
Optimization and Engineering (2024) 25:121–145
https://doi.org/10.1007/s11081-023-09848-2

RESEARCH ART ICLE

Optimal control of combined heat and power station
operation
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Abstract
Combined heat and power stations have become one of the most utilized units of dis-
trict heating systems. These stations usually contain several boilers for burning fossil
fuels and renewable resources used for heating up steam, which can be used either for
residential and commercial heating or electricity generation. To ensure efficiency, a
boiler should either run continuously (for at least a given period) on a power output
higher than a given threshold or switch off. The optimal control of the plant operations
should combine an efficient setup for the turbine and boilers in operation, reflecting
the demand for steam and the price of electricity, and a schedule that describes which
boilers should be in operation at a given time. This paper proposes a method for opti-
mal control of combined heat and power station operation for a given time horizon.
The method is based on a two-level approach. The lower-level models correspond to
finding the optimal setup of the combined heat and power station parameters for an
hourly demand for different kinds of steam. The upper-level model corresponds to
the optimal schedule of the operations of the individual boilers, which is planned for
the entire time horizon. The lower-level model is modeled as a mixed-integer linear
programming problem and is solved using parametric programming. A dynamic pro-
gramming algorithm solves the upper-level model with a rolling horizon. The validity
of the proposed method and its computational complexity for different granularity of
the time horizon, different ranges of the parameters, varying demand for various kinds
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of steam, and varying electricity prices are investigated in a case study. The presented
approach can be readily applied to other control problems with a similar structure.

Keywords Combined heat and power station · Optimal control · Dynamic
programming · Parametric programming · Rolling horizon control

List of Symbols

CB1 Cost of producing 1 MW of power at B1 and B2
(Eur/MW)

CB3 Cost of producing 1 MW of power at B3 (Eur/MW)
CGE Cost of producing 1 MW of power at GE1–GE4

(Eur/MW)
pE Electricity price (Eur/MW)
α Electrical efficiency of the turbine (−)
βGE,E Electrical efficiency of GE1–GE4 (−)
βGE,H Heat efficiency of GE1–GE4 (−)
D1, D2, D3 Demands for different kinds of steam (MW)
LBB1, LBB3, LBTG, LBGE Lower limits on the operational range of the compo-

nents (MW)
UBB1,UBB3,UBTG ,UBGE Upper limits on the operational range of the compo-

nents (MW)
x B1,T Total power produced at B1 and B2 (MW)
x B3,T Total power produced at B3 (MW)
xGE,T Total power produced at GE1–GE4 (MW
x B1,S2, x B1,S3, x B1,S4, x B1,TG Power flow from B1 to S2, S3, S4, and TG (MW)
x B3,S2, x B3,S3, x B3,S4 Power flow from B1 to S2, S3, and S4 (MW)
xTG,S3, xTG,S4 Power flow from TG to S3 and S4 (MW)
xTG,E Electrical power produced by the turbine (MW)
xGE,S3, xGE,S4 Power flow from GE1–GE4 to S3 and S4 (MW)
xGE,E Electrical power produced by GE1–GE4 (MW)
yB1 Number of boilers of type B1 in operation (−)
yB3 Number of boilers of type B3 in operation (−)
yTG Number of turbines in operation (−)
yGE Number of gas engines of type GE1 in operation (−)
mON Time boiler must be running after activation
mOFF Time boiler must be idle after being turned off
sB1,ON
k , sB2,ON

k Time boiler B1, B2 has been running at time k

sB1,OFF
k , sB2,OFF

k Time boiler B1, B2 has been inactive at time k
sk State of the system at time k
uB1
k Control of B1 at time k

uB2
k Control of B2 at time k
N Length of the time horizon
H1–H4 Rolling horizon schemes
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OPT Optimal control scheme
t1 Time for the construction of the state space
t2 Time for the evaluation of the possible states
t3 Time for the computation of the optimal control

Subscripts

S1, S2, S3, S4 Steam with parameters S1, S2, S3, and S4
TG Turbine
B1, B2, B3 Boilers B1, B2, and B3
GE, GE1–GE4 Gas engines
k Time index

Acronyms/Abbreviations

MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
CHP Combined heat and power station

1 Introduction

According to different sources, there are tens of thousands of power plants around
the world (A Global Database of Power Plants 2018). Thermal plants harvest energy
from coal, gas, oil, nuclear, biomass, waste, and geothermal sources, while there are
also hydro, wind, and solar power plant sources. Due to the wide range of different
sources (such as coal, gas, oil, etc.), electricity generation methods, applied techno-
logical processes, and the overall number of plants, there also arise questions about
the effectiveness and efficiency of energy production. Operating costs, process param-
eters, design of the plant and its subsystems, environmental impact, and sustainability
could be studied in detail, and remarkable optimization results are reachable (Jiang
et al. 2019). To improve operating costs, several papers have compiled very precise
models of boilers, turbines, valves, or cooling systems (Li et al. 2014). These models
helped to optimize control parameters to achieve better performance andmore efficient
energy production by using methods such as mixed-integer nonlinear programming
(MILP) (Serna-González et al. 2010) or pinch analysis (Kim and Smith 2001). Apart
from the cost reduction, the environmental impact is also important; its modeling can
be done by, e.g., adding energy savings and pollutant reduction into the cost function
of an optimization model (Douglas and Big-Alabo 2018).

With growing emphasis on sustainability and carbon neutrality, requirements to
increase renewable energy sources utilization are being placed (Li et al. 2022). How-
ever, such unreliable energy sourcesmight contribute to the instability of the electricity
grid (Rosenkranz et al. 2016). In the case of an unbalanced output, large fluctuations
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Fig. 1 Natural Gas Price (U.S. Energy Information Administration 2022)

in the energy market might occur and, in the worst case, lead to a blackout (Godoy-
González et al. 2020), such as the one that occurred recently in the Texas power crisis
in 2021 (Busby et al. 2021). With a remarkable share of renewable resources in the
power grid energy generation portfolio, system operators must possess advanced tools
and efficient mechanisms to accommodate high variability and intermittency (Khosh-
jahan et al. 2021). Otherwise, degraded reliability of the grid, drastic price spikes in
real-time operations (Fig. 1), and a decline in profitability of renewable source invest-
ments should be expected; this highlights the necessity to embed higher flexibility into
a power grid operation (Cochran et al. 2014).

Currently, various utility plants are implemented in the infrastructure for regulating
the electrical network and energy supply, and different plants can be connected to the
network. A utility system is mainly composed of boilers and turbines, where the boiler
is used to generate superheated steam from burning fuels such as coal, residual fuel
oils, natural gas, and flue gas. Anothermore efficient, sustainable, and environmentally
friendly option is biomass thermal plants or waste-to-energy plants that can recover
energy from plant or animal material (Paletto et al. 2019) and municipal solid waste
(Putna et al. 2018, 2022).

Generally, there are three main issues in controlling a utility’s operations: its effec-
tivity, handling uncertain parameters, and operational scheduling. The effectiveness
of the utility system is directly related to its impact on the environment. With the right
settings, the number of harmful by-products of energy generation can be reduced, e.g.,
the amount of emission produced by fuel burning into the air, water consumption, and
others. Deterministic models are a powerful tool for improving system efficiency. A
precise model of turbines and boilers can lead to good results. But because of the
widespread uncertainty, these results are often suboptimal or infeasible. Therefore,
the optimized model should consider the randomness of the processes so that the cho-
sen modern approach can be used in real operations. And when real operations are
considered, uncertainty in the values of the parameters must be accounted for, as the
state of the utility system changes over time. It is, therefore, not enough to find out the
optimal settings of a utility system for only one moment. To ensure the most efficient
operation of the utility system, it is important to prepare an optimal settings plan for
the various scenarios that the uncertainty introduces into the system.
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Utilities, such as steam and electricity, consume much fuel during production. The
process is energy-intensive and requires high operating costs. As this is a large-scale
process consisting of many different sub-components, a wide operational field has
opened up for the application of optimization research. Some case studies have been
set up focusing on different parts of the energy generation process.

Before implementing the utility system, it is necessary to prepare a scheme for the
whole system. It is possible to make optimal decisions in the initial plant design phase.
Due to the randomness of demand, the price of generated resources (electricity and
steam), and fuel prices, it is possible to prepare an optimal plant design so that the total
costs consisting of the initial investment and subsequent operating costs are minimal.
In (Sun et al. 2017), the authors added the environmental impact to the total costs in
the amount of CO2, SO2, and NOx generated from fuel combustion.

However, most of the plants have long been designed and built. Therefore, it is no
longer possible to plan a set of modules, their interconnections, and their parameters,
which implies that most plants still work inefficiently. Based on the European Envi-
ronment Agency (2018) study, the European average in electricity and heat production
efficiencywas 50% in 2016. The graph in Fig. 2 shows an 8% improvement since 1990,
meaning there is still plenty of room for additional growth. However, the data shown in
Fig. 2 are only estimates that are burdened with uncertainties in data and methodolo-
gies, and as such should be used cautiously. The work of Zhao and You (2019) takes
into account the uncertainty of the coefficients of the extraction-exhausting steam
turbine using robust optimization. They succeeded in the mentioned case study in
reducing operating costs by approximately 10% in the worst-case scenario. Based on
the realization of uncertainty, reductions are up to 18%.

Fig. 2 The efficiency of thermal power production in Europe (European Environment Agency 2018)
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The method described in this paper aims to minimize varying operational costs of
utility systems concerning real-life limitations while handling uncertainties in demand
and prices. The main contribution of this paper is developing a method that produces
optimal plant settings not just for one moment, but it prepares an optimal schedule
for chosen time horizon and with a chosen time step of variable length. In addition
to finding the optimal plan, we also offer risk analysis. This task is divided into two
parts. The first part consists of finding the optimal setting of the individual components
of the studied combined heat and power station (CHP) for given values of uncertain
parameters (in the studied case, the demand for different kinds of steam and the
price of electricity). This is achieved using a MILP model and solving it through
parametric programming. The second part solves the optimal setting of the CHP in
the time axis using dynamic programming and rolling horizon control. By using this
two-level approach, apart from finding the optimal control, a significant reduction in
computational time is also achieved, allowing for solving the problem for long time
horizons. In addition, the result of this effort is to provide a tool that allows inserting
a general model of the utility system. The user can modify the parameters, fuel type
(coal, gas, biomass, or waste), and the number of utility devices (boilers, engines, or
turbines). It also allows modifying the required parameters of the generated energy
at different levels and constraints, such as shutting down conditions of the individual
equipment for maintenance purposes, etc.

The rest of the paper is structured as follows. Section 2 provides the literature review.
Section 3 describes in detail both the lower-level model (the internal operations of the
CHP) and the upper-level model (the time-dependence of the control of some of the
components of the CHP). Section 4 introduces the methodology used for solving
the models: parametric programming, dynamic programming, and rolling horizon
control. Section 5 gives the details about the case study that was used to validate the
proposed approach. In Sect. 6, the results of the case study are discussed, along with
its limitations and possible extensions. Finally, conclusions are drawn in Sect. 7.

2 Literature review

Utility systems are used to transmit or distribute energy from the source of supply to
the point of demand. Even if the sources can vary, the energy producers typically face
high price and demand volatility affecting their operational costs, although for different
reasons. This can be historical crude oil price volatility (Alola et al. 2022), intermediate
effects on the energy markets such as the Covid-19 pandemic or the Russian invasion
of Ukraine (Yagi and Managi 2023), short-time daily effects (McKenna et al. 2022),
increasing amount of the renewable energy integrated into the power grid (Blackburn
et al. 2019), or also source material such as waste composition and amount uncertainty
(Pluskal et al. 2022). On the other hand, these volatile energy prices are strongly
related to energy demand that is even more unpredictable than before. CHP provides
an alternative the EU promotes due to its flexibility on demand, allowing a variation
management strategy in an energy system context where a single energy source can
simultaneously generate electricity and heat to meet the heating and cooling demands
(Beiron et al. 2022). For real-life deployment, there are additional constraints on the
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operation of the components. The devices such as boilers or turbines cannot be turned
on immediately and assume that they will work on the required performance, and the
same goes for their shutdowns. It is necessary to respect these devices’ given start-up
and shutdown phases.

An increasing number of models in the literature optimize the design of heat and
power systems. For example, Guo et al. (2013) introduce a two-stage optimal planning
and design method for combined cooling, heating, and power microgrid systems. The
system design is optimized in the first stage using a generic multi-objective optimiza-
tion approach. The operational costs are minimized in the second stage for several
obtained designs. Pruitt et al. (2014) present a mixed-integer nonlinear programming
(MINLP) model for the optimal design and dispatch of distributed energy systems.
Pruitt et al. (2013b) prescribe a global minimum cost system design and dispatch, con-
sidering off-design hardware performance characteristics for CHP and energy storage,
while Pruitt et al. (2013a) establish conditions for the economic viability of the sys-
tem. Krug et al. (2020) provide a nonlinear optimization model for the time-dependent
control of district heating networks. Rong and Lahdelma (2007) study the CO2 emis-
sions trading planning in a multi-period stochastic optimization model; during each
trading period, the future CHP production until the end of the planning horizon is
optimized based on scenarios for heat demand, power price, and allowance price. The
work by Hirwa et al. (2022) presents a MILP formulation to optimize the design of a
renewable energy system combined with heat and power, following previous research
on renewable energy sources (Ogunmodede et al. 2021). Multi-objective optimization
approaches have also been applied to solve the design (and dispatch) problem for
the CHP system. For example, Hollermann et al. (2021) account for economic and
environmental criteria to obtain a sustainable design.

For practical reasons, considering a certain time horizon within a control scheme
for real-life operations also plays an important role. Therefore, the design of a method
(or an algorithm) that can make dynamic decisions to ensure the optimal setting of
the system during its entire operation is necessary. There are several approaches to
solving such a problem. The problem can be formulated as a MILP problem (Iyer and
Grossmann 1998). Still, the disadvantage of this approach is the linearization of the
nonlinear system model and the extensive computational complexity of (mixed-) inte-
ger programming, which becomes especially burdensome for longer time horizons.
The second approach is decomposing the problem into several stages, which can be
solved separately under certain conditions. Kim and Han (2001) divided the task into
several sub-tasks: generate feasible configurations set of the plant via heuristic and
calculate the optimum for the nonlinear programming sub-problem at any given time.
They found the optimal solution for a short time horizon using dynamic programming.
Lozano et al. (2010) optimized the costs of combined heat, cooling, and power systems
under legal constraints using a MILP approach. The same methodology was used by
Ameri and Besharati (2016) for the control of a cooling, heating, and power system of
a residential district. Operation scheduling of a coal-fired combined heat and power
station was studied by Liu et al. (2021), where a metaheuristic (particle swarm opti-
mization algorithm) was utilized. Mamaghani et al. (2017) also used a metaheuristic
(genetic programming) to optimize a fuel cell-based micro-combined heat and power
plant. However, since the performance of metaheuristics strongly depends on their
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initialization (Matoušek et al. 2022) and chosen parameters (Kazíková et al. 2020),
they can lead to suboptimal results.

The rolling horizon approach has been applied in various applicationswhere aMILP
is solved over a smaller number of periods in successive iterations (Soni et al. 2021).
See, for example, the work by (Silvente et al. 2015) that applied the rolling horizon
to simultaneous energy supply and demand planning. The rolling horizon approach, a
common decomposition method, can reduce the computational time needed to solve
problemswithmany variables. Typically, the problem is solved for successive planning
intervals representing a small part of the horizon rather than solving a complex problem
considering its whole time horizon. This helps reduce the problem’s size per interval,
breaking down one large problem into easily solved sub-problems (Marquant et al.
2015).

This paper proposes a novel method for optimal control of CHP station operation
for a given time horizon. The two-level approach and the combination of the solution
approaches across the levels (parametric programming for the lower-level model and
dynamic programming with the rolling horizon for the upper-level model) have not
yet been applied and used in the literature on CHP optimization. It allows us to solve
computationally challenging tasks effectively and in a reasonable time. Therefore, the
main contribution of the paper is the two-level modeling approach together with the
application of the computational approach application.

3 Problem definition

The studied CHP is schematically described in Fig. 3. The main purpose of this CHP
is to produce steam (heat), with a secondary possibility of producing electricity. The
main sources of power are two coal boilers (B1 and B2) that are used to produce steam
S1. This steam can either be used to power a turbine (TG) that produces electricity or
can be transformed into steam with lower parameters (S2), which is used in various
industrial applications. There is also a backup boiler (B3) that burns natural gas and
can produce steam S2. Steam S2 can be further transformed into steam S3 (used
in industrial applications) and steam S4 (transformed into hot water for municipal
heating). Four gas engines (GE1–GE4) produce both electricity and steam, S3 and
S4. The demand for the different kinds of steam (S2–S4) is denoted by D1–D3 and is
expressed in terms of MW.

3.1 Lower-level problem

The lower-level problem then consists of the optimal setting of the individual compo-
nents of the CHP: which of the parts should be running, at what power level, and what
should be the flow of energy between the components. The objective is tominimize the
costs related to energy generation, with the demand for the different kinds of steam
being met. In the studied system, boilers B1 and B2 have the same characteristics.
The same can be said about the gas engines GE1–GE4. This situation helps to reduce
the number of model variables by merging the flows from the two boilers (and four
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Fig. 3 System diagram of the combined heat and power station

gas engines) into a single one. We also refrain from modeling the flows from S1 to
S2, S2 to S3, etc., explicitly, and use an equivalent implicit model (that uses flows
from the two boilers to S1, S2, etc.) instead. The explicit model, and its relation to the
implicit one, are described in the Supplementary material. The individual parameters
and variables of the model are shown in Table 1.

The optimizationmodel can be expressed as aMILP problem of the following form:

minimize cB1xB1,T + cB3xB3,T + cGExGE,T − pE(xTG,E + xGE,E) (1)

Subject to x B1,T � x B1,S2 + x B1,S3 + x B1,S4 + x B1,TG (2)

x B3,T � x B3,S2 + x B3,S3 + x B3,S4 (3)

βGE,H xGE,T � xGE,S3 + xGE,S4 (4)

βGE,E xGE,T � xGE,E (5)

x B1,TG � xTG,S3 + xTG,S4 + xTG,E (6)

123
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Table 1 Lower-level optimization model parameters and variables

Parameters

CB1 Cost of producing 1 MW of power at B1 and B2 (Eur/MW)

CB3 Cost of producing 1 MW of power at B3 (Eur/MW)

CGE Cost of producing 1 MW of power at GE1–GE4 (Eur/MW)

pE Electricity price (Eur/MW)

α Electrical efficiency of the turbine ( −)

βGE,E Electrical efficiency of GE1–GE4 ( −)

βGE,H Heat efficiency of GE1–GE4 ( −)

D1, D2, D3 Demands for different kinds of steam (MW)

LBB1, LBB3, LBTG , LBGE Lower limits on the operational range of the components (MW)

UBB1,UBB3,UBTG ,UBGE Upper limits on the operational range of the components (MW)

Variables

x B1,T Total power produced at B1 and B2 (MW)

x B3,T Total power produced at B3 (MW)

xGE,T Total power produced at GE1–GE4 (MW)

x B1,S2, x B1,S3, x B1,S4, x B1,TG Power flow from B1 to S2, S3, S4, and TG (MW)

x B3,S2, x B3,S3, x B3,S4 Power flow from B1 to S2, S3, and S4 (MW)

xTG,S3, xTG,S4 Power flow from TG to S3 and S4 (MW)

xTG,E Electrical power produced by the turbine (MW)

xGE,S3, xGE,S4 Power flow from GE1–GE4 to S3 and S4 (MW)

xGE,E Electrical power produced by GE1–GE4 (MW)

yB1 Number of boilers of type B1 in operation ( −)

yB3 Number of boilers of type B3 in operation ( −)

yTG Number of turbines in operation ( −)

yGE Number of gas engines of type GE1 in operation ( −)

xTG,E � αx B1,TG (7)

x B1,S2 + x B3,S2 ≥ D1 (8)

x B1,S3 + x B3,S3 + xTG,S3 + xGE,S3 ≥ D2 (9)

x B1,S4 + x B3,S4 + xTG,S4 + xGE,S4 ≥ D3 (10)

LBB1yB1 ≤ x B1,T ≤ UBB1yB1 (11)

LBB3yB3 ≤ x B3,T ≤ UBB3yB3 (12)
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LBGE yGE ≤ xGE,T ≤ UBGE yGE (13)

LBTG yTG ≤ x B1,TG ≤ UBTG yTG (14)

x B1,T , x B1,S2, x B1,S3, x B1,S4, x B1,TG ≥ 0 (15)

x B3,T , x B3,S2, x B3,S3, x B3,S4 ≥ 0 (16)

xGE,T , xGE,S3, xGE,S4, xGE,E ≥ 0 (17)

yB1 ∈ {0, 1, 2}, yB3 ∈ {0, 1}, yTG ∈ {0, 1}, yGE ∈ {0, 1, 2, 3, 4} (18)

The objective function (1) is the difference between the operational costs for pro-
ducing energy at the individual components and the sold electrical energy. It is assumed
that the profit from supplying the steam streams is fixed (and, as such, is not important
for the computation). Constraints (2) and (3) describe the flow of energy from B1
(and B2) and B3 to S2, S3, and S4. Constraints (4) and (5) express the electrical and
heat energy generated by GE1–GE4. Constraints (6) and (7) describe the energy flow
through the turbine. Constraints (8)–(10) encode the demand for different types of
steam. Constraints (11)–(14) define the operational limits of the individual CHP com-
ponents. Constraints (15)–(17) enforce nonnegativity on the energy flows. Constraint
(18) defines how many of the CHP components are available.

3.2 Upper-level problem

The goal of the control is not to have the optimal setup for the CHP for one particular
demand and electricity price but rather to find the optimal schedule of operations for
varying demands and prices throughout the year. The main concern is boilers B1 and
B2, which cannot be turned on and off frequently. It is assumed that the same property
can be neglected for the other CHP components. This situation is modeled as a discrete
dynamical system with four states:—sB1,ON

k for how long has boiler B1 been running

at time k, sB1,OFF
k —for how long has boiler B1 been inactive at time k, sB2,ON

k —for

how long has boiler B2 been running at time k, sB2,OFF
k —for how long has boiler

B2 has been inactive at time k. The control consists of two decisions uB1
k and uB2

k ,
which determines if the corresponding boiler should be active (value 1) or inactive
(value 0) at time k. The switch between the two values of uB1

k and uB2
k can only

be made after it the corresponding boiler has been running (or inactive) for at least
mON (or mOFF ) time units. The state space can be reduced by mapping all states that
correspond to the boilers being active (or idle) for a longer time thanmON (ormOFF )
onto the state with a valuemON (ormOFF ). This can be done because the information
that the boiler has been running (inactive) for at least mON (or mOFF ) is enough
to define the possible actions (i.e., one does not need to know for how much longer
that mON has been running). The discrete dynamical system, with a fixed horizon
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N , has (mON + mOFF )
2
possible state values and can be described by the following

equations:

sB1,ON
k+1 �

{
max

(
sB1,ON
k + 1,mON

)
, ifuB1

k � 1

0, ifuB1
k � 0

k � 0, 1, . . . , N − 1 (19)

sB1,OFF
k+1 �

{
max

(
sB1,OFF
k + 1,mOFF

)
, ifuB1

k � 0

0, ifuB1
k � 1

k � 0, 1, . . . , N − 1

(20)

sB2,ON
k+1 �

{
max

(
sB2,ON
k + 1,mON

)
, ifuB2

k � 1

0, ifuB2
k � 0

k � 0, 1, . . . , N − 1 (21)

sB2,OFF
k+1 �

{
max

(
sB2,OFF
k + 1,mOFF

)
, ifuB2

k � 0

0, ifuB2
k � 1

k � 0, 1, . . . , N − 1

(22)

uB1k ∈ UB1
k

(
sB1,ON
k , sB1,OFF

k

)
�

⎧⎪⎨
⎪⎩
1, ifsB1,ON

k < mON

0, ifsB1,OFF
k < mOFF

{0, 1}, otherwise

k � 0, 1, . . . , N − 1

(23)

uB2k ∈ UB2
k

(
sB2,ON
k , sB2,OFF

k

)
�

⎧⎪⎨
⎪⎩
1, ifsB2,ON

k < mON

0, ifsB2,OFF
k < mOFF

{0, 1}, otherwise

k � 0, 1, . . . , N − 1

(24)

The cost associated with each state gk(sk, wk) (with sk �
[sB1,ON
k , sB1,OFF

k , sB2,ON
k , sB3,OFF

k ]) corresponds to the optimal value of the
lower-level problem with yB1 equal the number of boilers in operation, and with wk

containing the demands D1, D2, and D3 and electricity price pE at time k. The aim
of the control is to find the optimal sequence of decisions π∗ � {u∗

0, u
∗
1, . . . , u

∗
N−1}

(with u∗
k � [uB1,∗

k , uB2,∗
k ]) that minimize the expected accumulated costs J ∗:

π∗ � argminuk ;k�0,...,N−1Ewk ;k�0,...,N

{
N∑

k�0

gk(sk)

}
(25)

J ∗ � minuk ;k�0,...,N−1Ewk ;k�0,...,N

{
N∑

k�0

gk(sk, wk)

}
(26)
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4 Methods

In this section, we give a brief overview of the different techniques needed for the
successful implementation of the two-level approach. These techniques encompass
parametric programming, dynamic programming, and rolling horizon control.

4.1 Parametric programming

To compute the costs at a given dynamic system state, one would need to recompute
the optimal solution to mixed integer linear problem (1)–(18) for every value of the
uncertain parameters. Although the optimization problem is relatively small, it would
still bring high computational costs. The first step in approaching this issue is to realize
that there are only 60 possible combinations for the values of the integer-constrained
variables. Thismeans that if the resulting linear problem can be solved efficiently (with
the integer-constrained variables being fixed at a particular value), a large fraction of
the computational time can be saved. The chosenmethod for this efficient computation
was parametric programming.

Parametric programming is a powerful method for investigating the effect of vari-
ability or uncertainty in mathematical programming problems (Pistikopoulos et al.
2012). It allows for a systematic analysis of the effect of varying parameters on the
optimal value and solutionof anoptimizationproblem, providingmore robust solutions
(Avraamidou and Pistikopoulos 2020). Parametric programming has found numerous
applications, mainly in distributed energy system scheduling (Liu et al. 2013) and
operational scheduling of microgrids (Umeozor and Trifkovic 2016).

In general, a parametric linear programming problem can be defined as:

z(θ) � minimize (c + Pcθ)
T x (27)

subject to Ax ≤ b + Pbθ (28)

θ ∈ � (29)

where thematrices Pc and Pb have appropriate dimensions. The solution to the problem
(27)–(29) has the form of a partitioning of the feasible parameter space � f � �

into several polytopic regions, known as critical regions. Each of the critical regions
is associated with the optimal solution x∗(θ) and objective function z∗(θ), that are
affine functions of θ (Oberdieck et al. 2016). This means that by solving the original
problem (1)–(18) as a parametric one (27)–(29) for a given range of the parameters
(θ � [D1, D2, D3, pE ]), the optimal solution to (1)–(18) is obtained for a particular
value of the parameters by simply calling the function x∗(θ).
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4.2 Dynamic programming

Dynamic programming is the most extensively used method for finding the optimal
control for discrete dynamical systems (Bertsekas 1995), such as (19)–(26). Recently,
it has been used for dynamic energy management of microgrids (Zeng et al. 2018),
energymanagement of electric vehicles (Lee et al. 2020), optimal scheduling of electric
bus fleets (Wang et al. 2020), or operation strategies for grid-connected battery systems
(Zou et al. 2022).

Based on the principle of optimality in dynamic programming, the optimal control
for the discrete dynamical system can be solved by recursively computing Bellman’s
equation backward in time as follows (Bertsekas 1995):

JN (sN ) � gN (sN ) (30)

Jk(sk) � min
uk∈Uk

Ewk {gk(sk) + Jk+1(sk+1)}, k � N − 1, . . . , 0 (31)

For a given initial state s0, the optimal expected cost J ∗ is equal to J0(s0). Further-
more, if the minimizers of the right side of (31) u∗

k � u∗
k (sk) are collected for each sk

and k, the optimal policy π∗ � {u∗
0, u

∗
1, . . . , u

∗
N−1} can be easily retrieved.

Since the system equation is deterministic (there is only uncertainty in costs), the
discrete dynamical problem can be transformed into an equivalent graph problem
(Bertsekas 1995). The individual states correspond to nodes in the graph, while edges
describe the possible transitions from one state to another. The optimal control then
corresponds to finding the shortest path in the graph from a given starting state s0 to
any state sN in time N . This transformation is schematically described in Fig. 4 for
a problem with mON � 3, mOFF � 2 (i.e., 25 different states), and N � 4. The
four large numbers correspond to the state ([sB1,ON

k , sB1,OFF
k , sB2,ON

k , sB2,OFF
k ]),

the dashed lines are the possible transitions, and the numbers in brackets show the
cost of the state (the value of the optimal solution to (1)–(18) with the number of
boilers in operation based on the state). The initial state was s0 � [1, 0, 0, 2], In
this case, there were three optimal control schedules (i.e., with the same expected
costs)—they are highlighted in red in Fig. 4.

4.3 Rolling horizon control

If the perfect knowledge about the future values of the uncertain parameters was
available to the controller, the dynamic programming method described above would
give the optimal control scheme. If one does not have this knowledge, approximate
forecasts for the values of the uncertain parameters have to beused, and the controlmust
be based on those forecasts. The rolling horizon control is an approach for reducing
the effect errors in the forecast of the values of the uncertain parameters (Das and Ni
2020). Other names for this approach are predictive model control in engineering and
receding horizon control in operations research (Powell 2011). It has been utilized to
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Fig. 4 Graph equivalent to the discrete dynamical system. The states and transitions (with possible states
highlighted) are shown in black, and the optimal control is in red

solve problems from infrastructure planning (Kůdela et al. 2020), microgrid control
(Elkazaz et al. 2020), or production planning (Ziarnetzky et al. 2018).

The rolling horizon control is a real-time (online) optimization technique that com-
putes the solution to constrained optimization problems repeatedly, considering the
current state, predictions of future costs, disturbances, and constraints over a sliding
time horizon to find the optimal control for the current period. In this paper’s con-
text, the schedule will be computed for a reduced time horizon and with a different
granularity of time steps. This approach is outlined in Fig. 5, where the blue line
shows a random parameter’s “real” value. In contrast, the red line shows the forecast

Fig. 5 Outline of the rolling horizon control
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of the rolling horizon procedure, with periods where a decision can be made being
highlighted by a cross.

5 Case study

To study the effectiveness of the proposed approach, a case study with synthetic data
is analyzed. The time step of the control is set to be one hour, and the control horizon
is 100 days (or 2400 h). The values of the different parameters for the lower-level
model are shown in Table 2.

The “true” values of the uncertain parameters (demands for different kinds of steam
D1, D2, D3, and electricity price pE ) are shown in Figs. 6 and 7. The chosen progres-
sion of the demand for steam is chosen in such a way that it simulates the end of the
heating season (from the end of winter to late spring/early summer).

For the upper-level model, four possible settings for the values of mON and mOFF

were considered (with different resulting numbers of states), and four different settings
for the rolling horizon periods H. These were compared with the optimal solution with
access to perfect knowledge about the values of the uncertain parameters (computed
using the dynamic programming algorithm). The chosen values of these settings are
shown in Table 3.

Table 2 Values of the parameters
for the case study – lower-level
model

Parameter Value Parameter Value

cB1 14.50 (Eur/MW) cB3 47.33 (Eur/MW)

cGE 42.59 (Eur/MW) α 0.1

βGE,E 0.47 βGE,H 0.37

LBB1 20 (MW) UBB1 36.6 (MW)

LBB3 1 (MW) UBB3 14.8 (MW)

LBTG 3 (MW) UBTG 80 (MW)

LBGE 2.9 (MW) UBGE 19.5 (MW)

Fig. 6 Demand for the different kinds of steam in the 100-day horizon
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Fig. 7 Price of electricity in the 100-day horizon

Table 3 Values for the different settings for the case study—upper-level model

mON /mOFF (h) 18/12 24/18 36/24 48/36

Number of states 900 1764 3600 7056

Setting label H1 H2 H3 H4

Decision time [h] [0, 1] [0, 1, 2, …, 12] [0, 1, 2, 4, 6, 8, 12,
16, 20, 24]

[0, 1, 2, 4, 6, 8, 10,
14, 20, 26, 38, 50]

For example, the H1 setting for the horizon corresponds to a “greedy” control that
takes into account only the forecast for the uncertain variables in the current period (0)
and the upcoming one (in 1 h) and makes the decision that minimizes the costs based
only on this information. In the case of multiple optimal decisions (such as the ones
shown in Fig. 4), the algorithm prefers the solution that does not change the control
variables (in the case of Fig. 4); it would prefer the solution on the top).

The implementation of both the lower-level and upper-level models was done in
MATLAB R2021b. For the lower-level model, the toolbox “Multi-Parametric Tool-
box 3.0” developed by (Herceg et al. 2013) was used to compute the partitioning
of the feasible parameter space into polytopic regions. It was found that solving and
pre-computing these regions using the parametric programming resulted in an approx-
imately 20 times faster execution of the method when compared to solving (1)–(18)
each time by the linear programming solver embedded in MATLAB. The computa-
tions were carried out on an ordinary computer (with 3.2 GHz i5-4460 CPU and 16GB
RAM).

6 Results and discussion

First, the computational complexities are compared of the four horizon settings H1-H4
and the optimal control scheme with perfect knowledge (labeled as OPT) on the four
possible values for mON and mOFF . For this purpose, three main parts of the control
are defined, and the time for their evaluation is measured: t1—construction of the state
space (possible state values and transitions, construction of the associated graph),
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t2—evaluation of the possible states (i.e., solving (1)–(18) by utilizing the partitioning
obtained by the parametric programming approach), t3—computation of the optimal
control (i.e., finding the optimal path in the graph). For the OPT control scheme, the
three parts are evaluated only once, while for the rolling horizon schemes H1–H4,
only the first part is computed once, while the other two are computed each time the
horizon shifts (i.e., 2,400 times in the studied case). The results of this comparison are
reported in Table 4.

The first thing to note is that for a given control scheme the t2 value does not
depend on mON/mOFF—this should be expected, as the optimal value of (1)–(18)
depends only on the number of boilers in operation, not on the particular time they
were running. Another interesting observation is that the time to construct the graph
(t1) is very similar for H1 and H2—this can be explained by the fact that both control
schemes use the same time step for the entire horizon (one hour), even though the
length of the horizon differs. Adding time steps with different lengths in the horizon
increases t1, as can be seen by comparing the values of H1 and H2 to H3 and H4.
Also, t1 increases with a higher number of possible states. The time for the finding of
the optimal path in the graph (t3) depends mainly on the number of time steps on the
horizon and on the number of possible states. This is the reason the control scheme
H1 had the fastest evaluation (only two-time steps), while H2–H4 were relatively
comparable (with 10–13 time steps).

Next, the costs of the different control settings are compared based on the values of
mON/mOFF, and the results of this comparison are summarized in Table 5. Naturally,
the control with perfect knowledge (OPT) is the one with the lowest cost and can
serve as a benchmark for the rolling horizon control schemes. The first thing to note
is that the cost of the control schemes generally increases with increasing values of
mON/mOFF , especially between the 18/12, 24/18 and 36/24 values, while there is
little to no difference between 36/24 and 48/36. This can be explained by noticing the
increasing the mON/mOFF values result in more constrained situations, where the
boilers must run (or be switched off) for longer periods of time, which limits available
options for control and results in higher costs. This small difference between 36/24 and
48/36 is probably due to the particular structure of the data. As can be seen from the
results, there is no one rolling control scheme thatwould be best in all situations. On the
other hand, the "greedy" scheme H1 was (quite expectedly) the worst-performing one,
especially for the higher values of mON/mOFF , where decision have longer lasting
consequences. The other three control schemes H2–H4 have all performed very well
when compared with the optimal control. For mON/mOFF � 18/12 the best control
scheme was H2, for mON/mOFF � 24/18 it was H4, and for mON/mOFF � 36/24
and 48/36 the best were H3 and H4 (with just a very little difference between the
two). In all cases, the best-performing scheme was worse than the optimal control by
no more than 0.12%. This confirms that the rolling horizon control approach is well
suited for the studied problem.

The comparisons of computational complexity and resulting costs show that the
presented method is appropriate for real-time control of the studied CHP. Having
the optimal (or close to optimal) control enables the investigation of various relations
between the uncertain parameters and results of the control. For instance, Fig. 8 depicts
the dependence of the amount of produced electricity on the combined demand for
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Table 5 Cost for the different control settings [EUR]

mON /mOFF

Setting label 18/12 24/18 36/24 48/36

OPT 834,272.1 835,976.6 838,100.1 838,100.1

H1 841,469.1 863,834.3 868,109.1 867,111.7

H2 834,539.4 838,729.8 840,125.9 840,382.4

H3 835,228.1 837,362.2 838,380.4 838,370.9

H4 835,923.9 836,946.2 838,475,7 838,466.2

Fig. 8 Demand for the steam vs. produced electricity, optimal control, mON /mOFF � 36/24

steam. It shows that the optimal amount of produced electricity is generally between
1 and 4 MW and rises with increased demand for steam. Similarly, the number of coal
boilers is naturally higher for the higher demand for steam. In some cases, both boilers
should be switched off for a brief period, as can be seen in Fig. 9.

It should be acknowledged that the presented model is not without its limitations.
Firstly, the CHP model is not perfect, as it does not consider start-up times for the
turbine and different efficiency levels for the boilers and the turbine, which affect
the whole operation of the CHP. Also, the costs do not reflect the whole operation,
such as employee pay, maintenance costs, etc. Finally, the model does not include the

Fig. 9 Demand for the steamvs. number of coal boilers in operation, optimal control,mON /mOFF � 36/24
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environmental or social aspects of operating a CHP. All of these issues are expected
to be addressed in upcoming studies.

On the other hand, the presented model allows for several interesting possibilities.
As the problem is solved in a graph form, it is quite straightforward to incorporate
maintenance scheduling (simply by changing the values of the corresponding states).
It also enables the investigation of different pricing options for the different steam
streams throughout the year. Moreover, additional experiments with constructing the
graph and computing the control for a model with 1 million possible states found that
it could be realized—the construction of the graph took a little under two hours. This,
however, is not an issue as this part can be pre-computed. Evaluating the states and
finding the optimal control took just a few seconds. This could allow for expanding
state space by having finer time steps and by including states that describe the operation
of the turbine. Other extensions that would make the CHP model even more realistic
and applicable could include the power streams from the recurring equipment.

7 Conclusion

In this paper, a method for the optimal control of CHP operations was described, and
its performance was investigated through a case study. The method’s main idea was
decomposing the problem of controlling the operations of the CHP into two levels and
solving these subproblems with appropriate methods. The evaluation of the proposed
method, both from computational and cost perspectives, showed its effectiveness and
utility. The findings can also guide engineers and stakeholders to optimize and evaluate
the control of systems with a similar structure. There are several conclusions that can
be drawn:

• The use of parametric programming brings substantial computational savings, com-
puting the solution to the lower-level problem roughly 20 times faster than the
corresponding linear optimization solver, which leads to the faster evaluation of
the possible states. This makes the analysis of the control schemes for long time
horizons computationally attainable.

• The rolling horizon control schemes displayed high utility in handling the develop-
ment of the uncertain parameters—the best ones for a particular setting of the CHP
operations resulted in control that was no more than 0.12% worse than the optimal
control with perfect information.

• Although there was no "one-size-fits-all" rolling horizon scheme, all the proposed
schemes displayed good performance (apart from the "greedy" scheme H1). This
suggests that the problem is not extremely sensitive to the choice of the rolling
horizon (but finding an appropriate one for the particular CHP settings can be
valuable).

• Even though there were limitations to the presented model, the very low computa-
tional requirements for the analysis of the different schemes leave room for making
more precise models of the CHP operations, the possible inclusion of competing
objectives, and finer granularity of the time steps, that would still result in a com-
putationally tractable method.
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