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Abstract
Spreading processes on networks (graphs) have become ubiquitous in modern society
with prominent examples such as infections, rumors, excitations, contaminations, or
disturbances. Finding the source of such processes based on observations is important
and difficult. We abstract the problem mathematically as an optimization problem on
graphs. For the deterministic setting wemake connections to the metric dimension of a
graph and introduce the concept of spread resolving sets. For the stochastic setting we
propose a new algorithm combining parameter estimation and experimental design.
We discuss well-posedness of the algorithm and show encouraging numerical results
on a benchmark library.

Keywords Source inversion · Graph theory · Linear regression · Metric dimension ·
Optimization · Optimal experimental design

1 Introduction

We consider abstract source detection problems for time-dependent data on graphs.
Given a graph consisting of nodes and weighted edges, random noise, and a mathe-
matical model for a spreading process on the nodes of the graph we want to determine
optimal strategies to query oracles (i.e., observing one or several nodes at a particular
time) and to use the available measurement information to infer the most probable
source of the spreading process. Depending on the setting, the subproblems may have
to be solved while the underlying process is ongoing. The first one can be interpreted
as an experimental design problem, focusing on the collection of information. The sec-
ond one is the source detection (or localization, inversion, identification, resolving)
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problem, exploiting the gained information to identify the source. While both prob-
lems are well understood in various circumstances, especially in Euclidean spaces, we
are not aware of a rigorous abstract treatment on graphs.

Most source detection problems on graphs have been tackled from a practical view-
point. In Chartrand and Zhang (2003) fire localization in buildings and the coast guard
LoRaN stations are investigated. Other applications are the classification of chemical
compounds (Chartrand et al. 2000; Chartrand and Zhang 2003) or the spread of infor-
mation or diseases (Tillquist et al. 2021). All this is related to the metric dimension of
a graph, which is an important concept for source detection on graphs.

Detecting the source of a pollution in water networks is a practically relevant task.
Much research in this area is focusedon the sensorics, i.e.,which chemical or biological
markers have to be tested to distinguish different kinds of pollution sources (Baker et al.
2003; Sidhu et al. 2013; Bernhard and Field 2000; Noblet et al. 2004). Additionally,
location dependent visualization and interpolation schemes are used (Costanzo et al.
2001). Some researchers also try to detect the source in space. In Laird et al. (2003)
mainly linear simplified models are used in an optimization framework. Here, flow
conditions are assumed to be known and then used to calculate time delays of pollution
concentration over the network. These delays are used in a quadratic optimization
problem to calculate pollution injection profiles over time for all nodes. A similar
flow model based approach to the offline problem can be found in Marlim and Kang
(2020). In Eliades and Polycarpou (2011) the online case is considered with the goal
to place a minimal number of sensors to identify the source. The spread of computer
viruses and fault propagation in information networks have beenmodeled as spreading
phenomenon on a graph as well, Shah and Zaman (2010); Coffman et al. (2002). In
Shah and Zaman (2010) a stochastic model is used to describe the infection between
nodes in the network. In Coffman et al. (2002) ordinary differential equations (ODEs)
are used. The spread of epidemics can be modeled as a phenomenon on a graph
(Newman 2002; Colizza and Vespignani 2007; Ganesh et al. 2005; Ball and Lyne
2002). The spreading can be described by a stochastic process or by deterministic
ODEs, allowing for analysis of, e.g., thresholds that decide if an epidemics dies out or
continues spreading, sizes of infected subpopulations, vaccination schemes to suppress
outbreaks, or speed of propagation. The source detection of epidemicswas investigated
using correlation (Brockmann and Helbing 2013), spectrality (Fioriti and Chinnici
2012), Bayesian (Altarelli et al. 2014) or centrality based estimators (Yu et al. 2022;
Luo et al. 2014; Comin and da Fontoura Costa 2011).

Similarly, objects that produce sound can be detected with distributed microphones
as a sensor network. Applications range from localizing the talker in a room for camera
pointing (Benesty 2000; Wang and Chu 1997; Brandstein 1997) to surveillance of
outside areas (like crossroads, valleys, or industrial facilities) and underwater areas
(sonar) (Krim andViberg 1996; Chen et al. 2002). Acousticwaves traveling through air
usually have a constant velocity. Like in our setting later, the time distance relationship
is linear. The least squares approach in Yao et al. (1998), which was also applied to
sonar, radar, or radio applications, is similar to our approach. The main difference is
the use of distances in the Euclidean space and the a priori knowledge of the velocity.
Seismic waves were considered in Singh et al. (2000); Kanamori and Rivera (2008),
focussing on partial differential equations describing the elastodynamics of the ground.
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The detection of objects in astronomical images is considered in Hopkins et al. (2002).
Examplary medical applications are neural source detection in the brain for epilepsy
research (Jatoi et al. 2014) and themapping and prediction of focal cardiac arrhythmias
(Weber et al. 2017).

Although all these applications address source detection, there are typically distinct
features and requirements. What exactly can be observed on the nodes of the graph?
Is there one unique source or are there multiple sources? Shall measurement errors
be taken into account? What are the assumptions on the spreading process? In the
following we make an effort to formalize one particular type of source detection
problem,motivatedmainly by investigations of electrocardiac conduction in the human
heart. As detailed in (Weber et al. 2017), source detection based on measurements on
the heart surface is routinely performed by clinicians. This application motivates the
choiceswe shall makewith respect to the particular problem class under consideration,
e.g., by only considering a single source and the signal timing due to the shortest path
between two nodes. However, we shall comment in several remarks where a further
generalization is possible and what theoretical and algorithmic implications would be.
Our motivation is to work in a general and abstract framework with clearly defined
assumptions that allow a closer investigation on the one hand, and allow a transfer to
source detection problems with slightly different assumptions on the other hand.

Methodological research for source detection problems with measurement errors
focuses on ill-posed linear problems (Malioutov et al. 2005) and parameter estimation
for source detection (Beck et al. 2008). The problem of choosing graph oracle queries
is an experimental design problem. Designing an experiment to optimize an infor-
mation criteria is called optimal experimental design (Fedorov 2010; Kiefer 1959).
Different objective functions have been suggested and analyzed. A very early idea was
to minimize the variance of the model prediction (Smith 1918). This is now referred
to as G-optimal and is equivalent to the so called D-optimal criterion (Kiefer and
Wolfowitz 1959). The D-optimal criterion (Wald 1943) maximizes the determinant
of the Fisher information matrix. Another criterion is to minimize the variance of the
parameter estimators of the model (Elfving 1952), referred to as A-optimality.

Our focus here is different, as we assume an underlying discrete structure, the
special metric space of graphs. For the deterministic setting without measurement
errors, the experimental design problem on graphs can be formulated as the problem
of determining a metric basis of a graph, i.e., a minimal cardinality set of nodes
that allows a unique identification of all possible sources. It is proven in Khuller
et al. (1996a) by a reduction from 3-SAT that the associated decision version of the
metric dimension problem is NP-complete. The metric dimension is the cardinality of
a metric basis. In Chapter 3 of Tillquist et al. (2021) a simple brute force algorithm
is presented, which calculates the metric dimension of a graph in exponential time.
To find a metric basis one can enumerate all possible vertex sets from small to large
cardinality until a basis is found. In Hauptmann et al. (2012) an (1+(1+o(1)) log(n))-
approximation algorithms is givenwhich runs inO(n3), with n = card(V ). Themetric
dimension can not be approximated within o(log(n)) (Hartung and Nichterlein 2013).
For unweighted graphs fixed parameter tractability with special parameters has been
proven in Belmonte et al. (2015) and Eppstein (2015). In both articles algorithms are
developed, which compute the metric dimension. In Belmonte et al. (2015) the authors
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design an algorithmwhich decides if the metric dimension of a graph is lesser or equal
to k for a given k ∈ N. They have proven that the problem is fixed parameter tractable
with the parameter � + tl, where � is the max-degree and tl is the tree-length of
the graph. In Eppstein (2015) the metric dimension problem is proven to be fixed
parameter tractable with the max leaf number of the graph as the parameter.

Related to the metric dimension is finding a minimal doubly resolving set. Doubly
resolving sets, introduced by Cáceres et al. (2007a), calculate with an unknown start
time of the signal. So, two vertices v �= w are doubly resolved by x and y iff d(v, x)−
d(v, y) �= d(w, x)−d(w, y). This is equivalent to: �t such that d(v, x) = t+d(w, x)
and d(v, y) = t + d(w, y) holds. In Kratica et al. (2009) it is proven that deciding
if there exists a doubly resolving set of size k is NP-complete. Adding a constant
velocity of the signal as another unknown to the signal spreading process results in the
spread dimension problem we shall introduce in this paper, which to our knowledge
was never considered before. We do not propose an algorithm to calculate a metric
or a spread basis exactly in this paper, although this is an open and interesting field
of research. Instead, we use the formalization of the problem class to get a general
understanding of the source detection problem in a stochastic setting. For this case
involving measurement errors, we shall propose a new algorithm.

The main contributions of this paper are a unifying problem definition for a wide
range of applications, including problems with weighted and/or directed graphs, lim-
ited and deterministic/stochastic spreading information, online/offline settings, and
linear dynamics. An algorithm is proposed for the stochastic setting. We discuss con-
vergence and show practical performance and robustness over a wide range of test
problems with different properties.

The paper is organized as follows. In Sect. 2 we provide basic definitions and for-
malize the source detection problem we are interested in. We also provide a simple
example graph that will be used throughout the paper for an illustration of concepts.
In Sect. 3 we consider the special deterministic case in which the oracle provides exact
measurements. We generalize the metric dimension by introducing the spread dimen-
sion of a graph as a tool to solve the deterministic case. In Sect. 4 we discuss the
stochastic problem. Based on linear regression and experimental design we present a
solution algorithm and discuss its convergence properties in the limit. In Sect. 5 we
present numerical results. In Sect. 6 we summarize our findings.

2 Source detection problem

We begin with a definition of the considered problem class. First, we define the
underlying discrete structure.

Definition 1 (Graph) We consider a directed weighted graph G = (V , E) with posi-
tive edge lengths �(e) > 0 for all e ∈ E and shortest-path-distances di, j with respect to
the length function � between nodes i and j for all i, j ∈ V . Let n := #V := card(V )

and #E := card(E).

Assumption 1 (Graph) We assume to have complete knowledge of the graph G and
the length function �, and hence also of the distance function d.
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In practical applications, the nodes i ∈ V correspond to spatial locations where
measurements are possible. Examples are communities, airports, cities, or countries
for infectious diseases, points on a 3d surface grid of the human heart, or sensors in
water distribution networks. The edges correspond to connections between the nodes,
along which “something may be passed on”. This might, e.g., be a viral load via
infections, electrical excitation of cells, or transported and diffused pollutant. In the
interest of a simplification, and taking the risk that this term does not intuitively match
every application, we will simply use the term signal to denote this in a general way
in the following. We consider a dynamic process on a time horizon T := [ts, t f ] that
originates from an a priori unknown source s ∈ V and spreads the signal via edges to
other nodes of the graph.

Definition 2 (Signal spreading process) A signal spreading process is a map t :
V × V �→ T that assigns signal arrival times ti (s) to all nodes i ∈ V for all possible
source nodes s ∈ V .

We are not interested here in the strength of the signal, which may be relevant for
certain applications.Also the definition implies that only the timingof thefirst arrival of
the signal is relevant, and not the arrival time via alternative paths. In electrophysiology,
cardiac cells lose temporarily the ability to conduct electrical excitation after passingon
the signal. Also in other contexts, such as the spreading of an epidemics, it becomes
difficult to differentiate where new cases come from. It is an interesting question
though, how for other applications the additional information via alternative paths can
be used. Note that the times ts and t f are often unknown. The initial time ts , also called
offset and indicating when the signal started at source node s, needs to be estimated.
The end time t f is not relevant for the mathematical model. The edge lengths �(e)
quantify the distances the signal needs to travel to arrive at adjacent nodes. We make
some assumptions for the following.

Assumption 2 (Signal spreading process) We assume that

(1) The source s ∈ V is unique.
(2) Signal spreading takes place in a diffusive way, i.e., a signal is passed on from a

node i to all nodes j that are adjacent to i .
(3) We assume a constant and homogeneous spreading velocity 1/c > 0. Hence, for

a given source node s and known distance ds,i we have

ti := ts + c · ds,i
as the arrival time at node i ∈ V .

Adapting the concepts investigated in this paper to scenarios with multiple sources
seems to be interesting and can be done in rather straightforward ways. Here, one
may consider different variants, e.g., intended to model applications in which at each
node one may request the arrival times of all signals or only the earliest arrival time
of any signal. With applications in electrophysiological or epidemic source detection
problems in mind, we focus on single source problems, though. While the second
assumption is rather technical, the third assumption is an important restriction of the
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problem class to a linear model. We note that some applications might need less
restrictive assumptions. For example, infections or electric conduction on the heart
surface do not have a constant velocity in reality. However, we imagine that the velocity
being an average velocity on the corresponding shortest paths helps to mitigate the
negative effects of approximating the process with a linear one. We now look at the
available measurement procedure, abstracted as a data oracle. An oracle allows to
query nodes i ∈ V and obtain measurement data ri . The ri indicate noise-corrupted
times when the signal arrived at node i .

Definition 3 (Data oracle) A data oracle is a map r : V �→ T providing values
ri ∈ T for each i ∈ V .

This assumption states that it is possible to obtain measurements from any node.
Usually, there will be costs associated to querying the oracle. It is the explicit goal of
our approach to minimize the number of queries to the oracle.

Assumption 3 (Data oracle output) We assume

ri = ti + εi = ts + c · ds,i + εi

with a random variable εi ∈ R as measurement error for each i ∈ V and for given
s ∈ V , c > 0 and ts ∈ R. We call the special case of εi = 0 ∀ i ∈ V the deterministic
and the general case the stochastic version, assuming to know the distributions of the
εi for all i ∈ V .

Assumption 4 (Data oracle) We assume that we query the oracle after all relevant
times ti , i.e., data ri is available at the time of oracle query. In particular, we do not
have the possibility to change the process.

Definition 4 (Source detection problem) We consider a graph, a signal spreading pro-
cess, and an oracle as specified in Definitions 1, 2, 3 and the above assumptions. We
denote the task to minimize the number of oracle queries to determine the source
node s ∈ V (possibly up to a tolerance with respect to graph distance) as the source
detection problem.

The queries of the oracle provide (noisy) arrival times ri , which can be used to
infer the unknown offset ts , the velocity 1/c, and the source s ∈ V . In this paper, we
consider the following general approach to source detection.

Definition 5 (Source detection) The general source detection approach is: Repeat
i = 1 . . . imax rounds of

(S1) Choosing ki nodes Si = {i1, . . . , iki } ⊆ V ,
(S2) Querying the oracle to obtain rSi ∈ R

ki , and
(S3) Estimating a current best guess for the source j∗ ∈ V

If j∗ = s holds, then we call the approach successful. The source detection problem is
to find a successful approach with a minimal number N = ∑imax

i=1 ki of oracle queries.
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The special case of imax = 1 is called the offline version of the problem. It corre-
sponds to a situation where it is not possible to do calculations between queries to the
oracle. The online version for imax ≥ 2 is not to be confused with more general con-
cepts in online optimization, such as model predictive or dual control. Assumption 4
relates to the properties of the source detection problem and states that our approach
starts after the end of the spreading process at time t f . Note that some processes such
as cardiac excitations have a repetitive nature and a fast timescale, compare (Weber
et al. 2017). Thus, the results of the considered problem class may find application
not only in a posteriori analysis, but also in ongoing processes.

The oracle queries in (S2) Can be practically difficult and/or expensive, giving
rise to our approach to minimize their overall number. Thus, all nodes chosen in
(S1) Have to provide as much information as possible. The problem to identify the
corresponding nodes can be seen as an optimal experimental design problem on a
graph. The estimation or source inversion problem in (S3) Can be approached based
on regression. Note that the main assumption for this model is a spreading of arrival
times from the source s to all other vertices via shortest paths at a constant velocity
1/c > 0. We also assumed that the answer of the oracle does not depend on the
round in which it is queried. According to the classification in Jiang et al. (2014), the
above setting corresponds to sensor observations in contrast to the the snapshot or
full information cases.

In the interest of simplicity and if not stated otherwise, we will use notation, def-
initions, and assumptions from this section, without explicit reference. We shall use
the following example for illustration throughout this paper.

Example 1 (Graph) The graph G = (V , E) has nodes

V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

and weights �(e) = 1 for all undirected edges e in

E = {{0, 5},{0, 6},{0, 7},{0, 8},{0, 9},{1, 2},{1, 4},{1, 5},
{2, 4},{2, 5},{3, 5},{4, 5},{5, 6},{6, 7},{6, 8},{6, 9}}.

The main contribution of this paper is the formulation of an Algorithm specifying
the pseude code ofDefinition 5 and the analysis of its performance on a newbenchmark
library of stochastic source detection problems. Before we get there, we need a better
understanding of such problems without measurement errors.

3 Deterministic case

In this section we discuss the deterministic offline version of the source detection
problem, i.e., imax = 1 and εi = 0 ∀ i ∈ V . This problem class deserves special
attention, because it is interesting in its own right, it is the idealized limit case of
stochastic online versions, and because algorithmic ideas can be iteratively used in
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more complex settings. Note that it is purely combinatorial, asking for subsets of V
for which the oracle answer allows to infer (or resolve) the source.

Of practical relevance is the possibility to verify a source via querying the oracle.
Under the assumptions above one possibility is a local enumeration.

Definition 6 (Source certificate) A node s ∈ V is the source of the spreading process
if and only if ts is finite and ts < t j for all nodes j with (v j , vs) ∈ E .

We start by considering the special case with ts = 0 and c = 1, where the oracle
returns ri = ds,i for i ∈ V . To solve the source detection problem we need to choose
a minimal cardinality subset of V in S1) for which we question the oracle in S2).
The answer shall enable us to calculate the source in S3) no matter which vertex in V
actually is the source. This concept is known in graph theory as the metric dimension
of a graph (Chartrand and Zhang 2003; Chartrand et al. 2000; Melter and Tomescu
1984; Tillquist et al. 2021) and depends on the basis of a graph. Classically, the metric
dimension of a graph is defined for unweighted graphs, i.e., �(e) = 1 ∀ e ∈ E . We
generalize this to weighted graphs (V , E) with weights �(e) > 0 for e ∈ E .

Definition 7 (B-metric equivalence) Given a subset B ⊆ V , two nodes i, j ∈ V are
B-metric equivalent if di,k = d j,k ∀ k ∈ B.

Definition 8 (Metric-resolving set) A set B ⊆ V is metric resolving, if i, j ∈ V are
B-metric equivalent if and only if i = j .

Thus, B is metric-resolving if it uniquely defines all v ∈ V by their shortest path
distances to the elements of B.

Definition 9 (Metric basis) A (metric) basis B is a metric-resolving set with minimal
cardinality.

Definition 10 (Metric dimension) Given a weighted graph G = (V , E), the metric
dimension is the cardinality of one of its metric bases.

There are different ways to check if a set B is metric-resolving. Equivalently to
Definition 8, one can check if either

∑
k∈B |d j,k − di,k | = 0 or (anticipating the

stochastic regression case) if
∑

k∈B(d j,k −di,k)2 = 0 for all pairs of nodes i < j ∈ V .
If the value is strictly positive for (theminimumof) all pairs, then B ismetric-resolving.

Example 2 The graph from Example 1 has metric dimension 5 and one metric basis is
B := {1, 2, 6, 7, 9}. Figure2 shows that B is a resolving set, as there are no zeros on
the off-diagonal. One can show (e.g., by enumeration) that no basis with fewer nodes
exists.

If a basis has been found in S1), e.g., by running one of the algorithmswith exponen-
tial runtime complexity mentioned in the introduction, and the oracle queries returned
rk for all k ∈ B in S2), the source s ∈ V can be uniquely determined in S3) by
calculating di,k for all i ∈ V and k ∈ B and comparing it to rk = ds,k .

Example 3 Assume that for the basis B fromExample 2 the oracle returns r{1,2,6,7,9} =
(3, 3, 1, 2, 2). Comparison with the full distance table on the right hand side of Fig. 1
reveals the source node s = 8.
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Fig. 1 Left: visualization of the example graph. Right: symmetric matrix with shortest path distances di, j

Fig. 2 Left: the graph from Example 1 with the basis in gray. Right: symmetric matrix with entries∑
k∈B (d j,k − di,k )

2 for the metric basis from Example 2

Weare interested in a generalizationof this concept to arbitrary and apriori unknown
velocity 1/c > 0 and offset ts ∈ R. Again, we want to be able to uniquely determine
the source, now for arbitrary c > 0, ts , and s ∈ V . While the concepts of a metric
basis and of doubly resolving sets (Cáceres et al. 2007b; Kratica et al. 2009) can be
found in the literature, the spread basis is a novel concept.

Definition 11 (B-spread equivalence) For B ⊆ V , two nodes i, j ∈ V are B-spread
equivalent if

∃ti , t j ∈ R, ci , c j > 0 : ti + cidi,k = t j + c j d j,k k ∈ B.

Note that with the choice of t = (t j − ti )/ci and c = c j/ci this is equivalent to

∃t ∈ R, c > 0 : di,k = t + c d j,k ∀ k ∈ B.

Definition 12 (Spread-resolving set) A set B ⊆ V is spread-resolving, if i, j ∈ V are
B-spread equivalent if and only if i = j .
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Definition 13 (Spread Basis) A spread basis B is a spread-resolving set with minimal
cardinality.

Definition 14 (Spread dimension) Given a weighted graph G = (V , E), the spread
dimension is the cardinality of one of its spread bases.

Although the interpretation of a velocity 1/c is not well posed for c = 0, we will
require c ≥ 0 instead of c > 0 in the following minimization problems to avoid open
sets. To find a spread basis we consider the objective function

J j (t, c, rS) =
∑

k∈S
(t + c d j,k − rk)

2. (1)

Minimizing this objective with rk = di,k and constraint c ≥ 0 results in an optimal
objective value φi, j (S) depending on i , j , and S. As above, an equivalent criterion to
check if a set S ⊂ V is spread-resolving is to check if

φ∗(S) = min
i, j �=i∈V φi, j (S) = min

i, j �=i∈V min
t,c≥0

J j (t, c, di,S) (2)

is strictly positive, compare Example 4. Note that the inner minimization of (2)
provides the values for t and c.

Proposition 1 (Sign symmetric objective) For any subset S of V the objective values
φi, j (S) are sign symmetric, i.e., for i, j ∈ V we have

φi, j (S) = 0 ⇐⇒ φ j,i (S) = 0

φi, j (S) > 0 ⇐⇒ φ j,i (S) > 0.
(3)

Proof For φi, j (S) = 0 with c > 0 and ts we have by equations (1) and (2):

c d j,k + ts = di,k ∀ k ∈ S.

Reformulating this results in

1/c di,k − ts/c = d j,k ∀ k ∈ S

with new slope 1/c > 0 and offset −ts/c. Then by equations (1) and (2) again we
have φ j,i (S) = 0. The second part follows from the first due to φ j,i (S) ≥ 0. ��
Example 4 For the graph from Example 1 the metric basis B = {1, 2, 6, 7, 9} is not
spread-resolving. E.g., for ts = c = 1 we have d8,k = ts + d6k . The graph has spread
dimension 7 and Bsp := {1, 2, 3, 6, 7, 8, 9} ia a spread basis.

Figure3 shows that Bsp is spread-resolving, as only diagonal values are zero, and
that B is not spread-resolving, as φ6,8(B) = φ8,6(B) = 0.

Our considerations suggest a (not necessarily efficient) approach to find a spread
basis. In (2), one can detect infeasibility or solve the inner minimization problem
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Fig. 3 Top: matrix with
objective values φi, j (B

sp) for
the spread-basis from
Example 4. Bottom: matrix with
objective values φi, j (B) for the
metric basis from Example 2.
Both are not symmetric, as φi, j
can differ from φ j,i

analytically and enumerate the outerminimization problemover all (modulo symmetry
because of Proposition 1) pairs of nodes and all subsets S of V . Checking if φ∗(S) > 0
allows to find a spread-resolving set S of minimal cardinality, similar to the metric
case. Efficient algorithms to determine the spread basis are interesting, but beyond the
scope of this paper.

To close the section, we collect some results on bounds for the spread dimension.
We are interested in behavior for large n = #V , hence we assume n ≥ 4 to avoid the
discussion of special cases for the following results. If all edges have equal length,
a trivial upper bound on the spread dimension is n − 1. This bound is active for the
special case of complete graphs.

Proposition 2 (Dimension of complete graphs) Let G be a complete graph with equal
weight � > 0 on all edges. Then the spread dimension of G is n − 1.

Proof We have rs = ts and the same oracle answer ri = ts + c� > ts for all i ∈ V \{s}
and for all choices ts and c > 0. Hence, the source s can only be identified if either
s ∈ B, or if s is the only node in V \B. As the spread basis needs to identify all possible
s, we have necessarily card(B) = n − 1. ��

If the edge weights are not identical, we may even need all n nodes in the spread
basis. Thus, complete graphs are the worst case in terms of an upper bound for the
spread dimension. However, also other topologies, such as star graphs, may have large
spread dimensions.

By definition, the metric dimension is a lower bound for the spread dimension.
Furthermore, we have the following lower bound for all graphs.
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Proposition 3 (Lower bound for dimension) Let G be a graph as in Definition 1 with
n ≥ 4. Then the spread dimension of G is at least 3.

Proof Assume a spread basis B = {i, j} of cardinality two. Choose v,w ∈ V \B with
v �= w.

If dv,i = dv, j and dw,i = dw, j hold then with

c := dv,i

dw,i
= dv, j

dw, j

we obtain dv,i = cdw,i and dv, j = cdw, j , contradicting B being spread-resolving.
Let hence w.l.o.g. v ∈ V \B be such that dv,i > dv, j . Now we can choose ts =

−dv, j c and c = d j,i
dv,i−dv, j

> 0 and obtain for v, j ∈ V

d j,k = dv,kc + ts = (dv,k − dv, j )
d j,i

dv,i − dv, j
∀ k ∈ B,

contradicting Definition 12 of a spread-resolving set. ��
Again, there are graphs for which this bound is sharp, independent of n.

Proposition 4 (Lower bound 3 is active) Let V = {1, . . . , n} and E =
{{1, 2}, {2, 3}, . . . , {n − 1, n}} for n ≥ 4. The chain graph has spread dimension
3 and B = {1, 2, n} is a basis.

Proof Let B = {1, 2, n}. First we note that the distance between two nodes i, j ∈ V
is di, j = |i − j |.

Let w.l.o.g. a < b ∈ V and � = b − a > 0. We consider the three equations

da,k = ts + c db,k ∀ k ∈ B

from Definition 11 and show that no ts, c > 0 exist which satisfy all of them.
Ifa > 1,wehave the distances ofa to the basis asda,1 = a−1, da,2 = a−2, da,n =

n − a and distances of b accordingly db,1 = a − 1 + �, db,2 = a − 2 + �, db,n =
n − a − �. While the first two equations result in ts = −� and c = 1, the equation
for k = n is incorrect with these values.

If a = 1, we have distances 0, 1, n − 1 and b − 1, b − 2, n − b, respectively. Here
the first two equations result in ts = b − 1 and c = −1, but negative c values are not
permitted.

Thus, B is a spread-resolving set. With Proposition 3, it is also a spread basis. ��
Propositions 3 and 4 are no deep results, but illustrate that there is not necessarily

a connection between the number of nodes n and the spread dimension. This should
be considered when the numerical results in Sect. 5 are analyzed.

Summarizing, the spread dimension can be anything between 3 and n for graphs
with n nodes. The examples of chain and star graphs show that it is not the absolute
number of edges, but rather the graph topology that impacts the spread dimension.
Tailored results for specific graph topologies are interesting, but beyond the scope of
this paper.
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4 Stochastic case

In this section we consider the more general case with randommeasurement errors εk .
Themeasurements rk become randomvariables, and thus also the estimated parameters
ts , c, and s ∈ V . For large variances, it may be necessary to measure multiple times
at a particular node. We start by updating some definitions.

Definition 15 (Stochastic source certificate) We call a node s the probable source of
the spreading process, if ts is finite and passes a given statistical test for the hypothesis
ts < t j for all nodes j ∈ V with an edge (v j , s) ∈ E .

This definition does not help directly to identify a probable source s, as we would
have to query the whole graph (possibly multiple times if the measurement errors are
large) to check it for all possible nodes j ∈ V . Therefore we look at the quality to
explain the queried data from spread resolving tests. In the following, we assume nor-
mally distributed, independent measurement errors εk ∼ N (0, σ 2), althoughwe keep
definitions general to facilitate a transfer to different error models. Here, we compare
objective function values of linear regressions, similar to the deterministic case. We
start by looking at the source inversion (resolving) problem S3) from Definition 5.

Definition 16 (Source estimator) Given a multiset (nodes can be queried multiple
times) of nodes Ŝ and the corresponding oracle answers rŜ , we define the source
estimator similar to (1) as

j∗ := argmin
j∈V J ∗

j,Ŝ
:= argmin

j∈V min
ts ,c≥0

J j,Ŝ(ts, c) (4)

:= argmin
j∈V min

ts ,c≥0

∑

k∈Ŝ
(c d j,k + ts − rk)

2 (5)

as the most likely source for Ŝ in a least squares sense (omitting σ ).

For fixed source estimate j ∈ V , the solution of the linear regression problem can
be derived analytically [Bingham and Fry (2010), pages 4–5 for the unconstrained
solution] as

c( j, Ŝ) = max

(

0,

∑
i∈Ŝ(ri − r̄)(d j,i − d̄( j))
∑

i∈Ŝ(d j,i − d̄( j))2

)

, (6)

ts( j, Ŝ) = r̄ − c( j, Ŝ) d̄( j) (7)

with r̄ = mean(rŜ) and d̄( j) = mean(d j,Ŝ). This allows to evalute J ∗
j,Ŝ

for all j ∈ V

and derive an estimate j∗ via enumeration, similar to the deterministic case. If the
source can be resolved with a certain probability depends obviously on the choice of
the multiset Ŝ. The estimated parameters in (6–7) are dependent on which node j is
currently assumed the best one, hence the dependency on j . But as a solution of (6),
the velocity is related to the shortest path and hence to edges, not to a node.

We define a heuristic stopping criterium based on objective function values of linear
regressions as follows.

123



T. Weber et al.

Definition 17 (Stochastic spread-resolving set) Given a source estimate j∗ ∈ V , a
multiset Ŝ, a radius γ > 0, and values J ∗

j,Ŝ
∀ j ∈ V , we define the neighborhood

B j∗
γ = {i ∈ V : d j∗,i ≤ γ } (8)

and the value

�J ( j∗, Ŝ) :=
(
min

j∈V \B j∗
γ

J ∗
j,Ŝ

)
− J ∗

j∗,Ŝ
J ∗
j∗,Ŝ

(9)

and call the multiset Ŝ stochastically spread-resolving (SSR), if a statistical test for
�J ( j∗, Ŝ) is successful.

In our examples and benchmark results we use, for given a, b ∈ R+ and α ∈ (0, 1),
an F-Test, which is successful if

�J ( j∗, Ŝ)
b

a
≥ F−1

a,b (α). (10)

Example 5 (Stochastic source inversion) We consider our example graph with oracle
queries at Ŝ = {1, 4, 6, 7, 9} resulting in

rŜ = (1.44327, 0.31493, 3.43784, 5.48041, 4.77700).

We can calculate best fit regression lines for all ten nodes:

Node c ts Objective value

0, 6, 7, 8, 9 1e − 10 3.09069 19.09375
1 1.49215 0.40482 3.95344
2 2.12480 −1.15892 1.03461
3 3.39669 −5.06137 5.24874
4 1.65808 0.10614 0.39891
5 3.39669 −1.66468 5.24874

The smallest objective value is obtained for node 4. However, Ŝ does not spread-
resolve nodes 3 and 5 (e.g., for ts = c = 1 we have d3,k = ts + cd5,k), resulting in
not distinguishable optimal solutions (objective, c) with different ts . For a = b = 1,
α = 0.05 and the ball B2

1.5 = {1, 2, 4} the F-test fails with 12.158 and a cutoff value
of 161.45. Thus Ŝ is not SSR, and 4 is not a probable source, which is accurate as rB
was simulated for s = 2, c = 2, ts = −1, and a standard deviation of 1.

It remains the question how to obtain a SSRmultiset Ŝ. For this experimental design
problem S1) in Definition 5 we use A-optimality, i.e., we choose oracle queries that
minimize the following function.

Definition 18 (Set Variance) For a given multiset Ŝ, variances σ j , and λ ∈ [0, 1] we
define the set variance
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(Ŝ) :=
∑

j∈V
λ
Var[c( j, Ŝ)]

σ 2
j

+ (1 − λ)
Var[ts( j, Ŝ)]

σ 2
j

, (11)

using the variances of the parameter estimates (6–7) according to [Weisberg
(2005),Sect. 2.4]

Var[c( j, Ŝ)] = σ 2

∑
i∈Ŝ(d j,i − d̄( j))2

, Var[ts( j, Ŝ)] = σ 2 ∑
i∈Ŝ d2j,i

|Ŝ| ∑i∈V̂ (d j,i − d̄( j))2
,

with an unknown, but fixed σ 2.

As we are using a multiset Ŝ, the cardinality of Ŝ is not bounded and it makes sense
to consider the limit behavior when nodes are queried more and more often. In the
interest of convergence, we restrict the multiplicities of the multiset Ŝ. The number of
queries per node must not differ by more than 1. This avoids that specific nodes are
queried significantly more often than others.

Definition 19 (Feasible Oracle Queries) Let V be given. A multiset Ŝ of V is called
feasible, if the multiplicities of all i ∈ V within Ŝ do not differ by more than 1. We
denote by V Ŝ the subset of V containing all nodes that can be added to a feasible Ŝ
and maintain feasibility.

We can now formulate a source detection algorithm realizing Definition 5.

Algorithm 1 Stochastic Source Detection
Input: Graph (V , E) with shortest distances d, oracle V , parameters a, b, α, λ, variance weights σ j
Output: Probable source j∗, stochastic spread-resolving set Ŝ
1: i1, i2 ← arg min

i1 �=i2∈V

({i1, i2}) � See Def. 18

2: Ŝ ← {i1, i2} � Initialize set Ŝ
3: for i in 3 . . . imax do
4: rŜ ← V (Ŝ) � Update oracle V query
5: Calculate c( j, Ŝ), ts ( j, Ŝ) ∀ j ∈ V � See (6-7)
6: Calculate objectives J∗

j ,Ŝ
and j∗ � See (4-5)

7: Calculate γ =
J∗
j∗,Ŝ

(|Ŝ|−2)c( j∗,Ŝ)
� For SSR test

8: if Ŝ is SSR then � See (8-10)
9: break
10: i+ ← arg min

j∈V Ŝ

(Ŝ ∪ { j}) � See Defs. (18-19)

11: Ŝ ← Ŝ ∪ {i+} � Add node to Ŝ

The goal ofAlgorithm1 is to find a probable source j∗ with a small number of oracle
queries, assuming considerable practical costs (e.g., increased risk of side effects for
intracardiacmeasurements). Concerning the computational complexity per iteration of
Algorithm1, themain calculations happen inLines 5, 6, and 10. The inner optimization
problems can be solved analytically, compare (6–7), with an effort proportional to |V |.
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This is similar to calculating the set variance in (11). The overall effort to evaluate
all objective functions J ∗

j,Ŝ
and minimizing over V \ B j∗

γ in Line 8 and over V Ŝ in

Line 10 is then propotional to |V |2, where clever look-up tables can be applied to
increase performance. Note that the distance resolution in Line 7 is calculated by
dividing the estimated standard deviation by the estimated slope c( j∗, Ŝ).

Given the general applicability of Algorithm 1 and the stochasticity of the task,
we can not expect that the algorithm has a deterministic bound on the number of
necessary iterations. Yet, we can expect that for Ŝ large enough, the correct source
j∗ = s will be identified in Line 6 of Algorithm 1. To see this, let c∗ and t∗s denote
the unknown values for velocity and offset of the spreading process. Observe that for
increasing cardinality of Ŝ and with Definition 19 we have the standard setting of a
linear least squares problem with convergence of (c(s, Ŝ), ts(s, Ŝ)) �→ (c∗, t∗s ). Thus,
the objective function value

J ∗
s,Ŝ

= min
ts ,c≥0

∑

k∈Ŝ

(
c ds,k + ts − rk

)2

=
∑

k∈Ŝ

(
c(s, Ŝ) ds,k + ts(s, Ŝ) − (ds,kc

∗ + t∗s + εk)
)2

=
∑

k∈Ŝ

(
(c(s, Ŝ) − c∗) ds,k + (ts(s, Ŝ) − t∗s ) − εk

)2

can be expected to depend in the limit of more and more queries according to Defini-
tion 19 only on the measurement errors εk and will be chosen with probability 1 for
some imax large enough, if we remove the heuristic stopping criterion in Lines 8–9
in Algorithm 1. A more detailed study of the mean and variance of J ∗

j,Ŝ
− J ∗

s,Ŝ
for

j ∈ V \{s} can be performed individually for different statistical assumptions on εk ,
which is beyond the scope of this paper.

This short analysis shows why the stochastic source inversion problem is challeng-
ing. For small cardinalities of Ŝ, but also for non-balanced distributions of queries
over the nodes of Ŝ, the noise in εk and possible cancellation effects in the terms

c( j, Ŝ) d j,k − c∗ ds,k + (ts( j, Ŝ) − t∗s ) − εk

may lead to values J ∗
j,Ŝ

< J ∗
s,Ŝ

for j ∈ V \{s}. The stopping criteriumandDefinition 19
provide hyperparameters that can and have to be specified for particular applications.

5 Numerical results

5.1 Implementation

We have implemented Algorithm 1 in octave 5.2.0 Eaton et al. (2020). The code
is available with a permissive license on the website https://github.com/TobiasWeber/
IMLR.
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The implementation is a set of octave functions and scripts meant to work in
any octave installation with the statistics package. For Algorithm 1 only
core octave was used. Data structures for graph representation were taken from the
octave network toolbox (Bounova 2016), where also simple graph information and
manipulation algorithms can be found. However, the algorihm works standalone as
we implemented a different shortest path algorithm for efficiency reasons. It is closely
related to the fast matrix multiplication shortest path algorithms and more suited to
the octave programming language than the Dijkstra algorithm in the toolbox. For
the numerical random scenarios and errors we used the statistics package of octave.

Remark 1 (Treating infinities) There are two different sources of infinite values. For
directed graphs that are not strongly connected or graphs that are not connected, some
pairs of nodes might have no shortest path between them, or just in one direction.
The infinity pattern can be exploited to find the source by a clustering into connected
subgraphs. These subgraphs can be used in step S3), and determined in an extra run of
S1) by replacing infinity by 1 and finite values by 0.Also the variancesVar[c( j, Ŝ)] and
Var[ts( j, Ŝ)] in Def. 18 may be infinite. As we are minimizing, this is not a problem
though, if implemented carefully. If all variances in V Ŝ are infinite, we “minimize” by
counting the non finite values in the sum over the variances and choose the “solution”
with the least infinities (or NaNs).

In the following and if not stated otherwise, we use hyperparameters α = 0.05, a = 1,
and b = |Ŝ|−4 (see Def. 17) and λ = 0 and σ j = 1+ J ∗

j,Ŝ
(see Def. 18). Here, the σ j

were chosen to have larger weight on nodes with a smaller objective function value.

5.2 Illustration on example graph

We use our example graph with the same spreading process as in Example 5 (s =
2, c = 2, ts = −1) to illustrate the behavior of Algorithm 1. The output for an
instance with “average” behavior in terms of iteration count is as follows.

Iter i+ j∗ c( j∗, Ŝ) ts ( j∗, Ŝ)
J∗
j∗,Ŝ
|Ŝ| min

j∈V \B j∗
γ

J∗
j,Ŝ

|Ŝ| α∗

1, 2 0, 5 5 3.34 −0.38 0.00 0.00 1.0000
3 1 2 3.79 −4.62 0.14 0.14 1.0000
4 7 1 2.09 −1.67 0.25 0.32 1.0000
5 2 4 2.97 −3.89 0.37 0.55 0.6137
6 4 2 2.25 −2.19 0.52 0.72 0.4716
7 8 2 2.44 −2.34 0.53 0.72 0.3800
8 3 2 2.48 −2.30 0.53 0.70 0.3255
9 9 2 2.71 −2.52 0.74 0.90 0.3434
10 6 2 2.72 −2.48 0.70 0.85 0.3054
11 2 2 2.56 −2.10 0.73 0.95 0.1905
12 1 2 2.60 −2.24 0.72 1.21 0.0494
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Fig. 4 Convergence of confidence values α∗

Fig. 5 Regression after iteration 12 at the true (and estimated) source node s. Despite significant outliers,
the estimated spreading approximates the true spreading quite well

The initialization in Line 1 results in {i1, i2} = {0, 5}. Until iteration 10 all nodes
are selected once. In iterations 11 and 12 a second query at nodes 2 and 1 results in
objective function values that are far enough apart such that the heuristic termination
criterion (10) is fulfilled. In this instance the feasibility requirement in Def. 19 leads
to oracle queries that might not be necessary.

The last column depicts the converging α∗ value, obtained by evaluating (10) (stop-
ping criterion is that α∗ is below 0.05), also shown in Fig. 4. The parameters c( j∗, Ŝ)

and ts( j∗, Ŝ) converge slowly towards the real values and are still inaccurate at ter-
mination. The resulting regression line is a good fit for the measurements, though,
compare Fig. 5.

In summary, the strict termination criterion and feasibility requirement for oracle
queries seem to be robust and avoid early termination, even when by chance a good
fit is achieved as in the iterations 2 and 3.

5.3 Problem instances

We used graph instances that we collected in three sets.
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5.3.1 Col

The first set is an operations research library (Beasley 1990) with 30 instances from
Fleurent and Ferland (1996) and 79 DIMACS graph coloring instances (Johnson and
Trick 1996) from different sources, e.g., (Johnson et al. 1991; Leighton 1979).

5.3.2 Misc

The second set comprises miscellaneous instances. It contains three simple water
network instances from the epanet software for modeling of water networks (Ross-
man 2000), eight train networks from the lintim software (Albert et al. 2020), five
instances from Mark Newman’s webpage [62] (original sources (Watts and Strogatz
1998; Lusseau et al. 2003; Zachary 1977; Knuth 1993)), seven instances from the
Weizmann laboratory collection of complex networks 2, (Mangan and Alon 2003;
Milo et al. 2002, 2004), and 41 instances from the Pajek dataset (Batagelj and Mrvar
2006).

5.3.3 Snap

The last set of instances is a subset of the Stanford large network dataset collection
(Snap). It contains 16 graphs derived from an internet topology (Leskovec et al. 2005),
9.629 graphs describing user interaction on the music streaming service deezer
(Rozemberczki et al. 2020), five graphs describing email interactions of members in
a large European research institution (Leskovec et al. 2007), and ten graphs as friend
networks of Facebook users (Leskovec and Mcauley 2012).

For all of the different sources and their different graph formats parsers in octave
are available. From the set of all graphs in these three libraries we selected those
that have a possible spreading process application. Some of the instances are directed
graphs, some are weighted, others are not connected. If not provided, edge weights
were set to one.

As discussed above, the runtime of Algorithm 1 is proportional to |V |2 in its inner
optimization problems. For larger graphs we recommend a more sophisticated imple-
mentation, e.g., using hashed look-up tables. We do not expect qualitatively different
behavior for larger instances, but rather for different parameter values. In the inter-
est of using the available computational time for multiple realizations of the random
parameters s, c, and ts , we thus restricted our investigation to graphs with 1000 or less
nodes.

We conducted 100 randomized test runs on each instance (only the comparatively
large number of 9629 deezer graphs were only run once, to avoid domination
effects). For each run different random realizations of s (uniform distribution over
all nodes), c (exponential distribution, mean 1), and ts (Gaussian distribution, mean 0
and standard deviation 10) were considered. We used σ = 1

5c as standard deviation
for all random errors εk of oracle queries. Note that these settings were arbitrarily
chosen and fixed after an early trial and error phase, balancing realistic orders of error
magnitude and resulting numbers of iterations. As expected, smaller variances led to a
reduction in the number of iterations. As early experiments with other values (data not
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Table 1 Distance between j∗ at
in = 1 and s for different test
sets Q

Set Q Median Mean Max # Inf

Col 0.000 0.0183 2.000 0

Misc 0.000 0.0036 0.137 1

Snap 0.000 0.0078 3.000 0

Note that for test set Misc with weighted graphs the distances of j∗
to s were divided by the maximum non-infinite shortest path lengths,
and the special infinity treatment was applied, see Remark 1. Mostly,
Algorithm 1 returned j∗ ≈ s

shown) did not result in qualitatively different results, we kept them constant through-
out the numerical experiments to be able to focus on the study of iteration numbers in
relation to graph properties. We emphasize that the least squares problems in (5) are
linked to the assumption of independent and identically normal distributed errors εk via
maximum likelihood. For other distributions and/or statistical assumptions different
minimization subproblems need to be solved.

5.4 Benchmark library: convergence

To evaluate the convergence behavior of Algorithm 1, we assess the quality of the
detected source j∗ in comparison to the true source sk of instance k. We use the
following normalization and evaluation measure.

Definition 20 (Normalization) Let Q be the set of all instances (test runs) and k ∈ Q
a specific one.

Let ik be the number of iterations until Algorithm 1 terminated for instance k. We
then transform all iterations i ∈ {imin = 3, . . . , ik} to normalized iterations in via
in = (i − imin)/(ik − imin) ∈ [0, 1], omitting the dependence on k for notational
simplicity. Then we define

q(k, in) :=
∣
∣
∣
{
j ∈ V : J ∗

j,Ŝ
≤ J ∗

s,Ŝ

}∣
∣
∣

| V | (12)

as the uniqueness level of a given true source s for an oracle query set Ŝ. It depends
on the instance k ∈ Q and on the normalized iteration counter in of Algorithm 1.

The level q(k, in) ∈
[

1
|V | , 1

]
is evaluated for the least squares function J ∗

j,Ŝk,in
. If

q(k, in) = 1
|V | then j∗ = s.

In other words, the values q(k, in) indicate howmany nodes j result, when assumed
to be the source, in parameter fit objective functions (5) with a smaller value than that
of the true source node s. In (5) the current best guess for a resolving set Ŝ, which is
modified in each iteration in , plays a role. First, Table 1 shows the median and mean
distances between j∗ and s after termination (i.e., in = 1) of Algorithm 1, indicating
its accuracy.

123



Source detection on graphs...

Fig. 6 Using Definition 20, q(k, in) is visualized for all instances k ∈ Q. Left: a color gradient indicates
for how many instances k ∈ Q the value q(k, in) is in a given box. While for small iteration numbers
in the values J∗

sk ,Ŝk,in
are almost randomly distributed among all j ∈ V , for large iterations we have

J∗
sk ,Ŝk,in

≤ J∗
j,Ŝk,in

for almost all instances k and all j ∈ V , indicating the probable proximity of j∗ to the

true source sk of instance k. Right: for different values of δ the lines plot the fraction |Q1(in)|/|Q| with
Q1(in) := {k ∈ Q : q(k, in) ≤ δ+ 1

|V | }. E.g., for δ = 0 the lowest blue line depicts the fraction of instances

for which at iteration in the source sk was the unique minimizer of J∗, increasing from approximately 5 to
95%

There are no significant differences between the test sets, indicating the general
applicability of Algorithm 1. In the interest of simplification, we present results from
now on for Q as the union of the sets Col, Misc, and Snap.

Second, to investigate the efficiency of Algorithm 1, we illustrate in Fig. 6 the
uniqueness level q as a function of normalized iterations and instances k ∈ Q.

Both plots indicate that for the chosen sets Ŝk,in the termination criterion is a good
choice and that Algorithm 1 is well-posed in the sense that at termination, the true
source sk is detected with high probability (as q(k, in = 1) ≈ 0 for almost all k ∈ Q).
From Fig. 6 we deduce on the one hand that an earlier termination of Algorithm 1, as
seemed plausible from the example in Sect. 5.2, would often result in j∗ that are not
minimal with respect to the least squares regression. On the other hand, more iterations
are not necessary.

5.5 Benchmark library: number of iterations

In this section we have a closer look at how the iteration numbers ik until Algorithm 1
terminated relate to properties of the graphs. Figure7 (left) shows them for different
graph sizes n = |V |. For most k ∈ Q we have ik ≤ 1

2n. As the spread dimension is
the number of necessary oracle queries (iterations in the online case), this is plausible
when looking at the upper bound from Proposition 2 for complete graphs. Note that
the spread dimension is not a strict lower bound on ik due to the advantage that in
the online setting we can place oracle queries with knowledge gained in previous
iterations.

For small graphs (n ≤ 60), we could determine the spread dimension by brute
force enumeration. The result in Fig. 7 (right) confirms the impression that the number
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Fig. 7 Color gradients showing how many instances k ∈ Q needed (on the y-axis) how many iterations
until termination of Algorithm 1. Left: Plotted over the graph size n = |V |, suggesting a linear relation
ik ≤ c1n for a constant c1 and most k ∈ Q. Right: Plotted over the spread dimension β, suggesting a linear
relation ik ≤ c2β for a constant c2 and most k ∈ Qsmall where Qsmall ⊆ Q contains all graphs in Q with
n ≤ 60. Up to this size a brute force enumeration of the spread dimension was computationally feasible

of iterations of Algorithm 1 is in many cases below the spread dimension, and only
in few cases above. Thus it seems valid to see ik , at least for the chosen variance of
measurement errors, as an approximation of the spread dimension.

This result does not consider other graph properties. An investigation of the topo-
logical diameter and of the connectivity (number of edges divided by n) of the graph
did not reveal obvious correlations (negative results are not shown here, the color
gradients were rather erratic). Known results for the metric dimension β, which is a
lower bound for the spread dimension as discussed in Sect. 4, indicate that the graph
topology could have a strong impact (on the lower and not necessarily active bound).
E.g., for the diameter d it was shown that

n ≤
(⌊

2d

3

⌋

+ 1

)β

+ β

�d/3�∑

i=1

(2i − 1)β−1

by [Hernando et al. (2007), Theorem 3.1]. Also the simpler, but less strict inequality

n ≤ dβ + β

from Khuller et al. (1996b) emphasizes the role of the diameter. Not finding a correla-
tion between the diameter d and ik might indicate that the diameter is not as relevant
for the spread dimension as it is for the metric dimension or that ik differs from the
spread dimension for specific graphs. Note also that the spread dimension depends on
the edge weights of the graph. Two graphs with the same edge sets can have different
spread dimensions, if the edge weights are different.
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6 Conclusions

6.1 Contribution 1

We formalized the source detection problem in graphs and discussed some of its the-
oretical properties. We showed that the well-known concept of the metric basis and
metric dimension of a graph is related to the specific case of deterministic source detec-
tion. We generalized this concept towards spreading processes by the novel concept
of the spread dimension, and towards stochastic measurement errors via stochastic
spread-resolving sets.

In future work, these concepts should be further investigated from a graph theoretic
point of view. In particular, identify complexity class, efficient algorithms to find a
spread basis, and generalize towards more general scenarios, e.g., including multiple
sources.

6.2 Contribution 2

We developed an algorithm for the stochastic source detection problem. Unprece-
dented, Algorithm 1 can solve problems belonging to a general problem class. It
consists of a source estimation and of an experimental design part. For the source esti-
mation we discussed convergence to the true source under a constraint on the query
set Ŝ. To choose oracle queries for this set we proposed a heuristic solution based
on the concept of A-optimality in experimental design and a constraint on multiple
measurements.

It is unclear how this heuristic can be further improved. A detailed study on relaxing
Definition 19, e.g., by allowing the numbers of queries to differ by k > 1, seems
promising. The connection between graph properties on the one hand and spread
dimension and iteration numbers on the other hand should be investigated in future
research.

6.3 Contribution 3

We performed a numerical study based on a novel benchmark library for source
detection problems. The results indicate well-posedness of Algorithm 1 and a rela-
tion between the graph size n and the spread dimension on the one hand, and the
number of iterations until termination on the other. Algorithm 1 proved to be robust
over a wide variety of different graphs (weighted/unweighted, directed/undirected,
connected/unconnected) and for stochastic disturbances.

So far, two of the three main parts (termination and choice of Ŝ) are only heuristic,
whereas the link to quadratic regression is well-posed in the limit. Another future
direction of research is hence the application to practical source detection problems
with real world data. Also larger problem instances with n > 1000 and special cases
should be further investigated. For those it will be worthwhile to investigate graph
decomposition approaches. Promising concepts from graph theory are the modular
decomposition and to a lesser degree the split decomposition of a graph. A very simple
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and efficient meta algorithm for a graph with more than one (strongly) connected
component is to query a node in each connected component once, until the oracle
answer is finite. Then the source in this connected component and the rest of the
search can continue there, e.g., with Algorithm 1.

In general, the class of source detection on graphs is important from a practical
point of view, especially given the omnipresence of networks in modern life. At the
same time, this new problem class may stimulate theoretical and algorithmic research.
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