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Abstract
Optimalmitigationplanning for highly disruptive contingencies to a transmission-level
power system requires optimizationwith dynamic power system constraints, due to the
key role of dynamics in system stability to major perturbations. We formulate a gener-
alized disjunctive program to determine optimal grid component hardening choices for
protecting against major failures, with differential algebraic constraints representing
system dynamics (specifically, differential equations representing generator and load
behavior and algebraic equations representing instantaneous power balance over the
transmission system). We optionally allow stochastic optimal pre-positioning across
all considered failure scenarios, and optimal emergency control within each scenario.
This novel formulation allows, for the first time, analyzing the resilience interdepen-
dencies of mitigation planning, preventive control, and emergency control. Using all
three strategies in concert is particularly effective at maintaining robust power sys-
tem operation under severe contingencies, as we demonstrate on the western system
coordinating council 9-bus test system using synthetic multi-device outage scenarios.

Keywords Power system dynamics · Control optimization · Stochastic optimization ·
Generalized disjunctive programming

1 Introduction

Multi-device contingencies in power systems can have disproportionate impact via
cascading failure (e.g., additional generators must shut down to protect themselves
if system frequency gets too low) and are particularly difficult to mitigate. Protec-
tive measures for power system resilience fall into discrete and continuous categories.
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Some discrete options include intentional tripping of generators, transmission lines,
transformers, and load; as well as hardening decisions to prevent failures of these
grid components in the first place. Continuous options include manipulation of
device controls, e.g., generator voltage and power set-point adjustment. The work
we present advances power system resilience research through the integration of mul-
tiple mathematical optimization paradigms to stabilize the grid over several possible
contingencies.

Static power flow models, which assume constant power generation and load con-
sumption, are typically used for planning and daily operations purposes. For example,
unit commitment (Knueven et al. 2020b) and economic dispatch models use the DC
optimal power flow approximations to schedule a grid’s fleet of generators to serve
forecasted load at minimal cost under normal operating conditions. Power system
restoration, on the other hand, uses AC optimal power flow approximations to gen-
erate a plan for restoring the grid after an extreme outage or blackout has occurred
(Patsakis et al. 2018). These processes occur on timescales of minutes or more and
models can therefore rely on static power flow assumptions for tractability, without
needing to consider system dynamics which occur on a timescale of seconds.

Models aimed at measuring or minimizing the operational impacts of disruptive
events to a power system—and particularly at understanding or preventing cascading
failure due to protective device tripping—require a full dynamic model to represent
the short-term behaviors that could cause such impacts. At a minimum, dynamic
models capture the inertial behavior of generators as they convert mechanical energy
into electrical energy, and the resulting fluctuation in metrics such as AC frequency,
current and voltage throughout the system. If these metrics exceed certain upper or
lower bounds they can cause additional impacts through mechanisms such as voltage
collapse, protective load shed and/or tripping of generators or transmission lines,
which in turn have follow-on effects. Dynamics-informed resilience metrics related to
voltage levels, voltage stability, frequency levels, and power transmission levels are
commonly-used to detect when the system is vulnerable to instability (Kundur et al.
1994).

The transient stability constrained optimal power flow (TSCOPF) problem, rooted
in dynamic simulation stability research in the 1990s, was developed to perform
optimal economic dispatch while maintaining transient stability guarantees in the
event of specific contingency scenarios (Gan et al. 2000; Abhyankar et al. 2017; Geng
et al. 2017). TSCOPF is governed by differential algebraic equations (DAE) thatmodel
dynamic power generation and transmission over the grid, as well as constraints that
keep transient stability, power and voltages, and/or other metrics within acceptable
bounds. Effectively, TSCOPF optimizes the initial conditions of DAE contingency
simulations subject to these constraints.

Since the introduction of multi-contingency (MC-) TSCOPF (Yuan et al. 2003),
most TSCOPF work has been concerned with simultaneously guaranteeing stability
over multiple contingency scenarios. However, in practice each contingency scenario
usually represents failure/disconnect of a single device. Failure of multiple devices
is much harder to protect against via initial conditions alone and is almost never
considered. Our model is similar toMC-TSCOPF in that it optimizes system operating
conditions prior to multiple potential contingencies, but different in that it considers
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additional decision variables as discussed below. Furthermore, optimizing generation
cost subject to stability and operational constraints can leave the system with very
little margin with respect to those constraints, and therefore vulnerable to additional
perturbations. Our model is primarily concerned with severe event resilience and
therefore optimizes operational margins rather than the generation cost as in (MC-)
TSCOPF.

The transient stability emergency control (TSEC) model described in Abhyankar
et al. (2017) and Gan et al. (2018), optimizes emergency control of system dynam-
ics after a contingency has occurred. Like TSEC, our model incorporates dynamic
post-contingency control – specifically of exciter voltage and governor mechanical
torque set points. Unlike TSEC or TSCOPF, we solve the pre-contingency problem
and each post-contingency recourse/emergency control problem simultaneously. In
this regard our work is similar to dynamic preventive-corrective control (Yuan and
Xu 2020; Arguello et al. 2021). Like Arguello et al. (2021), we use the full system
DAE rather than a One Machine Infinite Bust (OMIB) representation, allowing us to
optimize and constrain each device and consider metrics beyond transient stability.
For convenience of implementation, we use the same controls in our pre- and post-
contingency optimization stages. Thus, rather than optimizing pre-contingency real
and reactive power like TSCOPF, our model directly optimizes the generator controls
that determine real and reactive power. Thus our model is capable of determining the
best control path to the desired pre-contingency power levels within a given timeframe,
rather than assuming attainability of desired power levels.

There has been some progress in adding discrete planning decisions to dynamically-
constrained problems. Transient stability constrained unit commitment (TSCUC)
(Abhyankar et al. 2017; Geng et al. 2017; Xu et al. 2015) combines TSCOPF with
unit commitment for dynamic stability-constrained economic scheduling and dispatch.
Others have explored how to combine discrete variables with stability constraints for
other purposes (Dehghanian et al. 2015; Li et al. 2016; Lu et al. 2018; Paramasivam
et al. 2013; Kamali et al. 2018). Our model is different from these works in that it
allows resilience-focused device hardening in addition to optimal high-fidelity gener-
ator control.

For dynamic preventive-corrective control, we leverage the model of Arguello et al.
(2021), which performs two-stage stochastic optimization over multiple contingen-
cies. We essentially extend the first stage of this model with discrete hardening of
components to protect them from failure in any contingencies. With minor modifica-
tion our model can extend to other discrete decisions such as intentional generator,
transmission line, transformer, and load tripping.

In the next section of this paper, we present ourmodel in stages. First, we summarize
the nomenclature and basic power system dynamics model followed by a description
of the discretization method that was applied to the differential equations. Next, we
describe the resilience metrics that drive our optimization, how we model outages
throughdisjunctive programming, and themitigation component of ourmodel.We then
put all previousmodeling components together and describe our solutionmethodology
using a combination of nonlinear programming, generalized disjunctive programming,
and stochastic programming techniques. We apply our approach to the 9-bus Western
System Coordinating Council (WSCC) test system. This small system provides clear
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Table 1 Grid components Set Index symbol Description

B b Buses

G g Generators

L (i, j) Transmission line from bus i to bus j

D d Loads

Table 2 Bus mappings Set Description

Gb Generators at bus b

Db Loads at bus b

interpretation of results so that the reader can easily see the benefits of both mitigation
and high-fidelity generator control in the seconds surrounding a failure. Finally, we
present our conclusions and suggestions for future work.

2 Power system resilience andmitigationmodel

We use a similar dynamic power system model as the one described in Arguello et al.
(2021), including a fourth-order flux decay generator, turbines with no reheating, and
dynamic loads. This model is extended, through the use of disjunctive programming,
to allow discrete mitigation decisions. The model nomenclature is defined in Tables 1,
2, 3, 4, 5 and 6. Note that all power dynamic and control variables are time-dependent.
For brevity, we omit time indices and function notation.

2.1 Power system dynamics model

In this section, we introduce the basic power system dynamics DAE model–a
differential-algebraic system of equations that includes generator dynamics, load
dynamics, AC power transmission, and power balance at buses. Then discretization,
resilience metrics, outages, and mitigation features will be discussed. The section will
finish by integrating all features into a stochastic optimization model that optimizes
over a set of scenarios.

2.1.1 Generator model

Differential Eqs. (1)–(4) model the transformation of mechanical energy to electri-
cal energy in a generator using the reduced-order flux-decay model from Sauer et al.
(2017). This system of differential equations is derived by performing a Park’s trans-
formation over a balanced, symmetrical, three-phase generator with a field winding
and three damper windings on its rotor. Through this dynamic system, rotor frequency
is related to mechanical torque from the governor, internal voltages, internal currents,
a reference voltage, and the generator’s voltage at its connection to the rest of the
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Table 3 Grid Parameters

Parameter Index Description

ωs Rated synchronous speed (rad/s)

M g Machine constant (p.u.)

D g Damping coefficient (p.u.)

KA g Exciter amplifier gain (p.u.)

TA g Exciter amplifier time constant (s)

Rs g Scaled resistance after dq transformation (p.u.)

Xq g q-axis synchronous reactance (p.u.)

Xd g d-axis synchronous reactance (p.u.)

X
′
d g d-axis transient reactance (p.u.)

T
′
do g Transient time constant (s)

Tch g Mechanical torque damping (s)

bg g Bus connected to generator g

KVg g Vre f variation limit (p.u./s)

KPg g Pre f variation limit (p.u./s)

PoL d Initial active power (p.u.)

QoL d Initial reactive power (p.u.)

T pL d Active power time constant (s)

TqL d Reactive power time constant (s)

αs d First active power exponent

αt d Second active power exponent

βs d First reactive power exponent

βt d Second reactive power exponent

bl d Bus connected to load l

η Grid Resilience positive, even scaling parameter

γ Grid Resilience shaping parameter

λ Optimization objective coefficients

grid. Dynamic simulators usually regard the reference voltage Vref g as a constant
parameter, but our model allows it to vary over time, serving as a control variable.

dδg

dt
= ωg − ωs (1)

dωg

dt
= TMg

Mg
− E

′
qg

Iqg
Mg

− Idg Iqg
Xqg − X

′
dg

Mg
− Dg

ωg − ωs

Mg
(2)

dE
′
qg

dt
= − Eqg

T
′
dog

− Xdg − Idg
X

′
dg

T
′
dog

+ E f dg

T
′
dog

(3)

dE f dg

dt
= − E f dg

TAg

+ (Vre fg − Vbg )
KAg

TAg

(4)
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Table 4 Power dynamic variables

Variable Index Description

δ g Rotor angle (rad)

ω g Generator frequency (rad/s)

E
′
q g q-axis transient voltage (p.u.)

E f d g Field voltage (p.u.)

Iq g q-axis current (p.u.)

Id g d-axis current (p.u.)

TM g Shaft mechanical torque (p.u.)

V b Voltage (p.u.)

θ b Phase angle (rad)

P i, j Active power transmission from bus i to bus j (p.u.)

Q i, j Reactive power transmission from bus i to bus j (p.u.)

P d Active load power draw (p.u.)

Q d Reactive load power draw (p.u.)

xp d Load active power (p.u.)

xq d Load reactive power (p.u.)

Table 5 Control variables Variable Index Description

Vre f g Exciter reference voltage

Pre f g Generator mechanical torque power

Table 6 Investment and switching variables

Variable Index Description

z g/b/d Binary hardening investment—1 if generator, bus,

or load protected against tripping, 0 otherwise

ζ g/b/d,t Switching binary—1 if generator, bus,

or load is closed, 0 if component is opened

∀g ∈ G

2.1.2 Governor model

Shaft mechanical torque TMg is often used as a parameter in dynamic simulators.
Similarly to Vre f g , our model allows it to vary over time. Unlike Vre f g , however, our
model does not directly vary TMg . Instead, we include a non-reheat steam turbine
model to smoothly vary TMg through Pref g using differential Eq. (5). If Pref g were
fixed, TMg would exponentially decay to Pre f g . Given that we allow optimization over
Pref g , this governor model will force TMg to dynamically gravitate towards Pre f g in
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an exponential decay.

dTMg

dt
= Prefg − TMg

Tchg
(5)

∀g ∈ G

2.1.3 Stator equations

The flux-decay model stator equations in (6)–(7) result from applying Kirchoff’s Volt-
age Law to the generator’s dynamic equivalent circuit. It models real and reactive
voltage drop across the generator’s circuit elements.

Vbg sin(δg − θbg ) + Rsg Idg − Xqg Iqg = 0 (6)

E
′
qg − Vbg cos(δg − θbg ) − Rsg Iqg − X

′
qg Idg = 0 (7)

∀g ∈ G

2.1.4 Exponential recovery loadmodel

To include dynamic real and reactive power consumption on the grid, we use the
exponential recovery loadmodel (8)–(11) fromHill (1993). This model is based on the
empirically-observed exponential recovery of an aggregated load after a step change
in voltage. Equations (10)–(11) express power consumption as a linear combination
of the dynamic variable x and an exponential function of V . In turn, dx

dt is a linear
combination of x and exponential functions of V through (8)–(9). This model has the
effect of PLi and QLi recovering towards POLi

and QOLi
respectively after a change

in voltage.

dxpd
dt

= xpd
T pLd

+ PoLd V
αsd
bd

− PoLd V
αtd
bd

(8)

dxqd
dt

= xqd
T qLd

+ QoLd V
βsd
bd

− QoLd V
βtd
bd

(9)

PLd = xpd
T pLd

+ PoLd V
αtd
bd

(10)

QLd = xqd
T qLd

+ QoLd V
βtd
bd

(11)

∀d ∈ D
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2.1.5 Power flow equations

The power form of Ohm’s law for AC power flow applied across transmission lines
yields power flow Eqs. (12) and (14). They calculate the real and reactive power at bus
i from the line between buses i and j . Similarly, (13) and (15) calculate the real and
reactive power at bus j from the line between buses i and j . Note that these equations
can include modeling of transformers, line charging susceptance, and shunt devices.

Pi j = 1

τi j

(
V 2
i
Gi j

τi j
− ViVjGi j cos(θi − θ j ) − ViVj Bi j sin(θi − θ j )

)
(12)

Pji = V 2
j Gi j − 1

τi j
(ViVjGi j cos(θi − θ j ) + ViVj Bi j sin(θi − θ j )) (13)

Qi j = 1

τi j

(
−V 2

i

Bi j − Bsi j
2

τi j
+ ViVj Bi j cos(θi − θ j ) − ViVjGi j sin(θi − θ j )

)

(14)

Q ji = −V 2
j

(
Bi j − Bsi j

2

)
+ 1

τi j
(ViVj Bi j cos(θi − θ j ) + ViVjGi j sin(θi − θ j ))

(15)

∀i, j ∈ L

2.1.6 Balance equations

The power-balance network Eqs. (16) and (17) enforce conservation of power at each
bus. Together with the power flow equations, they model the transmission of real and
reactive power from generators, through lines, to loads throughout the grid.

∑
g∈Gb

(Idg Vbg sin(δg − θb) + Iqg Vbg cos(δg − θb)) −
∑

(i, j)∈L|i=b

Pi j

−
∑

(i, j)∈L| j=b

Pi j −
∑
l∈Db

PLl = 0 (16)

∑
g∈Gb

(Idg Vbg cos(δg − θb) + Iqg Vbg sin(δg − θb)) −
∑

(i, j)∈L|i=b

Qi j

−
∑

(i, j)∈L| j=b

Qi j −
∑
l∈Db

QLl = 0 (17)

∀b ∈ B

2.1.7 Variation restriction

Finally, we add two inequality constraints that limit the rate of change of Vre f and
Pref so that feasible solutions include practical control schemes that avoid high levels
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of oscillation.

∣∣∣∣dVre fgdt

∣∣∣∣ ≤ KVg (18)
∣∣∣∣dPre fgdt

∣∣∣∣ ≤ KPg (19)

∀g ∈ G

2.2 Discretization

To incorporate this power system dynamics model into an optimization framework to
maximize resilience, we discretize the DAE model and approximate the differential
equations with algebraic equations. The time horizon [0, T ] is partitioned through a
finite set of pointsP = T ∪T f ail where T = {t1 = 0, t2, . . . , tn−1, tn = T } and T f ail

is a set of failure times. For simplicity, we use uniform spacing between the points of
T . Every derivative in the power system dynamics model is then approximated using
either a finite difference or collocation discretization scheme. SeeArguello et al. (2021)
for more details.

2.3 Resiliencemetrics

After applying a discretization scheme, the power system variables defined in Table 4
are available at points in P to form resilience metrics for use in the objective function.
The following resilience metrics (Mv , Mω, and Md ) penalize deviations from nominal
values of voltage, frequency, and load respectively.

Mv(t1, t2) =
∑

t∈{τ∈P |t1≤τ<t2}

∑
b∈B

(
1 − Vb,t

η1

)γ1

(20)

Mω(t1, t2) =
∑

t∈{τ∈P |t1≤τ<t2}

∑
g∈G

(
ωg,t − ωs

ωs · η2

)γ2

(21)

Md(t1, t2) =
∑

t∈{τ∈P |t1≤τ<t2}

∑
d∈D

(
PLd,t − Pod

η3

)γ3

+
(
QLd,t − Qod

η4

)γ4

(22)

The γ parameters are chosen to be positive and even. Their magnitude determines
the rate at which deviation from nominal values is penalized. Meanwhile, the η param-
eters can be used to shape the resilience metrics. Minimizing these metrics improves
power quality while increasing voltage and frequency margins from their limits. This
helps prevent protective tripping, which in turn may prevent other outages or even
cascading failures. The objective function of our optimization model is formed from
a linear combination of these resilience metrics taken over appropriate time intervals
as shown in Sect. 2.6.3.
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2.4 Outages

Component trips within the power system are modeled using disjunctions through
generalized disjunctive programming (GDP). Each disjunction consists of two dis-
juncts, each containing a block of constraints. Feasible solutions satisfy either of the
two disjuncts within each disjunction. To keep track of which disjunct is satisfied,
we use variables ζ . If the first disjunct of a disjunction is satisfied, ζ = 1, otherwise
ζ = 0.

We begin by modeling generator tripping:

⎡
⎣ (6)

(7)
ζg = 1

⎤
⎦ ∨

⎡
⎣ Iqg = 0
Idg = 0
ζg = 0

⎤
⎦ ∀g ∈ G (23)

This disjunction either models the conversion of mechanical energy into electrical
energy through the stator Eqs. (6)–(7) or specifies that no electrical energy is generated
through Iqg = 0 and Idg = 0

Next, we model line tripping:

⎡
⎢⎢⎢⎢⎣

(12)
(13)
(14)
(15)
ζi j = 1

⎤
⎥⎥⎥⎥⎦ ∨

⎡
⎢⎢⎢⎢⎣

Pi j = 0
Pji = 0
Qi j = 0
Q ji = 0
ζi j = 0

⎤
⎥⎥⎥⎥⎦ ∀i, j ∈ L (24)

This disjunction eithermodels power transmission through thepowerflowequations
for real and reactive power or specifies that no power is being transmitted through a
line by setting the power flow variables equal to 0.

Finally, we model load tripping:

⎡
⎢⎢⎢⎢⎣

(8)
(9)
(10)
(11)
ζd = 1

⎤
⎥⎥⎥⎥⎦ ∨

⎡
⎢⎢⎢⎢⎣

PLd = 0
QLd = 0
xpd = 0
xqd = 0
ζd = 0

⎤
⎥⎥⎥⎥⎦ ∀d ∈ D (25)

This disjunction either models the consumption of power at a load through the
exponential recovery load model or specifies that no power is consumed by setting all
variables in the exponential recovery load model to 0.

All of the disjunctions described above are indexed by particular time indices
depending on the component trip scenario beingmodeled. This time index is described
in more detail in Sect. 2.6.
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2.5 Mitigation

The outage variables ζ indicate whether or not an outage has occurred since the outage
disjuncts aremutually exclusive. Consequently, these variables can be used as switches
to either de-energize or protect individual components within a particular outage sce-
nario. For example, if a grid component c is expected to become de-energized at time
t unless a mitigation has been put in place, then the on/off status of c is determined
through the constraint

ζc,t = zc (26)

where zc is the binary decision variable being optimized. Now assume the set of com-
ponents C is vulnerable in a scenario and will become de-energized unless mitigation
investments are made. If only B such investments can be made, the constraint

∑
c∈C

zc ≤ B (27)

will choose up to B components from C to keep energized while de-energizing the
rest.

As another alternative, the set of vulnerable components C can be partitioned into
type-specific component sets, Cg = {c ∈ C|c ∈ G} for generator mitigations, Cl =
{c ∈ C|c ∈ L} for line mitigations, and Cd = {c ∈ C|c ∈ D} for load mitigations.
Type-specific investment constraints can be used:

∑
c∈Cg

zc ≤ Bg (28)

∑
c∈Cl

zc ≤ Bl (29)

∑
c∈Cd

zc ≤ Bd (30)

A third alternative, is to associate a cost, pc, with protecting each grid component
and use a weighted sum constraint as a more detailed mitigation decision mechanism:

∑
c∈C

pczc ≤ B (31)

2.6 Stochastic mitigation and power system dynamics control optimizationmodel

Finally, we extend the deterministic power system dynamics control and mitigation
model detailed above to a two-stage stochastic program with recourse as in Arguello
et al. (2021). In this extension, a finite scenario set � = {ξ1, . . . ξn} models outage
scenarios where each ξi occurs with probability pi and has an associated outage set
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Ci . For ease of experimentation we assume that all failures occur at a common time t f
which allows us to partition the time horizon into a first-stage, T f = {t ∈ P|t < t f },
and a second-stage, Ts = {t ∈ P|t ≥ t f }. This event model represents simultane-
ous failures and idealized control with no delay in event detection or response. Our
stochastic model can be generalized to include failure and control delays along with
scenario and grid component-specific failure times. We leave this to future research.

2.6.1 First-stage

The first stage of our stochastic program captures decisions to be made before we
know which outage scenario is realized. First-stage decision variables must be nonan-
ticipative (i.e. the same across all scenarios). In our model the first stage variables are
the control actions before t f and themitigation decisions. Control actions taken during
this stage adjust the grid to be optimally prepared given the set of scenarios considered.
More specifically, this includes Vre f and Pre f for all generators and t ∈ T f . Mitigation
decisions determine which components are hardened or protected from failing. The
mitigation investment variable is defined as zc for c ∈ C where C = ⋃n

i Ci .
Our first-stage model includes all power system dynamics and control constraints

(1)–(19). For mitigation investment decisions we use component type-specific budgets
as shown in constraints (28)–(30).

2.6.2 Second-stage

The second stage solves for scenario-specific control decisions that occur after t f .
There are no mitigation decisions in this stage and components that were protected
in the first stage remain protected. Control decisions include all power dynamic and
control variables (see variable Tables 4 and 5) for each t ∈ Ts .

Second-stage constraints include power system dynamics and control together with
outage disjunctions that model either outage or protection depending on values of ζ .
Power system dynamic constraints include (1)–(19) for each ξi ∈ � and t ∈ Ts . To
protect through mitigation decisions, we include (26) and outage disjunctions for each
c ∈ Ci in stage ξi ∈ � and for every t ∈ Ts .

2.6.3 Objective function

Finally, our objective function seeks to optimize grid resilience in thefirst stage through
prepositioning while also optimizing expected resilience through emergency control
after a scenario has occurred at t f . Using our resiliency metrics Mv , Mω, and Md , our
stochastic objective is

min
Vre f ,Pre f ,ζ

Mv(0, t f ) + Mω(0, t f ) + Md(0, t f )

+
n∑
i

pi
(
Mv(t f , T ) + Mω(t f , t) + Md(t f , t)

)
(32)
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Note that t f can be any time period in [0, T ]. In our experiments, we have selected t f
to be the midpoint. However, if economic costs were included, a significantly longer
first stage could be considered to model longer term decisions in preparation for a set
of scenarios � that occur with more advanced notice. Depending on the severity of
the scenarios, a longer second stage could also be studied to measure the efficacy of
the emergency controls.

3 Solutionmethodology

The model we present in this paper is a stochastic nonconvex nonlinear generalized
disjunctive program. There are widely-used techniques for solving each subtype of
this problem class. Depending on problem structure and size, algorithms for solving
stochastic programs include the L-shaped method of Birge and Louveaux (2009), pro-
gressive hedging from Rockafellar and Wets (1991), and direct LP or MIP solution of
the extensive form. Nonconvex nonlinear problems can be solved through a combina-
tion of interior point methods, gradient descent algorithms, and active set algorithms
(Nocedal and Wright 1999). Finally GDP’s have been traditionally solved through
big-M (Trespalacios and Grossman 2015) and convex hull relaxations (Grossman and
Lee 2003).

To express and solve our model, we use the Python-based mathematical program-
ming language Pyomo (Bynum et al. 2021). Pyomo enables the expression of complex
optimization problems and contains several extensions for representing and solv-
ing specific types of models. Pyomo extensions used in this work include mpi-sppy
(Knueven et al. 2020a), Pyomo.DAE (Nicholson et al. 2018), Pyomo.GDP (Chen et al.
2022), and GDPopt (Chen et al. 2018). The mpi-sppy package facilitates the expres-
sion of stochastic programs and implements the L-shaped method and progressive
hedging algorithms. Pyomo.DAEenables easy expression of differential equations and
transformations for approximating derivatives using algebraic equations. Pyomo.GDP
allows users to represent disjuncts and disjunctions and provides general implementa-
tions of the big-M and convex hull relaxations. Finally, GDPopt provides logic-based
decomposition approaches for solving nonlinear GDP models. Each of these Pyomo
extensions has been demonstrated individually but to our knowledge this is the first
time they have all been combined to efficiently implement and solve the novel opti-
mization formulation described in this work.

Our solution approach consisted of the following steps:

1. Implement deterministic power system resilience and mitigation model from
Arguello et al. (2021) through Pyomo.DAE and Pyomo.GDP, including all dif-
ferential equations and disjunctions.

2. Use Pyomo.DAE collocation transformation to approximate all derivatives using
a collocation over finite elements discretization. Note, Pyomo.DAE also allows
forward, backward, and central finite difference methods.

3. Extend to a stochastic program by duplicating the deterministic problem to form
different scenarios and providing mpi-sppy scenario probabilities and parameters,
including which variables belong to the first-stage.
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4. Apply a nested sequence of solvers. For our model mpi-sppy required a subsolver
capable of solving the nonlinear GDP model in each scenario. We used GDPopt,
which in turn required mixed-integer linear programming (MINLP), mixed-integer
nonlinear programming (MINLP), and nonlinear programming (NLP) subsolvers.
Our GDPopt subsolver choices included Gurobi (Gurobi 2022), Bonmin (Bonami
et al. 2008), and Knitro (Byrd et al. 2006).

4 Experimentation and results

We demonstrate the utility of our model through a multiple scenario failure contin-
gency experiment on the WSCC 9-bus power system starting at a steady state. Our
experiments optimize grid resiliencewhile preemptivelymitigatingworst-case failures
given a budget.

4.1 Outage scenarios

In our experiment, we synthesize four notional scenarios. The first scenario, which
we refer to as the baseline scenario, is the system at steady state with no failures. This
scenario is included since, in practice, the outcome that no failure occurs should be
considered.

The three other scenarios each consist of three grid component failures that col-
lectively cover all generators and load within the system. See Fig. 1a–c. For our
experiment, we assume t f = 1.5 s and the full time horizon is 3 s long.

4.2 Dynamics with no resilience control and nomitigation

To see the impact of control and mitigation optimization, we first show the power
system dynamics for scenarios 2–4 with no control and no mitigation by fixing the
Vref and Pre f parameters and using a budget of zero. See Figs. 2, 3 and 4. For scenario
2, the voltage at bus 2 drops significantly to 0.8 p.u. at t f , followed by voltage rapidly
increasing past 1.05 p.u., both well past the stability margin of 0.95–1.05 p.u. This
causes the frequency of generator 2 to increase and diverge beyond the nominal fre-
quency of 60 Hz, while the frequencies of generators 1 and 3 decrease to compensate.
Similar behavior amongst the generators is observed in scenario 3, except the voltages
at each bus increase and decrease more chaotically, with bus 8 decreasing and all other
buses increasing to compensate, followed by harmonic motion of the voltage at each
bus. Scenario 4 also has frequency divergence, except nowwith generator 3 increasing
past nominal frequency. Unlike Scenarios 2 and 3, in Scenario 4 all buses increase in
voltage followed by a steady decline. The extreme voltages and frequencies seen in
these scenarios could lead to further cascading failures in real power systems.

Given these failure scenarios and no mitigation controls, there exists no optimal
solution, as the model is unable to stabilize itself. This is most notable in the frequency
deviation observed for each scenario.
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Fig. 2 Scenario 2 dynamics with no controls or mitigation

Fig. 3 Scenario 3 dynamics with no controls or mitigation

Fig. 4 Scenario 4 dynamics with no controls or mitigation

4.3 Resilience control andmitigation budget of B = 1

With a mitigation budget of B = 1, the optimization problem can protect a single
line, load, and generator across all scenarios, each of which occurs with p = 0.25 for
simplicity. To see the mitigation choices made by the model relative to the grid, see
Fig. 5. It chose to protect the lower left portion of the grid, namely the load at bus 5,
the line between buses 4 and 5, and generator 1. These hardware components were
determined to have the largest impact on grid resilience if tripped and protecting them
results in the optimal reduction in expected system deviation.
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Fig. 5 Mitigation choices for B = 1, stars denote the protected components

Fig. 6 Baseline scenario dynamics with B = 1

Figures 6, 7, 8 and 9 show the outcome of both resilience control and mitigation
optimization. Note that control profiles (Vref and Pre f ) and dynamics (V and ω) are
the same before t f = 1.5 s. This is expected since Vref and Pre f before t f are first
stage variables.

Even in the baseline scenario where no component is failing, there are several
noteworthy features within the dynamics and control profiles. First, as an artifact of
pre-positioning the grid in anticipation of scenario 2–scenario 4, there is a gradual
decrease of frequency. After t f = 1.5 s, there is a spike in Pre f . Normally the model
would be disincentivized from allowing frequency to dip too much from the nominal
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Fig. 7 Scenario 2 dynamics with B = 1

value of 60 Hz. However, as scenarios 2 through 4 each have load being tripped, the
model prepares for the sudden loss of load by allowing the generators to slow down.
After realizing that the baseline scenario occurred with no failures, a single generator
speeds up by momentarily ramping Pre f to bring voltage and frequency closer to
nominal values.

Note that recourse action after t f and system responses are different in each sce-
nario due to the nature of their outages. However, with appropriate control actions,
voltages and generator frequencies remain within stable margins across all scenar-
ios. The optimal deviation cost across all four scenarios was 3.331. See Sect. 4.5 for
additional details.

4.4 Resilience control andmitigation budget of B = 2

Increasing the mitigation budget to B = 2 improves resilience while demonstrating
limited marginal utility in mitigation investments. Now that an additional line, load,
and generator can be protected, the model chooses to protect the left side of the system
together with the load at bus 6. See Fig. 10. However, it chooses to not protect the
generator at bus 2, even though it has enough budget to protect it. This demonstrates
the marginal utility of budget on grid resilience.

Similar tomitigationwith budget B = 1, we see a resilience effect with bothmitiga-
tion and control. However, with additional components being protected, preventative
control is less extreme. See Figs. 11, 12, 13 and 14. The optimal deviation cost across
all four scenarios was 0.484. See Sect. 4.5 for additional details.
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Fig. 8 Scenario 3 dynamics with B = 1

Fig. 9 Scenario 4 dynamics with B = 1
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Fig. 10 Mitigation choice for B = 2, stars denote the protected components

Fig. 11 Baseline scenario dynamics with B = 2

We further demonstrate the impact of controls and mitigation on the dynamics of
the system in Sect. 1.

4.5 Results summary

The optimal objective function values from running the model at each budget level B
are summarized in Table 7 and broken down into voltage deviation cost Mv , frequency
deviation cost Mω, and load deviation cost Md . With a B = 0 investment, the solver
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Fig. 12 Scenario 2 dynamics with B = 2

Fig. 13 Scenario 3 dynamics with B = 2
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Fig. 14 Scenario 4 dynamics with B = 2

Table 7 Comparison of optimal
results

B Mv Mω Md Total optimal cost

0 – – – Infeasible

1 0.335 2.350 0.646 3.331

2 0.051 0.367 0.066 0.484

is unable to find a feasible solution, suggesting that the set of failure scenarios leads to
severe grid instability. With just a single B = 1 hardening investment for each com-
ponent type, the grid becomes stable with a total objective cost of 3.331. Increasing
the mitigation investment to B = 2 results in further improvements to the total objec-
tive cost, now only at 0.484, approximately an 85% reduction. Frequency deviation
accounted for the greatest magnitude of cost for both B = 1 and B = 2, and thus the
cost improvements are largely made by reducing Mω. Given some cost for hardening
a component, one could better quantify the optimal cost policy that minimizes grid
instability and hardening investment costs.

Table 8 demonstrates the maximum and minimum voltages and frequencies across
all four scenarios for each level of investment. As B increases, the range of values for
both voltage and frequency decreases—the range of values for frequency was reduced
the most, coinciding with the greater reduction in cost seen in Table 7.

For each of these solves, an extensive form solution methodology was used with
the following solver settings:

mip_solver="gurobi",
minlp_solver="bonmin",
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Table 8 Comparison of voltage and frequency ranges

B Maximum Minimum Maximum Minimum
voltage voltage frequency frequency

0 – – – –

1 1.054 0.966 61.23 59.23

2 1.052 0.967 61.08 59.56

nlp_solver="knitroampl",
init_strategy = "no_init",
mip_presolve = False,
strategy = "RIC",
subproblem_presolve = False

The order of magnitude of the model was 14,484 variables and 14,106 constraints.
Each model solve took approximately 25min.

5 Conclusion

We have successfully incorporated binary mitigation variables into a two-stage
stochastic optimization model with dynamic constraints to improve system resilience.
Themodel combines GDP for incorporating mitigation decisions, stochastic program-
ming to account for uncertain scenarios, and DAE equations to model the dynamics
itself. We have demonstrated that mitigation decisions, when under a constrained bud-
get, can choose to protect certain components asymmetrically across scenarios, as
well as not exercising the entirety of the budget when certain combinations of compo-
nents are vulnerable to being tripped simultaneously. This modeling framework is the
first of its kind to study the interdependencies between optimal hardening mitigation,
pre-positioning, and emergency control with respect to a set of failure scenarios.

5.1 Future research

This paper demonstrates the utility of ourmodel on a small test system. Future research
will leverage progressive hedging, variable screening, and reduced-order dynamically
equivalent modeling to scale to larger and more realistic systems. Additional dis-
cretization points could also extend the time frame that is studied as well as increase
the fidelity of results. As an example, additional points around a failure time could
improve accuracy. Model fidelity can be improved by incorporating details on device
types, outage effects, device damage, restorability, and remedial action schemes. These
remedial action schemes can be modeled through hybrid dynamic modeling. Finally,
constraints and objectives can be added to model transient, small-signal, and voltage
stability.
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Appendix

To demonstrate that resilience control is necessary, we provide some results with
mitigation only. See Figs. 15, 16, 17, 18, 19 and 20. In almost every scenario there are
extreme voltages and frequencies. Furthermore, in most cases, frequency drops even
for the generators that did not fail.

The first set of results include a budget of B = 1.

Fig. 15 Scenario 2 dynamics with no controls and B = 1

Fig. 16 Scenario 3 dynamics with no controls and B = 1
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Fig. 17 Scenario 4 dynamics with no controls and B = 1

Given this budget, one generator, load, and transmission line will be protected
against failure. However, the model is unable to keep voltages within safe margins for
scenarios 3 and 4. Furthermore, generator frequency for the twounprotected generators
drops in all but scenario 4.

The next set of results consider a budget of B = 2.

Fig. 18 Scenario 2 dynamics with no controls and B = 2

Fig. 19 Scenario 3 dynamics with no controls and B = 2
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Fig. 20 Scenario 4 dynamics with no controls and B = 2

Given twounits of budget,we now see that scenario 4 becomes completely protected
and therefore remains at steady state. However, even though two of three generators
are protected, generator frequencies drop for two of the generators in scenarios 3 and
4.

Finally, we present results with resilience control but no mitigation.

Fig. 21 Scenario 2 dynamics with no mitigation
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Fig. 22 Scenario 3 dynamics with no mitigation

Fig. 23 Scenario 4 dynamics with no mitigation
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We see that scenario 2 and 3 voltage and frequencies remain within stable margins
thanks to optimal resilience control. However in scenario 4, the voltage at one of the
nine buses dips below 0.95 p.u. and remains there from 1.5 s until the end of the time
horizon. Furthermore, the generator frequency is slightly elevated by the end of the
time horizon. Finally, it is noteworthy that Vre f must spike all the way to 10 p.u. in
both scenarios 3 and 4. These levels are much higher than Vref levels with added
mitigation.
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