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Abstract
As climate change provides impetus for investing in smart cities, with electrified pub-
lic transit systems, we consider electric public transportation buses in an urban area,
which play a role in the power system operations in addition to their typical func-
tion of serving public transit demand. Our model considers a social planner, such that
the transit authority and the operator of the electricity system co-optimize the power
system to minimize the total operational cost of the grid, while satisfying additional
transportation constraints on buses. We provide deterministic and stochastic formu-
lations to co-optimize the system. Each stochastic formulation provides a different
set of recourse actions to manage the variable renewable energy uncertainty: ramp-
ing up/down of the conventional generators, or charging/discharging of the transit
fleet. We demonstrate the capabilities of the model and the benefit obtained via a
coordinated strategy. We compare the efficacies of these recourse actions to provide
additional managerial insights. We analyze the effect of different pricing strategies on
the co-optimization. Noting the stress growing electrified fleets with greater battery
capacities will eventually impose on a power network, we provide theoretical insights
on coupled investment strategies for expansion planning in order to reduce greenhouse
gas (GH) emissions. Given the recent momentum towards building smarter cities and
electrifying transit systems, our results provide policy directions towards a sustain-
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able future. We test our models using modifiedMATPOWER case files and verify our
results with different sized power networks. This study is motivated by a project with
a large transit authority in California.

Keywords Climate change · Smart cities · Transportation electrification ·
Cooperation · Optimization

Mathematics Subject Classification 90C11 · 90C15 · 90C90

1 Introduction

In this work, we study the joint operation of the power grid and an electric public
transit bus system, towards the electrification of the transit system. The global effort
to reduce emissions, part of the Paris agreement ratified by more than 180 coun-
tries (United Nations Climate Change 2020), encompasses various climate-conscious
efforts, such as switching to renewable energy sources and decarbonization of trans-
portation. Within the scope of electrification of mass transit systems, battery-electric
buses (BEBs) play a crucial role in mitigation efforts. To this end, BEBs have been
implemented throughout China, the United States, as well as several European coun-
tries (Pagliaro and Meneguzzo 2019). The key question we address is to determine
how a fleet of electric buses can best be integrated into public transportation infras-
tructure. In particular, the task at hand is to determine where and when to charge and
discharge the buses such that their operation is not a detriment to the power system,
but rather, offers flexibility to the grid depending on the transportation–operational
requirements. By co-optimizing, we ensure that the additional demand imposed by
the transit authority is satisfied while inducing minimal stress on the power system.

It is argued that within the next decade, most fossil-fueled buses across the globe
will be replaced by electric buses (Pagliaro and Meneguzzo 2019). Transportation
researchers (Creutzig et al. 2015) underline the reduction of transport demand growth
via bus rapid transit and bicycle highways. Unless policy-makers’ attitudes towards
transport issues do not change soon, transport may hinder global efforts to mitigate cli-
mate change (Creutzig et al. 2015). There is evidence suggesting that utilizing electric
buses and electric taxis is the most efficient way of curtailing NOx emissions (Chen
et al. 2018). Electrification of transportation is essential to meet emission goals, and
that infrastructure and technology must be deployed in a coordinated effort in order to
realize their emissions-reduction goals (Williams et al. 2012). If charging is not oper-
ated properly, electric vehicles could negate a significant amount of the environmental
benefits obtained from renewables (Williams et al. 2012). This discussion motivates a
system-wide coordinated effort within the charging problem which we address in this
work.

Chu and Majumdar (2012) highlight the importance in the integration of energy
sources with electricity transmission, distribution, and storage to offset the variations
in renewable generation. For light-duty fleets in the US, cooperation between elec-
tric vehicle (EV) drivers and electricity suppliers can be achieved by smart contracts
(Milovanoff et al. 2020). Coordination of operations handled by different parties can
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increase the total efficiency of the system and has the potential to introduce positive
externalities such as dealing with cases when total generation exceeds demand (which
potentially causes negative electricity prices). Zhou et al. (2016) find that ignoring
negative prices in decision-making can lead to a considerable loss of value; the dis-
posal of extra electricity purchased from the system with negative prices could be
preferable compared to a storage strategy. Related to our work, co-optimizing BEBs
and the smart grid would introduce a more efficient approach when electricity prices
are negative; the transit fleet could be co-optimized to store electricity from the sys-
tem with negative prices for later use while serving transit demand. This additional
flexibility would benefit both the independent system operator (ISO) and the transit
authority.

1.1 Operational aspects of co-optimizing the power and transit systems

Our models builds on the optimal power flow (OPF) problem (Alsac and Stott 1974),
considering energy storage, uncertainty from renewable energy sources, vehicle-to-
grid (V2G) capabilities, and the electrification of transit networks. A subset of the
topics studied in this paper have been extensively addressed in isolation in the literature
(see e.g., Agrawal et al. 2014; Chen et al. 2016; Levron et al. 2013; Riffonneau et al.
2011). However, these papers differ from ours, as we aim to incorporate all of these
aspects (renewables, storage, transit, etc.) in one formulation.

The optimal power flow (OPF) problem (Carpentier 1962), is an optimization prob-
lem that determines the optimal dispatch in a power network, in which one solves for
a network operating point that satisfies power flow equations and physical constraints
such as thermal limits and line capacities (Conejo and Baringo 2018). The multi-
period OPF problem (MPOPF) is an extension of the OPF problem, in which there are
constraints such as ramping, and components involving multiple time periods such as
storage units. In particular, storage units introduce a temporal dependency rather than
the snapshot of the system studied in the original OPF formulation. There are several
works associated with the operation of the power grid by use of MPOPF, alternatively
known as dynamic power flow (DOPF). By utilizing an MPOPF formulation, one can
provide additional services to the power grid, such as voltage stability regulation and
ramping reserves, which, in general, are referred to as ancillary services in the power
systems literature; see, e.g., Wu et al. (2004). The role of ancillary services in MPOPF
is studied by Yao et al. (2019), who propose an MPOPF formulation that incorpo-
rates demand-responsive loads specifically to improve steady-state voltage stability.
Similarly, Costa and Costa (2007) present a DOPF-based model to clear both energy
and spinning reserve day-aheadmarkets. Moreover, Lamadrid andMount (2012) posit
that ancillary services are provided by uncertain renewable energy generation, which
serves as ramping reserves. In the present work, we extend the standard MPOPF
formulation to incorporate a fleet of public transportation buses that can charge and
discharge within the power network.

Bukhsh et al. (2016) propose a stochastic MPOPF model to cope with the uncer-
tainty stemming from renewable generators. A sparse formulation of a robust MPOPF
problem with storage units and renewable generators is provided by Jabr et al. (2015),
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whose solution methodology utilizes receding horizon control. Chen et al. (2005) pro-
pose an MPOPF formulation that integrates wind farms into the generation portfolio.
Lorca and Sun (2018) address the non-convexity in the power flow equations and
uncertainty in renewable generation in terms of both active and reactive power. Their
model incorporates transmission constraints and reactive capability curves of both
conventional and renewable generators. To incorporate uncertain generation in our
work, we also propose two additional formulations extended from stochastic MPOPF.

From a power systems perspective, our work can be considered as an extension
of the MPOPF problem with (mobile) storage units. Under this interpretation, the
storage units are the buses in the transit fleet with additional operational constraints
related to the transportation system. Many papers model the use of energy storage
in the power grid. As a closely related work, a model similar to ours can be found
in a study by Wang et al. (2013). Here, the authors consider an MPOPF formulation
that incorporates large-scale standalone battery energy storage devices to reduce the
fluctuations in the grid and to handle peak shaving in the grid. The objective in the
formulation is tominimize the total generation cost (which can be different in each time
period), including the charging and discharging costs of the batteries. They also argue
that the batteries may be used to handle the uncertainty introduced when renewable
energy sources are considered. Note, however, that no public transportation aspects
are considered in their work.

There are several papers in the transportation literature investigating problems asso-
ciated with the electrification of transportation systems. Xylia et al. (2017a, b) propose
mathematical optimization models to locate charging stations within an urban trans-
portation network. They analyze the environmental outcomes, including emission of
gases, based on a case study in Stockholm. Yi et al. (2018) investigate the effect
of ambient temperature on the energy consumption of autonomous electric vehicles.
Their results are demonstrated with a data-driven simulated transportation network in
New York City. Additionally, Wei et al. (2017) focus on the coordinated operation of
transportation and power systems. They assume an electrified transportation network
capable of wireless power transfer coupled with a power network. They propose an
optimal traffic–power flow model optimizing the generation schedule and congestion
tolls as an optimization problem with traffic user equilibrium constraints.

The study of interdependent systems typically necessitates the use of multi-
objective optimization techniques. Alarcon-Rodriguez et al. (2010) provide an
overview of multi-objective planning of distributed energy resources (DERs) where
the objective function involves terms from perspectives such as the distributed energy
resources developer, the distribution system operator, and the regulator. They under-
line the importance of DER integration and argue that poor integration of DERs can
result in increases in losses, as well as voltage and network instability. The insights
provided by Alarcon-Rodriguez et al. (2010) exemplify the benefits obtained by a
co-optimization framework. In our case, the co-optimization is considered between
the ISO of the power network and the transit authority.

From the perspective of interdependent systems, only a few papers focus on the joint
operation of electric vehicles and the power grid. Azizipanah-Abarghooee et al. (2016)
aim to coordinate plug-in electric vehicles in a multi-objective security-constrained
DOPF problem to minimize the total operation cost and emissions. Zakariazadeh et al.
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(2014) propose a multi-objective method for charging/discharging electric vehicles to
minimize the total operational costs and emissions. An important assumption in their
methodology is that the EV owner decides the parking time for charging/discharging
one day in advance. This assumption is one of the key differences between public and
privatemeans of transportation.Because it considers public transportation systems, our
study assumes that the decision of when and where to charge/discharge is made jointly
by the independent system operator (ISO) and the public transportation authority.
Accordingly, considering demand response as a market resource (Rahimi and Ipakchi
2010), our formulation provides the smart grid the ability to respond across both space
and time.

A relatedmethodology to ours is by Lin et al. (2019), who study a planning problem
that decides the locations and sizes of charging stations, considering a coupled trans-
portation network and power network. Specifically, they seek to determine a long-term
plan with a horizon of roughly 10 years. An immediate drawback is that they assume
that all information (electricity prices, infrastructure costs, demand, technology) will
be relatively unchanged over their planning horizon. Thus, having such a long-term
strategy may not be preferable. Further, the OPF problem is typically solved many
times a day, sometimes as often as every five minutes (Cain et al. 2012), whereas the
formulation by Lin et al. (2019) couples the transportation aspects with OPF only at
two periods. The first of these represents the first 10 years of the planning horizon
while the second stage is the once at a given stage of length 10 years, and the second
represents 30 years. Another shortcoming of their model is that it captures instan-
taneous power flow, whereas storage optimization requires calculations of energy
(power accumulated over time). In contrast, the time dimension in our model (and
other MPOPF-based models) captures the relationship between power and energy.

From the perspective of public transit operators, Abdelwahed et al. (2020) develop
models to optimize the charging operation of a fleet inRotterdam.However, they do not
address the coupling effect of the power system, such as power system operation and
limitations, V2G possibilities, and offset of the intermittency of renewable generation.

In sum, our work differs from the related works in the literature in the following
aspects: we consider (i) a fleet of electric vehicles and a power grid operated by a
social planner, (ii) operational constraints related to the transit fleet while providing
services to the power grid, including V2G, (iii) schedules for the battery (transit bus)
connection, and (iv) relocation of the batteries within the power grid. Further, we
address the joint operation of an electric public transit system and the power system,
specifically when the fleet is “off-schedule.” We use “off-schedule" to refer to the set
of time periods when the buses are not on their routes. To the best of our knowledge,
this is the first paper to address this problem in detail.

Our primary contributions are as follows:

1. We provide a deterministic formulation that jointly optimizes the operation of a
public transit authority and an ISO.

2. In the presence of renewable generation, we further extend this model to two
two-stage stochastic programs (2SSPs) with different recourse actions, including
additional charging/discharging of the transit fleet and ramping up/down of the
conventional generators.
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3. We additionally provide managerial insights: first, by conducting a benefit analysis
of coordinated optimization; second, by demonstrating potential benefits of alter-
native recourse actions in the presence of variable renewable energy uncertainty;
third, by analyzing the effect of pricing on the outcomes of co-optimization.

The rest of the paper is organized as follows. In Sect. 2 we provide a formal def-
inition of the problem. In Sect. 3 we introduce the deterministic formulation of the
optimization problem. In Sects. 4.1 and 4.2 the two 2SSP formulations are provided.
Numerical results are presented in Sect. 5, managerial insights are provided in Sect. 6,
and Sect. 7 concludes the paper. Additional content can be found in Appendices A–E.

2 Problem statement

We consider a single social planner who manages both the power and public transit
systems. The goal of the social planner is to co-optimize the joint operation of these
two systems, by optimizing the charging/discharging of the transit bus batteries when
buses are off-schedule, over a horizon of one day. The only operational requirement
on the transit buses is that they have to be fully charged before starting their schedules
on the following day. The following decisions are addressed in the formulation while
satisfying operational constraints: (i) where, among a pre-specified subset of nodes that
serve as charging stations, to locate transit buses to charge/discharge, (ii) how much
electricity to charge/discharge, and (iii) power dispatch. We simplify the problem by
assuming:

– All information related to the power network is known (topology, generator limits,
line limits, etc.), except the ramping costs of conventional generators (which will
be investigated in Sect. 6.2).

– Over the course of one day (the planning horizon) the topologies of both the
transportation and power networks remain fixed. The power network is provided
as a graph with edges representing power lines and nodes representing connection
points of lines. In the transportation network, the nodes of the graph are interpreted
as charging stations, and the edges as the transit routes among charging stations.
Note that the charging stations in the transportation network act as coupling points
between the two networks since they also appear as a subset of nodes in the
power network. While we assume the topologies of the power and road networks
remain fixed, our joint optimization framework allows to consider our system to
be a smart grid in the following sense. We incorporate mobile distributed energy
resources into the operation of the smart grid. This not only helps to improve
supply and operational efficiency, but decarbonizing the transit fleet also serves to
reduce greenhouse gasses emissions. As battery capacities of the EVs improves,
the electrified transit fleet will play an increased role in the day-to-day operation
of the power system; providing ancillary services and increased capacity.

– Electricity demand is known for the entire horizon, with the further assumption
that an accurate day-ahead estimation of the demand is accessible.

– We consider direct current (DC) approximation for the power system (Conejo
and Baringo 2018). This assumption is useful for simplifying the computational
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complexity of our optimization problem since the alternating current (AC) OPF
problem is known to be nonlinear and non-convex (Gopinath et al. 2020).

– We assume black start capabilities for conventional generators. This assumption
eliminates the start-up cost of conventional generators.

– All information related to the transit system is known (i.e. transportation network,
schedules, travel times).

– All information related to batteries of the transit vehicles are known (the
charge/discharge rate, total capacity, efficiency). We assume that the efficiency
of the battery is the same for charging and discharging, though this assumption
can be easily relaxed.

– Each charging station in the network has enough capacity for the entire fleet to
charge simultaneously at one location. A related discussion is also provided in
Appendix B. Moreover, buses can discharge at a charging station as part of the
V2G technology.

3 Deterministic formulation

In this section, we present the deterministic formulation to co-optimize the operation
of the transit fleet and the power grid. The formulation can be seen as an extension of
the MPOPF problem with additional transportation aspects. The problem is a mixed-
integer quadratic program (MIQP). We point out that while relaxations of the OPF
problem that utilize second order cone programming (SOCP) provide tighter approx-
imations to the power system operation, we make this trade-off in favor of model
scalability and ease of incorporating the operation of the transportation system into
our proposed formulation. The following components are captured by this formulation:
ensuring each bus has a full battery at the end of their off-schedule (also considered
by Abdelwahed et al. (2020)); dispatch of power subject to physical constraints of the
grid, such as ramping rates, transmission limits, etc.; charging/discharging of the buses
subject to physical constraints with respect to the batteries of the transit buses, such
as charging capacity and charging/discharging rate; relocation of the buses subject to
constraints related to the travel time of the buses depending on the node to connect
to the electrical grid. Due to space limitations, we provide the complete deterministic
formulation in Appendix B, and we verbally describe the model in this section.

Our objective aims to minimize a convex combination, with coefficient α ∈ [0, 1],
of the total power generation cost and the charging/discharging cost of the transit
buses. The two terms in the objective function each “belong” to a different party: the
generation costs are incurred by the power grid operator while the charging costs are
incurred by the transit operator. We use a convex combination of these two terms since
they are usually in different scales, and since the central decision-maker may wish to
place more or less weight on one term or the other. Accordingly, choosing α parameter
allows to control the weight given to the electric and transportation system operators;
choosing α > .5 assigns more emphasis on the operation of the transportation system,
while setting α < .5 places more weight to the operation of the power system. In all
of our numerical experiments, we set the convex combination coefficient, α, to 0.5.
This is natural value since we are trying to minimize the total system cost, which is
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achieved by α = 0.5. Onemight try to explore different values in different cooperation
contexts.

The model contains standard DC OPF constraints with adjustments to include the
effects of charging and discharging. Then, based on the fleet’s schedule, we ensure
that initial and final battery levels are respected. The model also includes updates for
the battery levels. Assignment constraints ensure that a bus must either be traversing
the network or be stationed at a connection point for charging/discharging at any time
point. Specifically, a bus can only relocate between two points in the power network
if there is enough time available. We initially assign all of the fleet to a depot node.
In addition, we have several bounds on ramping amounts of generators, generation
amounts, line flows, charge/discharge amounts of batteries, and battery levels. Note
that, the off-schedule period can consist of multiple blocks and the model could be
generalized easily as long as we set initial and final battery levels for each off-schedule
block.

Based on the requirements of the specific application, one can examine differ-
ent objective terms such as line losses, voltage deviations, and many others tailored
towards the desired goal. Note that, due to the specific application, we consider off-
schedule periods as a single block of time (e.g., 5 pm–4 am); if there are multiple,
non-contiguous blocks, one should account for initial and final conditions on the bat-
tery levels for each block of off-schedule times.

Note that we do not consider any unit commitment decisions (here or thereafter),
a choice that is largely motivated by the added complexity modelling these decisions
would introduce (e.g., through additional binary variables and constraints). Moreover,
the commitment and de-commitment of units is particularly important for units that
require several periods of time (e.g., hours) to be spinning and able to provide reserves
and energy into the electricity systems. Yet, in our setting, the transit system in this
instance is not considered marginal, and is therefore unlikely to require more units
coming online to be able to service the fleet.

4 Two-stage stochastic formulations

In this section, we consider renewable generation units (e.g., wind generators) within
the power grid. In each time period, the quantity of renewable generation is random.We
incorporate the uncertainty regarding the renewable generation units using scenarios
in a two-stage stochastic modeling approach. Each of these scenarios represents one
realization of wind generation distribution. The details of the scenario generation
scheme are described in Sect. 5.2. In addition to the assumptions listed in Sect. 2, we
assume that a forecast of the renewable generation is available for one day, though the
actual generation may differ randomly from the forecast.

Specifically, we present two different two-stage stochastic formulations, which
assume different recourse actions. In the first formulation (Sect. 4.1), the recourse
action is ramping up/down the conventional generators, whereas in the second formu-
lation (in Sect. 4.2), the recourse is additional charging/discharging of the transit fleet.
The first formulation assumes that the ISO is taking the recourse actions to mitigate
the uncertainty, whereas the second assumes the transportation authority is doing so.
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4.1 Ramping-based formulation

The following formulation can be considered as an extension of the two-stage stochas-
tic single-period OPF formulation presented by Morales et al. (2013) in the sense that
we have the additional aspect of transportation and related operational constraints in
the first stage. Briefly, we have the following set of decisions in addition to those listed
in Sect. 3: a first-stage commitment of the renewable generation units on how much
to generate; and a second-stage adjustment of power generation via ramping up/down
of the conventional generators. We again omit the complete model and provide the
details in Appendix C.

Our objective is the summation of first-stage costs (as in the deterministic objective
function) and second-stage costs including the expected renewable generation costs
and expected ramping costs. Added to the constraints captured in the deterministic
model in Sect. 3 are the second-stage nodal balance and flowconstraints.We are further
constrained by limits on renewable generation, limits on second-stage ramping, and
limits on shedding in the second stage. We also have constraints on the transit bus
battery levels, charging limits, and transit fleet operation. More importantly, we have
each of the OPF constraints repeated for multiple time periods rather than a single time
period, in contrast to Morales et al. (2013), where the time periods in our formulation
are coupled via batteries on the transit fleet. The inclusion of multiple periods in the
formulation increases the complexity of the problem dramatically.

4.2 Charging/discharging-based formulation

Rather than handling the uncertainty by ramping up/down the conventional generators,
wenowconsider this service to behandledby the transportation authority via additional
charging/discharging of the transit vehicles in the second stage. We assume that the
realization of the scenarios occurs in near-real-time so that there is not enough time to
relocate the transit buses after the scenario realizations. Then, we have the following
set of decisions in addition to the ones in Sect. 3: a first-stage commitment of the
renewable generation units on how much to generate; and an additional second-stage
charging/discharging of the transit fleet.

A complete table of nomenclature can be found in Appendix A. The formulation
of the 2SSP whose recourse is charging/discharging of the transit buses is given as
follows:

min (1 − α)
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The objective function (1) accounts for the conventional generation cost in the first
stage, expected renewable generation cost, charging/discharging cost of the fleet in the
first stage and expected charging/discharging cost of the fleet in the second stage. Just
as in the deterministic setting, choosing the value of α > .5 allows the social planner
to emphasize the transportation system operation, whereas setting α < .5 assigns
more weight to the operation of the power system. We have already introduced the
following sets of constraints in the deterministic formulation in Sect. 3: first-stage DC
optimal power flow constraints (2), (4), (5), (6), (7); bounds on generation (8), ramping
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Table 1 Number of variables
and constraints in 2SSP
formulation

# of Binary O (|T | · |B| · |Nb|)
# of Continuous O (|T | · |N | · |B| · |�| + |T | · |L|)
# of Constraints O (|T | · |�| · (|N | + |L| + |Nb| · |B|))

(9), and first-stage charging/discharging (16); assignment constraints for vehicle to
charging station connection and vehicle relocation (17)–(20). Note that the variables
are only non-zero for appropriate indices (i.e. pg

it = 0, pc
ibt = 0, pdc

ibt = 0, pc,+
ibtω =

0, pdc,+
ibtω = 0 for i ∈ N \Ng , pr

it = 0, pr
itω = 0 for i ∈ N \Nr , and ybt = 0, zibt = 0

for t ∈ T \Tb).
We now additionally have second-stage nodal balance and flow constraints (3),

(4), (5), (6), (7); limits on renewable generation (10); and limits on shedding in the
second stage (11). Unlike the formulation discussed in Sect. 4.1, we are also charg-
ing/discharging in the second stage. Thus, the battery level variables for vehicles ebtω

are second-stage variables over the set of scenarios ω ∈ �. Also, update constraints
for battery levels are replicated for each scenario in (12)–(14).Note that, e1b values are
different for each bus and automatically reflect the remaining battery levels after their
operational day. We set the lower bounds based on operability of the buses. Since we
know the on-route consumption levels of the buses (assuming deterministic for now),
we guarantee that the route on the next day will be feasible by setting the final battery
level to the maximum. Since the battery level starts at the maximum level beginning
operation, the battery level never drops below the required threshold. Moreover, we
have modified bounds on the charging/discharging of the vehicles in (15). Note that
the positioning variables for the vehicles zibt , ybt remain as first-stage variables, since
we assume that there is insufficient time to adjust the location of the vehicles after the
scenario realizations.

4.3 Complexity of formulation

Table 1 summarizes the size of the 2SSP-formulation with charging and discharging.
The presented information shows that both the number of continuous variables and

the number of binary variables in the formulation grow linearly in |T |, the number
of time periods in the planning horizon. As an example, doubling |T | would double
the total number of variables, whereas doubling |N | or |L| would less than double the
total number of variables. Similarly, one can observe that the resolution of the time
horizon directly impacts the number of constraints in the resulting formulation. It is
therefore reasonable to conclude that the size of the time steps in the model will be
the key influencing factor on its resulting complexity.
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5 Numerical experiments

We performed the optimization using Gurobi version 8.1.0 developed by Gurobi Opti-
mization (2020), with the default settings. The hardware was 2.2 GHz Dual-Core Intel
Core i7 and 8GB memory.

In this section, we first provide (in Sect. 5.1) the results of a small case study for the
deterministic formulation, then (in Sect. 5.2) the results of the stochastic formulations.
Based on the transportation–electrification study on which we have collaborated with
Santa Clara Valley Transportation Authority (VTA), we will focus on a regional study
around San Jose, CA. Our partner VTA has been undertaking the integration of electric
transit buses into their fleet in the city of San Jose, initially for a selected number of
routes within their operating region. In all of our numerical experiments, we set the
coefficientα to 0.5, such that equal weight is assigned to the operation of the power and
transit systems. In other words, we choose α such that our social planner is “operator
neutral".

5.1 Case study for the deterministic formulation

We consider a case study consisting of synthetic but realistic data meant to reflect
the actual transit network in San Jose, CA. We overlay the 9-bus power network
from MATPOWER (Zimmerman et al. 2011) atop the geographical area. Related
parameters including demand (pd

it ), line limits (Si j ), generation limits (pg
it ) and cost

of generation (cg
it , c′g

it ) are obtained from theMATPOWER case file. Figure1 provides
a visualization of the layout, indicating the locations of charging stations for electric
bus connection in both the power and transit networks. Note that the transportation
network is smaller than the power network since the charging stations are chosen to
be a subset of nodes in the power network. In general, a power network is not confined
within a city limit and hence is likely to encompass the transit region. The solution
time for this model was approximately 23s.

Line limits and demands from the 9-bus system are scaled down to the order of
around 1 MWh so that we can clearly analyze the impact of the electric buses on
the power network since battery energy capacities considered in this work are 0.66

MWh. Voltage angle limits δ are set to π/2 and ramping limits are chosen to be
pg

it
5 .

Since the standard case file inMATPOWER provides a snapshot of the system in one
time period, we expand the demand profile over the multiple time periods based on
information obtained from the California Independent System Operator (CAISO) for
the San Jose region. Moreover, the charging/discharging costs (cit ) in the objective
function are the electricity prices obtained by averaging the prices as described in
Sect. 6.1. The daily demand and the price data are displayed in Figs. 2, 3 and 4.

We assume that the transit buses are 40-foot Proterra Catalyst E2Max models;
the data on battery consumption, battery capacity, and charge/discharge limits are
obtained from Proterra. The battery efficiency is set to 0.9. We consider hourly time
steps and a 24-h horizon. We point out that our proposed formulation can generally
handle any preferred time resolution, provided corresponding data; we simply choose
hourly time steps to ensure that the numerical results can be carried out with relative
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Fig. 1 Transit layout (left) and power network schematic (right), where charging stations are assumed to
be located at Transit Centers
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Fig. 2 Daily demand data
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Fig. 3 Complete demand profile in power network (constructed)

Fig. 4 Price data

ease in practice. The bus schedules and charging station locations are obtained from
VTA, where Tb represents the time periods in which transit bus b is in its off-schedule.
Summary of bus schedules are provided in Table 2 and the energy consumption values
are provided in Table 3.	t(i, j) is the travel time between charging stations calculated
using Google Maps (and discretized based on the resolution of the formulation).

Figure 5 displays the optimal locations of the transit buses for 3 consecutive time
periods. At time t = 21, three of the four vehicles are located at node 1, the transit
depot (one of them is still serving a route). In the next time period, the last bus finishes
its route, and two of the buses are in transit. At t = 23, these buses arrive at their new
location, node 2, to decrease total generation cost. Figure6(left) shows the generation
and battery level profile. In the optimal solution, battery levels in the first periods
increase due to the operational constraints and decrease in the last periods since the
price of electricity and the demand are high. Further, during the periods in which
the transit buses are on their schedule, we can observe that the battery levels (i.e.,
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Table 3 Transit bus energy
consumption values

Bus/route Energy consumption
of the route (MWh)

Energy consumption
per mile (MWh)

Bus 1 0.5544 0.00189

Bus 2 0.2706 0.00189

Bus 3 0.4092 0.00189

Bus 4 0.3432 0.00189

Fig. 5 Transit bus locations for t = 21, t = 22 and t = 23 in optimal solution

the amount of energy stored in the batteries of the transit vehicles when they are not
connected to the grid) are displayed as zero.

Figure 6 (right) shows that the total operational cost and generation costs first
slightly decrease then increase when we increase the battery capacity on the transit
buses. This suggests that the presence of the batteries can alleviate some strain on
the system even though the total generation amount increases. Moreover, we can
observe that the charging/discharging cost is mostly negative and decreasing up to
a certain level. Even though operational constraints on the transit fleet require more
energy to be stored, the price difference over the course of the day causes the transit
authority to be able to arbitrage and gain some profit. In Fig. 7, we show that the
generation profile changes dramatically as the battery capacities increase. Depending
on the transit schedule, large batteries can add strain to the power system, while acting
as generators during other periods.

There is evidence of asymmetry in the ramping up and down of thermal genera-
tors. There are three identified sources for these costs: (1) creep, when components
operate above the design temperature; (2) thermal fatigue, when changes in tempera-
ture result in mechanical failure; (3) creep–fatigue interactions, when the two effects
above compound. As studied by Moarefdoost et al. (2016), in the ramp-up of thermal
generators, these three effects are present, whereas in ramp-down the main effect is
thermal fatigue. For this reason, in the following numerical results, we use ramping
costs defined by: cg,+

i t = 1.2cg
it and cg,−

i t = 0.5cg
it . That is, for ramping costs we only
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Fig. 6 Generation and battery level profile (left) and objective values via varying battery capacity (right)

Fig. 7 Total generation via varying battery capacity

consider the linear generation cost coefficient cg
it to make ramping slightly cheaper

than generation, and, ramping down is much cheaper than ramping up.

5.2 Case study for the stochastic formulations

In this section, we consider the same instance described in Sect. 5.1, modifying the
9-bus system to include a wind generation unit located at node 4 in the power network
displayed in Fig. 5. No other changes aremade to the 9-bus system. The generation cost
of wind is assumed to be the minimum over the linear cost coefficients of conventional
generation, that is, cr

it = mini∈Ng {cg
it }. In this manner, we ensure that the wind

generator is always the cheapest among all generators, conventional or renewable.
The wind generation data is obtained from a simulation API (see Pfenninger and
Staffell 2016; Staffell and Pfenninger 2016 for more details) for the day 09/09/19
within close proximity of the San Jose region with a maximum generation capacity
set at 1 MWh. That is, the data are synthetic, but closely approximate the true wind
generation of the area under consideration. Figure8 illustrates the daily data.Moreover,
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Fig. 8 Daily wind generation amount for 09/09/19 in San Jose (simulated)

Fig. 9 Wind generation distribution over scenarios

we add normally distributed noise with mean zero and a small variance (on the order
of approximately 0.01 MWh) to create the desired number of scenarios. When 100
scenarios are considered, we obtain the distribution shown in Fig. 9.

The generated wind data are used as the renewable generation amounts for each
scenario in both of the 2SSP formulations. The charging/discharging prices in the 2SSP
formulations are derived as described in Sect. 6.2, and a visualization is provided in
Fig. 15. In each of the following sections, we are limited to only 10 scenarios for
renewable generation due to computational limitations. Note that the primary goal of
these two models is to assess the capabilities of two different formulations in terms of
wind utilization, since in reality, the renewable generation cost should be the smallest
among all other costs, including the ramping cost of conventional generators. Hence,
one should try to utilize wind generation as much as possible.
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There is evidence of asymmetry in the ramping up and down of thermal genera-
tors. There are three identified sources for these costs: (1) creep, when components
operate above the design temperature; (2) thermal fatigue, when changes in tempera-
ture result in mechanical failure; (3) creep–fatigue interactions, when the two effects
above compound. As studied by Moarefdoost et al. (2016), in the ramp-up of thermal
generators, these three effects are present, whereas in ramp-down the main effect is
thermal fatigue. For this reason, in the following numerical results, we use ramping
costs defined by:

cg,+
i t = 1.2cg

it

cg,−
i t = 0.5cg

it .

That is, for ramping costs we only consider the linear generation cost coefficient cg
it to

make ramping slightly cheaper than generation, and, ramping down is much cheaper
than ramping up.

5.2.1 Case study for the ramping-based formulation

Figure 10 gives a summary of the optimal solution of the formulation presented in
Sect. 4.1. We observe that only one generator uses ramp-up in the second stage.

The behavior of the battery levels is similar to that resulting from the solution to
the deterministic formulation, in that they have a similar charging pattern; they charge
in the early hours of the morning, as well as late at night. Regardless of whether or
not the decision is being made by the social planner, the risk associated with deciding
when to charge/discharge does not drastically affect the charging/discharging times
of the transit buses. This can be attributed to the fact that the generators are flexible
enough to handle fluctuations in the amount of renewable generation.

In Fig. 11, we present the optimal values of wind generation corresponding to the
second stage resulting from solving the optimization problem found in Sect. 4.1 across
all time periods and scenarios. For each scenario, we find that wind-generated energy
is utilized in its entirety. We calculate the wind utilization measure as follows:

Wind Utilization = total wind usage in optimal solution

aggregation of wind generation from scenarios
. (21)

In essence, wind utilization calculates the ratio of utilized wind generation (in the
optimal solution) to the total available wind generation over all of the scenarios. Since
we consider all of the scenarios in the calculation of the measure, it can be thought of
as an average utilization over the scenarios. This is useful to quantify in general, since
we would like to utilize as much wind energy as possible.

In our numerical results corresponding to the optimization problem found in
Sect. 4.1, the wind utilization is found to be 1.0 (i.e., 100%). In this case, ramping as
a recourse action is flexible enough to handle the deviations in wind generation over
the entire planning horizon. However, if we restrict the ramping quantity in the second
stage to only allow for very small deviations in the generation, this total utilization
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Fig. 10 Optimum generation, charging, and ramping levels

Fig. 11 Wind usage amount in the optimal solution
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Fig. 12 Optimum generation and charging levels

might not be attainable. This is because the wind generator is limited to a total hourly
(periodic) generation capacity of 1 MWh, whereas in our numerical experiments we
allow for ramping that can introduce fluctuations on the order of approximately 100
MWh.

5.2.2 Case study for the charging/discharging-based formulation

In Fig. 12, we provide a summary of the solution of the formulation described in
Sect. 4.2. It is clear that the generator outputs are much higher in the first stage com-
pared to the solution of the alternative model displayed in Fig. 10, as second-stage
adjustment via ramping is not allowed in this formulation. Moreover, we also observe
that the transit charging/discharging levels change in the second stage rather than in
the first stage, to utilize the wind energy as much as possible.

Similar to the previous subsection, we calculate the wind utilization measure given
by equation (21) and find that for the solution to the optimization problem given
in Sect. 4.2 the total wind utilization is 0.9645 (96.45%). In Fig. 13, we present the
optimal values of wind generation corresponding to the second stage resulting from
solving the the optimization problem found in Sect. 4.2 across all time periods and
scenarios. One observation is that in this case, the solution is limited by operational
constraints and battery capacities. As a result, compared to the previous utilization
displayed in Fig. 11, we find that the model from Sect. 4.2 does not fully utilize wind

123



M. Yetkin et al.

Fig. 13 Wind usage amount in the optimal solution

generation later in the day (roughly from t = 15 on). These underutilized time periods
occur specifically when the fleet is serving public transit demand. However, if the fleet
contains numerous transit buses with complementary off-schedules that span an entire
day, the utilization would certainly be superior.

5.3 Larger power grids

To verify the capabilities of the proposed formulation for cooperation, we further test
it when larger power networks are coupled with the transit network. In particular, we
utilize the MATPOWER case files (Zimmerman et al. 2011), specifically, case14,
case30, case39, case57, and case118, where the number denotes the number
of nodes in the system. These cases are directly accessible within the MATPOWER
instance list. We only modify these instances by scaling down the demand, which
is done similarly to the procedure explained in Sect. 5.1. Note that the information
associated with the transit fleet remains the same. We always assume the charging
stations are connected at the first six nodes of the power system.

We obtain similar findings in these instances.While imposing additional demand on
the power network, the transit fleet can act as batteries for some periods and alleviate
generation costs by smoothing the generation profile. Moreover, in instances in which
congestion is present, we observe the effect of the transit fleet more clearly, since the
unit prices of electricity set by the optimal dual variables associated with the nodal
balance equations can dramatically change over time (due to congestion), and the
transit fleet can utilize an arbitrage strategy, which, in fact, benefits the whole system
in cooperation.

Table 4 provides a summary of solution times for the deterministic formulation.
The solution time of the deterministic formulation with our modified case9 instance
is much higher than the rest of the cases. This is primarily related to the additional
congestion introduced into the power network. Aside from the case9 outlier, we
observe that the solution times increase when we incorporate larger power networks.
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Table 4 Solution times of the
deterministic formulation

Instance Solution time (s)

case9 23.1256

case14 0.3720

case30 0.4434

case39 0.4810

case57 0.4285

case118 1.1776

Table 5 Summary of results for
the ramping-based formulation

Instance Solution time (s) Wind utilization

case9 0.8120 1

case14 2.3466 1

case30 4.9761 1

case39 6.8127 1

case57 9.4370 1

case118 146.8926 1

Table 6 Summary of results for
the charging/discharging-based
formulation

Instance Solution time (s) Wind utilization

case9 121.3390 0.9645

case14 1690.1862 0.9645

case30 32.7924 0.9645

case39 47.3546 0.9645

case57 52.4875 0.9645

case118 991.3013 0.9645

Table 5 provides a summary of results for the ramping-based stochastic formulation
on larger power networks. From the table, one can observe that we have complete wind
utilization in every case because ramping limits of conventional generators are large
enough to compensate for the uncertainty in the second stage. Moreover, in general,
solution times increase whenwe integrate a larger power network into the formulation.

Finally, Table 6 provides a summary of results for the charging/discharging-based
stochastic formulation on larger power networks.Wecanobserve that in all of the cases,
we have the same wind utilization (0.9645), since the charging limit of the transit fleet
remains the same in all of the formulations, and the fleet can compensate for a portion
of the uncertainty in the second stage.More importantly, we also observe that allowing
second-stage charging/discharging of the fleet introduces additional complexity to the
formulation since solution times are much larger than those in Table 5.

The discussion in Sect. 4.3 and the results presented in Tables 4, 5 and 6 show that
the relationship between the time to solution for each of the formulations, and system
size is not monotonic. For the deterministic model the three fastest instances have 14,
30, 39 and 57 buses, respectively, whereas the two instances that require the longest
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amount of time are 9- and 118-bus systems. Similarly, the two stochastic formulations
require the longest amount of time to solve the 9-, 57- and 118-bus systems, while the
time these formulations require to solve the 14-, 30-, and 39-bus systems can be seen
to be one to three orders of magnitude less.

6 Coordination, pricing, and expansion planning

6.1 Benefit of coordinated optimization

In this section, we use the deterministic formulation to evaluate the benefit of employ-
ing a coordinated strategy between the ISO and the transportation authority. To serve
as a baseline, we consider their uncoordinated operation where each party acts to
manage its own objective. The uncoordinated optimization scheme is summarized in
Procedure 1.

Procedure 1 Uncoordinated optimization scheme
1: Feasible charging scenarios are generated by ISO
2: for each scenario do
3: ISO solves dispatch problem with additional demand determined by the scenario and obtains a set of

prices from dual variables associated with nodal balance constraints
4: Using the prices, transit authority optimizes its own problem and obtains a charging/discharging

policy
5: Charging/discharging policy is realized by ISO, and ISO objective value is obtained
6: Charging/discharging policy is evaluated under baseline prices to obtain transit objective
7: Total uncoordinated cost is calculated
8: end for

Step 1 of Procedure 1 generates a given number of scenarios, which only takes
feasible charging of batteries into consideration. That is, the charging anticipated
by the ISO is guaranteed to satisfy transit-operational constraints. This proves to be
beneficial to the ISO, as this procedure can be seen as educated anticipation from
the ISO, where they have access to some information related to the transportation
system. Step 3 simply solves an MPOPF without any of the transportation aspects in
the formulation described in Sect. 3. In Step 4, only the transportation aspects such as
charging/discharging and location/relocation of the transit buses are considered in a
separate formulation. Then, Step 5 solves the formulation in Step 3 with the optimal
charging/discharging obtained in Step 4 as an additional demand. Next, to make the
comparison fair, in Step 7, we consider a set of baseline prices to evaluate the solution
obtained in Step 4. This can also be seen as the average prices over the scenarios
anticipated by the ISO.

For coordinated optimization, the deterministic formulation in Sect. 3 is solved,
with baseline prices and the objective value being calculated with convex combination
coefficient α = 0.5 in the objective function (23). Then, since the uncoordinated cost
accounts for the summation of the two costs (rather than a convex combination), we
scale down the total uncoordinated cost by halving it, to make a fair comparison.
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Fig. 14 Comparison of objective values

Figure 14 details the uncoordinated objective values for the transit authority, ISO,
and their sum (all of the quantities are scaled down by 0.5 due to the presence of α

in the co-optimization), and compares these with the coordinated objective values.
It is immediate to see that the total and ISO objective values are always worse in
the non-cooperative case. An immediate reason is that the anticipation of charging
schedules made by the ISO is quite different from the actual strategy employed by
the transportation authority, and the power system incurs additional generation cost.
However, since we consider charging prices that are averaged over scenarios as the
baseline prices, the transit objective values are comparable between the two strate-
gies. These results suggest that the ISO benefits largely from cooperation with the
transit authority. This was expected since the ISO minimizes its cost when it has full
knowledge of the optimal charging schedule, and anticipation of any deviation from
the optimal charging schedule will of course worsen the ISO’s operation.

We also tested the benefit of coordination in the larger power networks discussed
in Sect. 5.3. Table 7 summarizes the results. Note that the non-cooperative objectives
are calculated by taking the average of the objectives over 100 different anticipation
scenarios. As expected, on average, the transit objectives in both strategies match,
since we use the average prices (over 100 anticipation scenarios) as our electricity
prices in the evaluation step. Moreover, we observe that in all of the cases the ISO
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Table 7 Benefit analysis of the deterministic formulation (summary)

Instance Coop. t.a obj. Non-coop. t.a obj. Coop. I.b obj. Non-coop. I.b obj.

case14 17.7027 17.7028 752.0961 752.0983

case30 1.5947 1.5950 126.2755 127.8705

case39 0.2724 0.2724 23.5928 23.5929

case57 17.5882 17.5882 900.5379 900.5385

case118 17.5838 17.5838 4092.9120 4092.9150

case145 17.5269 17.5269 1320.0214 1320.0215

aTransit authority, bISO

benefits from the cooperative strategy, with the magnitude of the benefit becoming
less significant when larger power networks are considered. This supports our pre-
vious results concluding that the scale of the battery capacities (or the transit fleet)
plays a crucial role in the benefit obtained by a cooperative strategy. Observing the
intricacies of the benefit analysis on the stochastic formulations is yet another explo-
ration. However, for the sake of conciseness, we believe that the primary aspect of
coordination is demonstrated.

6.2 Potential benefits of alternative recourse actions

In this section, we are interested in a comparison of the two stochastic formulations
presented in Sects. 4.1 and 4.2. Recall that the first model investigates recourse actions
taken by the ISO (ramping), whereas the second model considers the actions taken by
the transit operator (using batteries to handle the randomness in the second stage).

To ensure a fair comparison, we consider the same set of charging/discharging
prices in both of the formulations. Note that in the second formulation, there are two
sets of prices, corresponding to the prices in the first stage, cit , and in the second
stage, c+

i tω. These prices are obtained by solving the two-stage stochastic multi-period
dispatch problem given in Appendix D. In more detail, the optimal values for the dual
variables associated with the first-stage nodal balance equations determine the first-
stage prices, and the second-stage prices are derived similarly. Figure15 illustrates the
first-stage prices and the average second-stage prices for charging/discharging of the
transit fleet.

In both stages, we observe that prices sharply increase near the end of the day
due to the extra stress imposed by the extra wind generation around similar times as
previously shown in Fig. 8. Moreover, the second-stage prices are much lower than
the first-stage prices. This could be attributed to the fact that the second-stage flows
are much smaller, as the scale of recourse actions is typically much smaller than that
of the first-stage decisions.

Next, we analyze the costs in each of the two models provided in Sects. 4.1 and 4.2.
The following parameters are relevant:

– First-stage and second-stage charging/discharging prices (cit , c+
i tω)

– Renewable generation cost (cr
it )
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Fig. 15 First-stage and second-stage prices for charging/discharging of the transit fleet

– Ramp-up/down costs for conventional generators (cg,+
i t , cg,−

i t )

Observe that the renewable generation term appears in both of the objectives (47)
and (1). Then, the only freedom we have is in determining ramping costs for conven-
tional generators. Based on this, we vary the ramping cost values and obtain a trade-off
between the costs of the two models. We provide the scheme for comparing the two
stochastic formulations in Procedure 2.

Procedure 2 Efficacy analysis for the two stochastic formulations
1: for each ramp-up/down cost do
2: Using ramping costs, solve the two-stage stochastic MPOPF to obtain first-stage and second-stage

charging/discharging prices
3: Using the first-stage prices and ramping costs, solve the model with ramping as the recourse action

and obtain an objective value
4: Using the first-stage and second-stage prices, solve the model with charging/discharging as the

recourse action and obtain an objective value
5: end for

In Procedure 2, we provide the scheme to obtain the trade-off by calibrating the
ramping costs in objective (47). In more detail, we systematically vary the ramping
costs and obtain the adjusted prices for both first and second stages via locational
marginal prices in step 2. Currently, for simplicity, in step 2, we do not consider
the demand added by the transit fleet. Alternatively, one could also incorporate an
average demand for transit charging/discharging. Then, by way of these new prices,
we separately solve the two formulations and compare their objective values. Note
that, in our experiments, we only vary the ramp-up cost by changing the multiplier γ

in the following manner:
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Fig. 16 Comparison of objective values in stochastic formulations by varying ramp-up cost

cg,+
i t = γ cg

it and cg,−
i t = 0.5cg

it ,

where γ ∈ {0.8, 0.9, 1, 1.1, 1.2, 1.3}. By allowing the value of γ to vary over these
values, we obtain the results in Fig. 16.

As can be seen, when the ramp-up cost multiplier value is around 1, the total objec-
tive values in the two models become competitive. Since having the value around
1 is reasonable, we can conclude that the recourse action provided by charging, as
opposed to ramping, can be a useful alternative depending on the generator ramping
costs. Moreover, it is interesting to observe that the transit objective in the second for-
mulation is much smaller. One possible reason for this could be that the batteries have
more flexibility in the second formulation since they can also arbitrage between the
first and second stages, whereas in the first formulation, they can only charge/discharge
in the first stage.

We further conducted a similar analysis when larger power networks are coupled
with the transit network. In general, we obtained similar findings in which the trade-off
values for γ were close to 1. This supports the idea that the two 2SSP models can
be alternatives to each other depending on ramping costs, and more importantly, total
battery capacity. We omit further details to avoid displaying repetitive findings.

In a broad view, in this section, we compared two types of recourse actions in our
framework. It is crucial to note that for additional flexibility promoting the integration
of renewable generators, one can utilize these two recourse actions simultaneously.

6.3 Pricing and co-optimization

In this section, motivated by the work of Kök et al. (2018), which analyzes the effect
of pricing policies (flat pricing vs. peak pricing) on the investment levels of renewable
and conventional sources from the perspective of utility firms, we investigate co-
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Fig. 17 Deterministic co-optimization results under flat pricing: generation and battery level profile (left)
and comparison of objective values (right)

optimization under different pricing policies for the transit authority. Specifically, we
compare peak pricing (pricing obtained from locational marginal prices) to flat pricing
(which is obtained by averaging peak prices) in different aspects.

In Fig. 17, we provide the optimal solution, along with the benefit analysis under
flat pricing. If we compare Fig. 17 (left) to the solution under peak pricing displayed
in Fig. 6 (left), we can observe that under flat pricing, both charging and generation
fluctuate less, simply due to the elimination of arbitrage for the transit authority. How-
ever, since peak prices can be thought of as proxies for congestion information, the
indirect benefit (in terms of relieving congestion) of utilizing peak prices is lost under
flat pricing. Further, if we compare Fig. 17 (right) to its counterpart in Fig. 14, we
immediately observe that costs increase under flat pricing. One immediate reason is
that arbitrage is not possible under flat pricing and transit objectives increase dramati-
cally. It is interesting to observe that under different scenarios, non-cooperative transit
charging under flat pricing remains the same since buses only charge to satisfy their
operational requirements. Moreover, cooperative transit objective values are higher
than non-cooperative values because the fleet is charging more in total due to two
reasons: firstly, the fleet is relocating to decrease the system cost; and secondly, the
fleet is discharging to decrease generation cost and the efficiency of batteries is less
than 1 (η < 1). Moreover, these compromises made by the transit authority save more
for the ISO, thus the total system cost decreases significantly.

We also analyze the effect of flat pricing in the charging/discharging-based 2SSP
formulation and similarly observe less fluctuation in the generation and charging
amounts. Specifically, we experimented with alternating prices in both of the two
stages; Fig. 18 gives an overview.

It is immediate to see that wind usage profiles in Fig. 18 do not alter dramatically.
Interestingly, when we calculate the wind utilization ratios explained in equation (21),
all of the different pricing approaches result in the same utilization, 0.9645. This
suggests that even though the usage ofwind alters in shape, the total utilization remains
the same. It is safe to conclude that the actual limitation of wind usage is rooted in the
operational requirements of the transit fleet.
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Fig. 18 Wind usage amounts of the charging/discharging-based formulation under different pricing schemes

Table 8 Solution times of the charging/discharging-based formulation under different pricing schemes (s)

Instance Flat both Flat first Flat second Peak both

case9 101.4824 114.1081 114.0692 121.3390

case14 27.0704 951.4918 22.0589 1690.1862

case30 45.8860 40.0843 41.3030 32.7924

case39 63.4547 41.5623 42.6833 47.3546

case57 1152.9587 166.6651 123.7377 52.4875

case118 1443.3248 3216.8284 934.7387 991.3013

We present the solution times of the charging/discharging-based formulation under
different pricing in Table 8. One can observe that there is no single trend in solution
times regardless of which pricing methodology is chosen. However, one should also
note that some of the parameters chosen in these cases were problem-specific and
could be the source of inconsistency.
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Fig. 19 Congestion analysis by varying battery capacity

6.4 Expansion planning for greenhouse gas reduction

At present, the limited quantity of BEBs being utilized in the transit fleet and the
limited battery capacity of these BEBs result prohibit challenges to the grid by way
of congestion. Yet, as more BEBs are integrated into the transit fleet, and the battery
technology continues to improve, at what point will the operation of BEBs begin to
stress the power system? This emphasizes the need to coordinate the expansion efforts
via the investment in BEBs and their battery technology, along with investment in the
infrastructure of the power network itself.

To analyze this inmore detail, wefix the line capacities at 10MWand systematically
increase the battery capacities of the current fleet, to represent a form of expansion,
while holding power network parameters (and hence, capabilities) constant. Then,
we solve the deterministic formulation and collect the total number of lines with full
utilization over a day. Figure19 gives an illustration for 9-node instance. We conduct
this analysis for both cooperative and non-cooperative analysis, by using the same
prices in both. There are two main conclusions: first, the congestion in the network
increases with larger battery capacities; and second, cooperation can mitigate the
extra demand introduced since the non-cooperative model becomes infeasible after a
certain point (where−1 indicates infeasibility).We have also investigated other power
networks and obtained similar conclusions.

In this section, we develop a finite multi-period investment model for a social
planner who seeks to reduce the greenhouse gas (GH) emissions of the transit system
by investing to improve the transit and power systems. The social planner has three
different ways they can invest in each time step; (i) purchasing additional BEBs,
(ii) investing in the improvement of battery technology of BEBs, or, (iii) expanding
transmission line capacities in the power network.
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Let cE
t , cB

t and cL
t denote the costs of purchasing new BEBs, investing in BEB bat-

tery technology and replacing transmission lines at time t , respectively. Then, defining
τ to be the per unit social cost of GHs emitted into the environment by the transit sys-
tem, the social planner seeks to minimize the total social cost of transit GH emissions,
as well as the total cost of investment over the planning horizon, given by:

min
T∑

t=0

cE
t I E

t + cB
t I B

t + (cL
t )� I L

t + τGHt

where, for all t ∈ T , I L
t ∈ R

|L|
+ , I E

t ∈ N, I B
t ∈ R+ and GHt ∈ R+.

This optimization is subject to the following constraints. First, each transmission
line must have sufficient capacity to be able to accommodate the operation of a given
number of BEBs at any time:

F̄l
t+1 ≥ βt P̄ B

t+1 ∀l ∈ L, ∀t = 0, . . . , T − 1.

Note that {βt }T
t=0 is a non-decreasing sequence, with β0 > 0.A priori, β represents an

estimate of the desired portion of the BEB fleet that we require each line in the power
network to be able to accommodate without congestion. Next, GH emissions must be
strictly decreasing from one period to the next:

GHt+1 ≤ γGHt ∀t = 0, . . . , T − 1,

for γ ∈ (0, 1). Further, GH emissions in the next period are calculated as

GHt+1 = σ · (N B − (1 + ρt )N EV
t )+ ∀t = 0, . . . , T − 1,

where σ > 0 is a scaling factor that defines the greenhouse gas emission intensity of
transit fleet operation, N B is a constant that defines the number of conventional transit
buses in the fleet, and {ρt }T

t=0 is a non-increasing sequence that captures the additional
flexibility resulting fromhavingmore electric buses. One can view this constant as how
themodel interprets electric buses taking over the routes of conventional buses,without
necessarily requiring the retirement of conventional buses. Further, it is assumed that
the impact is increasing, but with diminishing marginal returns.

Finally, the number of BEBs, the battery capacity of BEBs, and the capacity of
lines in the next period are updated as follows

F̄l
t+1 = F̄l

t + I l
t ∀l ∈ L, ∀t = 0, . . . , T − 1,

P̄ B
t+1 = P̄ B

t + I B
t ∀t = 0, . . . , T − 1,

N EV
t+1 = N EV

t + I E
t ∀t = 0, . . . , T − 1.
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Consider a given initial point (GH0, N EV
0 , F̄0, P̄0). Then, the Lagrangian can be

formulated as:

L(I E , I B , I L ,GH, N EV , F̄, P̄; λ,μ, ν, θ, α, δ)

=
T∑

t=0

cE
t I E

t + cB
t I B

t + (cL
t )� I L

t + τGHt

+
T −1∑
t=0

∑
l∈L

λlt

(
F̄l

t+1 − βt P̄ B
t+1

)
+

T −1∑
t=0

(μL
t )�

(
F̄ L

t+1 − F̄ L
t − I L

t

)

+
T −1∑
t=0

νt (γGHt − GHt+1) +
T −1∑
t=0

θt

[
GHt+1 − σ · (N B − (1 + ρt )N EV

t )+
]

+
T −1∑
t=0

αt

(
N EV

t+1 − N EV
t − I E

t

)
+

T −1∑
t=0

δt

(
P̄ B

t+1 − P̄ B
t − I B

t

)
.

The first-order conditions associated with the Lagrangian, as well as all proofs for
the theorems presented in this section, can be found inAppendixE. From the first-order
conditions of the Lagrangian, we can infer several results regarding the optimization
problem.

Theorem 1 The conditions (111)–(113) imply that the shadow prices of updating the
quantity of buses, the capacity of bus batteries, and the capacity of lines, (αt , δt , μt )

are equal to the cost of investment for each of these goods at time t. That is,

(αt , δt , μ
L
t ) = (cE

t , cB
t , cL

t ).

Noting the fact that σ(1+ρt ) ≥ 0 for all t ∈ T , we have the following result, which
defines the implicit cost of reducing GH emissions by purchasing additional BEBs.

Theorem 2 Suppose the first-order conditions are satisfied. For N B

1+ρt
≥ N EV

t , since
σ(1 + ρt ) ≥ 0 for all t ∈ T , the shadow price associated with the GH emissions
update, θt , is determined by the difference between the cost of purchasing more BEBs
in the previous period, and the cost of purchasing more BEBs in the current period,
cE

t−1 − cE
t . That is

sign(θt ) = sign(cE
t−1 − cE

t ). (22)

However, if N B

1+ρt
< N EV

t , purchasing additional BEBs has no marginal effect on the
optimization problem at time t.

The following result stipulates conditions under which the implicit cost of suffi-
ciently reducing GH emissions will increase from one time period to the next.

Theorem 3 Suppose the first-order conditions are satisfied, and N B

1+ρt
≥ N EV

t . If the
cost of purchasing additional BEBs increases by at least τσ (1 + ρt−1) ≥ 0 at time
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t , then the shadow price of sufficiently reducing GH emissions in the next period will
have increased from the previous period, i.e., νt ≥ νt−1.

Due to the fact that ρ0 ≥ ρ1 ≥ · · · ≥ ρT , the threshold τσ (1+ρt ) is non-increasing
in time. Combining this with the result in Theorem 3, it is expected that {νt }T

t=0 will
be increasing in time. Hence, the social planner is becoming more incentivized to
sufficiently reduce GH emissions as time progresses.

Theorem 4 Suppose the first-order conditions are satisfied. Consider the shadow price
of updating line capacities in the power network at time t, μL

t and the shadow price
of updating BEB battery capacities at time t, δt . We have:

∑
l∈L

(μl
t+1 − μl

t ) = δt − δt+1

βt
≥ 0.

Therefore, δt is non-increasing in time, and μL
t is non-decreasing in time.

The implications of Theorem 4 are straightforward, yet insightful. The penalty with
respect to the capacity update constraint is non-decreasing in time, implying that as
we progress further along the planning horizon this constraint plays an increasingly
important role (in a primal sense) in the optimization problem at hand. Conversely, the
battery capacity update constraint is at its greatest importance at the early stages of the
planning horizon. Intuitively, this result can be viewed in the following manner. Early
on in the planning horizon, the β-scaled BEB battery capacity that each line must be
able to accommodate is non-decreasing in time. Thus, ensuring a feasible update of
the line capacities becomes more important over time.

The final result presented in this section provides bounds on the primal variable I E

under given conditions.

Theorem 5 Suppose the first-order conditions are satisfied. Then:

(a) If N B

1+ρt−1
≥ N EV

t−1 and N B

1+ρt
≥ N EV

t , then

I E
t−1 ≥ N B · (1 − γ )

[
ρt−1 − ρt

(1 + ρt )(1 + ρt−1)

]

(b) N B

1+ρt−1
< N EV

t−1 and N B

1+ρt
≥ N EV

t 	⇒ 0 ≤ I E
t−1 < N B

[
ρt−1−ρt

(1+ρt )(1+ρt−1)

]

(c) N B

1+ρt−1
≥ N EV

t−1 and N B

1+ρt
< N EV

t 	⇒ I E
t−1 > N B

[
ρt−1−ρt

(1+ρt )(1+ρt−1)

]

7 Conclusion

In thiswork,we propose a deterministicmathematical programming formulation to co-
optimize the operation of the public transit system and the power grid when the electric
transit buses are in their off-schedule considering generators without uncertainty. Fur-
thermore,we propose twodifferent two-stage stochastic programming formulations, in
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which uncertainty is presentwithin the generation unitswith different recourse actions:
(i) ramping up/down the conventional generators, (ii) additional charging/discharging
of the transit fleet.

Our numerical results demonstrate that coordinated operation between the ISO and
the transit authority can decrease the generation costs while ensuring that the charging
can be done at no detriment to the power system. Additionally, we conclude that in
the presence of renewable generators, charging/discharging of the fleet as a recourse
action can serve as a useful alternative to ramping up/down the conventional gener-
ators. Yet, as detailed, the benefits of charging/discharging of the fleet as a recourse
action depend on battery capacities, ramping costs, and ramping limits. Our proposed
formulations are general in the sense that they can incorporate different schedules, and
different renewable generation units, different transportation, and power networks.We
explore the effect of pricing the charging/discharging of the transit authority on the
characteristics of the co-optimization for two different pricing strategies, namely peak
pricing and flat pricing.

Countries like the U.S. and most European countries have several transportation
authorities in their control territories, and formulating a co-optimization of all those
systems is a challenging problem. Thus, the formulation herein proposed could apply
to smaller systems such as island systems and microgrids in e.g., military facilities;
smaller states or non-interconnected zones inside both developed and developing coun-
tries. In those three examples of jurisdictionswith conditions similar to the assumptions
we have in our model, our formulation provides a way to manage the problem of man-
aging both systems and providing optimal scheduling.

Additionally, as more distributed energy resources (DERs) are entering the system,
aggregators of DERs may deal with similar problems as the one we formulate, with
hierarchical interactions and imports/exports into the seam or boundary of the system
managed by the aggregator. The case of a future distribution system operator as in
Canizes et al. (2019) would be an example of another application. By co-optimizing
both systems, our formulation provides a benchmark for what could the optimal man-
agement of the resources. In the case of e.g., military facilities, the ability to handle
both systems simultaneously may obey to e.g., strategic priorities, and interconnec-
tions with external systems could be part of the management decisions to take. The
handling of interactions with adjoining systems is the scope of future work.

Another valuable extension to these formulations would be to consider separate
renewable generation units owned andmanaged by the transportation authority. In this
case, the charging/discharging costs of the vehicles would depend on which generator
is chosen to be used. That is, it would be the same as the generation cost if they
use their own generators, and it would be the market price derived from locational
marginal prices if they use other generators within the power grid operated by the
ISO. Likewise, it may be worthwhile to consider a formulation based on SOCP rather
than QP; as relaxations based on SOCP provide tighter approximations to the OPF
compared to those based on QP (as QP is a special instance of SOCP).

Moreover, due to the fine resolution of the formulation, incorporating a physical
model for battery degradation within the framework would decrease the losses further,
and increase the flexibility of the co-optimization overall. Within the capabilities of
the current framework, external effects such as battery degradation and charging tech-
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nology could be represented by updating the necessary parameters. It is worth noting
that while our approach does not address the decision of locating charging stations,
the solutions obtained from our model would provide valuable managerial insights
about the charging station locations. Finally, we point out that our model considers
“off-schedule" transportation buses; incorporating the “on-schedule" aspects would
allow one to model constraints on the operation of the public transit system beyond
the charging and discharging role of our model.
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Appendix A: Nomenclature

See Table 9.

Table 9 Nomenclature

Sets

N Set of nodes in the power network

Ng ⊆ N Set of nodes with conventional generators in the power network

Nr ⊆ N Set of nodes with renewable generators in the power network

Nb ⊆ N Set of candidate points for transit bus connection coupling the two systems

L Set of lines present in the power network

B Set of transit buses

T Set of time periods

Tb Set of off-schedule time periods for bus b ∈ B
� Set of scenarios for uncertain renewable generation

Indices

T 1
b , T 2

b First and last time periods in off-schedule of bus b ∈ B, respectively
Parameters

cg Conventional generation cost coefficients (linear)

c′g Conventional generation cost coefficients (quadratic)

c Charging/discharging costs of transit buses

c+ Additional charging/discharging costs of transit buses

cr Renewable generation cost coefficients

cshed Costs of load-shedding in the power network

cg,+, cg,− Ramp-up and ramp-down costs of conventional generators, respectively
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Table 9 continued

Sets

pd External demands present in the power grid

θ Limit on the voltage angles in the power network

x Reactance values of lines in the power network

S Flow limits on lines in the power network

pg Conventional generation limits

pδg Ramping limits of conventional generators

e1 Initial battery levels of transit buses (at the beginning of their off-schedules)

e, e Lower and upper limits on battery levels of transit buses, respectively

s Traversal energy consumption of transit buses over one time period

pc, pdc Limits on charging and discharging amounts of transit buses, respectively

η Efficiency values of transit bus batteries

δt Duration of time in a single period

	t(·, ·) Required number of time steps to relocate between two charging stations

α Convex combination coefficient

π Probabilities of scenarios

Variables

pg, pr Conventional and renewable generation amounts, respectively

pd,shed Amounts of load-shedding

pg,+, pg,− Ramp-up and ramp-down amounts of conventional generators, respectively

pc, pdc Charging and discharging amounts of transit buses, respectively

pc,+, pdc,+ Additional charging and discharging amounts of transit buses, respectively

p Power flows on lines in the power network

θ Voltage angles on nodes in the power network

e Battery levels of transit buses

z Assignment variables of transit buses to charging locations

y Indicator variables on the traversal status of transit buses

Appendix B: Complete formulation of the deterministic model

This MIQP formulation is given by:

min (1 − α)
∑
t∈T

∑
i∈Ng

cg
it pg

it + c′g
it (pg

it )
2 + α

∑
t∈T

∑
b∈B

∑
i∈Nb

cit

(
pc

ibt − pdc
ibt

)
(23)

subject to:

pg
it −

∑
b∈B

pc
ibt +

∑
b∈B

pdc
ibt − pd

it =
∑

j :(i, j)∈L
pi j t −

∑
j :( j,i)∈L

p jit ∀i ∈ N , t ∈ T (24)

pg
it = 0 ∀i ∈ N \ Ng, t ∈ T (25)

− θ ≤ θi t ≤ θ ∀i ∈ N , t ∈ T (26)
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θ1t = 0 ∀t ∈ T (27)

pi j t = θi t − θ j t

xi j
∀(i, j) ∈ L, t ∈ T (28)

− Si j ≤ pi j t ≤ Si j ∀(i, j) ∈ L, t ∈ T (29)

0 ≤ pg
it ≤ pg

it ∀i ∈ Ng, t ∈ T (30)

− pδg
it ≤ pg

i,t+1 − pg
it ≤ pδg

it ∀i ∈ Ng, t ∈ T \ {T } (31)

ebT 1
b

= e1b ∀b ∈ B (32)

ebT 2
b

+ ηb

∑
i∈Nb

pc
ibT 2

b
δt − 1

ηb

∑
i∈Nb

pdc
ibT 2

b
δt − sb ybT 2

b
= eb ∀b ∈ B (33)

eb,t+1 = ebt + ηb

∑
i∈Nb

pc
ibtδt − 1

ηb

∑
i∈Nb

pdc
ibtδt − sb ybt ∀b ∈ B, t, t + 1 ∈ Tb (34)

eb ≤ ebt ≤ eb ∀b ∈ B, t ∈ Tb (35)
0 ≤ pc

ibt ≤ pc
bzibt ∀i ∈ Nb, b ∈ B, t ∈ T (36)

0 ≤ pdc
ibt ≤ pdc

b zibt ∀i ∈ Nb, b ∈ B, t ∈ T (37)

pc
ibt = 0, pdc

ibt = 0 ∀i ∈ N \ Nb, b ∈ B, t ∈ T (38)
∑

i∈Nb

zibt + ybt = 1 ∀b ∈ B, t ∈ Tb (39)

zibt + z jbt ′ ≤ 1 ∀t ′ ∈ Tb, t < t ′ ≤ t + 	t(i, j),

∀i, j ∈ Nb, i �= j, b ∈ B, t ∈ Tb (40)
zdbT 1

b
= 1 d = Nb(1),∀b ∈ B (41)

ybt = 0 ∀b ∈ B, t ∈ T \ Tb (42)
zibt = 0 ∀i ∈ Nb, b ∈ B, t ∈ T \ Tb (43)
ybt ∈ {0, 1} ∀b ∈ B, t ∈ T (44)
zibt ∈ {0, 1} ∀i ∈ Nb, b ∈ B, t ∈ T (45)

Our objective (23) is to minimize a convex combination, with coefficient α, of the
total power generation cost and the charging/discharging cost of the transit buses. For
each time period t ∈ T , both the charging and discharging costs are given by cit .
These values, also known as locational marginal prices (Lamadrid and Mount 2012),
represent the optimal dual values associated with the nodal balance equations of the
power network. Hence, in the case of simultaneous charging and discharging, the
costs and revenues will cancel each other out; that is, it is never (strictly) optimal to
charge and discharge simultaneously. This simplifies the formulation since otherwise,
one would need an extra set of binary variables indicating whether each vehicle is
charging or discharging.

Constraints (24)–(30) are standard DC optimal power flow constraints except con-
straint set (24) additionally incorporates terms for charging and discharging in the
nodal balance equations. Inequality (31) ensures that the ramping amount of genera-
tors is within the limit. Constraint sets (32) and (33) provide initial and final conditions
on the battery levels of the transit buses respectively. Constraints (34) are battery level
updates for the transit fleet, where the bounds on the battery levels are employed in
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(35). Constraints (36) and (37) ensure that a battery can only charge/discharge if the
transit bus is connected to a node in the power network.

Constraints (39) are assignment constraints specifying that a transit bus can either
be connected to one of the possible nodes in the power network or relocating within
the network. Then, constraint set (40) guarantees any relocation made throughout the
horizon is feasible while ensuring that a transit bus cannot relocate in fewer time steps
than the required travel time 	t(·, ·). Finally, equation (41) is the initial assignment
of the transit buses to the depot node, whereas (42) and (43) ensure that assignment
only occurs within the off-schedule periods of the vehicles. Note that the periods in the
formulation are inherently cyclic (i.e. considering hourly intervals, period 23 connects
to period 0).

As a note related to the assumption on the capacities of charging stations, consider-
ing constant charging capacities per station Ci , depending on the specific application,
one can incorporate the following constraint set:

∑
b∈B

zibt ≤ Ci ∀i ∈ Nb, t ∈ T (46)

Appendix C: Complete formulation of the two-stage stochastic
ramping-based formulation

The complete formulation is as follows:

min (1 − α)

⎡
⎣∑

t∈T

∑
i∈Ng

cg
it pg

it + c′g
it (pg

it )
2 +

∑
ω∈�

πω

⎛
⎝∑

t∈T

∑
i∈Nr

cr
i t pr

i tω

+
∑
t∈T

∑
i∈N

cshedi t pd,shed
i tω

)]
+ (1 − α)

∑
ω∈�

πω

∑
t∈T

∑
i∈Ng

(
cg,+

i t pg,+
i tω − cg,−

i t pg,−
i tω

)

+ α
∑
t∈T

∑
b∈B

∑
i∈Nb

cit

(
pc

ibt − pdc
ibt

)
(47)

subject to:

pg
it + pr

it −
∑
b∈B

pc
ibt +

∑
b∈B

pdc
ibt − pd

it =
∑

j :(i, j)∈L
pi jt −

∑
j :( j,i)∈L

p jit ∀i ∈ N , t ∈ T (48)

pr
itω − pr

it + pg,+
i tω − pg,−

i tω + pd,shed
itω

=
∑

j :(i, j)∈L

(
pi jtω − pi jt

) −
∑

j :( j,i)∈L

(
p jitω − p jit

) ∀i ∈ N , t ∈ T , ω ∈ � (49)

pg
it = 0 ∀i ∈ N \ Ng, t ∈ T (50)

pr
it = 0 ∀i ∈ N \ Nr , t ∈ T (51)

pr
itω = 0 ∀i ∈ N \ Nr , t ∈ T , ω ∈ � (52)

− θ ≤ θi t ≤ θ ∀i ∈ N , t ∈ T (53)
− θ ≤ θi tw ≤ θ ∀i ∈ N , t ∈ T , ω ∈ � (54)

123



M. Yetkin et al.

θ1t = 0 ∀t ∈ T (55)
θ1tω = 0 ∀t ∈ T , ω ∈ � (56)

pi jt = θi t − θ j t

xi j
∀(i, j) ∈ L, t ∈ T (57)

pi jtω = θi tω − θ j tω

xi j
∀(i, j) ∈ L, t ∈ T , ω ∈ � (58)

− Si j ≤ pi jt ≤ Si j ∀(i, j) ∈ L, t ∈ T (59)

− Si j ≤ pi jtω ≤ Si j ∀(i, j) ∈ L, t ∈ T , ω ∈ � (60)

0 ≤ pg
it + pg,+

i t ≤ pg
it ∀i ∈ Ng, t ∈ T (61)

pg,−
i t ≤ pg

it ∀i ∈ Ng, t ∈ T (62)

pg,+
i tω ≤ pg,+

i t ∀i ∈ Ng, t ∈ T , ω ∈ � (63)

pg,−
i tω ≤ pg,−

i t ∀i ∈ Ng, t ∈ T , ω ∈ � (64)

− pδg
it ≤ pg

i,t+1 − pg
it ≤ pδg

it ∀i ∈ Ng, t ∈ T \ {T } (65)

0 ≤ pr
it ≤ pr

it ∀i ∈ Nr , t ∈ T (66)
0 ≤ pr

itω ≤ p̃r
i tω ∀i ∈ Nr , t ∈ T , ω ∈ � (67)

0 ≤ pd,shed
i tω ≤ pd

it ∀i ∈ N , t ∈ T , ω ∈ � (68)

0 ≤ pg,+
i t ≤ pg,+

i t ∀i ∈ Ng, t ∈ T (69)

0 ≤ pg,−
i t ≤ pg,−

i t ∀i ∈ Ng, t ∈ T (70)

pg,+
i tω ≥ 0, pg,−

i tω ≥ 0 ∀i ∈ Ng, t ∈ T , ω ∈ � (71)

ebT 1
b

= e1b ∀b ∈ B (72)

ebT 2
b

+ ηb

∑
i∈Nb

pc
ibT 2

b
δt − 1

ηb

∑
i∈Nb

pdc
ibT 2

b
δt − sb ybT 2

b
= eb ∀b ∈ B (73)

eb,t+1 = ebt + ηb

∑
i∈Nb

pc
ibt δt − 1

ηb

∑
i∈Nb

pdc
ibt δt − sb ybt ∀b ∈ B, t, t + 1 ∈ Tb (74)

eb ≤ ebt ≤ eb ∀b ∈ B, t ∈ Tb (75)
0 ≤ pc

ibt ≤ pc
bzibt ∀i ∈ Nb, b ∈ B, t ∈ T (76)

0 ≤ pdc
ibt ≤ pdc

b zibt ∀i ∈ Nb, b ∈ B, t ∈ T (77)

pc
ibt = 0, pdc

ibt = 0 ∀i ∈ N \ Nb, b ∈ B, t ∈ T (78)
∑

i∈Nb

zibt + ybt = 1 ∀b ∈ B, t ∈ Tb (79)

zibt + z jbt ′ ≤ 1 ∀t ′ ∈ Tb, t < t ′ ≤ t + 	t(i, j), (80)
∀i, j ∈ Nb, i �= j, b ∈ B, t ∈ Tb

zdbT 1
b

= 1 d = Nb(1), ∀b ∈ B (81)

ybt = 0 ∀b ∈ B, t ∈ T \ Tb (82)
zibt = 0 ∀i ∈ Nb, b ∈ B, t ∈ T \ Tb (83)
ybt ∈ {0, 1} ∀b ∈ B, t ∈ T (84)
zibt ∈ {0, 1} ∀i ∈ Nb, b ∈ B, t ∈ T (85)

Here, the objective function (47) is the summation of first-stage costs (which has
already been captured by the deterministic objective function (23)) and second-stage
costs including the expected renewable generation costs and expected ramping costs.
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In addition to the constraints captured in the deterministic model in Sect. 3 are the
second-stage nodal balance (49) and flows (54), (56), (58), (60); limits on renewable
generation (66), (67); limits on second-stage ramping (61), (63), (64); and limits on
shedding in the second stage (68). The main differences from the two-stage stochastic
OPF formulation presented in Morales et al. (2013) are constraints on the transit
bus battery levels (72)–(75), charging limits (76)–(78), and transportation constraints
(79)–(85).More importantly,we have each of theOPFconstraints repeated formultiple
time periods rather than a single time period presented by Morales et al. (2013). The
inclusion of multiple periods, and their coupling by the presence of batteries, increase
the complexity of the problem dramatically.

Note that we have two sets of ramping quantities pδg
it , and variables (pg,+

i t , pg,−
i t )

associated with ramping in different time periods. Specifically, the parameters pδg
it

serve as upper bounds on the ramping of conventional generators between two time
periods in the formulation, whereas the variables (pg,+

i t , pg,−
i t ) correspond to ramping

of conventional generators between the two stages of the stochastic formulation.

Appendix D Two-stage stochastic multi-period OPF formulation to
obtain prices of charging/discharging

In this section, we present a baseline OPF formulation in order to estimate the first-
stage and second-stage prices of charging/discharging in formulations presented in
Sect. 4. The complete formulation is as follows:

min
∑
t∈T

∑
i∈Ng

cg
it pg

it + c′g
it (pg

it )
2 +

∑
ω∈�

πω

⎛
⎝∑

t∈T

∑
i∈Nr

cr
i t pr

i tω +
∑
t∈T

∑
i∈N

cshedi t pd,shed
i tω

⎞
⎠

+
∑
ω∈�

πω

∑
t∈T

∑
i∈Ng

(
cg,+

i t pg,+
i tω − cg,−

i t pg,−
i tω

)
(86)

subject to:

(cit ) : pg
it + pr

it − pd
it =

∑
j :(i, j)∈L

pi jt −
∑

j :( j,i)∈L
p jit ∀i ∈ N , t ∈ T (87)

(c+
i tω) : pr

itω − pr
it + pg,+

i tω − pg,−
i tω + pd,shed

itω =
∑

j :(i, j)∈L

(
pi j tω − pi j t

)

−
∑

j :( j,i)∈L

(
p jitω − p jit

) ∀i ∈ N , t ∈ T , ω ∈ � (88)

pg
it = 0 ∀i ∈ N \ Ng, t ∈ T (89)

pr
it = 0 ∀i ∈ N \ Nr , t ∈ T (90)
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pr
itω = 0 ∀i ∈ N \ Nr , t ∈ T , ω ∈ � (91)

− θ ≤ θi t ≤ θ ∀i ∈ N , t ∈ T (92)

− θ ≤ θi tw ≤ θ ∀i ∈ N , t ∈ T , ω ∈ � (93)

θ1t = 0 ∀t ∈ T (94)

θ1tω = 0 ∀t ∈ T , ω ∈ � (95)

pi j t = θi t − θ j t

xi j
∀(i, j) ∈ L, t ∈ T (96)

pi j tω = θi tω − θ j tω

xi j
∀(i, j) ∈ L, t ∈ T , ω ∈ � (97)

− Si j ≤ pi j t ≤ Si j ∀(i, j) ∈ L, t ∈ T (98)

− Si j ≤ pi j tω ≤ Si j ∀(i, j) ∈ L, t ∈ T , ω ∈ � (99)

0 ≤ pg
it + pg,+

i t ≤ pg
it ∀i ∈ Ng, t ∈ T (100)

pg,−
i t ≤ pg

it ∀i ∈ Ng, t ∈ T (101)

pg,+
i tω ≤ pg,+

i t ∀i ∈ Ng, t ∈ T , ω ∈ � (102)

pg,−
i tω ≤ pg,−

i t ∀i ∈ Ng, t ∈ T , ω ∈ � (103)

− pδg
it ≤ pg

i,t+1 − pg
it ≤ pδg

it ∀i ∈ Ng, t ∈ T \ {T } (104)

0 ≤ pr
it ≤ pr

it ∀i ∈ Nr , t ∈ T (105)

0 ≤ pr
itω ≤ p̃r

i tω ∀i ∈ Nr , t ∈ T , ω ∈ � (106)

0 ≤ pd,shed
i tω ≤ pd

it ∀i ∈ N , t ∈ T , ω ∈ � (107)

0 ≤ pg,+
i t ≤ pg,+

i t ∀i ∈ Ng, t ∈ T (108)

0 ≤ pg,−
i t ≤ pg,−

i t ∀i ∈ Ng, t ∈ T (109)

pg,+
i tω ≥ 0, pg,−

i tω ≥ 0 ∀i ∈ Ng, t ∈ T , ω ∈ � (110)

This formulation is a direct extension of the two-stage single-period optimal power
formulation presented by Morales et al. (2013). Specifically, we use the optimal dual
variables cit , c+

i tω associated with constraints (87) and (88), respectively, to determine
the first-stage and second-stage charging/discharging prices.

Appendix E Proofs

The associated first-order conditions are given by:

∂L
∂ I E

t
= 0 	⇒ cE

t − αt = 0 	⇒ cE
t = αt ∀t = 0, . . . , T − 1 (111)

∂L
∂ I B

t
= 0 	⇒ cB

t = δt ∀t = 0, . . . , T − 1 (112)

∂L
∂ I L

t
= 0 	⇒ cL

t = μL
t ∀t = 0, . . . , T − 1 (113)
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∂L
∂GHt

= 0 	⇒ τ + γ νt + θt−1 − νt−1

= 0 	⇒ γ νt − νt−1 = −θt−1 − τ ∀t = 1, . . . , T (114)

∂L
∂ N EV

t
= 0 	⇒

{
σ(1 + ρt )θt = αt−1 − αt if N B

1+ρt
≥ N EV

t

0 otherwise.
∀t = 1, . . . , T (115)

∂L
∂ F̄l

t
= 0 	⇒ λlt−1 + μl

t−1 − μl
t = 0 	⇒ λlt−1 = μlt − μlt−1 ∀t = 1, . . . , T (116)

∂L
∂ P̄ B

t
= 0 	⇒ −βt−1

∑
l∈L

λlt−1 + δt−1 − δt = 0 ∀t = 1, . . . , T (117)

∂L
∂λlt

= 0 	⇒ F̄l
t+1 ≥ βt P̄ B

t+1 ∀l ∈ L, ∀t = 0, . . . , T − 1 (118)

∂L
∂μlt

= 0 	⇒ F̄l
t+1 = F̄l

t + I l
t ∀l ∈ L, ∀t = 0, . . . , T − 1 (119)

∂L
∂νt

= 0 	⇒ γGHt ≥ GHt+1 ∀t = 0, . . . , T − 1 (120)

∂L
∂θt

= 0 	⇒ GHt+1 = σ · (N B − (1 + ρt )N EV
t )+ ∀t = 0, . . . , T − 1 (121)

∂L
∂αt

= 0 	⇒ N EV
t+1 = N EV

t + I E
t ∀t = 0, . . . , T − 1 (122)

∂L
∂δt

= 0 	⇒ P̄ B
t+1 = P̄ B

t + I B
t ∀t = 0, . . . , T − 1 (123)

λlt ≥ 0 ∀l ∈ L, ∀t = 0, . . . , T − 1 (124)
νt ≥ 0 ∀t = 0, . . . , T − 1. (125)

Proof of Theorem 2 Substituting (111) into (115), we have

σ(1 + ρt )θt = αt−1 − αt (126)

	⇒ σ(1 + ρt )θt = cE
t−1 − cE

t (127)

and hence

θt = cE
t−1 − cE

t

σ(1 + ρt )
∀t = 1, . . . , T (128)

for N B

1+ρt
≥ N EV

t .

Proof of Theorem 3 Consider, νt , which is the shadow price of sufficiently reducing
GH emissions in time period t + 1. From equation (114), we have

γ νt − νt−1 = −θt−1 − τ.

Next, we can substitute an expression for θt−1 found in equation (128) in order to
arrive at

γ νt − νt−1 = cE
t−1 − cE

t−2 − τσ (1 + ρt−1)

σ (1 + ρt−1)
. (129)
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Then, there are two cases to consider. Case (1), cE
t−1 − cE

t−2 ≥ τσ (1 + ρt−1) ≥ 0:
γ νt ≥ νt−1 ≥ 0 	⇒ νt ≥ νt−1 (as γ ∈ (0, 1)). If the cost of purchasing additional
BEBs has increased from time period t − 2 to time period t − 1 and this cost has
increased by at least τσ (1+ρt−1), then the shadow price of sufficiently reducing GH
emissions in the next period, will have increased from the previous period.
Case (2), cE

t−1 − cE
t−2 < τσ(1 + ρt−1): 0 < γνt < νt−1 If the cost of purchasing

additional BEBs has not increased from time period t − 2 to time period t − 1 by
at least τσ (1 + ρt−1), then the discounted shadow price of sufficiently reducing GH
emissions in period t , γ νt , will be less than the shadow price of sufficiently reducing
GH emissions in time period t . Note that this case includes the scenarios in which the
price of investment has decreased from one period to the next, i.e. cE

t−1 − cE
t−2 < 0.

Proof of Theorem 4 From equation (117), it follows

βt

∑
l∈L

λlt = δt − δt+1

Since λlt ≥ 0, for all l and t , we have
∑

l∈L λlt ≥ 0. Then, consider Equation (116):
λlt + μl

t = μl
t+1 	⇒ λlt = μl

t+1 − μl
t . By plugging in λlt , we have

βt

∑
l∈L

(μl
t+1 − μl

t ) = δt − δt+1

∑
l∈L

(μl
t+1 − μl

t ) = δt − δt+1

βt
≥ 0.

Proof of Theorem 5 From (120)–(122):

γGHt ≥ GHt+1 	⇒ γ σ · (N B − (1 + ρt−1)N EV
t−1)

+ ≥ σ · (N B − (1 + ρt )N EV
t )+

	⇒ γ (N B − (1 + ρt−1)N EV
t−1)

+

≥ (N B − (1 + ρt )N EV
t )+ (since σ > 0)

	⇒ γ (N B − (1 + ρt−1)N EV
t−1)

+

≥ (N B − (1 + ρt )[N EV
t−1 + I E

t−1])+.

Case 1: N B

1+ρt−1
≥ N EV

t−1 and
N B

1+ρt
≥ N EV

t

γ · [N B − (1 + ρt−1)N EV
t−1] ≥ N B − (1 + ρt )[N EV

t−1 + I E
t−1]

	⇒ γ N B − N B ≥ γ (1 + ρt−1)N EV
t−1 − (1 + ρt )[N EV

t−1 + I E
t−1]

	⇒ (γ − 1)N B ≥ (γ + γρt−1 − ρt − 1)N EV
t−1 − (1 + ρt )I E

t−1

≥ (γ + γρt − ρt − 1)N EV
t−1

− (1 + ρt )I E
t−1 (since ρt−1 ≥ ρt ).
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Then, we have

(1 + ρt )I E
t−1 ≥ (γ − 1)(1 + ρt )N EV

t−1 + (1 − γ )N B

I E
t−1 ≥ (γ − 1)N EV

t−1 + (1 − γ )

(1 + ρt )
N B (dividing both sides by (1 + ρt ) > 0)

I E
t−1 ≥ (1 − γ )

(1 + ρt )
N B − (1 − γ )N EV

t−1

I E
t−1 ≥ (1 − γ )

(
N B

1 + ρt
− N EV

t−1

)
.

By using the assumption N B

1+ρt−1
≥ N EV

t−1, we end up with

I E
t−1 ≥ (1 − γ )

(
N B

1 + ρt
− N B

1 + ρt−1

)

I E
t−1 ≥ N B · (1 − γ )

(
1

1 + ρt
− 1

1 + ρt−1

)

I E
t−1 ≥ N B · (1 − γ )

(
ρt−1 − ρt

(1 + ρt )(1 + ρt−1)

)
≥ 0.

Case 2: N B

1+ρt−1
< N EV

t−1 and
N B

1+ρt
≥ N EV

t

0 ≥ N B − (1 + ρt )[N EV
t−1 + I E

t−1]
(1 + ρt )[N EV

t−1 + I E
t−1] ≥ N B (dividing both sides by γ > 0)

I E
t−1 + N EV

t−1 ≥ N B

1 + ρt

N EV
t ≥ N B

1 + ρt

N EV
t = N B

1 + ρt

(
using assumption

N B

1 + ρt
≥ N EV

t

)

N EV
t − I E

t−1︸ ︷︷ ︸
N EV

t−1

= N B

1 + ρt
− I E

t−1 >
N B

1 + ρt−1

×
(
using assumption N EV

t−1 >
N B

1 + ρt−1

)
.

Therefore, we have

0 ≤ I E
t−1 < N B

[
ρt−1 − ρt

(1 + ρt )(1 + ρt−1)

]
.
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Case 3: N B

1+ρt−1
≥ N EV

t−1 and
N B

1+ρt
< N EV

t

γ · [N B − (1 + ρt−1)N EV
t−1] ≥ 0

[N B − (1 + ρt−1)N EV
t−1] ≥ 0

N B ≥ (1 + ρt−1)N EV
t−1

N B ≥ (1 + ρt−1)N EV
t−1 + (1 + ρt−1)I E

t−1 − (1 + ρt−1)I E
t−1

N B ≥ (1 + ρt−1) [N EV
t−1 + I E

t−1]︸ ︷︷ ︸
N EV

t

−(1 + ρt−1)I E
t−1

N B ≥ (1 + ρt−1)N EV
t − (1 + ρt−1)I E

t−1

N B

1 + ρt−1
≥ N EV

t − I E
t−1 (dividing both sides by (1 + ρt−1) > 0)

N B

1 + ρt−1
>

N B

1 + ρt
− I E

t−1

(
using assumption N EV

t >
N B

1 + ρt

)

I E
t−1 >

N B

1 + ρt
− N B

1 + ρt−1
≥ 0

I E
t−1 > N B ρt−1 − ρt

(1 + ρt )(1 + ρt−1)
≥ 0.

Case 4: N B

1+ρt−1
< N EV

t−1 and
N B

1+ρt
< N EV

t is trivial.
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