and 3.

In mp-NLP, optimizer edges generally define nonlinear semi-infinite lines. Opti-
mizer sensitivities are not constant and this is the most critical subject towards the
adaptation of the newly developed mp-QP paradigm to the mp-NLP case. Building on
the initial analysis proposed in Sect. 2, three new solution strategies are presented in
Sects. 3.1–3.3. These enable the calculation of the solutions for the expanded and trans-
formed mp-NLPs with incremental accuracy as schematically depicted in Fig. 4. Five
algorithms deliver this functionality. These were coded in Python (Van Rossum and
Drake 2009), and supported on the numpy (Harris et al. 2020), SciPy (Virtanen 2020)
and pyomo (Bynum et al. 2021) libraries. A high-level discussion is presented in this
section, including the steps of all algorithms in the form of pseudo-codes; the Python
codes for all algorithms are available in file https://github.com/diogonarciso/mpNLP
(to include later in Github). We remark that the goal of this paper is the offline calcu-
lation of critical region maps and optimizer functions for increased solution accuracy

123

https://github.com/diogonarciso/mpNLP

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 4 New solution strategies
for convex mp-NLP problems

in mp-NLP problems. A first exploration of this framework in the context of online
Model Predictive Control is presented in Narciso et al. (2023); this subject will be
addressed in future work.

3.1 Compact solution

This concept was proposed in Narciso et al. (2022) for mp-QP. Taking the optimizer
vertex (x∗), the parametric vertex (z∗), the gradients of optimizer edges (V x), and the
gradients of parametric edges (V z,i - inactive constraints, andV z,a - active constraints),
all critical regions (Eq.6), and optimizer functions (Eq. 7), are expressed exactly in
compact form as follows:

z = z∗ + (V z,i)((y f ull − y)l) + (V z,a)(yl), y ∈ {0, 1}, l ≥ 0 (6)

xopt = x∗ + (V x)(yl) (7)

where l is a nonnegative vector of multipliers denoting the extents of feasible space
expansion/contraction beyond z∗ via each of the p inequality constraints, and xopt rep-
resents the vector of optimizers. Equation6 fits in the class of Linear Complementarity
Problems (LCP), though its derivation is distinct from the classic LCP formulation
employed to obtain the solution of mp-QPs. A detailed discussion on this subject is
presented in Sections 3.1 and 3.6 of Narciso et al. (2022), where the derivation of
Eqs. 6 and 7 and a comparison with the classic LCP formulation are presented.

The compact solution (CS) format is also directly applicable to the expanded
and transformed mp-NLP problems given their shared topology properties. The calcu-
lation of all vertices and gradients is adapted fromNarciso et al. (2022) to the mp-NLP
case, where obtaining estimates for V x in Step 3 requires the most significant update.
The CS is presented here as a trivial extension from mp-QP and as an initial step in
the proposed framework. Its applicability in the context of mp-NLP is limited and
presented in greater detail in Appendix 1 (Sect. 2).

123

Novel solution strategies for multiparametric...

3.2 Basic explicit solution

Explicit solutionsmay be obtained for any active set by setting y directly in Eqs. 6 and 7
and listing their solution fragments. An improved methodology for the calculation of
the basic explicit solution (BES) is proposed in this section, delivering critical regions
in the context of the transformed mp-NLP problem only. Sections3.2.1–3.2.5 discuss
the supporting concepts of Algorithm 2, which is presented in Sect. 3.2.6.

3.2.1 Constraints status assessment

Without prior assessment, all p inequality constraints of the transformedmp-NLPmay
be inactive or active in distinct regions of �, from where the theoretical maximum
number of active sets comprising its solution amounts to 2p. To reduce problem com-
plexity it is desirable to conclude if any, and which, constraints are always inactive or
always active, thus potentially reducing significantly the total number of active sets
and critical regions to assess during the calculation of the BES. This can be achieved
by adapting Eq.6 as follows:

Fθ = z∗ + (V z,i)((y f ull − y)l) + (V z,a)(yl), y ∈ {0, 1}, l ≥ 0
y j = 0
PAθ ≤ Pb

(8)

where j is any integer between 1 and p, thus enforcing the corresponding parametric
edge (inactive constraint) on the definition of the permissible space; z = Fθ and the
bounds of� are also enforced on this problem statement. If a solution exists for Eq.8,
there is at least one θ ∈ �, where the j th constraint is inactive. Conversely, if no
solution exists, there is no θ ∈ �, where the j th constraint is inactive at the optimal
solutions; in other words this constraint is always active in �.

An equivalent statement is defined to test parametric edges associated with active
constraints; it suffices to update y j = 1 in Eq.8, and in this case: if no solution
exists for this problem, the j th constraint is always inactive in �. The total numbers
of always active/always inactive constraints are denoted as 0 ≤ Na ≤ p and 0 ≤
Ni ≤ p, respectively. Equation8 may be recast equivalently as aMixed Integer Linear
Programming (MILP) problem (checking feasibility to reach one of the conclusions
above). Details are discussed in Sect. 4 of Appendix 1.

3.2.2 Critical region dimensionality

All critical regions are implicitly defined inEq.6 via a unique combination of p column
vectors of V z,i and V z,a , spanning them in Z . Their dimensions in this space depend
exclusively on the linear independence between their p vectors of directions: given
an active set y and the corresponding matrix of column vectors from V z,i and V z,a -
denoted as V z,y - the dimension of its critical region in Z is obtained trivially from
rank(V z,y).

Since V z,i is the identity matrix of size p (all vectors are orthogonal to each other),
critical region dimension may alternatively be calculated from the subset of active

123

D. A. C. Narciso, E. N. Pistikopoulos

constraints for a given active set y. In mp-NLP, optimizer edges define nonlinear
semi-infinite lines in X , and thus the estimated matrices V x and V z,a via Algorithm 1
depend on the defined parameters space. A more robust way of checking dimension-
ality consists of checking linear independence between the relevant rows of A. This is
achieved as follows: (i) calculate rank(Az,y), where Az,y denotes the set of rows of A
matching the active constraints of y; (ii) if rank(Az,y) = ∑p

j=1 y j , the corresponding
critical region is full dimensional in Z .

3.2.3 A hybrid partitioning strategy

Anew strategy for critical region construction is presented,making use on the one hand
of the nonnegative combinations of the gradients of parametric edges as presented in
Eq.6, and on the other hand incorporating, selectively, convex hull constraints in their
definition. Given an active set y, such that constraints cJ1 , . . . , cJj are active, and con-
straints cK1 , . . . , cKk are inactive (where [J1, . . . , J j]∪[K1, . . . , Kk] = [1, 2, . . . , p]
and [J1, . . . , J j] ∩ [K1, . . . , Kk] = ∅); the corresponding critical region is now
expressed as follows:

z = (
z∗s1 + z∗,J1s2 + · · · + z∗,J j s j+1

) + (
e(K1)t1 + · · · + e(Kk)tk

)
s ≥ 0, t ≥ 0
j+1∑
i=1

si = 1
(9)

where s ∈ IR j+1
≥0 and t ∈ IRk≥0 span the parametric edges for active and inactive

constraints of y, respectively, in place of l. The set of points z∗,J1 · · ·+z∗,J j are obtained
from z = Ax − b, using the set of optimizers from the corresponding optimizer edges
(Step 3A.2 in Algorithm 1). This partitioning strategy is entirely equivalent to the
CS, except that an additional constraint (

∑ j+1
i=1 si = 1) is now enforced in Eq.9, and

which limits the extents of critical regions via the set of parametric edges associated
with active constraints to promote solution accuracy. An equivalent definition for Eq. 9
using matrix notation and the matching optimizer functions are presented in Eqs. 10
and 11, respectively.

[
z
1

]
=

[
Fθ

1

]
=

[
z∗ z∗,J1 . . . z∗,J j e(K1) . . . e(Kk)

1 1 . . . 1 0 . . . 0

] [
s
t

]
, s ≥ 0, t ≥ 0 (10)

xopt = [
x∗ x∗,J1 . . . x∗,J j 0 . . . 0

] [
s
t

]
(11)

where matrices in Eqs. 10 and 11 are denoted as MCR and MOF , respectively. A
graphical illustration of the partitioning strategy via Eq.10 and a discussion on the
theoretical consistency between Eqs. 10 and 11 are presented in Sect. 5 of Appendix
1.

123

Novel solution strategies for multiparametric...

3.2.4 Optimal active set detection

The following LP enables to conclude if a given active set y defines a critical region
in �:

min
s,t,θ

[
1 . . . 1

]
θ

s.t .

[
Fθ

1

]
=

[
z∗ z∗,J1 . . . z∗,J j e(K1) . . . e(Kk)

1 1 . . . 1 0 . . . 0

] [
s
t

]

PAθ ≤ Pb
[s|t]T ∈ IRp+1

>0
θ ∈ � ⊂ IRm

(12)

where the equality constraints are set from the corresponding critical region of y, via
Eq.10. If Eq. 12 returns a feasible solution, there is at least one θ ∈ � where active
set y is detected as the optimal solution.

3.2.5 Parametric edges scope

The selection of the reference optimizers and parameters in Step 3A.2 of Algorithm 1
(x∗, j and z∗, j with j = 1, . . . , p) becomes more important in the context of Eq.10.
For instance, in Fig. 2B, the convex combinations enabled via Eq.10 for all active sets
cover the full extent of the space of parameters (depicted in Fig. 5), thus making the
selected reference points an adequate choice. In somemp-NLP problems, this may not
be the case; this is illustrated with a second example in Fig. 7B, where a small triangle
of the transformed space around [0, 0] is not covered via any of the permitted convex
combinations for active set {c1, c2}, as expected. To accommodate for this scenario,
Step 3A.2 in Algorithm 1 includes a user-defined vector of slacks δ, which for all
j = 1, . . . , p, negatively increments zmin

j , thus ensuring that the reference points
calculated in this step cover the full space of parameters via their critical regions
(Fig. 7A).

Finding δ such that it covers as tightly as possible the parameters space presents
several challenges. We argue that a simpler approach towards setting δ is a better com-
promise between solution accuracy and algorithm complexity: for all j = 1, . . . , p,
δ j = α(zmin

j − z∗j), where α denotes a relative increment parameter with respect to

the initial estimation of zmin
j (α ≈ 0 − 0.1).

3.2.6 Critical region mapping

The calculation of explicit solutions in Multiparametric Programming is generally
based on the exploration of�, where a set of critical regions are calculated in sequence
until the so-called rest space is empty (Dua et al. 2002), Pistikopoulos et al. (2002).
A brute force approach would consist of enumerating all their 2p active set and deliv-
ering the matching critical regions via Eq. 10, which would generally result in a very
expensive option. The proposed strategy for optimal active set detection is based on
the seminal work presented in Gupta et al. (2011), where a combinatorial strategy was

123

D. A. C. Narciso, E. N. Pistikopoulos

developed for mp-QP; this strategy was extended to the mp-NLP case in Mate et al.
(2020) and now adapted to the optimal active sets identification problem in the context
of the transformed parameters space.

Equation 6 enables amore efficientmapping as hinted in Sects. 3.2.1–3.2.5. First, by
defining the 2pMILPs for the 2p parametric edges via Eq.8, the number of candidate
active sets reduces to 2p−Ni−Na : all candidate active sets are such that the Ni and Na

fixed coordinates of y are set the constant values equal to 0 and 1, respectively. When
all 2p MILPs are infeasible, � defines an infeasible region and in this case, the BES
includes 0 active sets.

The number of candidates may be further decreased by excluding all active sets
necessarily defining low-dimensional critical regions. In line with the discussion in
Sect. 3.2.2, this occurs for any given active set where the number of active constraints
exceeds the number of optimization variables. An active set enumeration strategy is
proposed to exclude them, where the p − Ni − Na free coordinates of y are selec-
tively set to 0 or 1, and where up to n − Na of these coordinates are equal to 1. The
enumeration begins with i = 0 free coordinates equal to 1; i is then incremented
sequentially to deliver the full set of candidate active sets, which amounts to a total
of

∑n−Na
i=0 Cp−Ni−Na

i . These active sets are then tested such that only those defining
full-dimensional critical regions detected in � are listed in the BES. All steps are
summarized in Algorithm 2.

Algorithm 2

Step 1: Initialize vectors ui and ua with all coordinates equal to 0, and vector yre f with all
coordinates equal to -1(a) (all vectors of size p).

Step 2: For all j = 1, ..., p, solve Eq. 8 with y j = 0; if infeasible, set uaj = 1. Na = ∑p
j=1 u

a
j .

Step 3: For all j = 1, ..., p, solve Eq. 8 with y j = 1; if infeasible, set uij = 1. Ni = ∑p
j=1 u

i
j .

Step 4: If Na = p and Ni = p, terminate: no critical region exists (� defines an infeasible region).

Else, for all j = 1, ..., p: (i) if uaj = 1, set yre fj = 1, or (ii) if uij = 1, set yre fj = 0.

Step 5: Enumerate all
∑n−Na

i=0 C
p−Ni−Na
i candidate active sets(b). Set j = 1.

Step 6: Set y to the j th active set in the list of candidates.
Step 7: Calculate rank(Ay); if rank(Ay) = ∑p

j=1 y j , calculate the corresponding critical region via

Eq. 10(c). Else, go to Step 9.
Step 8: Solve the LP in Eq. 12; if a feasible solution is found, add the j th active set and its critical
region to the BES. Else, go to Step 9.

Step 9: If j <
∑n−Na

i=0 C
p−Ni−Na
i , set j = j + 1 and go to Step 6.

Step 10: Else, define the general optimizer functions via Eq. 14 (details in Sect. 3.2.7).

(a) Notation for yre f . -1: inactive or active; 0: always inactive; 1: always active, con-
straints in �.
(b) All fixed coordinates of all candidate active sets are set equal to the matching coor-
dinates of yre f . All candidate active sets are enumerated sequentially based on the
number of active constraints: first, the unique active set where i = 0 free components
of y are set to 1; then, the p − Ni − Na active sets where i = 1 free components of y
are set to 1, and so on.
(c) Active sets defining critical regions of dimension p − 1 are also saved. All can-

123

Novel solution strategies for multiparametric...

didate active sets listed in Step 6 are first compared against these low-dimensional
active sets; any candidate active set sharing the same active constraints of one of these
low-dimensional active sets is also associated with a low-dimensional critical region,
and excluded from the BES (skip Steps 7 and 8).

3.2.7 Offline and online solutions

Instead of recording critical regions in accordance with the notation in Eq.10, storing
their inverse matrices in line with Eq.13 is presented as an alternative. From an offline
perspective, the first option is preferable since it dismisses the calculation of an inverse
matrix per detected active set. In an online context, the second option enables a faster
route for critical region identification, since this becomes a simpler function evaluation
problem.

[
s
t

]
=

[
z∗ z∗,J1 . . . z∗,J j e(K1) . . . e(Kk)

1 1 . . . 1 0 . . . 0

]−1 [
Fθ

1

]
≥

[
0
0

]
(13)

The notation used for matrices MCR (Eq. 10) and MOF (Eq. 11) is such that all
active/inactive constraints are captured in the central/right blocks of these matrices,
respectively (sensitive/insensitive transformed parameters). In practice, all columns
of MCR and MOF are sorted and saved in the original order; vector [s|t]]T is sorted
accordingly and denoted as γ . This enables a general and computationally inexpensive
representation of all optimizer functions for all active sets using Eq.14:

xopt = [
x∗ x∗,1 . . . x∗,p

]
γ (14)

3.3 Refined explicit solution

The refined explicit solution (RES) builds on the BES to improve solution accuracy.
The proposed strategy comprises three stages: first, a set of additional points per edge
is calculated (Algorithm 3); then, a set of more precise partitions is obtained from
these points (Algorithm 4); at last, these partitions are broken down in smaller par-
titions/critical regions, if necessary until their optimizer functions deliver optimizers
within a pre-defined error tolerance (Algorithm 5).

3.3.1 Edges refinement

All edges are implicitly defined in the CS and the BES as single line segments. These
are now halved and tested sequentially using as many segments as necessary via a
set of additional points to improve their accuracy. Their calculation is summarized in
Algorithm 3.

123

D. A. C. Narciso, E. N. Pistikopoulos

Algorithm 3

Step 1: Define the list of p single constraint active sets. Set j = 1 (active set: {c1}).
Step 2: If uij = 1 go to Step 7(a).

Step 3: Initialize the list of intervals to process with: zmin
j − δ j ≤ z j ≤ z∗j .

Step 4:While there is at least one interval to process, take the first interval in this list (denoted as
zlbj ≤ z j ≤ zubj) and:

Step 4.1: Calculate zcenterj = (zlbj + zubj)/2, and solve the KKT conditions for active set {c j } at
z j = zcenterj , to obtain optimizer x∗,exact .

Step 4.2: Calculate the estimated optimizers at zcenterj : x∗,estim = (xlb + xub)/2(b).

Step 4.3: Calculate the approximation error ε = ∑n
j=1(x

∗,exact
j − x∗,estim

j)2.
Step 4.4: Remove the first interval from the list of intervals.
Step 4.5: If ε > ζ edges , where ζ edges is a pre-defined error tolerance: (i) add x∗,exact to the j th

optimizer edge, (ii) break the current interval in two intervals: zlbj ≤ z j ≤ zcenterj and

zcenterj ≤ z j ≤ zubj , and (iii) add the two intervals to the list of intervals. Go to Step 4 (while loop).

Step 5: For all optimizers added to the j th optimizer edge in Step 4.5, calculate the matching
reference points z = Ax∗,exact − b, and add them to the j th parametric edge (active constraint).

Step 6: If j < p, set j = j + 1 (active set: {c j }) and go to Step 2.
Step 7: For all j = 1, . . . , p, order the full set of representative points for the j th optimizer and
parametric edges from the highest to the lowest z j .

(a) From Sect. 3.2.1, if this condition holds, the current edge is not used in the calcu-
lation of the BES, and its refinement is unnecessary in this case.
(b) Formally, the optimizer function would be calculated first via interpolation of xlb

(at zlbj) and xub at (zubj), and then x∗,estim obtained at zcenterj . The interpolation step

is dismissed and the optimizer obtained directly via xlb and xub.

3.3.2 Initial set of critical regions

Making use of the points calculated in Sect. 3.3.1, a new set of critical regionsmatching
more closely the actual optimal active set map are obtained, where each active set now
includes one or more critical regions. All steps are summarized in Algorithm 4.

123

Novel solution strategies for multiparametric...

Algorithm 4

Step 1: If no new points are added in Algorithm 3, terminate: the initial set of critical regions matches
the BES.

Step 2: Define the list of all Nas active sets identified in the BES. Set j = 1 (first active set).
Step 3: Define the list of all reference points for the j th active set from the points in the associated
parametric edges, excluding those points at their last positions(a); list them as "unprocessed"(b).

Step 4: Define the first critical region via Eq. 10, using z∗ and the vectors of representative points per
each of the relevant parametric edges at their second positions (c). Update z∗ to the "processed"
status. Set the current positions of all parametric edges to their second positions.

Step 5:While there are any "unprocessed" reference points:
Step 5.1: Create a new region using a reference point per edge at their current positions and add a

point from one of the associated parametric edges at the next available position(d).
Step 5.2: At the same parametric edge used in Step 5.1 (ii), update the status of the point at the
current position to "processed", and increment this position by 1. Go to Step 5 (while loop).

Step 6: If j < Nas , set j = j + 1 (next active set in the list) and go to Step 3.

(a) All points in edges are ordered via Step 8 of Algorithm 3: for all j = 1, . . . , p,
z∗ is at the first position, and zmin

j − δ j at the last position.
(b) The "processed" and "unprocessed" statuses reflect if points at edges are available
or not, respectively, for the purposes of creating critical regions.
(c) All gradients for all associated inactive constraints are included accordingly in
Eq.10.
(d) To promote a balanced construction of partitions, the parametric edge including
the highest number of "unprocessed" points is selected in this step.

3.3.3 Critical regions check and refinement

Using the full set of initial critical regions delivered in Algorithm 4, two checks are
made: (i) detecting which are included in the parameters space, and (ii) testing the
accuracy of their optimizer functions. Accordingly, critical regions are excluded or
broken down into smaller partitions until optimizers are estimated within a pre-defined
tolerance. Algorithm 5 summarizes all calculations.

123

D. A. C. Narciso, E. N. Pistikopoulos

Algorithm 5

Step 1: Define the list of all Ncr initial critical regions identified in Algorithm 4. Set j = 1 (first
critical region).

Step 2: Initialize the list of partitions to check in the current iteration (j) using the j th critical region
in the list of critical regions.

Step 3:While there is at least one partition to check, take the first partition in this list and:
Step 3.1: Check if the partition is included in the parameters space via Eq. 12. If not, remove the

partition from the list of partitions to check and go to Step 3 (while loop).
Step 3.2: Calculate zcenter , as the average of all reference points used in its definition, and solve

the KKT conditions for its active set at z = zcenter , to obtain optimizer x∗,exact .
Step 3.3: Define its optimizer functions using the matching optimizers via Equation 11.
Step 3.4: Calculate the estimated optimizer from the optimizer functions at zcenter , x∗,estim , as

the average of the optimizers used their definition (a).

Step 3.5: Calculate the approximation error ε = ∑n
j=1(x

∗,exact
j − x∗,estim

j)2.
Step 3.6: Remove the first partition from the list of partitions.
Step 3.7: If ε > ζ parti tions , where ζ parti tions is a pre-defined error tolerance: (i) break the

current partition in β + 1 partitions(b) via all the combinations of β of its reference points with
zcenter , and (iii) add these partitions to the list of partitions to check. Go to Step 3 (while loop).
Step 3.8: Else, if ε ≤ ζ parti tions , add the partition/critical region and its optimizer functions to

the RES. Go to Step 3 (while loop).
Step 4: If j < Ncr , set j = j + 1 (next initial critical region in the list) and go to Step 2.

(a)See note (b) of Algorithm 3 for details.
(b)Where β denotes the number of active constraints in the current active set/partition.

Several user-defined parameters are defined in Algorithms 1-5 (e.g. ζ edges); some
guidelines on setting these parameters and a discussion on their impact on the solutions
of mp-NLPs is presented in Appendix 1.

3.4 Computational complexity

The computational complexity of Algorithms 1–5 is summarized in Table 1. This is
expressed via the number of auxiliary optimization problems required per algorithm,
which contribute most significantly to their execution. It is not possible to quantify
complexity exactly in all steps, since these algorithms depend on the definition of the
parameters space, tolerances, and problem nonlinearity: a set of exact and estimated
upper bounds are listed where applicable. A more detailed discussion on the subject
is presented in Section 7 of Appendix 1.

Algorithm 1 is likely the lightest mp-NLP algorithm developed to date, where
complexity scales linearly with the number of constraints instead of the more common
exponential dependency reported in the field (Pistikopoulos et al. 2020). Algorithm 2
requires the validation of all critical regions which amounts to roughly the number of
optimal active sets detected in � (Nas). In Algorithm 3 all edges are refined which
includes at least the assessment of a middle point per edge. Algorithm 5 checks and
breaks all partitions where applicable, which includes at least the set of initial critical
regions (Ncr) derived in Algorithm 4.

We remark that the number of NLPs solved as listed in Table 1 originate from the
KKT conditions; these define systems of nonlinear equations and not formal optimiza-
tion problems (subject to a set of inequality constraints). Their solutions are cheaper

123

Novel solution strategies for multiparametric...

Table 1 Computational
complexity of Algorithms 1–5:
upper bounds

Algorithm LPs NLPs MILPs

1 p p + 1 0

2
∑n−Na

i=0 C
p−Ni−Na
i 0 2p

3 0 ≈ 10p 0

4 0 0 0

5 ≈ 10Ncr ≈ 10Ncr 0

to obtain than solving an equivalent NLP (setting θ in Eq.3, finding the optimal active
set and solving for x).

4 Results

4.1 Motivating example

The motivating example (Eq.1) is now solved in accordance with the steps high-
lighted in Fig. 4 to deliver the CS, BES and RES. The transformed and expanded
mp-NLPs are defined in Eqs. 2 and 15, respectively. The following settings on user-
defined parameters for algorithm execution are employed:
z = 0.05, δ = [0, 0],
ζ edges = ζ parti tions = 10−2. Detailed, step-by-step calculations of all solutions
including graphical insights are presented in Sect. 8 of Appendix 1.

min
x

1/2x41 + 1/6x31 + 2x21 − 13/2x1 + 1/4x42 + 1/3x32 + x22 − 4x2

s.t .

[
1 1/3
1 3

] [
x1
x2

]
≤

[
1
1

]
+

[
z1
z2

]
(c1)
(c2)

x ∈ X ⊂ IR2

z ∈ Z ⊂ IR2

(15)

4.1.1 Compact solution

From Algorithm 1: x∗ = [1.000, 1.000]T (Step 1) and z∗ = [0.333, 3.000]T (Step
2). A set of auxiliary optimizers are calculated in Step 3, enabling the calculation of
optimizer edges’ gradients: V x = [[−2.126,−1.223]T , [−0.172,−1.643]T]. Then,
V z
i = [[1, 0], [0, 1]] (Step 4), and V z

a = [[−2.533,−5.794]T , [−0.720,−5.100]T]
(Step 5). The CS is delivered accordingly in Eqs. 16 and 17 (Step 6). The map of
critical regions is depicted in Fig. 2B, where all regions extend to infinity (beyond the
regions shown in the map).

[
z1
z2

]
=

[
0.333
3.000

]
+

[
1 0
0 1

] [
(1 − y1)l1
(1 − y2)l2

]
+

[−2.533 −0.720
−5.794 −5.100

] [
y1l1
y2l2

]
, y ∈ {0, 1}, l ≥ 0

(16)

123

D. A. C. Narciso, E. N. Pistikopoulos

Table 2 Basic explicit solution
for motivating example

Critical region MCR

{}
⎡
⎣ 0.333 1.000 0.000
3.000 0.000 1.000
1 0 0

⎤
⎦

{c1}
⎡
⎣ 0.333 −2.200 0.000
3.000 −2.795 1.000
1 1 0

⎤
⎦

{c2}
⎡
⎣ 0.333 1.000 −0.386
3.000 0.000 −2.100
1 0 1

⎤
⎦

{c1, c2}
⎡
⎣ 0.333 −2.200 −0.386
3.000 −2.795 −2.100
1 1 1

⎤
⎦

[
x1
x2

]opt
=

[
1.000
1.000

]
+

[−2.126 −0.172
−1.223 −1.643

] [
y1l1
y2l2

]

(17)

4.1.2 Basic explicit solution

From Algorithm 2: ui = ua = [0, 0] and yre f = [−1,−1] (Step 1). Four MILPs
are defined and solved in Steps 2 and 3 for inactive and active parametric edges; all
MILPs return a feasible solution, from where ui = ua = [0, 0], and Na = Ni = 0.
Since Na = Ni = 0 �= 2 = p, there is at least one critical region in� (not infeasible);
yre f = [−1,−1] (Step 4). A total of

∑2
i=0 C

2
i = 1 + 2 + 1 = 4 active sets are

defined, including {}, {c1}, {c2} and {c1, c2} (Step 5). All active sets are tested in Steps
6 - 9; all matching critical regions are full-dimensional and defined via Eq.10 (Step
7). Equation12 confirms that all critical regions are included in � and added to the
BES (Step 8). The general optimizer functions are obtained in Step 10 (Eq.18).

[
x1
x2

]opt
=

[
1.000 −1.126 0.828
1.000 −0.223 −0.643

]
γ (18)

All critical regions in the BES are listed in Table 2 and depicted in Fig. 5; note that
regions only extend to infinity via the set of parametric edges associated with inactive
constraints.

4.1.3 Refined explicit solution

Edges refinement:
From Algorithm 3: the list of all single constraint active sets includes: {c1} and {c2}
(Step 1). ui = [0, 0], and no edge is dismissed from the remaining refinement steps
(Step 2). The two edges are then broken down sequentially in Steps 3 and 4: two
additional optimizers are added to the first optimizer edge and none is required for
the second edge. In Step 5, the corresponding points for the first parametric edge are

123

Novel solution strategies for multiparametric...

Fig. 5 Map of critical regions
for motivating example (BES).
The transformed parameters
space is bounded by the black
dotted lines

Table 3 Reference points
included in the optimizer and
parametric edges of motivating
example

x1 x2 z1 z2

Vertex 1.000 1.000 0.333 3.000

{c1} −0.125 0.574 −0.933 0.598

−0.676 0.329 −1.567 −0.690

−1.126 −0.223 −2.200 −2.795

{c2} 0.828 −0.643 −0.386 −2.100

also added to improve its accuracy. All points are sorted in Step 7. The complete set
of points per edge is summarized in Table 3.
Initial set of critical regions:
From Algorithm 4: the termination condition in Step 1 is not satisfied; the list of all
active sets validated in the BES include: {}, {c1}, {c2} and {c1, c2} (Step 2). All initial
partitions are created in Steps 3-6. In the case of active sets {} and {c2}, since no points
were added to the second edge, their partitions match those of the BES. Concerning
active sets {c1} and {c1, c2}, the new points listed in Table 3 are also used to calculate
the initial critical regions. These are illustrated in Fig. 6, where a sequential increment
on the position of the first edge delivers their critical regions.

123

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 6 Map of initial critical
regions for motivating example
(RES)

Critical regions check and refinement:
From Algorithm 5: eight initial critical regions are listed for check and refinement as
depicted in Fig. 6 (Step 1). All critical regions are checked in Step 3.1 and confirmed to
be included in�; x∗,exact , the optimizer functions, x∗,estim

j and ε are calculated for all

critical regions in Steps 3.2–3.5, with ε < ζ parti tions = 10−2. The condition in Step
3.7 is not applicable to any region; all critical regions and their optimizer functions
are added to the RES in Step 3.8. No additional critical region partitioning is required:
the final set of critical regions matches the initial regions delivered in Algorithm 4.
The RES is presented in Table 4.

4.2 Benchmarkmp-NLP

The following benchmarkmp-NLP problem is presented in Pistikopoulos et al. (2007),
Narciso (2009), Domínguez et al. (2010):

123

Novel solution strategies for multiparametric...

Table 4 Refined explicit solution for motivating example

Critical region MCR MOF

{}1
⎡
⎣ 0.333 1.000 0.000
3.000 0.000 1.000
1 0 0

⎤
⎦

[
1.000 0.000 0.000
1.000 0.000 0.000

]

{c1}1
⎡
⎣ 0.333 −0.933 0.000
3.000 0.598 1.000
1 1 0

⎤
⎦ [

1.000 −0.125 0.000
1.000 0.574 0.000

]

{c1}2
⎡
⎣ −0.933 −1.567 0.000

0.598 −0.690 1.000
1 1 0

⎤
⎦ [−0.125 −0.676 0.000

0.574 0.329 0.000

]

{c1}3
⎡
⎣ −1.567 −2.200 0.000

−0.690 −2.759 1.000
1 1 0

⎤
⎦

[−0.676 −1.126 0.000
0.329 −0.223 0.000

]

{c2}1
⎡
⎣ 0.333 1.000 −0.386
3.000 0.000 −2.100
1 0 1

⎤
⎦

[
1.000 0.000 0.828
1.000 0.000 −0.643

]

{c1, c2}1
⎡
⎣ 0.333 −0.386 −0.933
3.000 −2.100 0.598
1 1 1

⎤
⎦

[
1.000 0.828 −0.125
1.000 −0.643 0.574

]

{c1, c2}2
⎡
⎣ −0.933 −0.386 −1.567

0.598 −2.100 −0.690
1 1 1

⎤
⎦

[−0.125 0.828 −0.676
0.574 −0.643 0.329

]

{c1, c2}3
⎡
⎣ −1.567 −0.386 −2.200

−0.676 −2.100 −2.759
1 1 1

⎤
⎦

[−0.676 0.828 −1.126
0.329 −0.643 −0.223

]

min
x

x31 + 2x21 − 5x1 + x22 − 3x2 − 6

s.t .

⎡
⎢⎢⎣

2 1
1/2 1
−1 0
0 −1

⎤
⎥⎥⎦

[
x1
x2

]
≤

⎡
⎢⎢⎣
5/2
3/2
0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦

[
θ1
θ2

] (c1)
(c2)
(c3)
(c4)⎡

⎢⎢⎣
−1 0
1 0
0 −1
0 1

⎤
⎥⎥⎦

[
θ1
θ2

]
≤

⎡
⎢⎢⎣
0
1
0
1

⎤
⎥⎥⎦

x ∈ X ⊂ IR2

θ ∈ � ⊂ IR2

(19)

The transformed and expanded mp-NLP problems are defined via the trivial
recasting steps highlighted earlier (omitted for brevity). Parameters
z = 0.05,
δ = [0.05, 0.05, 0.05, 0.05], ζ edges = 10−5 and ζ parti tions = 10−6 are set for algo-
rithm execution. The objective function in Eq.19 is not convex: the Hessian matrix is
positive definite only when x1 > −2/3. All solutions are subject to this requirement,
and their validity is discussed in sequence.

123

D. A. C. Narciso, E. N. Pistikopoulos

4.2.1 Compact solution

The CS is delivered via Algorithm 1 and presented in Eqs. 20 and 21:

⎡
⎢⎢⎣
z1
z2
z3
z3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.573
0.393

−0.786
−1.500

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

(1 − y1)l1
(1 − y2)l2
(1 − y3)l3
(1 − y4)l4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

−0.623 −0.516 0.100 0.050
−0.393 −0.443 0.025 0.050
0.153 0.049 −0.050 0.000
0.316 0.419 0.000 −0.050

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1l1
y2l2
y3l3
y4l4

⎤
⎥⎥⎦ , y ∈ {0, 1}, l ≥ 0 (20)

[
x1
x2

]opt
=

[
0.786
1.500

]
+

[−0.153 −0.049 0.050 0.000
−0.316 −0.419 0.000 0.050

] ⎡
⎢⎢⎣
y1l1
y2l2
y3l3
y4l4

⎤
⎥⎥⎦ (21)

When z1 � 0.573 or z2 � 0.393, x1 < −2/3. The convexity requirement does not
hold in this case, and the CS is not valid in the context of the expanded mp-NLP (Z
defined unbounded). On the other hand, all optimizers for all z ∈ Z in the transformed
mp-NLP satisfy x1 > −2/3, thus preserving the convexity requirement and ensuring
the validity of the CS in this context.

4.2.2 Basic explicit solution

Algorithm 2 delivers the BES. In this case, the MILPs for the 3rd and 4th active
parametric edges return infeasible: constraints c3 and c4 are always inactive in �,
from where only active sets {}, {c1}, {c2} and {c1, c2} are relevant. The list of critical
regions is presented in Table 5; the general optimizer function applicable to all regions
is presented in Eq.22.

[
x1
x2

]opt
=

[
0.786 0.633 0.737 0.836 0.786
1.500 1.184 1.081 1.500 1.550

]
γ (22)

4.2.3 Refined explicit solution

In the edge refinement stage (Algorithm 3), the 3rd and 4th edges are dismissed (ui3 =
ui4 = 0). The 1st and 2nd edges are tested, and no additional points are required. In this
case, the set of critical regions in the BES suffices (all steps inAlgorithm 4, except Step
1 are dismissed). All regions are tested in the last stage (Algorithm 5). Only the initial
region for active set {c1} requires improvement and is broken down in two smaller
partitions. The optimizer functions for {c1, c2} are obtained exactly (defined precisely
as the interception of the two active inequality constraints). The RES is listed in Table
6 and the map of critical regions is shown in Fig. 7.

123

Novel solution strategies for multiparametric...

Table 5 Basic explicit solution for benchmark problem

Critical region 1MCR

{}

⎡
⎢⎢⎢⎣

0.573 1.000 0.000 0.000 0.000
0.393 0.000 1.000 0.000 0.000

−0.786 0.000 0.000 1.000 0.000
−1.500 0.000 0.000 0.000 1.000

1 0 0 0 0

⎤
⎥⎥⎥⎦

{c1}

⎡
⎢⎢⎢⎣

0.573 −0.050 0.000 0.000 0.000
0.393 0.000 1.000 0.000 0.000

−0.786 −0.633 0.000 1.000 0.000
−1.500 −1.184 0.000 0.000 1.000

1 1 0 0 0

⎤
⎥⎥⎥⎦

{c2}

⎡
⎢⎢⎢⎣

0.573 1.000 0.056 0.000 0.000
0.393 0.000 −0.050 0.000 0.000

−0.786 0.000 −0.737 1.000 0.000
−1.500 0.000 −1.081 0.000 1.000

1 0 1 0 0

⎤
⎥⎥⎥⎦

{c1, c2}

⎡
⎢⎢⎢⎣

0.573 −0.050 0.056 0.000 0.000
0.393 0.000 −0.050 0.000 0.000

−0.786 −0.633 −0.737 1.000 0.000
−1.500 −1.184 −1.081 0.000 1.000

1 1 1 0 0

⎤
⎥⎥⎥⎦

Table 6 Refined explicit solution for benchmark problem

Critical region 1MCR 1MOF

{}(1)

⎡
⎢⎢⎢⎣

0.573 1.000 0.000 0.000 0.000
0.393 0.000 1.000 0.000 0.000

−0.786 0.000 0.000 1.000 0.000
−1.500 0.000 0.000 0.000 1.000

1 0 0 0 0

⎤
⎥⎥⎥⎦

[
0.786 0.000 0.000 0.000 0.000
1.500 0.000 0.000 0.000 0.000

]

{c1}(1)

⎡
⎢⎢⎢⎣

0.573 0.261 0.000 0.000 0.000
0.393 0.195 1.000 0.000 0.000

−0.786 −0.711 0.000 1.000 0.000
−1.500 −1.340 0.000 0.000 1.000

1 1 0 0 0

⎤
⎥⎥⎥⎦

[
0.786 0.710 0.000 0.000 0.000
1.500 1.340 0.000 0.000 0.000

]

{c1}(2)

⎡
⎢⎢⎢⎣

0.261 −0.050 0.000 0.000 0.000
0.195 0.000 1.000 0.000 0.000

−0.711 −0.633 0.000 1.000 0.000
−1.340 −1.184 0.000 0.000 1.000

1 1 0 0 0

⎤
⎥⎥⎥⎦

[
0.710 0.633 0.000 0.000 0.000
1.340 1.184 0.000 0.000 0.000

]

{c2}(1)

⎡
⎢⎢⎢⎣

0.573 1.000 0.056 0.000 0.000
0.393 0.000 −0.050 0.000 0.000

−0.786 0.000 −0.737 1.000 0.000
−1.500 0.000 −1.081 0.000 1.000

1 0 1 0 0

⎤
⎥⎥⎥⎦

[
0.786 0.000 0.737 0.000 0.000
1.500 0.000 1.081 0.000 0.000

]

{c1, c2}(1)

⎡
⎢⎢⎢⎣

0.573 −0.050 0.056 0.000 0.000
0.393 0.000 −0.050 0.000 0.000

−0.786 −0.633 −0.737 1.000 0.000
−1.500 −1.184 −1.081 0.000 1.000

1 1 1 0 0

⎤
⎥⎥⎥⎦

[
0.786 0.633 0.737 0.000 0.000
1.500 1.184 1.081 0.000 0.000

]

123

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 7 Map of critical regions for benchmark mp-NLP (RES): (A) δ = [0.05, 0.05, 0.05, 0.05]: the full
parameters space is covered by one of the defined regions; (B) δ = [0, 0, 0, 0]: illustrates the significance
of δ to this example, and how a small region highlighted in blue would not be included in any of the regions
calculated. Both maps display only axes z1 and z2: for all z ∈ Z , constraints c3 and c4 are always inactive
enabling a 2D critical region representation

Table 7 Solution accuracy of benchmark problem via mp-NLP algorithms

Algorithm Optimal value function Optimization variables Parameter space partition

mp-OA
√

X X

AM
√ √

X

mp-QA
√ √ √

GVS
√ √ √

CS
√ √ √

BES
√ √ √

RES
√ √ √

4.2.4 Comparison with state-of-the art mp-NLP algorithms

The solution of the benchmark problem is reported in Domínguez et al. (2010) using
the four state-of-the-artmp-NLPalgorithms highlighted in the Introduction: (i)mp-OA
(ii) AM, (iii) mp-QA, and (iv) GVS. This includes all or some representative solution
fragments and the corresponding maps of critical regions. For brevity, we focus only
on solution accuracy and computational complexity as reported in Domínguez et al.
(2010) and compare themwith Algorithm 1 (CS), Algorithm 2 (BES), and Algorithms
3–5 (RES) as shown in Tables 7 and 8, respectively.

Since the objective function of the benchmark problem displays amild nonlinearity,
the CS on its own is a very accurate solution and requiresminimal computational effort
in this case. Specifically, for all z ∈ Z , feasible solutions are obtained, with negligible
optimality loss, and where the critical regions’ map in Fig. 7 is very similar to those
reported for mp-QA and GVS in Domínguez et al. (2010). The additional refinements

123

Novel solution strategies for multiparametric...

Table 8 Computational
complexity of benchmark
problem via mp-NLP algorithms

Algorithm mp-LPs mp-QPs LPs NLPs MILPs

mp-OA 12 0 0 276 0

AM 0 0 0 71 0

mp-QA 0 1 0 9 0

GVS 0 0 0 418 0

CS 0 0 2 3(a) 0

BES 0 0 4 0 8

RES 0 0 5 9(a) 0

(total) 0 0 11 12(a) 8

(a) NLPs via KKT conditions. Details in Sect. 3.4

in BES and RES deliver explicit solutions with marginal accuracy gains with respect
to the CS, where computational complexity is similar to mp-QA, though not requiring
the solution of any auxiliary mp-QP problem.

4.3 Computational study

Two sets of mp-NLPs were created and solved to obtain additional insights into the
performance of Algorithms 1–5. In all mp-NLPs n = p; the 2 sets of examples include
10 mp-NLPs with increasing size: p = 1, . . . , 10. In the first set, all mp-NLPs were
created such that all (2p) active sets define a critical region in the parameter space; in
the second set of examples, all constraints are inactive, except a single constraint, thus
yielding in all mp-NLPs a total of 2 solution fragments. All mp-NLPs are included
in https://github.com/diogonarciso/mpNLP. Given the large variability in solution
complexity for mp-NLP problems of similar dimensions, the authors believe that this
approach facilitates a fairer comparison of performance. Figure8 displays the results
on computational performance; all examples were solved using a 2.80GHz 11th Gen
Intel(R) Core(TM) i7-1165G7 machine (16Gb of RAM).

The computational times to obtain the CS are the same in the 2 sets of examples.
This is expected since regardless of the number of active sets included in the solution,
only p LPs and p+ 1 NLPs must be solved. Complexity increases in an almost linear
fashion with p; this is not strictly the case, since in these sets of examples the larger
is p the larger is also the LPs and NLPs to be solved. Obtaining the BES requires
the most significant effort in comparison with both the CS and RES. This is a result
of solving the 2p the MILPs, an aspect of Algorithm 2 which can still be improved
for performance. Yet, it is clear that the computational dependency with p is also of
an almost linear nature (larger MILPs also require more computational time). In the
second set, it is visible that computation times become increasingly shorter than their
couterparts in the first set of examples: in this case only 2 LPs must be solved, and
thus alleviating the computtional burden. The computational times to obtain the RES
are sharply different between the first and second set: in the first case all 2p active
sets include a critical region in the parameter space and an exponential dependency
with p is observed; this case exceeds the computational times required for the BES at

123

https://github.com/diogonarciso/mpNLP

D. A. C. Narciso, E. N. Pistikopoulos

Fig. 8 Computational times
required to solve the 2 sets of 10
mp-NLPs

around p = 10. In the second set, Algorithms 3–5 explore more efficiently the outputs
of the 2p MILPS in Algorithm 2: since only 2 active sets are part of the solutions in
all examples, computational times are much smaller than their couterparts in the first
set, and which suggest a nearly linear dependency with p.

5 Concluding remarks

Anew solution strategy formp-NLP is proposed in thiswork. The critical step enabling
these developments is parameter transformation z = Fθ : in the transformed param-
eters space, all critical regions share a unique vertex and are bounded by a set of
2p 1-dimensional edges, defining the backbone of critical region maps. This enables
the development of an enhanced partitioning strategy where critical region maps are
obtained more consistently with the actual optimal active sets detected in the parame-
ters space, optimizer sensitivities are captured more accurately, and overall promoting
low algorithm and solution complexity.

While the CS enables the calculation of optimizers for all z ∈ IRp, this solution is of
limited applicability in the context of the expandedmp-NLP; since optimizer edges are
nonlinear, significant deviations to the actual optimal optimizers are expected when
z � z∗. The expanded mp-NLP is here presented mainly as a theoretical extension
of the mp-QP case in Narciso et al. (2022). In practical terms, this work is focused
mainly on obtaining the solution of the transformed mp-NLP, which is a more realistic
objective for this class of problems.

Three routes are presented to deliver the solution to transformedmp-NLP problems,
which are built incrementally for improved accuracy. The CS is the first of these,
where optimizer sensitivities are estimated from a set of representative points within
the parameters space to promote accuracy. This is generally a good first estimation,

123

Novel solution strategies for multiparametric...

provided that optimizer edges aremildly nonlinear. TheBESenables a fully declarative
presentation of all solution fragments, more consistent with the standard practice in
the field. The solution includes all full-dimensional critical regions detected in the
parameters space, now subject to convex-hull restrictions (Eq. 9) to prevent z � z∗. A
single optimizer function delivers the optimizers for all critical regions.We remark that
the BES offers important insights from the analysis of their maps of critical regions,
as illustrated in Fig. 5: in {}, no constraint is active, and thus the matching optimizer
function is insensitive to z1 and z2; its critical region extends to infinity since all their
points denote an extension of the feasible space beyond z∗ with no impact on the
associated optimizers. An equivalent analysis may be undertaken for all active sets in
mp-NLP problems of any size.

The key drawback of the CS and BES resides in the fact that no steps are enforced
to check and improve solution accuracy. The RES deals with this limitation, by first
collecting a set of additional points per edge (if required) and creating an initial set
of partitions from these points. These are then assessed and broken down into smaller
partitions to improve accuracy. Only the set of sensitive parameters is used in this
process for all critical regions, which favors low algorithm and solution complexity
while offering the same kind of interpretation of critical regions as discussed above.

The present research path was initiated in Narciso (2009), where the author exam-
ines the limitations of the state-of-the-art mp-NLP algorithms. It is pointed out that the
construction of critical region maps in these algorithms generally bears little relevance
to the actual active set maps, and thus contributes to solution complexity. The GVS
algorithm was the first attempt at solving this problem. All other mp-NLP algorithms
also derive solutions while partitioning the original parameters space (�), and thus can
not explore the convenient transformation z = Fθ . This is the critical paradigm shift
presented in this work. It enables more efficient routes for the calculation of mp-NLP
problems and a more intuitive analysis of their solutions, where each coordinate of z
relates directly to a contraction/expansion of the feasible space via the corresponding
inequality constraint.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11081-024-09888-2.

Acknowledgements Not applicable.

Author Contributions Conceptualization:DNandEP; formal analysis and investigation:DN;methodology:
DN; software: DN; validation: DN; supervision: EP; writing—original draft preparation: DN and EP;
writing—review and editing: DN and EP

Funding Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds
through FCT/MCTES (PIDDAC): LEPABE, UIDB/00511/2020 (DOI: 10.54499/UIDB/00511/2020) and
UIDP/00511/2020 (DOI: 10.54499/UIDP/00511/2020),ALiCE,LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020)
and CERENA, UIDB/04028/2020. The suppot of the Texas A&M Energy Institute is also gratefully
acknowledged.

Availability of data and materials Supplementary materials for this work include Appendix 1 and the
Python codes in https://github.com/diogonarciso/mpNLP

123

https://doi.org/10.1007/s11081-024-09888-2
https://doi.org/10.1007/s11081-024-09888-2
https://github.com/diogonarciso/mpNLP

D. A. C. Narciso, E. N. Pistikopoulos

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.

Ethics approval and Consent to participate Not applicable.

Consent for publication The authors consent to publish this paper in Springer’s Optimization and Engi-
neering journal.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

BemporadA, FilippiC (2006)An algorithm for approximatemultiparametric convex programming.Comput
Optim Appl 35:87–108. https://doi.org/10.1007/s10589-006-6447-z

Bynum ML, Hackebeil GA, Hart WE et al (2021) Pyomo: optimization modelling in Python, vol 67.
Springer, Berlin. https://doi.org/10.1007/978-3-030-68928-5

Domínguez LF, Narciso DAC, Pistikopoulos EN (2010) Recent advances in multiparametric nonlinear
programming. Comput Chem Eng 34:707–716. https://doi.org/10.1016/j.compchemeng.2009.10.012

Dua V, Pistikopoulos EN (1999) Algorithms for the solution of multiparametric mixed-integer nonlinear
optimization problems. Ind Eng Chem Res 38:3976–3987. https://doi.org/10.1021/ie980792u

Dua V, Bozinis A, Pistikopoulos EN (2002) A multiparametric programming approach for mixed-integer
quadratic engineering problems. Comput Chem Eng 26:715–733. https://doi.org/10.1016/S0098-
1354(01)00797-9

Gal T, Nedoma J (1972) Multiparametric linear programming. Math Prog Stud, 18, 406–422. https://www.
jstor.org/stable/2629358

Gupta A, Bhartiya S, Nataraj PSV (2011) A novel approach to multiparametric quadratic programming.
Automatica 47:2112–2117. https://doi.org/10.1016/j.automatica.2011.06.019

Harris CR,MillmanKJ, van derWalt SJ et al (2020) Array programmingwith NumPy. Nature 585:357–362.
https://doi.org/10.1038/s41586-020-2649-2

Johansen TA (2002) On multi-parametric nonlinear programming and explicit nonlinear model predictive
control. In: Proceedings of the 41st IEEE conference on decision and control. https://ieeexplore.ieee.
org/document/1184260

Mate S, Bhartiya S, Nataraj PSV (2020) Multiparametric nonlinear MPC: a region free approach. IFAC-
PapersOnLine 53(2):11374–11379. https://doi.org/10.1016/j.ifacol.2020.12.548

Narciso D (2009) Developments in multiparametric parametric programming and control. PhD thesis,
Department of Chemical Engineering and Chemical Technology Imperial College of Science, Tech-
nology and Medicine London, U.K

Narciso DAC, Pappas I, Martins FG, Pistikopoulos EN (2022) A new solution strategy for multiparametric
quadratic programming. Comput Chem Eng 164:107882. https://doi.org/10.1016/j.compchemeng.
2022.107882

Narciso DAC, Kenefake D, Akundi SS, Martins FG, Pistikopoulos EN (2023) A new framework and online
solution engines for multiparametric Model Predictive Control. Comput Aided Chem Eng 52:1229–
1234

Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2002) On-line optimization via off-
line parametric optimization tools. Comput Chem Eng 26:175–185. https://doi.org/10.1016/S0098-
1354(01)00739-6

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10589-006-6447-z
https://doi.org/10.1007/978-3-030-68928-5
https://doi.org/10.1016/j.compchemeng.2009.10.012
https://doi.org/10.1021/ie980792u
https://doi.org/10.1016/S0098-1354(01)00797-9
https://doi.org/10.1016/S0098-1354(01)00797-9
https://www.jstor.org/stable/2629358
https://www.jstor.org/stable/2629358
https://doi.org/10.1016/j.automatica.2011.06.019
https://doi.org/10.1038/s41586-020-2649-2
https://ieeexplore.ieee.org/document/1184260
https://ieeexplore.ieee.org/document/1184260
https://doi.org/10.1016/j.ifacol.2020.12.548
https://doi.org/10.1016/j.compchemeng.2022.107882
https://doi.org/10.1016/j.compchemeng.2022.107882
https://doi.org/10.1016/S0098-1354(01)00739-6
https://doi.org/10.1016/S0098-1354(01)00739-6

Novel solution strategies for multiparametric...

Pistikopoulos EN, Diangelakis NA, Oberdieck R (2020) Multi-parametric optimization and control. Wiley,
Hoboken. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119265245

Pistikopoulos EN, Georgiadis MC, Dua V (2007) Multi-parametric programming: theory, algorithms, and
applications, vol. 1. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527631216

Van Rossum G, Drake, FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley. https://doi.org/
10.5555/1593511

Virtanen P et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods
17:261–272. https://doi.org/10.1038/s41592-019-0686-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119265245
https://doi.org/10.1002/9783527631216
https://doi.org/10.5555/1593511
https://doi.org/10.5555/1593511
https://doi.org/10.1038/s41592-019-0686-2

	Novel solution strategies for multiparametric nonlinear optimization problems with convex objective function and linear constraints
	Abstract
	1 Introduction
	2 Motivating example
	3 New solution strategies for convex mp-NLP
	3.1 Compact solution
	3.2 Basic explicit solution
	3.2.1 Constraints status assessment
	3.2.2 Critical region dimensionality
	3.2.3 A hybrid partitioning strategy
	3.2.4 Optimal active set detection
	3.2.5 Parametric edges scope
	3.2.6 Critical region mapping
	3.2.7 Offline and online solutions

	3.3 Refined explicit solution
	3.3.1 Edges refinement
	3.3.2 Initial set of critical regions
	3.3.3 Critical regions check and refinement

	3.4 Computational complexity

	4 Results
	4.1 Motivating example
	4.1.1 Compact solution
	4.1.2 Basic explicit solution
	4.1.3 Refined explicit solution

	4.2 Benchmark mp-NLP
	4.2.1 Compact solution
	4.2.2 Basic explicit solution
	4.2.3 Refined explicit solution
	4.2.4 Comparison with state-of-the art mp-NLP algorithms

	4.3 Computational study

	5 Concluding remarks
	Acknowledgements
	References

