
Optimization and Engineering (2024) 25:959–998
https://doi.org/10.1007/s11081-023-09831-x

RESEARCH ART ICLE

Extensions to generalized disjunctive programming:
hierarchical structures and first-order logic

Hector D. Perez1 · Ignacio E. Grossmann1

Received: 28 January 2023 / Revised: 24 May 2023 / Accepted: 29 July 2023 /
Published online: 20 December 2023
© The Author(s) 2023

Abstract
Optimization problems with discrete–continuous decisions are traditionally modeled
in algebraic form via (non)linear mixed-integer programming. A more systematic
approach to modeling such systems is to use generalized disjunctive programming
(GDP), which extends the disjunctive programming paradigm proposed by EgonBalas
to allowmodeling systems from a logic-based level of abstraction that captures the fun-
damental rules governing such systems via algebraic constraints and logic. Although
GDP provides amore general way of modeling systems, it warrants further generaliza-
tion to encompass systems presenting a hierarchical structure. This work extends the
GDP literature to address twomajor alternatives formodeling and solving systemswith
nested (hierarchical) disjunctions: explicit nested disjunctions and equivalent single-
level disjunctions. We also provide theoretical proofs on the relaxation tightness of
such alternatives, showing that explicitly modeling nested disjunctions is superior to
the traditional approach discussed in literature for dealing with nested disjunctions.

Keywords Generalized disjunctive programming · Hierarchical systems ·
Discrete–continuous optimization

Sets

i ∈ I Processes
j ∈ J Technologies
k ∈ K Resources
k ∈ Kreact Reactors
k ∈ K tank Tanks
s ∈ S Streams

B Ignacio E. Grossmann
grossmann@cmu.edu

1 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-023-09831-x&domain=pdf

960 H. D. Perez, I. E. Grossmann

s ∈ Sext External material streams
s ∈ Sinx Streams entering x
s ∈ Soutx Streams exiting x
t ∈ T Time periods
u ∈ Uk Number of installed units for resource k

Parameters

α Fixed installation/expansion cost
β Variable installation/expansion cost coefficient
γ Variable operating cost coefficient
ν Yield coefficient
τi Processing time for process i
FU B
s Upper bound on stream s

px Price/cost of stream/material x
QUB

k Upper bound on the capacity of resource k
QEUB

i Upper bound on the capacity expansion of process i

Continuous variables

Bi,t Total batch size for process i starting in period t
̂Bi,t Unit batch size for process i starting in period t
CEi,t Expansion cost for process i in period t
C Ik Installation cost for resource k
COi,t Operating cost of process i in period t
Fs,t Flow in stream s in period t
Lk,t Level in tank k in period t
̂Lk Level slack in tank k in the final period (end of scheduling horizon)
Qk Capacity of resource k
Qi,t Capacity of process i in period t
QEi,t Capacity expansion for process i in period t
Rk,t Availability of resource k in period t
�Ri,k,t Number of resources of type k consumed for process i in period t

Boolean variables

Ni,k,t,u Process i is started on u units of resource k at period t

N (n)
i,t Operation of process i in period t
̂Wi, j Technology j is used for process i
Wi,k Resource k is assigned to process i
Xk,u Resource k installed with u units
Yi Process i is installed
Z (n)
i,t Capacity expansion of process i in period t in dis junct n

123

Extensions to generalized disjunctive programming: hierarchical… 961

1 Introduction

Discrete–continuous optimization is one of the main modeling approaches to address
design, planning, and scheduling problems in process systems engineering (PSE)
(Grossmann 2012). Raman and Grossmann (1994) present a powerful modeling
paradigm that extends thework byBalas (1985) on disjunctive programming. This new
paradigm, called generalized disjunctive programming (GDP), has been further devel-
oped by others in the PSE community over the years to account for additional features,
such as nonlinearities and nonconvexities encountered in the problems (Grossmann
and Trespalacios 2013). GDP relies on the intersection of disjunctions of algebraic
constraints (equality and inequality constraints with continuous variables) to model
the feasible space. Boolean variables are used as indicatr variables for each disjunct
(set of algebraic constraints), enforcing the constraints in the disjunct when True.
Logic constraints are also included to describe the relationships between the Boolean
indicator variables via propositional logic.

GDP is a valuable modeling abstraction for optimization problems for two main
reasons. Firstly, modeling systems from the basis of their underlying logical relation-
ships aids the development and formulation of optimization models by making them
easier to interpret, reducing the likelihood of modeling errors due to logical falla-
cies. Secondly, GDP makes available a broad array of solution methods, ranging from
mixed-integer reformulations to logic-based search methods (Chen et al. 2022).

The present work extends the GDP theory to allow modeling hierarchical systems,
which are commonly encountered in PSE, and more particularly in enterprise-wide
optimization (EWO) (Grossmann 2012; van den Heever and Grossmann 1999), and
flowsheet superstructure optimization (Türkay and Grossmann 1996a). Hierarchical
systems involve multiple levels of decision making, which can be concisely mod-
elled via nested disjunctions. However, traditional GDP does not consider such
formulations. Existing GDP literature suggests reformulating nested disjunctions
into equivalent single-level disjunctions (Vecchietti and Grossmann 2000). Such an
approach requires introducing additional Boolean variables and logical propositions.
Industrial examples of this approach in scheduling include that of Castro et al. (2014)
and Castro (2017). An alternate approach is used in the work by van den Heever
and Grossmann (1999), in which a direct or inside-out reformulation to MI(N)LP is
performed. We formalize these two approaches and provide theoretical proofs on the
tightness of their continuous relaxations. The model tightness and computational per-
formance of the different approaches are compared. A series of examples are used
to show the modeling and computational advantages obtained by explicitly modeling
nested disjunctions.

The paper is organized as follows, Sect. 2 provides a background on the GDP
modeling paradigm. Section 3 extends this formulation to account for hierarchical
systems, and discusses the alternatives for modeling such systems. The equivalent
mixed-integer programming reformulations for these alternatives are presented, along
with two theorems on the tightness of the resulting models. Section 4 provides several
numerical use cases for hierarchical GDPs. Section 5 presents concluding remarks.

123

962 H. D. Perez, I. E. Grossmann

2 Background: generalized disjunctive programming (GDP)

The classical GDP formulation is given below (GDP), where x is the set of continuous
variables (bounded between x LB and xU B), f (x) is the objective function, r(x) ≤ 0
is the set of global constraints, gi j (x) ≤ 0 is the set of constraints applied when
the indicator Boolean Yi j is True for disjunct j in disjunction i . f (x), r (x), and
gi j (x) are assumed to be continuous and differentiable over x . �(Y) defines the set of
logic constraints, which are described via propositional logic on a subset of Boolean
variables. These constraints describe the relations between the Boolean variables via
clauses that contain with one or more of the following logic operators: AND (∧),
OR (∨), implication (⇒), equivalence (⇐⇒), and negation (¬). The set of logic
constraints may also include cardinality clauses of the form choose exactly (or at least
or at most)m Boolean variables from a subset of Booleans to be True (Yan and Hooker
1999). We leverage predicate logic to extend the notation used by Yan and Hooker for
cardinality clauses by defining the following predicates: �(m,Ys ∀ s ∈ S) enforces
that exactly m of the Boolean variables Ys are True, �(m,Ys ∀ s ∈ S) enforces that
at least m of the variables are True, and �(m,Ys ∀ s ∈ S) enforces that at most m
are True.

min z 	 f (x)

s.t . r(x) ≤ 0

∨ j∈Ji

[

Yi j
gi j (x) ≤ 0

]

∀i ∈ I

	
(

1,Yi j ∀ j ∈ Ji
) ∀i ∈ I

�(Y)

x LB ≤ x ≤ xU B

x ∈ R
n

Yi j ∈ {True, False} ∀i ∈ I , j ∈ Ji

(GDP)

GDPmodels typically include a cardinality clause to enforce that exactly 1 disjunct
in each disjunction is selected, i.e., �

(

1,Yi j ∀ j ∈ Ji
) ∀ i ∈ I . The GDP literature

often uses the exclusive OR (XOR) operator, ∨
_
, to define this constraint. However,

such an operator is only correct for proper disjunctions (those with non-overlapping
disjuncts) and poses issues in GDP when there are overlapping disjuncts (improper
disjuncts). This is because XOR is an n-ary operator that returns True when an odd
number of propositions in the operator are True. This can create problems when trans-
forming the GDP into a MIP via the Hull reformulation because an odd number of
disaggregated variables will be active (non-zero) for any feasible point at the inter-
section of an odd number of disjuncts. As a result, the projection of the disaggregated
variables onto the original space will result in a value that is an odd integer multiple of
the disaggregated variable values, which is incorrect and may exclude valid solutions
by making them infeasible (see “Appendix A”). Thus, to avoid these issues, we use
the predicate logic notation, �(1,Y), here instead.

123

Extensions to generalized disjunctive programming: hierarchical… 963

Fig. 1 Sample GDP graphical representation for GDP-example model.

To illustrate the elements of a GDP model, consider the model below (GDP-
example). The projection of this model on the x1, x2-plane is given in Fig. 1, where the
quadratic objective function is shown in the colored contours, the global constraints
are given by the region under the black curves (one linear and the other nonlinear),
and the disjunction constraint is given by the three colored rectangles. The feasible
space of such a system is given by the disjoint regions in the orange, blue, and green
rectangles that satisfy the global constraints.

One of the main advantages of modeling discrete–continuous problems using GDP
is the collection of methods that are available for optimizing such systems. These
include, (1) reformulating to mixed-integer (non)linear models (MI(N)LP) via either
Big-M (Trespalacios and Grossmann 2015) or Hull reformulations (Agarwal 2015;
Bernal and Grossmann 2021; Furman et al. 2020; Grossmann and Lee 2003), (2)

123

964 H. D. Perez, I. E. Grossmann

logic-based decompositionmethods such as Logic-basedOuterApproximation (LOA)
(Türkay and Grossmann 1996b), (3) disjunctive branch-and-bound (Lee and Gross-
mann 2000), (4) basic steps (Ruiz and Grossmann 2012), and (5) hybrid cutting planes
(Sawaya and Grossmann 2005; Trespalacios and Grossmann 2016). The reader is
referred to the above references for a detailed understanding of each of these solution
methods.

3 Extended formulation for multi-level hierarchies

Decision hierarchies are present in most decision-making applications. These include
for instance supply chain and enterprise-wide optimization, where different lev-
els of decision-making exist depending on the time scales considered: planning
(months/years), scheduling (hours/days), and control (seconds/minutes). According
to Brunaud and Grossmann (2017), integrating different decision levels enables better
coordination and communication between functional areas, which increases agility in
response to disturbances and makes it possible to attain benefits for the company that
are not possible with a siloed approach. Figure 2 illustrates the notion of the syner-
gistic benefits that can be obtained by an integrated approach, rather than siloed or
aggregated approaches. Accounting for the relationships between different levels of
decision-making can aid in finding the true optimum, which differs from that of the
aggregated model (i.e., the model obtained by summing the siloed costs). Integrated
approaches to hierarchical decision-making systems have been addressed in the lit-
erature. Some examples of these integrations are the integration between design and

Fig. 2 Illustartion of the different optimas for siloed, aggregated, and integrated approaches.

123

Extensions to generalized disjunctive programming: hierarchical… 965

planning (operational and expansion) (van den Heever and Grossmann 1999), plan-
ning and scheduling (Maravelias and Sung 2009), and scheduling and control (Muñoz
et al. 2011; Sokoler et al. 2017). The following subsections formalize how GDP can
be used to model hierarchical systems, along with theoretical proofs on the differences
between the approaches.

3.1 Hierarchical GDP

We propose extending the GDP paradigm to include multi-level decisions by means
of nested disjunctions. Although the notion of nesting disjunctions to represent hierar-
chical decisions is not new, the limitations in the traditional GDP notation have made
it difficult to exploit the benefits of using such structures. One of the first references to
nested disjunctions is found in the work by Vecchietti and Grossmann (2000), which
describes the transformations required to conform to the current GDP notation. It is
interesting to note that several works have relied on the nested GDP representation
due to its compact representation. In one of these (Rodriguez and Vecchietti 2009),
the following statement is made,

Although the expressiveness of the hierarchical decisions by means of nested
disjunctions, they cannot be implemented directly. These disjunctions must be
transformed into GDP form. For that purpose, the disjunctions…must be rewrit-
ten as single disjunctions, and some additional constraints must also be included
in the model.

Therefore, from a model development point of view, the use of disjunction nesting
is shown to add value. However, its implementation has often required breaking the
explicit hierarchical structure. An exception is the work by van den Heever and Gross-
mann (1999), which does not transform the nested GDP into a logically equivalent
single-level GDP, but rather suggests performing the Hull reformulation on the inner
disjunction and then reformulating the outer disjunction. We now build upon this
concept to formally extend the GDP notation for hierarchical systems that general-
izes to multi-disjunct disjunctions, rather than the on/off disjunctions used by van den
Heever andGrossmann (1999).We also provide theoretical proofs on the advantages of
modeling system hierarchies via nested disjunctions, and highlight the computational
performance gains obtained using this explicit notation.

The proposed extension to the classical GDP notation for hierarchical systems is
given below for a 2-Level nested GDP (2L-GDP), where the upper-level decisions,
Y , enforce the constraints g(x) ≤ 0 and the nested decisions, W , which have con-
straints h(x) ≤ 0. Here the cardinality clause of selecting exactly one disjunct from
the upper-level decisions, Y , is expressed explicitly, along with a new set of car-
dinality rules that enforce selecting exactly one of the lower-level decisions, W , if

123

966 H. D. Perez, I. E. Grossmann

and only if the upper-level decision has been selected, and selecting no lower-level
decisions when the upper-level decision is not selected. This constraint is expressed
as the conjunction of two cardinality rules:

[

Yi j ⇒ �
(

1,Wi jkl ∀ l ∈ Li jk
)] ∧

[¬Y i j ⇒ �
(

0,Wi jkl ∀ l ∈ Li jk
)] ∀ i ∈ I , j ∈ Ji , k ∈ Ki j . In the GDP litera-

ture, this constraint has been traditionally written as Yi j ⇐⇒ ∨l∈Li jk
Wi jkl ∀ i ∈

I , j ∈ Ji , k ∈ Ki j . However, such a logic proposition is incomplete because it would
allow the following to occur: Yi j 	 False and Wi jkl 	 True for more than 1 index
l ∈ Li jk (i.e., False ⇐⇒ (True ∨True) is valid because the exclusive OR makes the
right-hand side False). If all disjunctions are proper, then this will not occur. How-
ever, since there can be a disjunction with overlapping disjuncts, the cardinality rule
�
(

1,Wi jkl ∀ l ∈ Li jk
) ∀ i ∈ I , j ∈ Ji , k ∈ Ki j would need to be added to such

a system to ensure that no more than 1 literal, Wi jkl , is set to True. A more compact
form would be to use the predicate constraint, �

(

1{True}
(

Yi j
)

,Wi jkl ∀ l ∈ Li jk
)

,
where 1{True}(·) is the indicator function that returns 1 when the input is True and
0 otherwise. In other words, the indicator function maps a Boolean variable to its
binary counterpart. For simplicity, we make a slight abuse of notation by dropping the
indicator function and using the expression �

(

Yi j ,Wi jkl ∀ l ∈ Li jk
)

instead.

min z 	 f (x)

s.t . r(x) ≤ 0
(2L-GDP)

∨

j∈Ji

⎡

⎢

⎢

⎢

⎣

Yi j
gi j (x) ≤ 0

∨

l∈Li jk

[

Wi jkl

hi jkl(x) ≤ 0

]

∀k ∈ Ki j

⎤

⎥

⎥

⎥

⎦

∀i ∈ I

	
(

1,Yi j ∀ j ∈ Ji
) ∀i ∈ I

	
(

Yi j ,Wi jkl ∀l ∈ Li jk
) ∀i ∈ I , j ∈ Ji , k ∈ Ki j

�(Y ,W)

x LB ≤ x ≤ xU B

x ∈ R
n

Yi j ∈ {True, False} ∀i ∈ I , j ∈ Ji
Wi jkl ∈ {True, False} ∀i ∈ I , j ∈ Ji , k ∈ Ki j , l ∈ Li jk

This model can be generalized to a multi-level nested GDP (ML-GDP) with n
levels, where the superscript on the Boolean variables, constraints, and sets indicates
the level k ∈ {1, . . . , n} of the hierarchy that these belong to.

123

Extensions to generalized disjunctive programming: hierarchical… 967

min = () (ML-GDP)
. . () ≤ 0

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

()

() () ≤ 0

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

()

() () ≤ 0

…

⎣
⎢
⎢
⎡

⋮
…

()

…
() () ≤ 0

∀ ∈ …
()

∈ …
() ⎦

⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∈ ()

∀ ∈ ()

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∈ ()

∀ ∈ ()

1, ∀ ∈ ∀ ∈ ()

…
() , …

() ∀ ∈ …
()

∀ ∈ {2,… , }, ∈ (), ∈ (), … , ∈ …
() , ∈ …

()

Ω (),… , ()

≤ ≤
∈ ℝ

…
() ∈ { , }

∀ ∈ {1,… , }, ∈ (), ∈ (), … , ∈ …
() , ∈ …

()

It should be noted that nested disjunctions should generally not include negations
of Boolean variables (see “Appendix B”).

3.2 Equivalent single-level GDP

Previous references to GDPwith nested disjunctions in literature have proposed trans-
forming the 2L-GDP model into the equivalent single-level GDP (2E-GDP) given
below (Grossmann and Trespalacios 2013; Vecchietti and Grossmann 2000). Here,
the nested disjunction is extracted and a dummy or “slack” disjunct is added to pre-
serve feasibility. Thus, if none of the nested disjuncts is selected, the slack disjunct
is selected, which contains the entire feasible set for x . The exclusive cardinality rule
on the inner Boolean variables, W , is also augmented to include the slack Boolean
variable, Wi jk0. This slack variable is, however, not included in the linking logic con-
straint for the upper and lower-level decisions. This ensures that the nested decisions
are only selected if theirmaster Boolean isTrue. Thismethod for transforming a nested
disjunction can also be applied to the multi-level system ML-GDP.

min z 	 f (x)

s.t . r(x) ≤ 0
(2E-GDP)

123

968 H. D. Perez, I. E. Grossmann

∨

j∈Ji

[

Yi j
gi j (x) ≤ 0

]

∀i ∈ I
(

∨

l∈Li jk

[

Wi jkl

hi jkl(x) ≤ 0

]

)

∨

[

Wi jk0

x LB ≤ x ≤ xU B

]

∀i ∈ I , j ∈ Ji , k ∈ Ki j

	
(

1,Yi j ∀ j ∈ Ji
) ∀i ∈ I

	
(

1,Wi jkl ∀l ∈ Li jk ∪ {0}) ∀i ∈ I , j ∈ Ji , k ∈ Ki j

	
(

Yi j ,Wi jkl ∀l ∈ Li jk
) ∀i ∈ I , j ∈ Ji , k ∈ Ki j

�(Y ,W)

x LB ≤ x ≤ xU B

x ∈ R
n

Yi j ∈ {True, False} ∀i ∈ I , j ∈ Ji
Wi jkl ∈ {True, False} ∀i ∈ I , j ∈ Ji , k ∈ Ki j , l ∈ Li jk

Although the above formulation, allows modeling hierarchical systems in the stan-
dard GDP notation, it has two major drawbacks: (1) the explicit hierarchical structure
is lost, and (2) although the Equivalent Single-Level GDPmodel is logically equivalent
to the nestedGDPmodel, it requires introducing additional disjuncts andBoolean vari-
ables. Introducing “slack” disjuncts and “slack” Boolean variables results in models
whose continuous relaxations are less tight, as described in the next section.

3.3 Tightness of continuous relaxations

The following two theorems and their associated proofs establish the advantages of
modeling multi-level decisions problems via nested GDP, rather than the Equivalent
Single-Level GDP approach. The advantages are shown by discussing the tightness
of the continuous relaxations of both the Hull reformulation (HR) and Big-M refor-
mulation (BM) of these two GDP models.

Theorem 1 Let rML-GDP-HR denote the continuous relaxation of the mixed-integer
program (MIP) obtained from a Multi-Level nested GDP via the Hull reformulation,
and let rME-GDP-HR denote the continuous relaxation of the MIP obtained from its
respective Equivalent Single-Level GDP representation via the Hull reformulation.
The feasible space of the former is contained within the feasible space of the latter,
namely, rML-GDP-HR ⊆ rME-GDP-HR.

Proof Without loss of generality, the above theorem is proved by establishing that the
Hull reformulation of the 2-Level nested GDP model (r2L-GDP-HR) is contained in
the Hull reformulation of its equivalent single-Level GDP representation (r2E-GDP-
HR):

r2L-GDP-HR ⊆ r2E-GDP-HR

The Hull reformulation for 2L-GDP is given below, where the continuous variable
x is disaggregated in each disjunct (x is disaggregated into ui j for each upper-level
disjunct, and ui j is disaggregated into vi jkl for each lower-level disjunct) and the

123

Extensions to generalized disjunctive programming: hierarchical… 969

Boolean variables are replaced by their corresponding binary variable (Y becomes y,
andW becomesw). A and B are matrices of scalars, and c is a vector of scalars. These
are used to map the logic constraints into their algebraic counterparts obtained after
converting the logic propositions into conjunctive normal form (CNF) and transform-
ing each clause into its equivalent algebraic constraint (Williams 1985). Note that the
disaggregated variables are bounded between min

(

0, x LB
)

and max
(

0, xU B
)

instead
of the traditional bounds of 0 and xU B because we do not assume that x is nonnegative.
As a result, the min and max operators in these bounds are required to guarantee that
the domain of the disaggregated variables contains the origin (0). This is necessary
to ensure that the disaggregation constraints remain feasible when the disaggregated
variables are forced to 0 for the disjuncts that are not selected.

123

970 H. D. Perez, I. E. Grossmann

The Hull reformulation for 2E-GDP is given below, where x is disaggregated into
ui j for the upper-level disjunctions, and is also disaggregated into vi jkl for the lower-
level disjuncts, which are extracted when transforming the model into an Equivalent
Single-Level GDP.

The difference between 2L-GDP-HR and 2E-GDP-HR is in the highlighted con-
straints in the variable disaggregation and cardinality rules sections. The proof for the
Hull reformulation case is given by applying Fourier–Motzkin elimination (Dantzig
1972) to eliminate the slack Binary variable (wi jk0) and its corresponding disaggre-
gated variable (vi jk0) from 2E-GDP-HR. We first combine the last two cardinality
rules in 2E-GDP-HR to obtain (1).

wi jk0 	 1 − yi j (1)

123

Extensions to generalized disjunctive programming: hierarchical… 971

Equating the two variable aggregation constraints in 2E-GDP-HR and solving for
vi jk0 gives (2).

vi jk0 	
∑

j∈Ji

ui j −
∑

l∈Li jk

vi jkl (2)

Substituting (1) and (2) into the bounding constraint for vi jk0 gives (3), which can
be rearranged into (4).

x LB · (1 − yi j
) ≤

∑

j∈Ji

ui j −
∑

l∈Li jk

vi jkl ≤ xU B · (1 − yi j
)

(3)

ui j +
∑

j ′∈Ji : j ′ 	 j

ui j ′ − xU B · (1 − yi j
) ≤

∑

l∈Li jk

vi jkl ≤ ui j

+
∑

j ′∈Ji : j ′ 	 j

ui j ′ − x LB · (1 − yi j
)

(4)

Summing the bounding constraint for xi j over j ′ ∈ Ji for j ′ 	 j , results in (5).
Using the cardinality rule

∑

j∈Ji yi j 	 1, (5) can be written as given in (6), which has
two parts, (6a) and (6b). Substituting these into (4) proves that (4) is a relaxation of the
disaggregation constraint in 2L-GDP-HR (

∑

l∈Li jk
vi jkl 	 ui j , which can be written

as ui j ≤∑l∈Li jk
vi jkl ≤ ui j).

∑

j ′∈Ji : j ′ 	 j

x LB · yi j ′ ≤
∑

j ′∈Ji : j ′ 	 j

ui j ′ ≤
∑

j ′∈Ji : j ′ 	 j

xU B · yi j ′ (5)

x LB · (1 − yi j
) ≤

∑

j ′∈Ji : j ′ 	 j

ui j ′ ≤ xU B · (1 − yi j
)

(6)

∑

j ′∈Ji : j ′ 	 j

ui j ′ − xU B · (1 − yi j
) ≤ 0 (6a)

∑

j ′∈Ji : j ′ 	 j

ui j ′ − x LB · (1 − yi j
) ≥ 0 (6b)

It should also be noted that the cardinality rule on the extracted lower-level deci-
sions in 2E-GDP-HR (wi jk0 +

∑

l∈Li jk
wi jkl 	 1) is redundant with respect to the other

two cardinality rules. This can be shown by noting thatwi jk0 acts like a slack variable,
which allows writing the mentioned cardinality rule as

∑

l∈Li jk
wi jkl ≤ 1. This expres-

sion is contained in the first two cardinality rules since yi j ≤ 1 and
∑

l∈Li jk
wi jkl 	 yi j .

Therefore, the Hull reformulation of the Equivalent Single-Level GDP produces con-
straints with continuous relaxations that are weaker than those resulting from the Hull
reformulation of the nested GDP, proving that 2L-GDP-HR ⊆ 2E-GDP-HR. QED

123

972 H. D. Perez, I. E. Grossmann

Theorem 2. Let rML-GDP-BM denote the continuous relaxation of the mixed-integer
program (MIP) obtained from aMulti-Level nested GDP via the Big-M reformulation,
and let rME-GDP-BM denote the continuous relaxation of the MIP obtained from its
respective Equivalent Single-Level GDP representation via the Big-M reformulation.
The feasible space of the former is contained within the feasible space of the latter,
namely, rML-GDP-BM ⊆rME-GDP-BM, if tight values for the M parameters are
used.

Proof. Without loss of generality, the above theorem is proved by establishing that the
Big-M reformulation of the 2-Level nested GDP model (r2L-GDP-BM) is contained
in the Big-M reformulation of its Equivalent Single-Level GDP representation (r2E-
GDP-BM), when tight M values are used:

r2L-GDP-BM ⊆ r2E-GDP-BM

TheBig-M reformulation for the nestedGDPmodel is given in 2L-GDP-BM, where
Mi j is the Big-M value for the constraints in the j th disjunct in disjunction i , M ′

i jkl
is the Big-M value associated with the upper-level decision on the nested constraints,
and m′

i jkl is the Big-M value associated with the lower-level decision on the nested
constraints. The Big-M reformulation for the equivalent single-level GDP is given in
2E-GDP-BM, where Mi j is the same as in 2L-GDP-BM, andmi jkl is the Big-M value
associated with the extracted lower-level decisions.

123

Extensions to generalized disjunctive programming: hierarchical… 973

Finding the tightest Big-M values requires solving multiple optimization problems
to maximize the value of each constraint function over the complete model’s feasible
region, or over the corresponding feasible region of the disjunction (Grossmann and
Trespalacios 2013). For the proof we calculate tight Big-M values using only the
global constraints or upper-level constraints in the case of the nested constraints. The
following mathematical optimization problems are solved to obtain tight M values:
(7) for Mi j , (8a) for m′

i jkl , (8b) for M
′
i jkl , and (9) for mi jkl . It should be noted that

m′
i jkl accounts for the upper-level constraints gi j (x) ≤ 0, meaning it is localized to

the parent disjunct that it belongs to. M ′
i jkl subtracts m

′
i jkl from the traditional Big-

M value to ensure that when both upper and lower-level decisions are not selected
(yi j 	 0 and wi jkl 	 0), the resulting Big-M value is equivalent to the global Big-M
value for that constraint.

Mi j 	 max
{

gi j (x)|r(x) ≤ 0, x LB ≤ x ≤ xU B, x ∈ R
n
}

(7)

m′
i jkl 	 max

{

hi jkl(x)|r(x) ≤ 0, gi j (x) ≤ 0, x LB ≤ x ≤ xU B, x ∈ R
n
}

(8a)

M ′
i jkl 	 max

{

hi jkl(x)|r(x) ≤ 0, x LB ≤ x ≤ xU B, x ∈ R
n
}

− m′
i jkl (8b)

mi jkl 	 max
{

hi jkl(x)|r(x) ≤ 0, x LB ≤ x ≤ xU B, x ∈ R
n
}

(9)

The proof lies in establishing that the feasible space of 2L-GDP-BM is con-
tained in 2E-GDP-BM. The difference between these two models is shown in the
highlighted constraints above. It was previously shown that the cardinality rule
wi jk0 +

∑

l∈Li jk
wi jkl 	 1 is redundant (see Theorem 1). Thus, the proof is given

by establishing that the right-hand-sides of the highlighted Big-M constraints satisfy
(10), meaning that the Big-M constraint from 2L-GDP-BM is contained in the Big-M
constraint from 2E-GDP-BM. Substituting (9) in (8b), results in (11). Substituting

123

974 H. D. Perez, I. E. Grossmann

(11) in (10) and simplifying the resulting expression produces (12). From the cardi-
nality constraint

∑

l∈Li jk
wi jkl 	 yi j , it is clear that wi jkl ≤ yi j , meaning that the

expressions in parenthesis in (12) can be dropped without changing the sign on the
inequality. Thus, m′

i jkl ≤ mi jkl , which is true considering that (9) is a relaxation of
(8a). Therefore, 2L-GDP-BM ⊆ 2E-GDP-BM.

m′
i jkl · (1 − wi jkl

)

+ M ′
i jkl · (1 − yi j

) ≤ mi jkl · (1 − wi jkl
)

(10)

M ′
i jkl 	 mi jkl − m′

i jkl (11)

m′
i jkl · (yi j − wi jkl

) ≤ mi jkl · (yi j − wi jkl
)

(12)

QED

4 Examples

Each of the examples in this section are implemented in the Julia programming
language (version 1.9.0) (Bezanson et al. 2017) using various packages within the
ecosystem. These include JuMP (version 1.11.0) (Dunning et al. 2017) for modeling
mathematical programs, DisjunctiveProgramming (version 0.3.6) (Perez et al. 2023)
for reformulating GDPs (both nested and single-level) into MIPs, and Polyhedra (ver-
sion 0.7.6) (Legat et al. 2021) for projecting mathematical programming models onto
2D space (see Sect. 4.1). For the numerical examples (Sects. 4.2 and 4.3), the refor-
mulatedMI(N)LPmodels are solved on an Ubuntu Server with 82 GB of RAM and an
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processor. CPLEX (version 22.1.1)
is used as the MILP solver and BARON (version 23.1.5) as the MINLP solver.

4.1 Illustrative example

Consider the nested GDP constraint system given in (13), which can be expressed
as the Equivalent Single-Level GDP in (14), where W3 is the slack Boolean variable
associated with the dummy disjunct. Each of these models is reformulated into a MIP
using the Big-M reformulation, with both a loose (large)M value and a tightM value,
and the Hull reformulation. Their continuous relaxations are then projected onto the
x1, x2 plane in Fig. 3.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y1
1 ≤ x1 ≤ 3
4 ≤ x2 ≤ 6

⎡

⎣

W1

1 ≤ x1 ≤ 2
5 ≤ x2 ≤ 6

⎤

⎦ ∨
⎡

⎣

W2

2 ≤ x1 ≤ 3
4 ≤ x2 ≤ 5

⎤

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨
⎡

⎣

Y2
8 ≤ x1 ≤ 9
1 ≤ x2 ≤ 2

⎤

⎦ (13.a)

�(1, {Y1,Y2}) (13.b)

123

Extensions to generalized disjunctive programming: hierarchical… 975

Fig. 3 Projections of the continuous relaxations of (13) and (14) onto the x1, x2 plane. Three reformulations
are shown (Big-M 	 Big-M Reformulation, Tight-M 	 Big-M Reformulation with tight M values, Hull
	 Hull Reformulation). The 2-Level nested GDP given in (13) is indicated with nested. The Equivalent
Single-Level GDP given in (14) is indicated with equivalent. Projection areas, relative to the Big-M case
are indicated in %.

�(Y1, {W1,W2}) (13.c)

⎡

⎣

Y1
1 ≤ x1 ≤ 3
4 ≤ x2 ≤ 6

⎤

⎦ ∨
⎡

⎣

Y2
8 ≤ x1 ≤ 9
1 ≤ x2 ≤ 2

⎤

⎦ (14.a)

⎡

⎣

W1

1 ≤ x1 ≤ 2
5 ≤ x2 ≤ 6

⎤

⎦ ∨
⎡

⎣

W2

2 ≤ x1 ≤ 3
4 ≤ x2 ≤ 5

⎤

⎦ ∨
⎡

⎣

W3

1 ≤ x1 ≤ 9
1 ≤ x2 ≤ 6

⎤

⎦ (14.b)

�(1, {Y1,Y2}) (14.c)

�(1, {W1,W2,W3}) (14.d)

�(Y1, {W1,W2}) (14.e)

Explicitly preserving the hierarchical relationship in the nested GDP representation
reduces the feasible region of the continuous relaxation more than when the equiv-
alent single-Level GDP representation is used. This is observed in both the tight-M
(Big-M reformulation with a tight M) and Hull reformulation cases. Furthermore, in
this example the tight-M reformulation of the nested GDP model produces the same
relaxation as the Hull reformulation of the equivalent single-level GDP model with
only a fraction of the model size (see Table 1). It should also be noted that the convex
hull of the system is obtained when either the hull reformulation is applied to the
nested GDP or when it is applied to the flattened GDP. As a result, the continuous
relaxation of either formulation will yield the optimum.

123

976 H. D. Perez, I. E. Grossmann

Table 1 Model sizes and projection areas for Illustrative Example

Approach Binary
variables

Continuous
variables

Constraints Feasible area Relative
area (%)

Big-M 5 2 28 40.0 100

Tight-M
(equivalent)

5 2 28 17.3 43

Tight-M
(nested)

4 2 26 16.7 42

Hull
(equivalent)

5 12 72 16.7 42

Hull (nested) 4 10 64 13.5 34

4.2 Example 1: linear model

Consider the superstructure optimization problem with technology selection and
scheduling for a plant that is to produce and sell material D (see Fig. 4). Material
D can be produced from material C (reaction: C → D), which can be purchased from
a third party or produced from material B (reaction: B → C), which can in turn be
purchased or produced from material A (reaction: A → B). The plant has two types
of multipurpose reactors, each with a backup unit, that can be used for the material
transformation steps (see Fig. 5). Each of these has a maximum installed capacity of
100 kg. Up to one tank for each material in the system can be installed for storage with
a maximum installed capacity of 300 kg. There are two candidate chemical processes
to perform each material transformation step, giving a total of six processes in the
process superstructure. There are two potential technologies (catalysts) that can be
used in each process, each with a unique cost and yield, giving a total of 12 candidate
process-catalysts combinations in the system. The plant process and equipment super-
structures are given in Figs. 4 and 5, respectively. The former illustrates the candidate
processes in the superstructure in the state-task network representation (Kondili et al.
1993). The latter depicts the equipment options (reactor type and units, and tanks) in
the superstructure.

The objective of the optimization problem is to maximize system profit over a
30-day schedule by making the following decisions:

• Which material storage tanks to install.
• How many shared reactors to install.
• Which processes to install for each material transformation step.
• Which technologies (catalysts) to use in each of the selected processes.

• Which reactor type to use in each of the selected processes.
• How many reactors to operate in each time period.

• How much to produce in each batch of material.
• How much material to purchase for A, B, and C in each time period.

123

Extensions to generalized disjunctive programming: hierarchical… 977

F3

F4

F7

F8

F11

F12

F1

F2

F5

F6

F9

F10

F16F13 F14 F15

Process
1

Process
2

Process
3

Process
4

Process
5

Process
6

Tank
A

Tank
B

Tank
C

Tank
D

A B C D

Fig. 4 Process superstructure for Example 1 with 4 materials, 6 processes, 4 tanks, and 16 streams.

Tank A

Tank B

Tank C

Tank D

Supply A

Supply B

Supply C

Demand D
R2 (Unit 1)

R2 (Unit 2)

R1 (Unit 1)

R1 (Unit 2)

Fig. 5 Equipment superstructure (process flow diagram) for Example 1 with 4 tanks and 2 reactor types,
each with 2 identical units.

The hierarchy of these decisions is indicated by the bullet indentation above. Thus,
the technology and reactor type selections are second-level decisions, and the operating
schedule and batch sizes are third-level decisions. For simplicity, any changeover or
setup times are not considered.

Model: The model for this system consists of the following linear constraints.
Resource balances are enforced around each resource k at timepoint t with the global
constraints in (15) and (16). The level ofmaterial at each tank, Lk,t , is updated based on
the material flowing in and out of the tank (material balance). The availability of each
reactor, Rk,t , is updated based on the reactor usage, �Ri,k,t . A reactor unit is locked
(unavailable) when it begins a processing task i at time t . At time t +τi , the processing
task ends (τi is the duration), and the reactor unit is released (becomes available). The
values used for the task durations, τi , are τi 	 5∀ i ∈ {1, 4, 5, 6}, τ2 	 3, and τ3 	 4
(days). For greater detail on resource balances, the reader is referenced to the review

123

978 H. D. Perez, I. E. Grossmann

paper on the resource-task network by Perez et al. (2022).

tank level
︷︸︸︷

Lk,t 	 Lk,t−1 +

in f low
︷ ︸︸ ︷

∑

s∈Sink
Fs,t −

out f low
︷ ︸︸ ︷

∑

s∈Soutk

Fs,t ∀ k ∈ K tank, t ∈ T (15)

reactor
availabili t y
︷︸︸︷

Rk,t 	 Rk,t−1 +
∑

i∈I

⎡

⎢

⎢

⎣

reactors
released
︷ ︸︸ ︷

�Ri,k,t−τi −
reactors
locked
︷ ︸︸ ︷

�Ri,k,t

⎤

⎥

⎥

⎦

(16)

The decision to install a resource (tank or reactor) is governed by the disjunctions
in (17) and (18), where the decision is to determine how many units u to install. In
this example, Uk 	 {0, 1, 2} for each reactor type (at most 2 identical units can be
installed for each reactor type k), andUk 	 {0, 1} for each tank (at most 1 tank can be
installed for each material). The installation cost, C I k , is calculated as the sum of a
fixed charge, αk , and a variable cost coefficient, βk , times the total resource capacity.
If no units are installed (u 	 0), the installation cost and resource capacity, Qk , drop
to zero. (17) and (18) also set the initial condition for the resource availability, Lk,0
and Rk,0: if installed, tanks are full, and all reactor units are available, respectively.
(17) also tracks the slack on the tank level at the final timepoint |T |, ̂Lk , which refers
to the amount below the full tank capacity, and is penalized in the objective function
to reduce the likelihood of depleting the inventory at the end of the scheduling horizon
(see (41)). These constraints ensure that the schedule obtained is a feasible schedule
for normal operation with monthly cycles. For startup operations the optimal schedule
can be obtained by fixing the design decisions and rerunning the model with the initial
tank levels set to zero. The cardinality constraint (19) ensures that exactly one of the
disjuncts is selected. The values for the cost coefficients are given in Table 2. Since
the plant lifetime is greater than the scheduling horizon, resource installation costs
coefficients have been scaled to the appropriate order of magnitude. Installation costs
for pipelines between tanks and reactors are assumed to be negligible.

Table 2 Fixed and variable cost
coefficients for the installation
cost of each resource

Resource (k) Fixed cost coefficient (αk) Variable cost
coefficient (βk)

Tank material A $0.406 $0.011/kg

Tank material B $0.069 $0.070/kg

Tank material C $0.862 $0.029/kg

Tank material D $0.086 $0.003/kg

Reactor type 1 $0.662 $0.054/kg

Reactor type 2 $0.116 $0.090/kg

123

Extensions to generalized disjunctive programming: hierarchical… 979

∨

u∈Uk\{0}

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Xk,u

C Ik 	 αk + βk ·

installed
capacity
︷ ︸︸ ︷

u · Qk

Lk,0 	 u · Qk

Lk,|T | + L̂k 	 u · Qk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Xk,0
C Ik 	 0
Qk 	 0

Lk,t 	 0 ∀t ∈ {0} ∪ T
L̂k 	 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∀k ∈ K tan k (17)

∨

u∈Uk\{0}

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Xk,u

C Ik 	 αk + βk ·

installed
capacity
︷ ︸︸ ︷

u · Qk

Rk,0 	 u

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Xk,0

C Ik 	 0
Qk 	 0

Rk,0 	 0 ∀t ∈ {0} ∪ T

⎤

⎥

⎥

⎦

(18)

�
(

1, Xk,u ∀ u ∈ Uk
)∀ k ∈ K (19)

The multi-level disjunction in (20) represents the decision to install process i or
not. When installed, the total batch size, Bi,t , is equal to the flow entering the process
at time t . There are two nested disjunctions if a process is installed. The first of these
relates to which reactor type k is assigned to the process,Wi,k . The second one pertains
to which technology (catalyst) is used for that particular process, ̂Wi, j . Once a reactor
type is assigned, the per unit batch size, ̂Bi,t , is bounded by the installed capacity of
each unit, Qk , and the operating cost,COi,t , is proportional to the total batch size with
a cost coefficient γi,k (given in Table 3). The nested technology selection disjunction
specifies the amount of material leaving the process when the batch is completed.
This is governed by the yield, ν, which is specific to the technology j (given in Table
4). There is then a third-level set of disjunctions inside the reactor type assignment
disjunction, which determines the number of units, u, that are used for a batch at time,
t , Ni,k,t,u . The number of units selected indicates the number of units that are locked
at time t and is also used to determine the total batch size from the per unit batch
size. Note that for this system, it is assumed that if multiple units are used, their loads
are equally distributed. Finally, when a process is not installed (¬Yi), all pertinent
variables are set to zero, and the reactor capacity is only bounded by the maximum
allowed capacity. The cardinality rules in (21–23) are the linking constraints between

Table 3 Operating cost parameter, γi,k ($/kg), for each process i and reactor type k combination

Reactor Type (k) Process (i)

1 2 3 4 5 6

1 0.258 0.339 0.425 0.905 0.745 0.156

2 0.575 0.454 0.017 0.496 0.636 0.087

123

980 H. D. Perez, I. E. Grossmann

Table 4 Production yield parameter, νi, j , for each process i and technology j combination

Technology (j) Process (i)

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%)

1 42.6 57.4 44.3 62.1 86.3 51.8

2 76.7 13.4 8.7 35.1 19.3 11.7

the different levels of this multi-level disjunction.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

, = , ∀ ∈

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ,

, ≤ ∀ ∈
, = , ⋅ , ∀ ∈

⎣
⎢
⎢
⎢
⎡ , , ,

Δ , , =
, = ⋅ ,

⎦
⎥
⎥
⎥
⎤

∈
∀ ∈

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∈

,

, = , ⋅ , ∀ ∈ , ∈∈ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

¬
, = 0 ∀ ∈ ∪
, , , , , = 0 ∀ ∈

Δ , , = 0 ∀ ∈ , ∈
≤ ∀ ∈ ⎦

⎥
⎥
⎥
⎥
⎤

∀ ∈

(20)

�
(

Yi ,Wi,k ∀ k ∈ Kreact) ∀ i ∈ I (21)

�
(

Wi,k, Ni,k,t,u ∀ u ∈ Uk
) ∀ i ∈ I , k ∈ Kreact , t ∈ T (22)

�
(

Yi , ̂Wi, j ∀ j ∈ J
) ∀ i ∈ I (23)

An additional logic proposition must be included to ensure that if a process i is
triggered on reactor type k at time t with u units (Ni,k,t,u 	 True), the reactor type
k must have been installed with at least u units (∃u′ ∈ Uk : u′ ≥ u, Xk,u′ 	 True).
For example, if Ni,k,t,1 	 True, then either Xk,1 	 True or Xk,2 	 True (one
or two units must have been installed when the plant was built). This condition is
enforced with the at least predicate in (24), which is equivalent to the propositional
logic constraint Ni,k,t,u ⇒∨

u′∈Uk :u′≥u Xk,u′ .

�
(

Ni,k,t,u, Xk,u′ ∀ u′ ∈ Uk : u
′ ≥ u

) ∀ i ∈ I , k ∈ Kreact , t ∈ T , u ∈ Uk \ {0} (24)

The variable bounds and domains are given in (25)-(27) and (29)-(40). The upper
bound resource capacities are, QUB

k 	 300kg ∀ k ∈ K tank and QUB
k 	 100kg ∀ k ∈

123

Extensions to generalized disjunctive programming: hierarchical… 981

Kreact . The term |Uk |−1 represents the maximum number of units available to install
since we consider the option of not installing a tank or reactor k. The initialization
constraint in (28) is used to ensure that there is no flow leaving a reactor in the first τi
periods since it is assumed that all reactors are idle at the beginning of the scheduling
horizon. Thus, if production starts at t 	 1, the first batch of product is produced at
t 	 τi + 1.

0 ≤ Bi,t ≤
∑

k∈Kreact
(|Uk | − 1) · QUB

k ∀ i ∈ I , t ∈ T (25)

0 ≤ ̂Bi,t ≤ max
(

QUB
k ∀ k ∈ Kreact

)

∀ i ∈ I , t ∈ T (26)

0 ≤ Fs,t ≤ FUB
s ∀ s ∈ S, t ∈ T (27)

Fs,t 	 0 ∀ i ∈ I , s ∈ Souti , t ∈ {1, . . . , τi } (28)

0 ≤ C I k ≤ αk + βk · (|Uk | − 1) · QUB
k ∀ k ∈ K (29)

0 ≤ Lk,t ≤ (|Uk | − 1) · QUB
k ∀ k ∈ K tank, t ∈ T (30)

0 ≤ ̂Lk ≤ (|Uk | − 1) · QUB
k ∀ k ∈ K tank (31)

0 ≤ COi,t ≤
∑

k∈Kreact
γi,k · (|Uk | − 1) · QUB

k ∀ i ∈ I , t ∈ T (32)

0 ≤ Qk ≤ QUB
k ∀ k ∈ Kreact (33)

0 ≤ Rk,t ≤ |Uk | − 1∀ k ∈ Kreact , t ∈ T (34)

0 ≤ �Ri,k,t ≤ |Uk | − 1∀ i ∈ I , k ∈ Kreact , t ∈ T (35)

Ni,k,t,u ∈ {True, False} ∀ i ∈ I , k ∈ Kreact , t ∈ T , u ∈ Uk (36)

Wi,k ∈ {True, False} ∀ i ∈ I , k ∈ Kreact (37)

̂Wi, j ∈ {True, False} ∀ i ∈ I , j ∈ J (38)

Xk,u ∈ {True, False} ∀ k ∈ K , u ∈ Uk (39)

Yi ∈ {True, False} ∀ i ∈ I (40)

The objective of this optimization problem is to maximize profit, as given by
(41), where ps is the price/cost of each external flow s ∈ Sext (p13 	 −$1/kgA,

123

982 H. D. Perez, I. E. Grossmann

p14 	 −$7/kgB, p15 	 −$8/kgC , and p16 	 $10/kgD). The tank level slacks are
penalized with a penalty coefficient equal to the absolute value of the material price.

max
∑

t∈T

⎡

⎢

⎢

⎢

⎢

⎣

material
sales/purchases
︷ ︸︸ ︷

∑

s∈Sext
ps · Fs,t −

operating
costs
︷ ︸︸ ︷

∑

i∈I
COi,t

⎤

⎥

⎥

⎥

⎥

⎦

−

installation
costs
︷ ︸︸ ︷

∑

k∈K
C Ik −

tank slack
penalties

︷ ︸︸ ︷

∑

k∈K tank

|pk |·L̂k (41)

The resulting model is the linear nested GDP given in (15–41). This hierarchical
model is reformulated into a mixed-integer linear program (MILP) using both Big-M
(with both loose and tight M values) and Hull reformulations. The hierarchical GDP
model is also transformed into its Equivalent Single-Level GDP and reformulated with
both Big-M and Hull methods.

The optimum solution yields a cumulative profit of $2,085. The process network
and equipment network designs are given in Figs. 6 and 7, respectively. The Gantt
charts for procurement/sales and production are shown in Figs. 8 and 9, respectively.
The tank levels are displayed in Fig. 10. The optimal design requires the installation of
Processes 1, 3–5; Tanks B and C; and both reactor types, each with two units available.
Reactors of type 1 focus almost exclusively on Process 1 with Technology 2, with one
batch of Process 3 (Technology 1). Rectors of type 2 are used for Processes 4 and
5, each using Technology 1. Procurement of A occurs every 5 days, with sales of D
typically spaced out every 10 days. By the end of the scheduling horizon, both tank
levels have been restored to their initial levels (full).

The model sizes and computational statistics for each of the reformulated MILP
models are given inTable 5,where the continuous (LP) relaxation gap is calculatedwith
respect to the optimal MIP solution. Two additional scenarios are evaluated, where the
sales price of material D is increased or decreased by 10%. The computational results
for these cases are given in Tables 6 and 7. As can been observed, all formulations,
except the hull reformulation of the nested GDP, have poor continuous relaxations
with very large relaxation gaps. The hull reformulated nested GDP, on the other hand,

F3 F7

F8

F11F1 F5

F6

F9

F16F13

Process
1

Process
3

Process
4

Process
5

Tank
B

Tank
C

A D

Fig. 6 Optimal process network design (edge thickness is proportional to the maximum flow on that line).

123

Extensions to generalized disjunctive programming: hierarchical… 983

Tank B

Tank C

Supply A

Supply B

Supply C

Demand D
R2 (Unit 1)

R2 (Unit 2)

R1 (Unit 1)

R1 (Unit 2)

Fig. 7 Optimal equipment network design

Fig. 8 Material procurement and sales schedule

Fig. 9 Plant operations schedule (text in each bar, i-j, indicates process number i and technology number
j for that event)

Fig. 10 Amount of material in each tank (and maximum tank level) throughout the scheduling horizon

123

984 H. D. Perez, I. E. Grossmann

Table 5 Model sizes and computational statistics of the MILP models resulting from the Big-M reformula-
tions (using both loose and tightM values) and Hull reformulations of the GDP models in Example 1

Big-M reformulation Tight-M reformulation Hull reformulation

Equivalent Nested Equivalent Nested Equivalent Nested

LP relaxation

Relaxation
Solution

$81,000 $81,000 $80,999 $80,999 $68,044 $2268

Relaxation gap 3785% 3785% 3785% 3785% 3163% 9%

MIP solution

MIP solution $2085 $2085 $2085 $2085 $2085 $2085

MIP optimality
gap

0% 0% 0% 0% 0% 0%

Nodes explored 184,458 875,768 403,339 516,094 41,356 28,706

Cuts applied 349 605 388 433 710 20

CPU time (s) 175 589 230 297 43 23

MIP solutiona

MIP solution $1929 $934 $2074 $1928 $2085 $2085

MIP optimality
gap

678% 4337% 122% 117% 0% 0%

Nodes explored 5,344,697 10,911,189 7,026,758 8,736,022 82,182 35,796

Cuts applied 3663 1493 2019 1703 1010 80

CPU time (s) 3616 3633 3623 3628 216 79

Original model
size

Binary variables 1550 1166 1550 1166 1550 1166

Continuous
variables

1634 1634 1634 1634 11,850 10,614

Constraints 14,817 14,049 14,817 14,049 59,195 56,243

Reduced model
sizeb

Binary variables 1158 1156 1160 1156 1158 1115

Continuous
variables

1409 1409 1409 1409 4468 3302

Constraints 7443 6969 7438 7332 8166 6163

aNo presolve; no heuristics; no dynamic search (traditional branch and cut used)
bAfter the last presolve is performed on the model by CPLEX

has a tight relaxation with an 8–9% relative gap. In this example, both the Big-M
and Tight-M reformulations have similar performance, with the equivalent single-
level models solving faster than the nested models (except for the case with a 10%
decrease in the sales price). For these models, the weak relaxations annul any potential
advantage from using nested disjunctions. The MILP model obtained by applying the
Hull reformulation to the nested GDPmodel outperforms the other models, finding the

123

Extensions to generalized disjunctive programming: hierarchical… 985

Table 6 Model sizes and computational statistics of the MILP models resulting from the Big-M reformula-
tions (using both loose and tightM values) and Hull reformulations of the GDP models in Example 1 with
a 10% increase in the sales price for material D

Big-M reformulation Tight-M reformulation Hull reformulation

Equivalent Nested Equivalent Nested Equivalent Nested

LP relaxation

Relaxation
solution

$89,100 $89,100 $89,099 $89,099 $75,438 $2708

Relaxation gap 3401% 3401% 3401% 3401% 2898% 8%

MIP solution

MIP solution $2516 $2516 $2516 $2516 $2516 $2516

MIP optimality
gap

0% 0% 0% 0% 0% 0%

Nodes explored 319,705 893,877 186,730 487,941 38,509 38,256

Cuts applied 499 422 393 529 832 18

CPU time (s) 230 650 146 298 42 25

Table 7 Model sizes and computational statistics of the MILP models resulting from the Big-M reformula-
tions (using both loose and tightM values) and Hull reformulations of the GDP models in Example 1 with
a 10% decrease in the sales price for material D

Big-M reformulation Tight-M reformulation Hull reformulation

Equivalent Nested Equivalent Nested Equivalent Nested

LP relaxation

Relaxation
solution

$72,900 $72,900 $72,899 $72,900 $61,159 $1829

Relaxation gap 4260% 4260% 4260% 4260% 3558% 9%

MIP solution

MIP solution $1672 $1672 $1672 $1672 $1672 $1672

MIP optimality
gap

0% 0% 0% 0% 0% 0%

Nodes
explored

517,310 137,253 208,136 128,268 39,669 42,213

Cuts applied 543 500 409 420 718 35

CPU time (s) 644 148 206 213 40 24

optimum in approximately half of the time required relative to its equivalent single-
level counterpart. Compared to the Big-M models, this model solves faster by one
order of magnitude, with significantly fewer cuts and nodes explored. This superior
performance is due to the tighter LP relaxation and reduced model size. The Hull
reformulated nested GDP has fewer binary variables (25% and 4% less, before and

123

986 H. D. Perez, I. E. Grossmann

F2

Supply A

F6

Supply B

Demand C

F4Process 2

F5Process 3

F8Process 1

F3

F7F1

Supply B

Fig. 11 Process superstructure for Example 2

after presolve, respectively), continuous variables (10% and 26% less, before and after
presolve, respectively), and constraints (5% and 25% less, before and after presolve,
respectively) than its equivalent single-level counterpart. Although it seems surprising
that a model with fewer variables and constraints is tighter than an equivalent model
of greater size, this occurs because of the absence of slack disjuncts in the nested
formulation, which make the equivalent formulation less tight.

4.3 Example 2: nonlinear model

Example 2 is based on Example 4.1 in the work by van den Heever and Grossmann
(1999), which consists of an integrated superstructure optimization problem with long
term operational and expansion planning. The problem has three potential processes
(1, 2, and 3), each with its dedicated processing unit, and three materials (A, B, and
C) as shown in Fig. 11. Material C is the final product (price: $10,800/ton) and is
produced from Material B in Process 1. Material B can be purchased externally (cost:
$7,000/ton) or produced from Material A (cost: $1,800/ton) in either Process 2 or
Process 3. It is assumed that each process includes any required separation steps, such
that the respective exit streams are single-component streams containing the pure
product of each process. The objective here is to minimize cost (maximize profit) by
making the following decisions:

• Which processes should be used.
• Which processes to operate in each period.
• Which processes to undergo a capacity expansion in each period.
• How much new processing capacity to install in each period.

The hierarchical GDP model is given as follows. The material balance constraints
in the two stream junction points are given in (42) and (43), where Fs,t is the flow
(tons) in stream s in period t (where t is in years). The amount of imported B and
exported C are constrained by (44) and (45), respectively.

F1,t 	 F2,t + F3,t ∀ t ∈ T (42)

123

Extensions to generalized disjunctive programming: hierarchical… 987

F7,t 	 F4,t + F5,t + F6,t ∀ t ∈ T (43)

F6,t ≤ 5∀ t ∈ T (44)

F8,t ≤ 1∀ t ∈ T (45)

The installation and planning decisions are made in the nested disjunction given
in (46), where the top-level decision is to install Process i or not (Yi or ¬Yi). If a
process is installed, the respective nonlinear production yield constraint is enforced,
where g1

(

F7,t
) 	 0.9·F7,t , g2

(

F2,t
) 	 ln

(

1 + F2,t
)

, and g3
(

F3,t
) 	 1.2 ·ln(1 + F3,t

)

.
A process capacity balance is also applied to update the current capacity, Qi,t , with
the capacity in the previous period and the current capacity expansion, QEi,t . The
secondary level decision is to operate the installed process, N (1)

i,t , or not, N
(2)
i,t . If the

process is operated in period t , the exit flow is bounded by the process capacity, and the
operating cost, COi,t , is determined with the parameter γi (γ1 	 $900, γ2 	 $1, 000,
and γ3 	 $1, 200). The tertiary level decision is to expand the process capacity, Z (1)

i,t ,

or not, Z (2)
i,t . The expansion cost, CEi,t , is calculated with the fixed cost parameter, αi

(α1 	 $3, 500, α2 	 $1, 000, and α3 	 $1, 500), and the variable cost parameter, βi
(β1 	 $1, 200/ton, β2 	 $700/ton, and β3 	 $1, 100/ton). It should be noted that
each of the parameters used can also be indexed by time period if desired.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yi
Fs,t 	 gi

(

Fs′,t
) ∀ t ∈ T

Qi,t 	 Qi,t−1 |t>1 + QEi,t ∀ t ∈ T
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N (1)
i,t

Fs,t ≤ Qi,t

COi,t 	 γi
[

Z (1)
i,t

CEi,t 	 αi + βi · QEi,t

]

∨

⎡

⎢

⎣

Z (2)
i,t

QEi,t 	 0
CEi,t 	 0

⎤

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎢

⎣

N (2)
i,t

Fs,t 	 0
COi,t 	 0
QEi,t 	 0
CEi,t 	 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∀ t ∈ T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎢

⎣

¬Yi
Fs,t 	 0 ∀ t ∈ T
Fs′,t 	 0 ∀ t ∈ T

Qi,t , QEi,t 	 0 ∀ t ∈ T
COi,t ,CEi,t 	 0 ∀ t ∈ T

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∀ i ∈ I , s ∈ Souti , s′ ∈ Sini (46)

�(1, {Yi ,¬Yi }) ∀ i ∈ I (47)

�
(

Yi ,
{

N (1)
i,t , N (2)

i,t

})

∀ i ∈ I , t ∈ T (48)

�
(

N (1)
i,t ,

{

Z (1)
i,t , Z

(2)
i,t

})

∀ i ∈ I , t ∈ T (49)

123

988 H. D. Perez, I. E. Grossmann

Additional logic constraints are given in (50–53). The cardinality clause in (50)
allows installing at most 1 of Process 2 or Process 3. This is equivalent to the propo-
sition ¬Y2 ∨ ¬Y3 used in the original paper, but generalizes for cases in which there
are more than two potential processes in parallel. The implication in (51) ensures
that Process 1 is installed if either Process 2 or Process 3 are installed. (52) and (53)
enforce that process i operate at least once if installed, with at least one expansion
event scheduled between the beginning of the planning horizon (period 1) and each
period t in which the process is operated, respectively.

�(1, {Y2,Y3}) (50)

Yi ⇒ Y1 ∀ i ∈ {2, 3} (51)

�
(

Yi , N
(1)
i,t ∀ t ∈ T

)

∀ i ∈ I (52)

�
(

N (1)
i,t , Z (1)

i,t ′ ∀ t ′ ∈ (1, . . . , t)
)

∀ i ∈ I , t ∈ T (53)

The variable domains are given in (54–60), where FUB
s 	 5ton ∀ s ∈ S, QEUB

1 	
0.4ton, QEUB

2 	 0.3ton, and QEUB
3 	 0.3ton.

0 ≤ Fs,t ≤ FUB
s ∀ s ∈ S, t ∈ T (54)

0 ≤ Qi,t ≤ QEUB
i · t ∀ i ∈ I , t ∈ T (55)

0 ≤ QEi,t ≤ QEUB
i ∀ i ∈ I , t ∈ T (56)

0 ≤ CEi,t ≤ αi + βi · QEUB
i ∀ i ∈ I , t ∈ T (57)

0 ≤ COi,t ≤ γi ∀ i ∈ I , t ∈ T (58)

N (n)
i,t , Z (n)

i,t ∈ {True, False} ∀ i ∈ I , t ∈ T , n ∈ {1, 2} (59)

Yi ∈ {True, False} ∀ i ∈ I (60)

The objective function is to minimize the system cost, as given in (61), where the
stream costs, ps , are given in Table 8. The model for Example 2 is thus given by
(42–61).

min
∑

t∈T

(

∑

s∈S
ps · Fs,t +

∑

i∈I

(

COi,t + CEi,t
)

)

(61)

123

Extensions to generalized disjunctive programming: hierarchical… 989

Table 8 Stream costs, ps , in $/ton

Stream (s) 1 2 3 4 5 6 7 8

Cost ($/ton) 1800 0 0 300 100 7000 0 − 10,800

There are some differences between this formulation and the one in the original
paper by van den Heever and Grossmann (1999). The original formulation has the
process capacity evolution constraint in the disjunct governed by Z (1)

i,t . This requires

specifying a new constraint, Qi,t 	 Qi,t−1, for the disjunct governed by Z (2)
i,t , which

would also be required for the disjunct governed by N (2)
i,t . This is avoided by moving

the process capacity balance to the upper-level constraints in Yi . The same is true
for the yield constraint, which we move from the N (1)

i,t disjunct to the Yi disjunct
constraints. This requires that we only constrain the flow exiting the process in the
secondary level disjunction, rather than both the entrance and exit flows. It is alsomore
intuitive to specify the yield constraintswhen the processes are selected.Anothermajor
difference is that the original model does not use the cardinality constraints in (48)
and (49). Instead, it uses the logic propositions (62) and (63). These propositions are
contained in (48) and (49), but do not establish a proper hierarchical relationship since
there is no link between N (2)

i,t and Yi , and Z (2)
i,t and N (1)

i,t .

N (1)
i,t ⇒ Yi ∀ i ∈ I , t ∈ T (62)

Z (1)
i,t ⇒ N (1)

i,t ∀ i ∈ I , t ∈ T (63)

An important thing to note is that the model in Example 2 is an example of a
type of hierarchical GDP, that need not be hierarchical at all. This occurs when every
disjunction has only two disjuncts, representing an on and an off state, where the
off state has all relevant variables set to zero. When this occurs, (46) can actually be
split into three sets of disjunctions without adding the “slack” disjunct observed in
the Equivalent Single-Level GDP model. These three sets of disjunctions are given
in (64–66). The cardinality constraints in (48–49) can be replaced by (62–63), and
(67–68). The model composed of (42–45), (47), and (50–68) is referred to here as the
Non-hierarchical formulation.

(64)

⎡

⎢

⎣

Yi
Fs,t 	 gi

(

Fs′,t
) ∀t ∈ T

Qi,t 	 Qi,t−1 |t>1 + QEi,t ∀t ∈ T

⎤

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

¬Yi
Fs,t 	 0 ∀t ∈ T

Fs′,t 	 0 ∀t ∈ T

Qi,t 	 0 ∀t ∈ T

QEi,t 	 0 ∀t ∈ T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∀i ∈ I , s ∈ Souti , s′ ∈ Sini

⎡

⎢

⎣

N (1)
i,t

Fs,t ≤ Qi,t

COi,t 	 γi

⎤

⎥

⎦

∨

⎡

⎢

⎣

N (2)
i,t

Fs,t 	 0
COi,t 	 0

⎤

⎥

⎦ ∀ i ∈ I , s ∈ Souti , t ∈ T (65)

123

990 H. D. Perez, I. E. Grossmann

[

Z (1)
i,t

CEi,t 	 αi + βi · QEi,t

]

∨

⎡

⎢

⎣

Z (2)
i,t

QEi,t 	 0
CEi,t 	 0

⎤

⎥

⎦
∀ i ∈ I , t ∈ T (66)

�
(

1,
{

N (1)
i,t , N (2)

i,t

})

∀ i ∈ I , t ∈ T (67)

�
(

1,
{

Z (1)
i,t , Z

(2)
i,t

})

∀ i ∈ I , t ∈ T (68)

The nested GDPmodel is compared against its equivalent single-level formulation,
and the Non-hierarchical formulation, by reformulating each of these into mixed-
integer nonlinear programs (MINLPs) using the Hull reformulation. Since the models
are nonlinear, the perspective functions were reformulated using the ε-approximation
fromFurman et al. (2020), with ε 	 10−9, which is the default nonlinearHull reformu-
lation method in the disjunctive programming library. As in Example 1, two additional
scenarios are runwhere the product (stream8) sales price is increased and decreased by
10%. Themodel statistics are given in Tables 9 (nominal case), 10 (10% increase), and
11 (10% decrease). The Nested formulation is faster than the Equivalent Single-Level
formulation by a factor of 1.8–4.2.When local search and range reduction are disabled

Table 9 Model sizes and computational results of theMINLPmodels resulting from the Hull reformulations
of the Equivalent Single-Level, Nested, and Non-hierarchical GDP models

Hull reformulation

Equivalent Nested Non-hierarchical

Model size

Binary variables 384 258 258

Continuous variables 2499 2058 1554

Constraints 12,006 10,431 7596

NLP relaxation

Relaxation solution − $161,458 − $122,829 − $122,829

Relaxation gap 69% 29% 29%

MIP solution

MIP solution − $95,373 − $95,373 − $95,373

BaR iterations 1 1 1

Cuts applied 702 703 712

CPU time (s) 8.8 4.6 3.5

MIP solutiona

BaR iterations 267 7 45

Cuts applied 58,041 865 3548

CPU time (s) 74.5 3.3 5.6

All models are solved to optimality (0% gap)
aNo local search; no range reduction

123

Extensions to generalized disjunctive programming: hierarchical… 991

Table 10 Computational statistics of the MILP models resulting from the Hull reformulations of the GDP
models in Example 2 with a 10% increase in the sales price for stream 8

Hull reformulation

Equivalent Nested Non-hierarchical

NLP relaxation

Relaxation Solution − $184,138 − $144,645 − $144,645

Relaxation gap 57% 23% 23%

MIP solution

MIP solution − $117,189 − $117,189 − $117,189

BaR iterations 1 1 1

Cuts applied 710 712 712

CPU time (s) 12.2 2.9 3.5

MIP solutiona

BaR iterations 450 7 45

Cuts applied 102,644 873 3552

CPU time (s) 60.5 5.8 2.2

All models are solved to optimality (0% gap)
aNo local search; no range reduction

Table 11 Computational statistics of the MILP models resulting from the Hull reformulations of the GDP
models in Example 2 with a 10% decrease in the sales price for stream 8

Hull reformulation

Equivalent Nested Non-hierarchical

NLP relaxation

Relaxation Solution − $138,779 − $101,013 − $101,013

Relaxation gap 89% 37% 37%

MIP solution

MIP solution − $73,557 − $73,557 − $73,557

BaR iterations 1 1 1

Cuts applied 719 729 722

CPU time (s) 9.5 5.3 3.2

MIP solutiona

BaR iterations 301 5 45

Cuts applied 71,519 640 3,440

CPU time (s) 75.7 3.6 2.2

All models are solved to optimality (0% gap)
aNo local search; no range reduction

123

992 H. D. Perez, I. E. Grossmann

Fig. 12 Capacity expansion profiles for each of the processes in Example 2

in BARON, the difference in CPU time becomes more significant (one order of mag-
nitude difference). The continuous relaxations for the Nested and Non-hierarchical
formulations are equal (23—37% gap) and tighter than that of the Equivalent Single-
Level formulation (57—89% gap). The performance of the Nested formulation is
comparable to that of the Non-hierarchical one, with the latter having less continuous
variables and constraints. This example highlights the fact that models with on/off dis-
junctions do not require a hierarchical representation to attain the same performance
gains of the nested models.

The optimal expansion profile for the nominal case is given in Fig. 12, where it can
be seen that Process 2 is not installed, but Processes 1 and 3 are, where the capacity
in Process 1 increases to 1 ton/year by the third year, and Process 3 increases to 1.11
ton/year by the fourth year. The optimal system cost is − $95 thousand, meaning that
plant generates profit.

5 Conclusions

Twomain contributions are made in this paper to the generalized disjunctive program-
ming (GDP) modeling framework. The first one is to add cardinality rules to the logic
constraints to allow for constraints of the form choose exactly m Boolean variables to
be True (or at least m, or at most m). For more than two Boolean variables, modeling
these types of constraints via propositional logic (zeroth-order logic) is cumbersome.
Thus, introducing predicate logic (first-order logic) to express this new constraint form
in GDP adds more expressiveness to logic-based models. The second contribution is
to extend GDP for modeling hierarchical systems via nested disjunctions. Such an
approach results in more intuitive models, but had not been formalized in the past, as
classical GDPdoes not consider disjunction nesting. The notation and logic constraints
for such structures are provided, along with theoretical proofs to the tightness of such
models, versus equivalent single-level GDP models. It is shown that mixed-integer
programming reformulations of nested GDP models have continuous relaxations that
are as tight or tighter than the reformulations of their single-level counterparts in both
the Hull reformulation, as well as the Big-M reformulation when tight M values are
used. In some cases, the nested models result in tighter continuous relaxations, as
shown in the illustrative and numerical examples presented. It was also observed that

123

Extensions to generalized disjunctive programming: hierarchical… 993

when large M values are used, the reformulated nested models show worse perfor-
mance due to the presence of multiple large M parameters in the nested constraints.
Finding tight M values requires additional work, and can be done by applying inter-
val arithmetic when the models are linear. However, for nonlinear models, a separate
optimization model must be solved for each constraint to find the tightestM values.

Three examples are presented to show the advantages of using nested structures.
In the illustrative example, the tightness of the continuous relaxations of nested lin-
ear models are compared geometrically with the relaxations of equivalent single-level
models. In this example, themodels that preserve nested structures have smaller contin-
uous relaxations than their single-level counterparts. This is promising as it may result
in computational savings when optimizing nested models. Example 1, a linear GDP,
and Example 2, a nonlinear GDP, illustrate the computational advantages of nested
GDP models for problems that integrate superstructure design, technology selection,
and operations scheduling, and superstructure design, long-term operations planning,
and capacity expansion planning, respectively. It is also shown that for systems with
bi-disjunct constraints (disjunctions with only two disjunctions), where one disjunct
represents an off state with all pertinent variables set to zero (e.g., zero flow), there is
no advantage to modeling such systems as hierarchical, even when there may be sev-
eral levels of decisions. Such systems can be modelled more simply with single-level
disjunctions and the necessary linking constraints.

Future work includes investigating how explicit hierarchical structures can be
exploited for informed model decomposition methods and branching strategies.
Exploring applications of hierarchical GDP to other fields, such as decision trees
and stochastic optimization with event constraints, is another potential area for devel-
opment.

Acknowledgements The authors gratefully acknowledge the financial support from theCenter ofAdvanced
Process Decision-making at Carnegie Mellon University.

Funding Open Access funding provided by Carnegie Mellon University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix A: Challenges with exclusive OR operator

The exclusive OR (XOR) returns true whenever an odd number of literals are True.
As a binary operator, it is equivalent to exactly one of the literals being true. However,
when disjunctions have three or more disjuncts, using an XOR operator can be prob-
lematic when the disjunction is not proper, meaning that there is an overlap between
the feasible regions of the disjuncts. Specifically, issues arise when a GDP model is

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

994 H. D. Perez, I. E. Grossmann

reformulated into a MIP model via the Hull reformulation. When the Hull reformula-
tion is applied, each variable in the disjunction is disaggregated, and it is assumed that
exactly one of the disaggregated variables takes a non-zero value, such that the sum of
the disaggregated variables becomes the original variable. However, for an improper
disjunction, there can exist a scenario where a feasible point is at the intersection of an
odd number of disjuncts. When this occurs, an odd number of disaggregated variables
can become non-zero, resulting in an erroneous solution.

Consider the simple improper disjunction in (A1), where x is bounded between
0 and 20. The Hull reformulation of (A1) is given in (A2), where yi is the binary
counterpart of the Boolean Yi . At the feasible point x 	 5, all three disjuncts are
valid, and the XOR operator Y1∨Y2∨Y3, will return True if all Boolean variables Yi
are True. In this scenario, xi 	 5 ∀ i ∈ {1, 2, 3}, making the aggregated variable
x 	 15, which is not correct. Note that if the upper bound on x is less than 15, this
solution becomes infeasible. Although this is a simple example that could be avoided
by using strict inequalities on the first and third disjunct, there may be more complex
disjunctions where it may not be as apparent that they are improper.

[

Y1
x ≤ 5

]

∨
[

Y2
x 	 5

]

∨
[

Y3
x ≥ 5

]

(A1)

x1 ≤ 5y1
x2 	 5y2
x3 ≥ 5y3

0 ≤ xi ≤ 20yi ∀ i ∈ {1, 2, 3}
x 	 x1 + x2 + x3

(A2)

Appendix B: Negations in nested disjunctions

Nesting disjunctions involves linking cardinality constraints of the form
�(Y ,Wi ∀ i ∈ I), which indicates that exactly one Boolean Wi is allowed to be
True if and only if Y is True. Otherwise, exactly zero Booleans Wi are True. To illus-
trate this, consider Example 2 (Sect. 4.3), where the upper-level decision is to install or
not install a process (indicated by the Boolean variable Y below), and the lower-level
decision is to operate or not operate the process in a given time period (indicated by
the Boolean variable N below). The modeler might consider writing such a nested
disjunction as (B1). However, this is not correct from a logic standpoint because the
cardinality rule �(Y , {N ,¬N }) is infeasible. This is because N must either be True
or False, and ¬N is the complement of N . If Y 	 False, the cardinality rule implies
that all the literals must be False, but N and ¬N cannot both be False. The correct
form of writing this nested disjunction is given in (B2), where N (1) indicates operating
the process given the process is installed, and N (2) indicates not operating the process

123

Extensions to generalized disjunctive programming: hierarchical… 995

given the process is installed.

⎡

⎢

⎢

⎣

Y
. . .

[

N
. . .

]

∨
[¬N

. . .

]

⎤

⎥

⎥

⎦

∨
[¬Y

. . .

]

(B1)

⎡

⎢

⎢

⎣

Y
. . .

[

N (1)

. . .

]

∨
[

N (2)

. . .

]

⎤

⎥

⎥

⎦

∨
[¬Y

. . .

]

(B2)

Appendix C: Flattening nested disjunctions via basic steps

The third approach to modeling hierarchical GDP is to flatten the nested disjunctions
by applying sufficiently many basic steps (Ruiz and Grossmann 2012; Grossmann and
Trespalacios 2013) within each disjunction until the nested system is transformed into
a systemwith single-level disjunctions. Consider the simple nested disjunction in (C1).
This disjunction constraint can be flattened by applying two basic steps to introduce
g1(x) ≤ 0 into the nested disjunctions, resulting in (C2), where Z1 	 Y1 ∧ W1 and
Z2 	 Y1 ∧ W2.

⎡

⎢

⎢

⎣

Y1
g1(x) ≤ 0

[

W1

h1(x) ≤ 0

]

∨
[

W2

h2(x) ≤ 0

]

⎤

⎥

⎥

⎦

∨
[

Y2
g2(x) ≤ 0

]

(C1)

⎡

⎣

Z1

g1(x) ≤ 0
h1(x) ≤ 0

⎤

⎦ ∨
⎡

⎣

Z2

g1(x) ≤ 0
h2(x) ≤ 0

⎤

⎦ ∨
[

Y2
g2(x) ≤ 0

]

(C2)

For disjunctions with a single nested disjunction, applying a basic step is quite
inexpensive. However, once there is more than one nested disjunction inside a single
disjunct, the number of basic steps required to flatten the hierarchical GDP grows
exponentially. Consider the disjunction with two nested disjunctions in (C3). Flat-
tening the disjunction is a set covering problem and requires eight basic steps (four
for each combination of two disjuncts and four more to introduce g1(x) ≤ 0 in the

123

996 H. D. Perez, I. E. Grossmann

resulting disjuncts) to obtain the equivalent disjunction in (C4).

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y1
g1(x) ≤ 0

[

W1

h1(x) ≤ 0

]

∨
[

W2

h2(x) ≤ 0

]

[

W3

h3(x) ≤ 0

]

∨
[

W4

h4(x) ≤ 0

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∨
[

Y2
g2(x) ≤ 0

]

(C3)

(C4)

⎡

⎢

⎢

⎣

Y1 ∧ W1 ∧ W3

g1 (x) ≤ 0
h1 (x) ≤ 0
h3 (x) ≤ 0

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Y1 ∧ W1 ∧ W4

g1 (x) ≤ 0
h1 (x) ≤ 0
h4 (x) ≤ 0

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Y1 ∧ W2 ∧ W3

g1 (x) ≤ 0
h2 (x) ≤ 0
h3 (x) ≤ 0

⎤

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎣

Y1 ∧ W2 ∧ W4

g1 (x) ≤ 0
h2 (x) ≤ 0
h4 (x) ≤ 0

⎤

⎥

⎥

⎦

∨
[

Y2
g2 (x) ≤ 0

]

Generalizing this to the notation of 2L-GDP, a disjunction with k ∈ Ki j nested
disjunctions, each of which has l ∈ Li jk disjuncts, requires the number of basic steps

given in (17), where the notation
(

a
0pt1

)

is the binomial coefficient (choose 1 from

a group with a elements). The coefficient 2 accounts for introducing gi j (x) ≤ 0
into each of the resulting disjuncts, and can be replaced by the 1 +

∣

∣gi j (x)
∣

∣ if gi j (x)
represents a vector of functions, where

∣

∣gi j (x)
∣

∣ is the number of functions within
gi j (x). A hybrid approach is also possible, where some basic steps are performed
and then the resulting nested disjunction is flattened as in the Equivalent Single-Level
GDP approach. However, as the number of nested disjunctions increases, this hybrid
approach yields many more disjunctions than those given in (C5). Although flattening
via basic steps may produce models that are tighter than the inside-out reformulation
of the nested GDP, the combinatorial growth of such systems makes this approach
prohibitive for multi-level decision systems with multiple disjuncts in each nested
disjunction. It is for this reason that this approach is not considered in the main body
of the paper. However, it is presented here as a reference for the reader.

2 ·
(∣

∣Li j1
∣

∣

0pt1

)

·
(∣

∣Li j2
∣

∣

0pt1

)

· . . . ·
⎛

⎝

∣

∣

∣Li j|Ki j |
∣

∣

∣

0pt1

⎞

⎠ 	 2 ·
∏

k∈Ki j

∣

∣Li jk
∣

∣ (C5)

123

Extensions to generalized disjunctive programming: hierarchical… 997

Supplementarymaterial

All source code for the figures and examples in this paper can be found at https://
github.com/hdavid16/Extensions-to-GDP-paper.

References

AgarwalA (2015)A novelMINLP reformulation for nonlinear generalized disjunctive programming (GDP)
problems. ArXiv. https://doi.org/10.48550/arxiv.1510.01791

Balas E (1985) Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.
SIAM J Algebraic Discrete Methods 6(3):466–486. https://doi.org/10.1137/0606047

Bernal DE, Grossmann I E (2021) Convex mixed-integer nonlinear programs derived from generalized
disjunctive programming using cones. https://doi.org/10.48550/arxiv.2109.09657

Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing.
SIAM Rev 59(1):65–98. https://doi.org/10.1137/141000671

Brunaud B, Grossmann IE (2017) Perspectives in multilevel decision-making in the process industry. Front
Eng Manag, 4(3):256–270. https://doi.org/10.15302/J-FEM-2017049

Castro P, Rodrigues D, Matos HA (2014) Cyclic scheduling of pulp digesters with integrated heating tasks.
Ind Chem Eng Res 53:17098–17111. https://doi.org/10.1021/ie403822z

Castro P (2017) Optimal scheduling of multiproduct pipelines in networks with reversible flow. Ind Chem
Eng Res 56:9638–9656. https://doi.org/10.1021/acs.iecr.7b01685

ChenQ, Johnson ES, Bernal DE, Valentin R, Kale S, Bates J, Siirola JD, Grossmann IE (2022) Pyomo.GDP:
an ecosystem for logic based modeling and optimization development. Optim Eng 23(1):607–642.
https://doi.org/10.1007/S11081-021-09601-7/FIGURES/13

Dantzig GB (1972) Fourier-Motzkin elimination and its dual. Department of Operations Research, Stanford
University, CA. https://apps.dtic.mil/sti/citations/AD0750674

Dunning I, Huchette J, Lubin M (2017) JuMP: a modeling language for mathematical optimization. SIAM
Rev 59(2):295–320. https://doi.org/10.1137/15M1020575

Furman KC, Sawaya NW, Grossmann IE (2020) A computationally useful algebraic representation of
nonlinear disjunctive convex sets using the perspective function. Comput Optim Appl 76(2):589–614.
https://doi.org/10.1007/S10589-020-00176-0/TABLES/7

Grossmann IE (2012) Advances in mathematical programming models for enterprise-wide optimization.
Comput Chem Eng 47:2–18. https://doi.org/10.1016/j.compchemeng.2012.06.038

Grossmann IE,LeeS (2003)Generalized convexdisjunctive programming: nonlinear convexhull relaxation.
Comput Optim Appl 26(1):83–100. https://doi.org/10.1023/A:1025154322278

Grossmann IE, Trespalacios F (2013) Systematic modeling of discrete–continuous optimization models
through generalized disjunctive programming. AIChE J 59(9):3276–3295. https://doi.org/10.1002/
AIC.14088

Kondili E, Pantelides CC, Sargent RWH (1993) A general algorithm for short-term scheduling of
batch operations-I. MILP Formul Comput Chem Eng 17(2):211–227. https://doi.org/10.1016/0098-
1354(93)80015-F

Lee S, Grossmann IE (2000) New algorithms for nonlinear generalized disjunctive programming. Comput
Chem Eng 24(9–10):2125–2141. https://doi.org/10.1016/S0098-1354(00)00581-0

Legat B,Deits R,GoretkinG,KoolenT,Huchette J, OyamaD, ForetsM (2021) JuliaPolyhedra/Polyhedra.jl:
v0.6.16. Zenodo. https://doi.org/10.5281/zenodo.4993670

Maravelias CT, SungC (2009) Integration of production planning and scheduling: Overview, challenges and
opportunities. Comput Chem Eng 33(12):1919–1930. https://doi.org/10.1016/J.COMPCHEMENG.
2009.06.007

Muñoz E, Capón-García E, Moreno-Benito M, Espuña A, Puigjaner L (2011) Scheduling and control
decision-making under an integrated information environment. Comput Chem Eng 35(5):774–786.
https://doi.org/10.1016/J.COMPCHEMENG.2011.01.025

Perez HD, Amaran S, Iyer S, Wassick JM, Grossmann IE (2022) Applications of the RTN scheduling
model in the chemical industry. In Bortz M, Asprion N (eds), Simulation and optimization in process
engineering: the benefit of mathematical methods in applications of the chemical industry. Elsevier,
New York, pp 365–400. https://doi.org/10.1016/B978-0-323-85043-8.00006-4

123

https://github.com/hdavid16/Extensions-to-GDP-paper
https://doi.org/10.48550/arxiv.1510.01791
https://doi.org/10.1137/0606047
https://doi.org/10.48550/arxiv.2109.09657
https://doi.org/10.1137/141000671
https://doi.org/10.15302/J-FEM-2017049
https://doi.org/10.1021/ie403822z
https://doi.org/10.1021/acs.iecr.7b01685
https://doi.org/10.1007/S11081-021-09601-7/FIGURES/13
https://apps.dtic.mil/sti/citations/AD0750674
https://doi.org/10.1137/15M1020575
https://doi.org/10.1007/S10589-020-00176-0/TABLES/7
https://doi.org/10.1016/j.compchemeng.2012.06.038
https://doi.org/10.1023/A:1025154322278
https://doi.org/10.1002/AIC.14088
https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1016/S0098-1354(00)00581-0
https://doi.org/10.5281/zenodo.4993670
https://doi.org/10.1016/J.COMPCHEMENG.2009.06.007
https://doi.org/10.1016/J.COMPCHEMENG.2011.01.025
https://doi.org/10.1016/B978-0-323-85043-8.00006-4

998 H. D. Perez, I. E. Grossmann

Perez, H. D., Joshi, S., Grossmann, I. E. (2023). DisjunctiveProgramming.jl: generalized disjunctive pro-
gramming models and algorithms for JuMP. ArXiv. https://doi.org/10.48550/arXiv.2304.10492

Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based integer program-
ming. Comput Chem Eng 18(7):563–578. https://doi.org/10.1016/0098-1354(93)E0010-7

Rodriguez MA, Vecchietti A (2009) Logical and generalized disjunctive programming for supplier and
contract selection under provision uncertainty. Ind Eng Chem Res 48(11):5506–5521. https://doi.org/
10.1021/IE801614X/ASSET/IMAGES/MEDIUM/IE-2008-01614X_0005.GIF

Ruiz JP, Grossmann IE (2012) A hierarchy of relaxations for nonlinear convex generalized disjunctive
programming. Eur J Oper Res 218(1):38–47. https://doi.org/10.1016/J.EJOR.2011.10.002

Sawaya NW, Grossmann IE (2005) A cutting plane method for solving linear generalized dis-
junctive programming problems. Comput Chem Eng 29(9):1891–1913. https://doi.org/10.1016/J.
COMPCHEMENG.2005.04.004

Sokoler LE,Dinesen PJ, Jorgensen JB (2017)AHierarchical algorithm for integrated scheduling and control
with applications to power systems. IEEE Trans Control Syst Technol 25(2):590–599. https://doi.org/
10.1109/TCST.2016.2565382

Trespalacios F, Grossmann IE (2015) Improved Big-M reformulation for generalized disjunctive programs.
Comput Chem Eng 76:98–103. https://doi.org/10.1016/J.COMPCHEMENG.2015.02.013

Trespalacios F, Grossmann IE (2016) Cutting plane algorithm for convex generalized disjunctive programs.
Informs J Comput 28(2):209–222. https://doi.org/10.1287/IJOC.2015.0669

Türkay M, Grossmann IE (1996a) Logic-based MINLP algorithms for the optimal synthesis of process
networks. Comput Chem Eng 20(8):959–978. https://doi.org/10.1016/0098-1354(95)00219-7

van den Heever SA, Grossmann IE (1999) Disjunctive multiperiod optimization methods for design and
planning of chemical process systems. Comput Chem Eng 23(8):1075–1095. https://doi.org/10.1016/
S0098-1354(99)00273-2

Vecchietti A, Grossmann IE (2000) Modeling issues and implementation of language for dis-
junctive programming. Comput Chem Eng 24(9–10):2143–2155. https://doi.org/10.1016/S0098-
1354(00)00582-2

Williams HP (1985) Model building in linear and integer programming. Comput Math Program. https://
doi.org/10.1007/978-3-642-82450-0_2

Yan H, Hooker JN (1999) Tight representation of logical constraints as cardinality rules. Math Program
85(2):363–377. https://doi.org/10.1007/S101070050061

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.48550/arXiv.2304.10492
https://doi.org/10.1016/0098-1354(93)E0010-7
https://doi.org/10.1021/IE801614X/ASSET/IMAGES/MEDIUM/IE-2008-01614X_0005.GIF
https://doi.org/10.1016/J.EJOR.2011.10.002
https://doi.org/10.1016/J.COMPCHEMENG.2005.04.004
https://doi.org/10.1109/TCST.2016.2565382
https://doi.org/10.1016/J.COMPCHEMENG.2015.02.013
https://doi.org/10.1287/IJOC.2015.0669
https://doi.org/10.1016/0098-1354(95)00219-7
https://doi.org/10.1016/S0098-1354(99)00273-2
https://doi.org/10.1016/S0098-1354(00)00582-2
https://doi.org/10.1007/978-3-642-82450-0_2
https://doi.org/10.1007/S101070050061

	Extensions to generalized disjunctive programming: hierarchical structures and first-order logic
	Abstract
	Sets
	Parameters
	Continuous variables
	Boolean variables
	1 Introduction
	2 Background: generalized disjunctive programming (GDP)
	3 Extended formulation for multi-level hierarchies
	3.1 Hierarchical GDP
	3.2 Equivalent single-level GDP
	3.3 Tightness of continuous relaxations

	4 Examples
	4.1 Illustrative example
	4.2 Example 1: linear model
	4.3 Example 2: nonlinear model

	5 Conclusions
	Acknowledgements
	Appendix A: Challenges with exclusive OR operator
	Appendix B: Negations in nested disjunctions
	Appendix C: Flattening nested disjunctions via basic steps
	Supplementary material
	References

