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Abstract
Electrochemical recovery of succinic acid is an electricity intensive process with
storable feeds and products, making its flexible operation promising for fluctuating
electricity prices.We perform experiments of an electrolysis cell and use these to iden-
tify a data-driven model. We apply global dynamic optimization using discrete-time
Hammerstein–Wiener models to solve the nonconvex offline scheduling problem to
global optimality. We detect the method’s high computational cost and propose an
adaptive grid refinement algorithm for global optimization (AGRAGO), which uses
a wavelet transform of the control time series and a refinement criterion based on
Lagrangian multipliers. AGRAGO is used for the automatic optimal allocation of the
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control variables in the grid to provide a globally optimal schedule within a given time
frame. We demonstrate the applicability of AGRAGO while maintaining the high
computational expenses of the solution method and detect superior results to uniform
grid sampling indicating economic savings of 14.1%.

Keywords Electrified downstream processing · Demand-side-management ·
Discrete-time scheduling · Global dynamic optimization · Hammerstein–Wiener
model · Adaptive grid refinement

1 Introduction

Demand-side-management (DSM) has long been acknowledged as an effective
approach to ensuring stability and increasing efficiency in the power grid, as well
as raising profit for electricity-intensive processes in economies where a high share
of electricity is generated from intermittent renewable sources (Paulus and Borggrefe
2011; Mitsos et al. 2018). Traditional approaches to optimal scheduling do not explic-
itly account for the intrinsic process dynamics by relying on stationary processmodels.
In case, however, the time scale of the process dynamics is similar to that of the
prices, the former should be considered to ensure accuracy (Bhatia and Biegler 1996;
Flores-Tlacuahuac and Grossmann 2006). In this direction, optimal process schedul-
ing is applied, typically considering discrete-time formulations, due to the inherently
discrete-time electricity prices (Zhang and Grossmann 2016).

Dynamic optimization problems arising in the field of scheduling are typically
solved numerically with local optimization solution methods and with various
techniques that simplify the system dynamics (Dias and Ierapetritou 2019). Such
techniques (e.g., single perturbation analysis (̄Dukić and Sarić 2012), or scale-bridging
techniques (Duet al. 2015)) reduce the problemsize to a subset of “scheduling-relevan”
variables; thus, they enable the consideration of even large-scale and complex dynamic
systems, as well as sophisticated optimization methods, such as global optimization
methods.

Various deterministic global optimization approaches for the solution of dynamic
optimization problems have been introduced over the past years (Singer and Barton
2006; Scott and Barton 2013; Song and Khan 2022; Schaber et al. 2019; Floudas
and Gounaris 2009). Global dynamic scheduling has been mainly performed via con-
sideration of linear dynamics for the solution of a (MI)LP (Suresh and Chaudhuri
1993; Floudas and Lin 2005), or by exploiting special problem structures together
with solution methods that allow for the use of standard optimization solvers (e.g.,
exploiting quasi-convexity of the relaxedNLPproblem to solve a convexmixed-integer
quadratic programming (MIQCP) (Chu and You 2012)). In this direction, nonlinear
dynamic model simplification techniques, which consider the use of low-order scale-
bridging models (SBMs) have been employed. Pattison et al. (2016) first explore the
application of SBMs to account for the closed-loop dynamics of an air-separation unit
(ASU) integrated in a demand response (DR) paradigm. Kelley et al. (2018a) pro-
pose a method for linearizing Hammerstein–Wiener and finite step response SBMs
to reformulate the optimal scheduling problem as an MILP to be solved using stan-
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dard MILP solvers, which they later apply to scheduling under dynamic constraints
of an ASU (Kelley et al. 2018b). Following that, a method for further simplification
of the optimal scheduling problem under dynamic process behavior formulated as an
LP, which accounts for a linear representation of the process dynamics using a linear
autoregressive (ARX) model has been proposed by Kelley et al. (2022). However,
most chemical and energy processes are described by complex models, with resulting
nonconvex and multimodal optimal operation problems (Chachuat et al. 2006) that
may lead to intractable scheduling objectives in case of model simplification (Yang
et al. 2014); thus, the global solution of such nonconvex scheduling problems is desired
from an economic, safety, and environmental perspective.

One of the latest studies on the topic of deterministic global dynamic optimiza-
tion, given by Kappatou et al. (2022), describes a framework for the global solution
of dynamic optimization problems using Hammerstein–Wiener (HW) models for the
expression of the nonlinear system dynamics. This approach suggests the utilization
of the special structure of HW models to decouple the linear dynamics and the non-
linearities. A reformulation procedure accounting for this decoupling leads to the
construction of the lower bounding problem. Then, the optimization problem, which
considers a continuous state space formulation, can be solved to global optimality after
control parametrization with a combination of a relaxation theory for ODEs (Singer
2004; Singer and Barton 2004) together with a convergent branch-and-bound (B&B)
algorithm (standard relaxation techniques), and a numerical integration scheme sim-
ilarly to following a single-shooting approach. The scaling of the method with the
number of optimization variables discourages its real-time applicability to big prob-
lems (Kappatou et al. 2022; Chachuat et al. 2006).

In the present work, we aim at the optimal dynamic scheduling of a downstream
electrochemical process for the recovery of succinic acid (Gausmann et al. 2020;
Schröder et al. 2022). We conduct experiments of an electrolysis cell and acquire data
for identifying a surrogate dynamic process model which considers a single input
control and a single output variable. In order to obtain the global solution to the mul-
timodal problem, we apply the approach of Kappatou et al. (2022), which we extend
to global dynamic scheduling with discrete-time dynamics. Our goal is to identify
the power consumption set-points resulting in energy-related cost minimization for a
flexibly operating electrochemical process that participates in a day-ahead electricity
market.

Early works on optimization have established a link between the dimensionality of
the search space and the computational performance of the optimization algorithm,
often referring to the scaling time phenomenon as “curse of dimensionality” (Bellman
1957). In the case of large-scale optimization problems, the exponential worst-case
runtime of the B&B algorithm imposes difficulties in the global solution of such prob-
lems. As a result, parametrization of the control variables and computational time are
linked (Chachuat et al. 2006). As presented in the work of Kappatou et al. (2022), solu-
tion time rises exponentially with the number of piecewise constant control segments
that derive from the temporal discretization selected or proportionally the number of
degrees of freedom (DoFs). Subsequently, the selection of relatively large schedul-
ing horizons (e.g., a week or a year) or a fine control grid may lead to significantly
high solution times, sometimes even higher than the scheduling horizon’s length. A
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method to tackle this problem is the application of a grid refinement technique that
optimally allocates the setpoint change breakpoints of the control variable with the
aim to decrease the number of optimization variables and thus the solution effort of
the optimization problem (Schlegel et al. 2005).

Various methods of grid refinement for the solution of optimal control problems
have been developed over the years (Chen et al. 2019; Zhao and Li 2019). Schlegel
et al. (2005) introduce a wavelet-based adaptive refinement algorithm for the solution
of dynamic optimization problems under continuous-time dynamics with the single
shooting method. They later include an a priori investigation step of the existence
of switching times and arcs to reformulate the problem as a multi-stage dynamic
optimization problemwhere each stage corresponds to an arc (Schlegel andMarquardt
2006). The approach of Schlegel et al. (2005) is further extended by Schäfer et al.
(2020a, b) to scheduling problems that account for quasi-stationary process models.

Grid refinement techniques that apply the simultaneous method have additionally
been presented, such as the knot placement problem suggested by Cuthrell and Biegler
(1987) and the finite element adaptation with error criteria enforcement introduced by
Vasantharajan and Biegler (1990). Chen et al. (2012) develop a moving finite element
method for the optimal allocation of the breakpoints for the control profiles to solve
dynamic optimization problems based on direct transcription. The breakpoint deter-
mination results from an approximation error and a Hamiltonian-based termination
criterion. For this, the optimization problem is formulated and analyzed as a multi-
period dynamic optimization problem. The approach sets the basis for grid refinement
with bilevel optimization (Weifeng Chen et al. 2014) and an adaptive mesh refinement
strategy for the solution of singular optimal control problems based on partial moving
grids using the simultaneous approach (Chen et al. 2019). While a wide collection of
grid refinement algorithms exists, the formulation of the optimal control allocation
problem as a multistage or a bilevel problem would additionally increase the com-
putational expenses of the solution approach presented in this work. To this end, a
grid refinement algorithm based on the work of Schlegel et al. (2005) is developed, as
it allows for a sequential optimization approach of the global dynamic optimization
problem as explained in Kappatou et al. (2022) for the solution of the optimal control
problem possibly including state or cumulative control (see Sect. 3.1) constraints.

In this work, we propose an adaptive grid refinement algorithm for global optimiza-
tion (AGRAGO) usingHWmodels as an extension of the algorithms forwavelet-based
grid adaptation presented in previous works (Schlegel et al. 2005; Schäfer et al.
2020b, a); the algorithm is implemented as an add-on tool to our in-house open-source
software for deterministic global optimization, MAiNGO (Bongartz et al. 2018).
AGRAGO enables the wavelet-based refinement of the control vector parametrization
developed by Schlegel et al. (2005) for the solution of dynamic optimization prob-
lemswith piecewise constant parametrization of the control variables to local or—if the
problem formulation allows for it - global optimality. The algorithm uses the wavelet-
based refinement approach considering the deletion and the insertion criterion devel-
oped and used by Schäfer et al. (2020a) and Schäfer et al. (2020b), respectively. The
refinement strategy is coupledwith the reduced-spacemodeling paradigm inMAiNGO
to enable a nonuniform discretization that exposes only a few DoFs to the optimizer
while performing the optimization step in the original parameterized control space.
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The application of AGRAGO to dynamic scheduling aims at offering a compro-
mise between the global optimization of simplified process models with fewer DoFs,
and the local optimization of detailed models with finer control parametrization or
larger optimization horizons; thus, a global optimum of a multimodal problem can be
acquired by refining the control grid to reach the best allocation of the available DoFs.
We herein apply dynamic optimization with AGRAGO to solve a nonconvex optimal
scheduling problem. However, we underline that the superiority of the global solution
over the solution obtained by local optimization and with a higher number of DoFs is
not guaranteed.

The remainder of this article is structured as follows. We first describe the pro-
cess to be operated under optimal scheduling and present the identification of the
HWmodel describing the process (Sect. 2). The experimental data used for the model
identification are beingmade available as Supplementary information. Then,we set the
deterministic global dynamic scheduling problemwith time-variable electricity prices
in a reduced-space formulation and present the scheduling results (Sect. 3). Afterward,
we introduce AGRAGO, which we utilize to solve the scheduling problem and present
the results (Sect. 4).Wefinally drawconclusions on the offline global dynamic schedul-
ing of the electrochemical process under discussion and the application of AGRAGO
to the solution of the scheduling problem (Sect. 5). In the appendices we provide sup-
porting information on parameters and results of the model fitting, optimization, and
AGRAGO.

2 Data-driven dynamic modeling

2.1 Process description and experimentation

2.1.1 Process outline

Bio-based succinic acid production receives growing attention in the past fewyears due
to its ability to replace succinic acid produced from fossil raw materials (Bozell and
Petersen 2010; Song and Lee 2006). Nevertheless, the downstream processing of bio-
based succinic acid is still challenging since it accounts for more than 60% of the total
production costs (Bechthold et al. 2008). We recently proposed a downstream process
in which succinic acid is recovered from aqueous solution by electrochemical pH-shift
extraction, back-extraction and crystallization (Gausmann et al. 2020; Schröder et al.
2022), Fig. 1. This process is a strong candidate for DSM and potentially DSM can
lead to sustainable succinic acid production. Herein, we investigate the anode chamber
of the first electrolysis cell of this downstream process.

2.1.2 Experimental data acquisition

We conducted a series of experiments producing data that describe the process oper-
ation under a certain operating range to learn the HW model. We used an artificial
aqueous solution containing disodium succinate and succinic acid as surrogate for the
feed from the fermentation. The composition of disodium succinate and succinic acid
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Fig. 1 Flowsheet of the succinic acid production process as derived from the work of Schröder et al. (2022).
The part of the process considered for flexible operation is outlined in red

was chosen so that the aqueous solution has a pH-value of 6.8, which is a typical
pH-value of succinic acid fermentation broth (Bradfield et al. 2015; Salvachúa et al.
2016; Thuy and Boontawan 2017). Disodium succinate (for synthesis) was supplied
by Merck KGaA, Darmstadt, Germany, and succinic acid (≤99wt%) was provided by
Sigma-Aldrich, Saint Louis, United States. In total, approximately 47gL−1 succinate
was present in the aqueous solution. Additionally, 14.2gL−1 sodium sulfate (99wt%)
from Fisher Scientific GmbH, Schwerte, Germany, was added as background elec-
trolyte to maintain a minimum conductivity of the model solution. The model solution
was fed into the anode compartment and into the cathode compartment. The experi-
ments were performed with a custom-made polytetrafluoroethylene electrolysis cell,
which has an electrode area of 100cm2. The electrolysis cell was already successfully
employed in a similar downstream process of Gausmann et al. (2021). An iridium
mixed metal oxide coated titanium anode and a platinum coated titanium cathode,
both delivered by Magneto Special Anodes B.V., Schiedam, Netherlands, were used.
A Fumasep FKL-PK-130 cation exchange membrane from Fumatech BWT GmbH,
Bietigheim-Bissingen, Germany, was used as separator between anode and cathode.
The electrolysis cell was operated under galvanostatic conditions with an EA-
PSI 9040-120 power supply from EA Elektro-Automatik GmbH, Viersen, Germany.

Different set-point changes of current, meeting the safety requirements of the sys-
tem, were applied to the electrolysis cell using a custom-made control interface and
each experiment was conducted once. A rule-based control system was used to adjust
the feed volume flow when a current density set-point change occurred, in order to
achieve full protonation of the succinic acid. No feedback control system was applied
in that case due to the self-regulating behavior of the current and flow.A current density
of 0.12Acm−2 was selected as the nominal operating point. The current density was
varied between 0.06Acm−2 and 0.15Acm−2. The control interface was developed
using LabVIEW from National Instruments, Austin, Texas, United States.

2.1.3 Model selection and data usage

We construct a data-driven dynamic model using the experimental data of the first
electrolysis cell, as a process model that can well represent the potentials of integrat-
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ing the entire process in the scheduling paradigm. For that, we utilize the available
experimental data and disregard the consecutive process steps, to which experimen-
tation has not yet been performed, to derive a process model to describe the flexible
process operation. We, thus, first derive the set of “scheduling-relevant” variables,
which are the process variables included in the product quality, production rate, pro-
cess operating constraints, and scheduling objective (Pattison et al. 2016): the molar
throughput of the anode chamber, the power consumption of the electrolysis cell, and
the total acid production. For that purpose, the available volume flow and current data
are converted into molar flow and power consumption, and the latter form the set of
experimental data provided.

In the electrolytic cell no acid losses take place, the consecutive process steps are
disregarded, and closed recycle process streams are applied to finally acquire a high-
purity (Gausmann et al. 2020) acid product, safe—in terms of effect on the scheduling
calculations—to assume that it is fully recovered; thus, no product quality, as well as
operating constraints related to the consecutive process steps are accounted for, and
the input molar flow can also correspond to the output molar flow of the acid. The
operating points of the electrolysis cell are chosen in such a way that safety constraints
are far from their bounds, and, thus, production rate constraints suffice to describe
the flexible process operation. Possible revenues from applying DR paradigms are
investigated considering the available data describing the lab-scale process. Although
a different behavior is expected for the scaled-up process, such an investigation is out
of the scope of this manuscript. Additional consideration of the entity of the operation
units of the recovery process to construct a holistic process model will be part of future
work.

A single input and single output (SISO) model of the process is built to consider
the molar throughput (control variable) as the input and the power consumption as the
output, given the control scheme applied, as presented in Sect. 2.1.2. The total acid
production is used as a boundary condition in the optimization problem for flexible
operation. The slow kinetics that govern the process dynamics are taken into account.
Hence, dynamic modeling is considered. In addition, the high complexity of the reac-
tion kinetics, including the water splitting electrolysis occurring in the electrolysis
cell, motivates the use of nonlinear surrogate models that capture the intricate pro-
cess dynamics without the need to identify a fully nonlinear mechanistic model (Tsay
et al. 2019). A SISO HW model is used and optimal scheduling is performed using
the approach of Kappatou et al. (2022) for deterministic global dynamic optimization
with HW models.

2.2 Hammerstein–Wiener model identification

2.2.1 HWmodel framework

The HW models are data-driven models which consist of two nonlinear static trans-
formations which precede (Hammerstein block) and follow (Wiener block) a linear
dynamic system. They can be formulated for single or multiple inputs and outputs,
considering the representation of the linear dynamics as a state-space model. A single-
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Fig. 2 SISO Hammerstein–Wiener model

input-single-output (SISO) HW model—used for the modeling of the electrolysis
process as discussed in Sect. 2.1.1—is described by the following set of equations:

w(t) = fH(u(t)), ∀t ∈ [ t0, t f ]
ẋ(t) = Ax(t) + bw(t), ∀t ∈ [ t0, t f ]
z(t) = cx(t) + dw(t), ∀t ∈ [ t0, t f ]
x(t0) = x0
y(t) = fW(z(t)), ∀t ∈ [ t0, t f ]

(1)

where u : [ t0, t f ] → R is the input and y : [ t0, t f ] → R is the output of the
HW model, w : [ t0, t f ] → R is the input of the linear time-invariant (LTI) system,
x : [ t0, t f ] → R

nx are the states, z : [ t0, t f ] → R is the output of the LTI system,
fH : R → R is the input Hammerstein nonlinearity, fW : R → R is the input Wiener
nonlinearity, A ∈ R

nx×nx , b ∈ R
nx×1, c ∈ R

1×nx , d ∈ R are the matrices defining the
linear state-space dynamical system, and x0 ∈ R

nx are the initial conditions of the LTI.
It is highlighted that the input variable u(t) is bounded, so that u(t) ∈ U,U ⊂ R and
U compact, due to its physical meaning for the case of the electrochemical process.

The structure of a SISO HW model is given in Fig. 2.

2.2.2 Data preprocessing

We use the collection of four experimental operating datasets of the process presented
in Sect. 2.1.1 available to identify a HW model for offline scheduling and the dataset
corresponding to one of the four experiments is given in Fig. 3 for illustrative purposes.

The first step for fitting a HWmodel to the available data is the data preprocessing,
which results in a single set of equidistantly sampled data over time devoid of any noise.
The preprocessing involves the smoothening of the dataset of around 6000 data points
for each measured variable using a Simple Moving Average (SMA) with a window
of 21 and, next, the linear interpolation between the smoothened data; therefore, we
finally acquire an approximately ten-times smaller dataset of uniformly sampled data
with a selected time step of 3min. The constant time step results from theminimization
of the Bayesian information criterion (BIC) occurring from different samplings of the
data, and it is ensured to be smaller than the inherent process dynamics (e.g., settling
time). The experimental data, the smoothened data, and the final working data of a
specific set-point change interval corresponding to the first experiment are given in
Appendix A.1, Fig. 10.
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Fig. 3 Experimental
data—experiment 1

2.2.3 Model identification

The identification of the HW model includes first the selection of a set of hyperpa-
rameters, namely the type and order of the Hammerstein and Wiener nonlinearities,
as well as the parameters (number of zeros, number of poles, and input delay) of
the LTI system. It should be noted here that a black-box identification approach for
the HW models is followed in this work. This does not consider incorporating prior
knowledge of the chemical system into the model; thus, the use of the model is limited
to the range of experimentation. Grey-box identification approaches are also available
(Mohammadi and Montazeri-Gh 2015) but are out of the scope of this manuscript.

An additional parameter to be specified is the use of either discrete- or continuous-
time dynamics together with a numerical integration scheme. Note that most
applications of dynamic scheduling in literature use discrete time, e.g., (Kondili et al.
1993; Velez and Maravelias 2013; Zhang et al. 2016), whereas continuous time was
used by Kappatou et al. (2022) for the global dynamic optimization. The decision
over the hyperparameters related to the Hammerstein, the Wiener, and the LTI block
takes place through a standard training and validation procedure over a wide range of
available options provided by the tool used (results not presented here) considering
the minimization of the normalized Aikaike criterion (nAIC) and the BIC criterion,
as well as considering a minimum accepted fitting to the training and test data of 95%
(1-NMSE) (Tsay et al. 2019).

Our preliminary experimentation (results not shown) revealed that the com-
putational performance of the optimization strongly depends on the HW model
parametrization. First, depending on the nonlinearities used, the tightness of the con-
structed relaxations, here McCormick relaxations, varies (McCormick 1976). From
the available options for the type of nonlinearities for the HW models training (e.g,
piecewise constant, piecewise linear), continuous polynomial functions are consid-
ered, in order to avoid additional complexity by introducing binaries linked to the
static function’s breakpoints leading to the solution of an MINLP (given the available
standard solvers). However, in our case the loose McCormick relaxations related to
the fourth-degree polynomial Hammerstein function result in high solution times of
the optimization problem. As an alternative to the fourth-degree polynomial, we use
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an ANN which we train on the Hammerstein function—assuming negligible error in
our computations for a fitting of 99.99% (1-NMSE)—with the aim to utilize tighter
embedded ANN relaxations as provided by our tool MeLOn (Schweidtmann and Mit-
sos 2019) and thus, improve the computational performance of the optimization. The
approach should not be confused with methodologies on handling the HW model
accuracy.

Second, the computational performance of the scheduling problem depends on
the type of the system dynamics, discrete- or continuous-time, with the latter intro-
ducing additional calculations related to the numerical integration of the dynamics.
In fact, according to Kappatou et al. (2022), solution time exhibits a linear scaling
with the number of steps in the integration scheme. In the same direction, a pos-
sibly small step length, thus higher number of steps, of the numerical solution of
the ordinary differential equations, necessary—in many cases—to control numerical
instability of the integration method (Cartwright and Piro 1992; Yang et al. 2008),
may significantly increase the computational effort. Preliminary results show superior
computational performance for the application of discrete-time dynamics. Therefore,
we select discrete time, regardless of the resulting limitations related to the single
possible state discretization of the control time series. We assume at this point that the
error occurring from the transformation of discrete- to continuous-time dynamics and
vice-versa is insignificant and thus not considered for the selection between the two.
The effect of the model parametrization on the problem’s solution times is utilized
to provide feedback to the HW model identification process. The goal is a highly
accurate HW model which does not degrade the computational performance of the
optimization.

The HWmodel is obtained using the System Identification Toolbox (SIT) of MAT-
LAB version R2021b, considering the first three experiments (70% of experimental
data) to be the training data and the last experiment (30% of experimental data) as test
data. The estimation parameters of the MATLAB SIT are kept at the default values.
The parameters arising from the fitting of a HW model for a Hammerstein polyno-
mial of 4th, a Wiener polynomial of 2nd degree, and an LTI of 3 zeros, 4 poles, no
delay, and arbitrarily selected zero initial (non-physical) states, similar to Kappatou
et al. (2022); Cai et al. (2018), to correspond to the standard experimental start-up
steady-state—hereon the reference operating point—are given in Appendix A.2. The
model hyperparameters and the model fitting results are presented in Appendix A.2,
Table 1, and Appendix A.3, Fig. 11. Additionally, the ANN of one hidden layer with
two neurons and the hyperbolic tangent activation function and of one output layer
with the linear activation function is trained on the Hammerstein function in MAT-
LAB. Overall, the modeling results exhibit good performance, leading to an accurate
(1-NMSE≥ 95%) prediction of the system’s behavior.
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3 Deterministic global dynamic scheduling

3.1 Problem formulation

The DR scheduling problem of the electrochemical process presented in Sect. 2.1.1 is
formulated as a dynamic optimization problem in discrete time using the HW model
identified in Sect. 2.2 to predict the open-loop response of the electricity consump-
tion of the process to changes in the acid production. The high multimodality of the
problem, as indicated by a maximum observed variation of 9% in the objective values
resulting from local optimization (see Table 2 in Appendix B), motivates the applica-
tion of global optimization. The problem is solved to global optimality considering
the problem formulation for global dynamic optimization with HW models (Kappa-
tou et al. 2022) for an electrochemical process taking part in a day-ahead electricity
market. Scheduling is considered under a 24-hour profile of hourly changing German
spot electricity prices of February 7, 2023, retrieved from Energy-Charts (Fraunhofer
Institute for Solar Energy Systems ISE 2023).

The electricity costs are minimized by manipulating the molar throughput of the
anode chamber subject to the electrochemical process dynamics and a minimum
requirement in the daily acid production. The problem is solved to global optimality
after piecewise-constant control parametrization, convex relaxation, and additional
discretization of the dynamics. Piecewise-constant control parametrization is selected
between others (e.g., piecewise-linear), with the goal to use a single control parame-
ter for each control segment, thus keeping the number of DoFs and consequently the
computational expenses, as explained in Sect. 1, lower. It is, additionally, an intuitive
parametrization, as it matches that of the problem parameter, the electricity price.
Note that the control vector parametrization (transition from an infinite-dimensional
to a finite-dimensional optimization problem) is an inherent restriction; thus, global
optimality refers to the selected control parametrization. In contrast to the work by
Kappatou et al. (2022), we herein provide a problem formulation with discrete-time
dynamics, as presented in Sect. 2.2.

The resulting problem formulation is

min
û,ŵ

T ·
n∑

t=1

k∑

s=1

ps+k(t−1) · fW
(
cDx̂s+k(t−1) + dD fH(ût )

)
(2a)

s.t . ŵt = fH(ût ) ∀t ∈ {1, 2, . . . , n} (2b)

uL ≤ ût ≤ uU, wL ≤ ŵt ≤ wU ∀t ∈ {1, 2, . . . , n} (2c)

ma ≤ T ·
n∑

t=1

ût (2d)

where x̂s+k(t−1) is the solution of:

x̂s+k(t−1) = ADx̂s+k(t−1)−1 + bDŵt ∀t ∈ {1, 2, . . . , n},∀s ∈ {1, 2, . . . , k}
x̂0 = 0
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the controls and states are parameterized as:

x̂s+k(t−1) =
⎛

⎜⎝
x̂1,s+k(t−1)

...

x̂l,s+k(t−1)

⎞

⎟⎠ ∈ R
l ,

û =
⎛

⎜⎝
û1
...

ûn

⎞

⎟⎠ ∈ R
n, ŵ =

⎛

⎜⎝
ŵ1
...

ŵn

⎞

⎟⎠ ∈ R
n,

and T is the scheduling horizon, n is the number of control intervals, n ·k is the number
of state intervals, and l is the number of states. k is the number of intervals in which
a single control interval is split for the sampling of the dynamics, so that T /(n · k)
is always the time-step of sampling the discrete-time dynamics. The control and state
parametrization of n number of control and n · k number of state intervals is selected
to allow for asynchronous control set-point and price change, giving the possibility of
either more or less frequent control point shifts than price shifts. The only restriction of
the formulation above is that a price change coincides with a state discretization point.
ma is the minimum allowed daily acid production, pi , with i ∈ {1, 2, . . . , n · k} is the
price of the spot market at the i th scheduling horizon interval. x̂0 are the initial state
conditions, set to zero, to account for initialization from the reference operating point
(see Sect. 2.2), and AD, bD, cD, dD, fH and fW are the parameters of the HW model
given in Appendix A.2.

3.2 Computational scheduling performance with equidistant grids

The scheduling problem is implemented and solved using our in-house open-source
software for deterministic global optimization,MAiNGO (Bongartz et al. 2018), based
on McCormick relaxations (McCormick 1976; Mitsos et al. 2009; Tsoukalas and
Mitsos 2014) with default settings unless otherwise stated. Appendix A.3 includes
the configuration values deviating from the default ones (Table 3), and a guideline to
the selection of the optimality tolerance. The ANN functions are accessible using the
toolbox for machine learning models for optimization MeLOn (Schweidtmann and
Mitsos 2019). All computations are conducted on an Intel® Xeon®CPU E5-2640 v3
@ 2.60GHz with 128 GB RAM and using a single server CPU.

For the optimization of the problem (2a)–(2d), we apply a set of problem parameters
and the optimization configurations given in Table 3 (Appendix B). The problem is
solved for a constant discretization of the dynamics of 3 min, a scheduling horizon
of 24h (T =1440min) of hourly changing spot electricity market prices, and n =
2, 3, 4, 6, 5, 8, 10 equidistant control time intervals.

From Fig. 4, we observe a general improvement of the economic objective value
with the number of control discretization points. This is not guaranteed, though, in
case of control set-point changes that do not coincide with a price set-point change
(e.g., n = 5, 10), a smaller number of control set-point intervals that correspond to
less highly-deviating consecutive prices (e.g., n = 3 compared to n = 4), or objective
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Fig. 4 Economic objective value
improvement compared to
non-scheduling operation
(Crossed circles: ) and
computational time scaling
(Crosses: ) for different
numbers of control
discretization intervals n or
DoFs. The dashed line ( )
corresponds to the 12-hour
computational time-limit

value differences that fall into the optimality gap used. The above indicate the effect
of the control parametrization given a certain price profile on the optimization result.

We additionally note, in Fig. 4, a marginal (smaller than the optimality gap of
the global optimization) change in the absolute objective values for n > 5. This
behavior is a common feature of control parametrization methods (Chachuat 2007)
and, although unknown a priori, it may indicate that minimal improvement can be
expected from further grid resolution increase (n > 10). In the case of insignificant
objective improvement via increasing grid resolution after a relatively coarse grid,
global optimization considering coarser gridsmaypotentially lead to superior solutions
compared to local optimization for highly dense grids, in particular, if set-point and
price changes canbe aligned in time.However, there is noguarantee that low-resolution
global optimization can outperform high-resolution local optimization in terms of cost
objective value given the high computational complexity of the former compared to
the latter. Although a comparison of global and local dynamic scheduling is out of the
scope of this manuscript, further improvement by exploiting global optimization and
better allocation of the available control discretization points is later investigated by
applying the AGRAGO.

Figure 4 additionally presents the expected exponential scaling of the solution
times with the number of equidistant piecewise constant control segments for each
control variable û, ŵ (or equivalently with the total number of DoFs). This observation
is associated with the scaling of B&B algorithms with the number of variables, as
described by Chachuat et al. (2006) and later shown by Kappatou et al. (2022) for
global dynamic optimization with HWmodels. Following the hourly discretization of
the day-ahead market, a scheduling horizon of one day would be split into at least 24
control intervals. However, according to the scaling noted in Fig. 4, and considering
the extrapolation of an exponential curve fitting the depicted data to n = 24, the global
solution of a dynamic problem such as (2a)–(2d) would be intractable (CPU times in
the order of centuries).

In order to acquire a computationally tractable solution, we consider the highest
possible grid resolution that leads to computational times of less than a 12-hour thresh-
old, which is the time frame between the price update (12 o’clock of the previous day)
and the schedule implementations (24 o’clock of the day of implementation). Thus, the
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Fig. 5 Offline optimal scheduling profiles. The dashed lines correspond to the control and power value,
while the shaded areas correspond to the electricity price

problem is solved for a control parametrization of 8 piecewise constant equidistantly
sampled segments, as the maximum resolution for tractable computations, and the
optimal schedule (control and power profiles) of Fig. 5 is retrieved. The correspond-
ing solution time amounts to approximately 1.5h, while offline scheduling results in
a 13.1% drop in electricity-related costs compared to process operation under a fixed
production rate.

FromFig. 5, we note an optimal power consumption fluctuation overall correspond-
ing to the price changes. Additionally, we observe that the coarser time discretization
of the controls compared to that of the price leads to suboptimal allocation of the
production (control u) at some increments of the scheduling horizon. This allocation
may result from two consecutive increments with high corresponding price deviation,
which share the same control choice. For instance, a higher production during the
7th compared to the 10th hour would be economically more beneficial due to the
higher electricity price of the latter. However, equidistant sampling does not account
for this effect due to the coupling of the 7th, 8th and 9th, and the 10th, 11th and 12th
hour, respectively, in two single control choices. These results indicate possible further
revenues in the case of better assignment of the DoFs when considering the control
grid.

We observe from Fig. 5 the dynamic power consumption response to the price fluc-
tuation and draw attention to offsets in the power consumption (e.g., 10th hour). Such
offsets might be closely related to production or safety constraints (Tsay et al. 2019),
like for example limitations to high power consumption due to inefficiencies resulting
from high voltage application (Swiegers et al. 2021), which would not be necessarily
satisfied if process dynamics were disregarded. This type of constraints is not included
in this case study, which follows a conservative process operation, but reflects to the
general case applicable of the scheduling method presented. Thus, disregarding the
inherent process dynamics to simplify the optimization problem (Seborg et al. 2016) is
not advised due to the dynamic infeasibility of the suggested schedule, in the context of
process constraint violation and unexpected costs (Simkoff and Baldea 2020). Another
point that confirms the need to account for the process dynamics is the unrealistic cost
calculations resulting from global optimization for scheduling under static behavior
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(with an ANNmodel trained to the data for steady-state operation). In that case, steady
state optimization could result to more than 15% underestimation of the costs resulting
from scheduling, while additionally there would be no consistency to whether a cost
over- or underestimation results from simulating the process under static behavior (see
Table 4 in Appendix B). We note that more significant errors may result in case of
faster set-point changes (e.g., real-time markets) (Baldea and Harjunkoski 2014; Dias
et al. 2018).

Overall, Fig. 4 reveals the computational burden of the applied optimizationmethod
and provides an indication for acquiring high-quality solutions using global optimiza-
tion and a relatively coarse control grid. Figure 5 highlights the additional possible
benefits from a better allocation of the available DoFswith the aim of obtaining a better
economic objective value in the same amount of computational time (or same n). In
this direction, we explore further economic benefits by applying our grid refinement
algorithm AGRAGO to the scheduling problem presented in Sect. 3.

4 Wavelet-based adaptive grid refinement algorithm for global
optimization (AGRAGO)

4.1 Theoretical background

In this chapter we present the theory and application of a wavelet-based adaptive grid
refinement algorithm used for the optimal grid allocation of the available DoFs for the
solution of a dynamic optimization problem to global optimality. Such awavelet-based
refinement algorithm is first introduced by Schlegel et al. (2005) for the solution of
dynamic optimization problems under continuous-time dynamics with single shooting
and a piecewise constant control vector parametrization. The algorithm is an iterative
procedure that includes: the wavelet transform of the solution of the previous iteration
(lower resolution control grid), the wavelet coefficient insertion or activation (“grid
point insertion”), and deletion or deactivation (“grid point elimination”, or “grid point
deletion”), and the re-solving of the optimization problem in the parameterized control
vector space for the updated suggested control discretization scheme.

Schäfer et al. (2020a) apply the algorithm of Schlegel et al. (2005) to the scheduling
of a compressed energy storage plant (CESP) considering quasi-stationary, instead of
dynamic models, and on discrete, instead of continuous time in combination with a
linear mapping of one DoF tomultiple intervals with similar price values. For the solu-
tion of the problem, a reduced-spaced scheduling formulation is applied together with
global optimization techniques resulting in a series of feasible near-optimal solution
points further used as initial points of a local search for the full-dimensionalityMINLP.
The solution points correspond to nonincreasing—guaranteed for coefficient insertion
only—objective values. The method demonstrates significant computing time reduc-
tions compared to the optimization problem with full temporal dimensionality.

Schäfer et al. (2020b) further extend their approach to account for the optimization
problem’s solution directly in the wavelet coefficients space and guarantee a unique
allocation of DoFs to control intervals. This change in optimization variables implies
an assignment procedure in which the wavelet coefficients of the unused wavelet basis

123



C. Papadimitriou et al.

functions (inactive wavelet coefficients) are set to zero. The assignment replaces the
representation of multiple control intervals of the previous works with one single DoF.
The method also suggests using the Lagrangian multipliers of the constraints related
to the wavelet coefficients truncation (Binder et al. 2000).

This replaces the addition of optimization variables to the set of the active coeffi-
cients based on a quantitative yet pure heuristic measure with a quantitative measure
of the marginal objective value improvements, which enhances the algorithm’s per-
formance, especially in case of a high effect of ramping constraints on the optimal
schedules. The method is applied in combination with a price-based linear mapping
of a reduced set of new DoF onto the original DoFs to the scheduling of a cryogenic
air separation unit (ASU). The problem is solved in a reduced space using global opti-
mization techniques (B&B algorithm). The results show significant computational
time savings compared to solution approaches of full temporal dimensionality, high-
lighting a linear scaling of the solution times with the horizon length.We note, though,
that in the works of Schäfer et al. (2020b) and Schäfer et al. (2020a), the benefit of
integrating the refinement procedure and the price-based linear mapping cannot be
distinguished. Thus, there is no explicit measure of the effect of applying such a
wavelet-based refinement strategy considering the solution time requirements.

4.2 Algorithm description

The high computational demands of global dynamic scheduling and the need for finer
time series discretization that fully exploits the price fluctuations (as described in
Sect. 3.2) lead to the application of a grid time series refinement algorithm. This algo-
rithm can produce the same or even better results (objective value) using fewer DoFs,
thus, speeding up the solution process by suggesting the use of a nonequidistantly sam-
pled control grid. We herein propose an adaptive grid refinement algorithm for global
optimization (AGRAGO) based on previous works presented in Sect. 4.1 (Schlegel
et al. 2005; Schäfer et al. 2020a, b) to solve the global dynamic scheduling problem
of the first electrolyzer of the acid recovery process. AGRAGO integrates the wavelet
transformation of a current control grid solution of Schlegel et al. (2005) with theDoFs
deletion criterion of Schäfer et al. (2020a) and the insertion criterion of Schäfer et al.
(2020b) based on the Lagrangianmultipliers associated with the deactivation of coeffi-
cients. In contrast to the work of Schäfer et al. (2020b), in AGRAGO, the optimization
problem is solved in the original parameterized controls’ space instead of the wavelet
coefficients’ space, as explained in Sect. 4.2.2. The refinement process of AGRAGO
is automated and integrated into MAiNGO (Bongartz et al. 2018), where additional
possibilities of insertion and deletion criteria presented in the previous works under
discussion are added for use.

AGRAGO is an iterative procedure in which global optimization of the problem
for a previously suggested control grid is performed, followed by post-processing of
the optimization results. The latter is used to suggest a new control grid aiming to
improve the optimization result in terms of objective value and which represents the
control grid used for the next iteration. More specifically, the post-processing involves
the suggestion of new wavelet coefficients, the wavelet transformation of the prior
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Fig. 6 Graphical representation of AGRAGO. The Crossed Time-scale plots represent the selection of
wavelet coefficients (x: active coefficient), the Patched Time-scale plots correspond to the enumerated
coefficients occurring after each global optimization step, and thewavelet transformof the resulting solution,
and the original control grid points describe the current piecewise constant control solution. The algorithm
terminates heuristically

solution, and the deletions of already active coefficients. The algorithm terminates
heuristically. A graphical representation of AGRAGO is given in Fig. 6. The main
steps of AGRAGO are further described in Sects. 4.2.1–4.2.4.

4.2.1 Wrapper-model generation

The first step of AGRAGO is the generation of a wrapper-model (new optimization
problem) (Fig. 6 (iii)) which derives from the original optimization problem (Fig. 6
(ii)) with all piecewise constant control DoFs that correspond to the finest resolution
permitted, and from the suggested new grid in the form of a wavelet coefficients’
vector. This vector determines the equality constraints related to the activation and
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deactivation of a coefficient. Further analysis of the wrapper model generation is
given through a comprehensive example in Appendix C.1.

4.2.2 Global optimization

Next, global optimization (Fig. 6 (iv)) is performed in the original parameterized con-
trols’ space considering an initial point (Fig. 6 (i)) if available. Global optimization
takes place in a reduced space using MAiNGO (Bongartz et al. 2018), and the opti-
mization result is a new vector of piecewise-constant controls given the previously
suggested discretization scheme.

It is highlighted that AGRAGO is designed to solve the optimization problem in
the original space of the piecewise-constant parameterized control variables (as also
done by Schlegel et al. (2005)), rather that mapping the problem to a different space in
which the control parameters are expressed as wavelet coefficients (as in Schäfer et al.
(2020b)). This is because the solution of the problem in the wavelet coefficients’ space
results in a higher computational effort. This is closely related to the enlargement of
the search space, due to less tight box constraints of the wavelet coefficients compared
to the original piecewise constant control variables. More specifically, the linear trans-
formation of the DoFs of the piecewise control variables to wavelet coefficients entails
that the value of each wavelet coefficient depends on the value of the coefficient that
belongs to the lower level of refinement (e.g., see Eqs. (6)–(13) in Appendix C.1).
This is also the case for the bounds of the wavelet coefficient variables. Given that,
and since the bounds of the wavelet coefficients need to allow a switch from the lower
bound interval value (corresponding to the lowest possible original control value) to
the upper bound interval value (corresponding to the highest possible original control
value), a cumulative effect takes place that enlarges the search space and increases the
computational time of the global optimization step. A simple numerical example is
given in in Appendix C.1. Results of performing global optimization in the original
control variable and the wavelet coefficient space considering the same nonuniform
grid support this view (see Sect. 4.3).

The application of AGRAGO to problem (2a)–(2d) suggests the addition of a set
of equality constraints related to the deactivation of wavelet coefficients (Eq.(3e)), so
that the optimal scheduling problem is reformulated as presented in Eqs. (3a)–(3e).

Thewavelet transform requires that the number of control intervals is a power of two.
More specifically, due to the hourly sampled electricity prices, a scheduling horizon
T = 2N , N ∈ {1, 2, 3, . . .} that represents the maximum possible resolution at the
last refinement level is expected. This implies that if a non-power-of-two scheduling
horizon (e.g., T = 24) is to be implemented, either the highest resolution should be
selected as a power-of-two (e.g., 32) with the control and price-change points not
coinciding (e.g., price-change each hour and control-change each 45min), or the non-
power-of-two scheduling horizon (e.g., T = 24) should be decomposed into two (or
more) subhorizons with a power-of-two number of intervals each (e.g., T1 = 16 and
T2 = 8) (Schäfer et al. 2020a). For each subhorizon, the problem is solved separately.
In the former case, the selection of the power-of-two highest resolution is related to
the discrete-time dynamics, which may add a restriction (the minimum time-step is
that of the state discretization) to choosing between different possible asynchronous
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price and control step-change points. This asynchronous change implies that the price
fluctuations are not fully exploited, and thus, further improvement in the objective
could be expected in a different case. In the latter case, we detect additional DoFs
related to the number and order of the subhorizons, as well as the adjustment of
the constraints linked to the entire horizon. Such a constraint can be, for instance, a
production goal over the entire scheduling horizon which should be broken up into
the different subhorizons (see Eq.3d). This prohibits the fully flexible operation of the
process to which scheduling is applied; thus, additional improvement in the objective
could be anticipated.

To tackle the above-mentioned issues, we suggest considering a non-power-of-two
highest possible resolution for the refinement, which enables a synchronous price
and control step change. It should be noted that since AGRAGO can be applied to
the solution of different (global) dynamic optimization problems, the price set-point
changes of the scheduling problem represent any set-point changes of a problem
parameter (e.g., price profiles, set-points of control-tracking problems). The strategy
suggests that the entire scheduling horizon (e.g., T = 24) is split into a user-specified
number of subhorizons, namely batches (e.g., 3), which all consist of the same
power-of-two number of grid intervals (e.g., 8). The refinement procedure remains
the same, with the only difference being that the wavelet transform is performed
separately for each solution of each batch. The graphical representation of a Crossed-
Time-scale plot for an example of applying the batch approach is given in Fig. 14
(Appendix C.2).

The integration of the batches concept to the application of AGRAGO to problem
(2a)–(2d) considering q ∈ Z batches of 2ρ , ρ ∈ Z intervals each such that the highest
possible grid resolution is n = q · 2ρ leads to the reformulation of problem (2a)–(2d)
which we present as problem (3a)–(3e):

min
û,ŵ

T ·
n∑

t=1

k∑

s=1

ps+k(t−1) · fW
(
cDx̂s+k(t−1) + dD fH(ût )

)
(3a)

s.t . ŵt = fH(ût ) ∀t ∈ {1, 2, . . . , n} (3b)

uL ≤ ût ≤ uU, wL ≤ ŵt ≤ wU ∀t ∈ {1, 2, . . . , n} (3c)

ma ≤ T ·
n∑

t=1

ût (3d)

H2ρ
i,1:2ρ ŵ j = 0 ∀ j, i : ν j,i = 0 (3e)

where H2ρ is the 2ρ × 2ρ Haar matrix, ν =
⎛

⎜⎝
ν j=1

...

ν j=q

⎞

⎟⎠ ∈ R
n is the wavelet coefficient

matrix, with ν j =
⎛

⎜⎝
ν j,i=1

...

ν j,i=2ρ

⎞

⎟⎠ ∈ R
2ρ
, given the Haar transformation ν j = H2ρ ŵ j and
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x̂ is the solution of:

x̂s+k(t−1) = ADx̂s+k(t−1)−1 + bDŵt ∀t ∈ {1, 2, . . . , n},∀s ∈ {1, 2, . . . , k}
x̂0 = 0

the controls and states are parameterized as:

x̂s+k(t−1) =
⎛

⎜⎝
x̂1,s+k(t−1)

...

x̂l,s+k(t−1)

⎞

⎟⎠ ∈ R
l ,

û =
⎛

⎜⎝
û1
...

ûn

⎞

⎟⎠ ∈ R
n, ŵ =

⎛

⎜⎝
ŵ1
...

ŵq

⎞

⎟⎠ =
⎛

⎜⎝
ŵ1
...

ŵn

⎞

⎟⎠ ∈ R
n

4.2.3 Wavelet coefficient insertion and deletion

The following step of AGRAGO is the analysis of the optimization solution of the
previous refinement step in order to insert (Fig. 6 (v)) new DoFs for the next iteration
of higher grid resolution using the “Sensitivity-based refinement” insertion technique
(Schäfer et al. 2020b). For the coefficients’ insertion, theLagrangianmultipliers related
to the equality constraints describing the equality between neighboring controls (or,
equivalently, the deactivation of a wavelet coefficient) are collected and used to sug-
gest the addition of wavelet coefficients. The “Sensitivity-based refinement” insertion
technique corresponds to the insertion method developed by Binder et al. (2000) and
further extended by Schäfer et al. (2020b). This method is based on evaluating the gra-
dients of the Lagrangian function of the dynamic optimization problem with respect
to new prospective parameterization functions. Binder et al. (2000) focus on both
wavelet and piecewise constant (“single scale”) parameterization functions and high-
light the possibility of a nonuniform piecewise constant parameterization of different
interval lengths. The discretized in-time problem under consideration is solved for a
certain control parametrization. The resulting optimal solution is used for retrieving the
gradients of the Lagrangian at this certain optimal point. Those grid points, whose cor-
responding parameterization functions exhibit large Lagrangian gradients, are added
to the control mesh. Schäfer et al. (2020b) have later implemented this approach,
considering wavelet basis parameterization functions, through a post-processing step
in order to obtain dual variables (Lagrangian multipliers) of the constraints fixing
inactive wavelet coefficients to zero as local sensitivities of the optimal solution with
respect to activating the coefficient. With this strategy, the inactive coefficients whose
deactivation constraints have the largest absolute dual variable (marginal effect of
constraint relaxing) are added in the next iteration. After the post-processing step, the
reduced-space problem is solved in MAiNGO (Bongartz et al. 2018).

The approach of Schäfer et al. (2020b) is applied in this work for a grid refinement
under piecewise constant control parametrization, except that objective sensitivities
are considered as the Lagrangian multipliers of the equality constraints describing
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the relation between the values of the discretized control variables. The correlation
between the equality constraints of the deactivation of a wavelet coefficient and the
piecewise constant control parametrization is given through an example of problem
(3a)–(3e) inAppendixC.1. Thenumber ofwavelet coefficients suggested to be added at
the next refinement step using the “Sensitivity-based refinement”method depends on a
user-specified number with a default value of 1. The minimum increase in coefficients
of one control variable that can occur between the refinement steps is specified by
this number. The maximum increase is this number incremented by one, and it is
independent of the coefficients deletion.

Other available insertion methods presented in literature propose the use of the
Euclidean norm of the vector of the refined “boundary coefficients” (wavelet coeffi-
cients with at least one inactive corresponding coefficient on the next higher-resolution
level) (“boundary signal”) for the addition of new DoFs (Schlegel et al. 2005; Schäfer
et al. 2020a). The “Sensitivity-based refinement” is another heuristic process for coef-
ficient insertions which, in contrast to the other methods, provides a quantifiable
indicator of the anticipated objective values improvement. Therefore, the latter is
selected to be integrated into AGRAGO with a comparison over different coefficient
insertion methods falling out of the scope of the present work.

After the suggestion of wavelet coefficients’ insertion is conducted, a wavelet trans-
formation (Fig. 6 (vi)) of the previous solution is performed, and the calculatedwavelet
coefficients are used to identify whether a particular coefficient should be deleted
(Fig. 6 (vii)). A coefficient deletion occurs when the coefficient falls below a specific
bound, as given in Eq.(4). This bound is a user-specified fraction (ε) of the norm of
the wavelet coefficients vector (Schlegel et al. 2005).

|ν j,i | < ε × |ν| (4)

Coefficient deactivation considers all variables that follow the same discretization
scheme, or synchronized variables (Appendix C.1), and the algorithm reassures that
when a coefficient is deactivated, the corresponding one of the synchronized variable
is also deactivated. The need to account for the synchronization of the optimization
variables results from the problem formulation of the dynamic optimization problem
(detailed analysis by Kappatou et al. (2022)), which requires exposing two control-
variable time-series to the optimizer that are linked with an equality constraint (see
Eq.3b). It is highlighted, in this regard, that AGRAGO allows users to decide whether
to permit the reactivation of coefficients deleted in the previous refinement step. If the
deletion criterion is not met for any currently active coefficient, and, thus, no deletion
takes place between two recursive refinement steps, the insertion only increases the
resolution of the initial mesh. More specifically, no shifting of the initial piecewise
constant control grid takes place, but instead, new discretization points are added
on top. This results in a non-decreasing objective between the two refinement steps,
which can be guaranteed to the entity of the refinement steps in case no deletion occurs
throughout the entire refinement procedure.

After the suggestion for coefficient insertion and deletion, the proposed coefficients
are added and deleted (Fig. 6 (viii)) so that at the end of the step, a newly refined grid
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is suggested in the form of a binary vector, where 0 corresponds to inactive and 1 to
active wavelet coefficients.

4.2.4 Termination

The algorithm terminates heuristically after a user-specified number of refinement iter-
ations (max_iterations) is executed, after a user-specified number of DoF (active
wavelet coefficients) (max_dofs) is reached, if the refinement procedure exceeds a
user-specified runtime limit (max_cpu_time), or if the highest possible grid resolu-
tion is reached. This preselected computational time limit is problem-dependent. For
instance, in the case of scheduling of processes that take part in a day-ahead electricity
market, the optimization solution should be obtained in less than 12h, as described in
Sect. 3.2. Since the number of wavelet coefficients increases after each refinement step
(unless differently selected by manipulating the user-specified number for insertion
accordingly (see Sect. 4.2.3)), the computational time related to each optimization step
is larger than that of the previous refinement iteration. Taking that into consideration
and in order to avoid a refinement that will exceed the computational time limit, we
terminate the refinement procedure when the total CPU time of the global optimization
of all refinement steps conducted increased by the CPU time of the last refinement
step’s global optimization exceeds this preselected time limit. The final solution sug-
gested by AGRAGO is the one resulting from the refinement step that leads to the
lowest objective value.

4.3 Scheduling results using AGRAGO

AGRAGO is used for the solution of the scheduling problem (3a)–(3e) in a reduced
space using MAiNGO (Bongartz et al. 2018) for the same setup as the one described
in Sect. 3.2, and the same optimization parameters given in Table 3 (Appendix B).
The control grid is parameterized using n = 24, and q = 3 (AGRAGO: n = 24),
and n = 32, and q = 1 (AGRAGO: n = 32), and the following settings are used
for the refinement: ε = 5 · 10−3, max_iterations=12, max_dofs= 48, and
max_cpu= 43,200 sec. In order to obtain the Lagrangian multipliers related to the
equality constraints of Eq. (3e), which are used for the wavelet coefficient insertion
step, we conduct a local search a posteriori beginning from the feasible point that gives
the lowest objective using IPOPT (Wächter and Biegler 2006).

In addition to the problem (3a)–(3e) for n = 24 (AGRAGO: n = 24), and n = 32
(AGRAGO: n = 32), we solve the initial problem (2a)–(2d) applying the coefficient
insertion approach of Schäfer et al. (2020b), the deletion criterion of Eq. (4) and
optimization in the space of the wavelet coefficients for n = 32 (as described in
Sect. 4.2.2) (refinement - optimization in wavelet c. space: n = 32). The three solution
approaches are applied; the computational time scaling over the number of DoFs is
illustrated in Fig. 7, and the objective value improvement over the number of DoFs
is given in Fig. 8. The results of the equidistant sampling for the solution of problem
(2a)–(2d) are added for comparison.
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Fig. 7 Scaling of computational timewith the number ofDoFs for differentmethods of refinement. Triangles
( ): Solution of problem (2a)–(2d) as presented by Schäfer et al. (2020b) (and deletion criterion of Eq.(4))
for different numbers of control intervals. Crosses ( ): Solution of problem (2a)–(2d) using equidistant
grid sampling for different numbers of control intervals n. Squares ( ): Solution of problem (3a)–(3e) for
n = 32, q = 1 and different numbers of control intervals. Circles ( ): Solution of problem (3a)–(3e) for
n = 24, q = 3 and different numbers of control set-point intervals

In Fig. 7, a general exponential trend of the CPU time with the number of DoFs,
similar to Fig. 4 is observed. A steeper scaling, and generally larger CPU times are
highlighted for optimization in the wavelet space (solution times increased by orders
of magnitude) explained by the enlarged search space, as mentioned in Sect. 4.2.1,
which supports the transition to performing optimization in the initial piecewise
constant control space. We additionally note that AGRAGO has the same or better
computational performance compared to equidistant sampling for more than 8 DoFs;
however, for fewer DoFs, equidistant sampling outperforms AGRAGO, which arises
from the different problem formulations implemented in both cases. As explained
in Appendix C.1, AGRAGO uses the optimization variables at the highest possible
grid resolution and equality constraints to indicate the deactivation of a coefficient.
This formulation increases the computational expenses for small numbers of DoFs;
the margin by which AGRAGO outperforms equidistant grids is expected to increase
with increasing n values. However, this worse runtime performance for small numbers
of DoFs is overall outperformed by the improved DoF allocation, as indicated in Fig. 8
for AGRAGO: n = 24.

From Fig. 8, we note the effect of the DoF allocation using AGRAGO on the
objective value improvement. AGRAGO: n = 32 results in similar objective values to
the case of the equidistant control grid. No practical improvement for a small number
of DoFs, in this case, can be explained by the asynchronous price and control set-point
change imposed by the non-power-of-two highest grid resolution, which endorses the
application of the batch concept for scheduling under the price profile considered.
On the other hand, AGRAGO: n = 24 results in a better allocation of the available
DoFs compared to the equidistant sampling, as explained by the higher objective value
improvements for a higher-than-4 number of DoFs, which supports the application of
AGRAGO for an improved allocation of the available DoFs of the scheduling problem.
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Fig. 8 Economic objective value improvement compared to non-scheduling operation with the number of
DoFs for different methods and highest grid resolution of refinement. Crosses ( ): Solution of problem
(2a)–(2d) using equidistant grid sampling for different numbers of control intervals n. Circles ( ): Solution
of problem (3a)–(3e) for n = 24, q = 3 and different numbers of control set-point intervals. Squares ( ):
Solution of problem (3a)–(3e) for n = 32, q = 1 and different numbers of control intervals. The points
with filled marks correspond to AGRAGO’s suggestion and the point with the bold cross mark correspond
to the solution of equidistant sampling

Particularly for 5 DoFs only, a 1.7% cost improvement compared to the equidistant
sampling is detected.

We additionally observe, from Fig. 8, that with the progressive refinement of the
control grid, the objective value overall drops (over-parametrization is avoided accord-
ing to Binder et al. (2000) in contrast to uniform sampling) at a decreasing rate as it
asymptotically approaches the value of the solution considering the highest control
grid resolution allowed (24 or 32); equivalently the objective improvement increases
with a decreasing rate. It is highlighted, though, that the objective is not necessarily
improving from one refinement iteration to the next one due to the arbitrary wavelet
coefficients’ deletion (not present here) or due to solution changes that fall into the
global optimality gap (1%) used in the B&B.

Especially for AGRAGO: n = 24, a marginal additional improvement (< 1%)
is detected for a number of DoFs higher than 4. We arbitrarily consider that since 6
recursive refinement steps result in absolute objective improvements smaller than the
optimality gap used, the objective at the highest possible grid resolution is practically
reached using only 5 DoFs (such stabilization is not identified for AGRAGO: n = 32);
thus, refinement up to that point is assumed to provide the maximum benefit possible.
This is a valuable feature of the application of AGRAGO, as it indicates the possibility
of obtaining, with a significantly smaller number of DoFs, a solution with the same
objective value as if a substantially higher resolution was used.

Figure 8, presents the solutions suggested by AGRAGO. For AGRAGO: n = 24
( ), the algorithm terminates after 7 iterations and 6 hours of CPU time (CPU of
recursive optimization steps only), while for AGRAGO: n = 32 ( ), the algorithm
terminates after 6 iterations and 8 hours of CPU time. The highest economic improve-
ment results from applying AGRAGO: n = 24 for 9 control intervals and amounts
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Fig. 9 Offline optimal scheduling profiles for the grid suggestion of different control grid refinement
approaches. Constant line ( ): Solution of problem (3a)–(3e) for n = 24, q = 3, and 9 DoFs. Dotted line
( ): Solution of problem (3a)–(3e) for n = 32, q = 1 and 9 DoFs. Dash-dotted line ( ): Solution of
problem (2a)–(2d) for n = 8 control intervals

to 14.1%. More specifically, economic savings of scheduling by applying AGRAGO:
n = 24 considering the computational time limit are improved by 1.1% compared
to the application of equidistant sampling for n = 8 ( ), as presented in Sect. 3.2.
However, AGRAGO: n = 32 does not achieve acquiring a solution with significantly
higher objective improvement (13.6%) compared to the equidistant sampling in the
specified time limit.

Figure 9 gives the different control and power profiles that correspond to the solution
points provided by the two AGRAGO refinement methods and a comparison to the
optimal profile without refinement (see Sect. 3.2). The corresponding Crossed-Time
scale plots are presented in Appendix C.4. In the case of AGRAGO: n = 32, we
notice that most control set-point changes coincide with a price change regardless of
the non-hourly discretized control grid, denoting that synchronous shifts are favored.
However, single price time intervals share two contrasting control choices (e.g., 11th
h), indicating additional potential savings from the application of the batch concept.
According to the profile of the AGRAGO: n = 24 solution, and for 9 DoFs, it is more
beneficial to drive the process to minimum production during the high and medium
prices andmore flexibly adjust the production during the hours of lower prices to fulfill
the minimum daily production demand. It is not guaranteed, though, that this is the
single optimal allocation of the available DoFs, as heuristic criteria are used for the
selection of the grid, or that the profile resulting from the next refinement suggestion
follows the same pattern.
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5 Conclusions

Global optimization of dynamic scheduling problems aims at attaining the globally
optimal schedule desired formaximizing economic benefits related to flexible dynamic
process-operation problems that are nonconvex. In this work, we perform experimen-
tation and data-driven dynamic modeling of an electrolyzer’s anode chamber which is
part of an electricity intensive process for the recovery of succinic acid (Schröder et al.
2022) to identify aHWmodel which describes the process operation.We then apply an
approach for global optimization with HWmodels (Kappatou et al. 2022) considering
discrete-time dynamics to solve the multimodal offline dynamic scheduling problem
to global optimality accounting for the process integration in a day-ahead electricity
market. We demonstrate the substantial economic benefits of such integration while
guaranteeing the global optimality of the solution attained and the dynamic feasibility
of the resulting schedule. We additionally highlight the computational limitations of
the optimization method applied due to the unfavorable scaling of the solution time
with the number of parameterized control segments related to the “curse of dimension-
ality” phenomenon. This poses a computational-time limit for the grid selection for
the application of the method to large-scale problems to achieve real-time applicable
computation and implementation of the schedule. While the worst-case exponential
computational scaling of the B&B algorithm cannot be tackled, we propose a sys-
tematic reallocation of the available DoFs; this DoF reallocation results in schedules
whose quality is indistinguishable (in terms of objective value) from other schedules
computed with a higher number of DoFs and in higher solution times.

We propose an algorithm for dimensionality reduction of global dynamic optimiza-
tion problems formulated in a reduced space to achieve substantial computational
savings considering a trade-off between a fine control grid resolution and the exploita-
tion of globalmethods for dynamic scheduling. The adaptive grid refinement algorithm
for global optimization (AGRAGO) proposed follows a systematic wavelet-based
analysis of the process control time series. The algorithm aims to iteratively sug-
gest a refined nonequidistantly sampled control grid considering a piecewise constant
parametrization of the control variables (Schlegel et al. 2005), alleviating limitations
for the selection of optimization horizon. The algorithm performs global optimization
in the parameterized control space for a current parametrization proceeded by a post-
processing step that suggests insertion and deletions of piecewise constant control
parameters. AGRAGO pinpoints refinement of the control grid based on sensitiv-
ity information from the Lagrangian multipliers (Schäfer et al. 2020b) related to the
equality of neighboring controls. Then, the algorithm applies a wavelet transform of
the control variables corresponding to a current solution, followed by a truncation of
the wavelet transform. AGRAGO can be used as a control grid refinement method for
global (as well as local) dynamic (or quasi-stationary) optimization.

We apply AGRAGO to the global dynamic scheduling of the electrochemical
process considering both synchronous (by introducing the batch concept) and asyn-
chronous control set-point and price change, and it is compared to a counterpart
considering optimization in the space of wavelet coefficients. AGRAGO leads to sig-
nificant computational time reduction compared to the counterpart, and AGRAGO of
synchronous change results in a more effective DoF allocation. The latter addition-
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ally prompts a quick convergence to a practically not further improved solution by
additional refinement, highlighting the computational gain from optimizing directly
over the piecewise control variables and supporting the flexibility of the optimization
horizon selection to account for the synchronization of the price and control set-points.
AGRAGO leads to a 14.1% cost reduction compared to nominal production, which is
by 1.1% improved compared to scheduling under equidistant control grid sampling for
the case study and time limitations under consideration. AGRAGO further provides
automation in the decision of the DoFs allocation and the first high-quality solution
in dramatically less time.

Future research should include additional experimentation and training of a more
accurate either black- or grey-box process model. Moreover, it should consider the
process units following the electrochemical cell at issue for the systematic flexibiliza-
tion of the entire succinic separation process to reach additional cost reduction. Further
investigation should focus on the process integration into an intraday electricitymarket
by potentially following an economic nonlinear model predictive control (eNMPC)
paradigm (Baldea and Harjunkoski 2014). Additionally, improvements in the scaling
behavior of the global dynamic optimization approach should be investigated regard-
ing methods for the construction of tighter relaxations for the lower bounding problem
(e.g., (Castro 2015)) or the ODE system (e.g., (Sahlodin and Chachuat 2011)). A sys-
tematic comparison of first, the global and local optimization solution approaches,
and second, the application of model linearization techniques (Kelley et al. 2018a)
over the solution of the nonconvex problem to global optimality considering solution
superiority and computational limitations for a methodical selection between them
should be further analyzed. Furthermore, AGRAGO could be extended to allow for
different discretization schemes of the control variables that are not synchronized and
applied to different problems of steady-state or dynamic scheduling and control track-
ing problems, also incorporated in a moving horizon scheme (NMPC). Finally, the
heuristic criteria of the DoF selection of recursive AGRAGO steps could be replaced
by an optimization step while still accounting for the computational limitations of the
applied method.

Supplementary information

Supplementarymaterial associated with this article can be found, in the online version.
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A Hammerstein–Wiener model fitting parameters & results

A.1 Data preprocessing

See Fig. 10.

Fig. 10 Experimental,
smoothened (SMA) & uniformly
sampled (linear interpolation
between the SMA) working data
for a single set-point change of
experiment 1
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A.2 Identifiedmodel parameters

The parameters of the LTI system described in Eq. (1) expressed in discrete time as:

w(t) = fH(u(t)), ∀t ∈ [ 0, T ]
x(t + Ts) = ADx(t) + bDw(t), ∀t ∈ [ 0, T ]
z(t) = cDx(t) + dDw(t), ∀t ∈ [ 0, T ]
x(0) = 0

y(t) = fW(z(t)), ∀t ∈ [ 0, T ]

are given by:

AD =

⎡

⎢⎢⎣

2.0951 −1.1263 −0.01923 0.10064
1.6642 −0.6744 −0.0161 0.0605
0.2500 0 0 0

0 0.0313 0 0

⎤

⎥⎥⎦ , bD =

⎡

⎢⎢⎢⎢⎣

0.6660
0.2500

0
0
0

⎤

⎥⎥⎥⎥⎦
,

cD = [−0.0738 0.0763 −0.0644 0.2419
]
, dD = 1

The input and output nonlinearities as presented in Eq. (1) are given, respectively
by: fH(u(t)) = 0.1837u4(t) − 2.1060u3(t) + 8.3186u2(t) − 11.5370u(t) + 1.0399,
with t ∈ [0, 1440], u ∈ [1.830, 4.572], and fW(z(t)) = 4.9567z2(t)+45.1037z(t)+
129.5721, with t ∈ [0, 1440]

Table 1 Hammerstein–Wiener model hyperparameters and fitting results

H W Number Number Delay Training Test nAIC BIC
Polyn. Polyn. of zeros of poles of LTI experiments experiment
degree degree of LTI of LTI 1/2/3 1

1-NMSE (%) 1-NMSE(%)

4 2 3 4 – 94.6/96.4/96.5 98.7 1.6 1513.2

A.3 Fitting to data

See Fig. 11.
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Fig. 11 HW model fitting to working data

B Optimization parameters and results

See Tables 2, 3 and 4.

Table 2 Objective value results for local optimization using miltistart with IPOPT 3.12.12 (Wächter and
Biegler 2006)

Number of intervals (n) Min Objective value Max Objective value

4 41.19∗ 44.85

10 40.05∗ 43.76

24 39.85 41.63

Objective values noted with ∗ additionally correspond to the global optimization solution obtained after
convergence of the lower to the upper bound
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Table 3 Global optimization parameters

Optimization parameter Value

T (min) 1440

n · k 960

ma(molmin−1) 4.600

uL(molmin−1) 1.830

uU(molmin−1) 4.572

wL (−) −3.062

wU (−) 1.149

Relative optimality tolerance 1 × 10−2

Upper bounding problem solver IPOPT 3.12.12 (Wächter and Biegler 2006)

Table 4 Objective value (Obj.) results of global optimization considering static process behavior and
objective value results of steady-state simulation considering the GDO schedules

Number of intervals (n) Obj. deviation from GDO
solution for steady-state opti-
mization (%)

Obj. deviation from GDO
solution for steady-state sim-
ulation of the GDO solutions
(%)

1 −14.7 −14.7

2 −7.7 −4.9

3 −14.2 −1.5

4 −16.7 −4.6

5 −15.2 −3.2

6 −14.6 −4.7

8 −15.4 −4.5

10 −14.9 3.1

12 −15.1 −4.5

The results are given in the form of deviations from the corresponding GDO objective values

For the selection of the optimality gap an a priori analysis takes place, which
considers the scaling of the solution algorithm with the optimality tolerance used to
obtain tractable solutions given the 12-hour computational time limitation, together
with a an improvement from the AGRAGO application at least in the same range
(here 1–2%) as the optimality gap (here 1%). Such an analysis is based on the B&B
performance exhibiting quick convergence of the upper bound and gradual increase of
the lower bound; thus no further improvement in the objective value result is expected
from further decreasing the optimality tolerance for the B&B.
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C Model generation and optimization in AGRAGO

C.1 Wrapper-model generation

The following example explains the wrapper model generation (Fig. 6 (iii)) step of
AGRAGO.Weassumepiecewise constant control vector parametrization and a highest
control grid resolution of 8 intervals. In case all wavelet coefficients are active, the
control profile of the variable ŵ is that of Fig. 12. The Crossed Time-scale plot, which
indicates by color (see Fig. 12) if awavelet coefficient is active (x) or inactive (blank) is
given in Fig. 13 (a) and the Patched Time-scale plot which illustrates by color intensity
the absolute values of the coefficients is presented in Fig. 13b.

The wavelet coefficients of the vector ν (for a single batch j = 1 and, thus j is
disregarded, see problem (3a)–(3e)) are calculated using an 8-point Haar matrix. For
illustrative purposes, the elements of ν in Fig. 12 and Eqs. (5)–(13) result from an
un-normalized 8-point Haar matrix, while in AGRAGO a normalized Haar matrix of
the Haar wavelet transform is used.

ν = H8ŵ, H8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

ν0 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 (6)

ν1 = w0 + w1 + w2 + w3 − w4 − w5 − w6 − w7 (7)

ν2 = w0 + w1 − w2 − w3 (8)

ν3 = w4 + w5 − w6 − w7 (9)

ν4 = w0 − w1 (10)

ν5 = w2 − w3 (11)

ν6 = w4 − w5 (12)

ν7 = w6 − w7 (13)

For the solution of a dynamic optimization problem, as the scheduling problem
(2a)–(2d), in the space of the parameterized control variables considering the wavelet
coefficients insertions and deletions proposed, we select to use the full control grid
resolution and additional equality constraints in case a coarser resolution is applied.
In the example presented here, the total number of DoFs is 16 (8 ŵ and 8 û), and each
time a wavelet coefficient is inactive (zero value), an equality constraint is added.
The additional equality constraints corresponding to a wavelet coefficient deactiva-
tion result from setting the given wavelet coefficients of Eqs. (6)–(13) to zero. It is
underlined here that even though in the example of Eqs. (5)–(13) an un-normalized
Haar matrix is used, the resulting equality constraints are the same as for using the
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Fig. 12 Solution profile of the
wavelet coefficients vector ν for
a highest resolution enabled of 8
intervals calculated as a wavelet
representation of the control
variable vector ŵ. In the present
case, all 8 wavelet coefficients
are active (non-zero)

Fig. 13 Crossed a and Patched b
Time-scale plot of the wavelet
transformation of Fig. 12

normalized Haar matrix. An example of the zero-level coefficient expression using
the normalized Haar matrix for comparison with Eq.6 is given by:

ν̄0 = 1√
8

× (w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7) (14)

For suggesting a wavelet coefficient insertion when the Sensitivity-based refine-
ment method is applied, we use the Lagrangian multipliers of the constraints related
to the wavelet coefficients truncation, which in this case are equality constraints on the
controls ŵ resulting from Eqs. (6)–(13), instead of equality constraints on the coef-
ficients ν, as presented in Schäfer et al. (2020b). The motivation behind this choice,
as explained in Sect. 4.2.2, lies in the high computational expenses that derive from
the enlargement of the search space in case the problem is solved in the wavelet coef-
ficients’ space. Characteristic is the example of the box constraints of the piecewise
control parameters wi which lie in the range of wU − wL compared to the wavelet
coefficients parameters, e.g., ν̄0 which lies in the range of

√
8× (wU −wL) according

to Eq. (14).
It should be pointed out here that control variables ŵ and û follow the same piece-

wise constant discretization scheme, as they are not independent of each other, but
instead, they are linked with an equality constraint. These two control variables are
henceforth called synchronized. As ŵ and û are synchronized, the addition of equality
constraints related to the truncation of a wavelet coefficient refers to only one of the
two control variables, in this case, ŵ.
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C.2 Batch-splitting of scheduling horizon

See Fig. 14.

Fig. 14 Example of splitting a 24h scheduling horizon in three 8h batches as a Crossed-Time-scale plot for
one of the synchronized control variables

C.3 AGRAGO parameters’ selection

The user-specified parameters of AGRAGO can be selected using the following guide-
lines:

• max_cpu: It is related to the time-limitations of acquiring the optimal solution
based on the optimization problem solved. For the case studies of this work, we
consider the 12-hour threshold presented in Sect. 3.2.

• ε: It is a fraction of the norm of the wavelet coefficients’ vector at a certain refine-
ment iteration. Its values should be between 0 (no active coefficient is deleted) and
1 (all active coefficients are deleted). The value of the norm, as well as the coef-
ficients depend on the range of the control values. Thus, no specific rule applies
to which the value of ε should be. It is advisable, though that a value is selected
through trial and error so that deletions are realized (high enough ε value), but
avoiding continuous and unnecessary ones that may result in overall worse objec-
tive values (too high ε value).

• max_dofs: It is higher than 1, and at maximum equal to the number of DoFs at
maximum resolution, which is a safe value to be used, as applied for the presented
case studies. If there is no clear restriction or high effect of the time limitations
(e.g., in case of steady-state global optimization with a few DoFs), a stricter value
can be used.

• max_iterations: It can be higher or lower than the highest possible grid
resolution depending on the initial number of active coefficients used and the

Table 5 AGRAGO parameters

AGRAGO parameter Value for AGRAGO: n = 24 Value for AGRAGO: n = 32

max_cpu(sec) 43,200 43,200

ε 5 · 10−3 5 · 10−3

max_dofs 48 64

max_iterations 12 12
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number of deleted and inserted coefficients throughout the refinement steps. The
selection is similar to that of the max_dofs.

When applying AGRAGO to a global dynamic optimization problem as the one
presented in our manuscript, we expect termination due to the CPU time limit reached,
as the main computational restriction of our problem. For a different use of AGRAGO
(e.g., global steady-state optimization), however, any of the other stopping criteria
could be responsible for the algorithm termination.

C.4 AGRAGO applications

See Figs. 15 and 16.

Fig. 15 AGRAGO: n = 32. Crossed-time scale plot for the different refinement steps for variable ŵ
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Fig. 16 AGRAGO: n = 24. Crossed-time scale plot for the different refinement steps for variable ŵ
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