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Abstract
Derivative-free optimization tackles problems, where the derivatives of the objective
function are unknown. However, in practical optimization problems, the derivatives of
the objective function are often not available with respect to all optimization variables,
but for some. In this work we propose the Hermite least squares optimization method:
an optimization method, specialized for the case that some partial derivatives of the
objective function are available and others are not. The main goal is to reduce the
number of objective function calls compared to state of the art derivative-free solvers,
while the convergence properties are maintained. The Hermite least squares method is
a modification of Powell’s derivative-free BOBYQA algorithm. But instead of (under-
determined) interpolation for building the quadratic subproblem in each iteration, the
training data is enriched with first and—if possible—second order derivatives and
then least squares regression is used. Proofs for global convergence are discussed and
numerical results are presented. Further, the applicability is verified for a realistic test
case in the context of yield optimization. Numerical tests show that the Hermite least
squares approach outperforms classic BOBYQA if half or more partial derivatives are
available. In addition, it achieves more robustness and thus better performance in case
of noisy objective functions.
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1 Introduction

In optimization we typically distinguish between gradient based and derivativefree
optimization (DFO) approaches. If gradients are available, they provide helpful infor-
mation about the descent in specific points and thus, can improve the performance of
the algorithm. With performance of the optimization algorithm we refer to the ability
of reaching the optimal solution and the computational effort in order to reach this
solution. However, in practice (e.g. in engineering problem settings using blackbox
codes) gradients are often not available. In this research we are interested in optimiza-
tion problems where the objective function is expensive to evaluate, e.g., involving
finite element simulations or Monte Carlo analysis. Compared to evaluating such an
objective function, the algebraic cost of the optimization solver itself is negligible.
Hence, the computing effort of the methods considered in this work is measured by
the number of objective function calls during the optimization. Thus, we focus on the
possibility of reducing this number by using all information we have.

DFO methods are often divided into direct and model-based search algorithms,
and into stochastic and deterministic algorithms, cf. Conn et al. (2009); Rios and
Sahinidis (2013). In deterministic model-based algorithms, the objective function is
approximated by a surrogate model and evaluations of this surrogate model are con-
sidered to determine the search direction. One example are derivative-free trust region
methods, to which belong BOBYQA (using interpolation as surrogate model) and
the proposed Hermite least squares method (using least squares regression as surro-
gate model). Alternatively or additionally, approximations of the derivatives can be
developed and used—at the cost of additional computing effort. A global determin-
istic model-based method is Kriging or Bayesian optimization (Currin et al. 1988),
which employs stochastic processes as interpolation model. On the other hand, direct
search algorithms evaluate the original objective function. Deterministic examples
are the Nelder-Mead simplex algorithm (Nelder and Mead 1965) and the DIRECT
algorithm (DIvide a hyper-RECTangle) Jones et al. (1993). Stochastic methods run
random search steps, see e.g. simulated annealing (Kirkpatrick et al. 1983), particle
swarm (Kennedy and Eberhart 1948) and genetic algorithms (Audet and Hare 2017).
For more details, further references and numerical comparisons of DFO methods, we
refer to Conn et al. (2009) and Rios and Sahinidis (2013).

In case of multidimensional optimization it often occurs that for some directions the
partial derivatives are available and for others not. In Sect. 6 wewill provide a practical
example in the context of yield optimization. In this work we provide an optimization
strategywell suited to benefit from the knownderivatives,without requiring derivatives
(or approximations of derivatives) for each direction.

Trust regionmethods are commonly used for solving gradient based and derivative-
free nonlinear optimization problems. These methods are based on approximating the
objective function quadratically in each iteration and solving this subproblem in a
trust region in order to obtain the new iterate solution for the original problem. In
sequential quadratic programming (SQP) gradients are used to build the quadratic
approximation based on second order Taylor expansions (Ulbrich and Ulbrich 2012,
Chap. 19). For DFO Powell proposed the BOBYQA (Bound constrained Optimization
BY Quadratic Approximation) method using polynomial interpolation for building
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the quadratic approximation (Powell 2009). For both, SQP and BOBYQA, there are
several modifications and various popular implementations, see e.g. (Cartis et al. 2019,
2021; Powell 1994, 2015; Kraft et al. 1988). Other DFO methods based on quadratic
approximations and additionally considering noisy objective data are proposed for
example in Cartis et al. (2019) using sample averaging and restarts, in Billups et al.
(2013) usingweighted regression, and inMenhorn et al. (2022), usingGaussianprocess
regression.

However, to our best knowledge, all these methods have in common that they
use derivatives for all directions or for none. If some derivatives are available, SQP
would approximate the missing ones using for example finite differences, classic DFO
methods would ignore all derivatives. Finite differences require at least one additional
function evaluation per direction each time the gradient has to be calculated. Especially
for higher dimensional problems, this leads to an enormous increase of the computa-
tional cost. Further, finite differences approximations are sensitive to noisy data. On
the other hand, we assume that BOBYQA could perform better, i.e., would need less
iterations and thus function evaluations, if we would provide all information we have.
For that reason we propose to modify BOBYQA to enable the usage of some deriva-
tive information. More precisely, we extend the Python implementation PyBOBYQA
by Cartis et al. (2019), such that available derivative information is exploited and the
(underdetermined) interpolation is replaced by least squares regression. We propose
this new variant and, in accordance with the termHermite interpolation, cf. (Hermann
2011, Chap. 6.6) or Sauer and Xu (1995), we call it Hermite least squares. Further
we investigate the impact of noisy objective functions and observe higher robustness
compared to the original BOBYQA and SQP.

This work is structured as follows. We start with the formulation of the problem
setting in Sect. 2 and an introduction into DFO and BOBYQA in Sect. 3. In Sect. 4
we propose the Hermite least squares approach and in Sect. 5 we provide numerical
results. We conclude the paper with a practical example from the field of electrical
engineering in Sect. 6 and some final remarks.

2 Problem setting

Even though SQP is able to handle general nonlinear constraints, BOBYQA, as indi-
cated by its name, only accepts bound constraints. Powell also proposed two more
methods, LINCOA (LINearly Constrained Optimization Algorithm), which allows
linear constraints, and COBYLA (Constrained Optimization BY Linear Approxima-
tions), which allows general constraints but uses only linear approximations (Powell
2015, 1994). However, we focus on BOBYQA and thus, we consider a bound con-
strained optimization problemwith multiple optimization variables, i.e., for a function
f : R

n → R, an optimization variable x ∈ R
n and lower and upper bounds

xlb, xub ∈ R
n the optimization problem reads

min
x∈Rn

f (x)

s.t. xlb ≤ x ≤ xub. (1)
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We assume that the derivatives with respect to some directions xi , i ∈ I = {1, . . . , n}
are known, others are not. We denote the index set of known first order derivative
directions by Id ⊆ I, such that the set of available first order derivatives is defined by

D :=
{

∂

∂xi
f

}
i∈Id

. (2)

In order to define the set of known second order derivatives, we introduce the tuple
set I2d ⊆ I × I. Then, the set of available second order derivatives is given by

D2 :=
{

∂2

∂xi∂x j
f

}
(i, j)∈I2d

. (3)

For the sake of simplicity we will focus on the practically relevant case of first order
derivatives. However, the proposedmethod can be straightforwardly adjusted for using
the second order derivatives, cf. Sect. 5.3 and Appendix A. Since we build a quadratic
approximation, higher order derivatives are not of concern. In the remainder of this
paper, for better readability and without limitation of generality we assume that the xi
are ordered such that we can define

Id = {1, . . . , nkd}, nkd ≤ n (4)

as the index set of directions for which we consider the first partial derivative to be
known.

3 Model-based search derivative-free optimization

Powell’s BOBYQA algorithm is a widely used algorithm in the field of DFO (Pow-
ell 2009). The original implementation is in Fortran. Cartis et al. published a Python
implementation called PyBOBYQA (Cartis et al. 2019, 2021). It contains some sim-
plifications and several modifications (e.g. for noisy data and global optimization), but
Powell’s main ideas remain unchanged. In this work, on the programming side, we use
PyBOBYQA as a basis and add some new features to it. While the original BOBYQA
method (and also PyBOBYQA) are efficient in practice, it cannot be proven that they
converge globally, i.e., that they converge from an arbitrary starting point to a sta-
tionary point (Conn et al. 2009, Chap. 10.3). Conn et al. reformulated the BOBYQA
method in (Conn et al. 2009, Chap. 11.3), maintaining the main concept, but enabling
a proof of convergence—on the cost of practical efficiency and of bound constraints.
For the theoretical considerations in this work, we take Conn’s reformulation as a
basis. Before we come to our modifications for mixed gradient information, we recall
the basics of DFO methods and BOBYQA.
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3.1 Notation

Let m(x) be a polynomial of degree d with x ∈ R
n and let � = {φ0(x), . . . , φq(x)}

be a basis in Pd
n and q1 = q + 1. Further, we define the vector of basis polynomials

evaluated in x by �(x) := (φ0(x), . . . , φq(x))�. The training data set is denoted by

T = {(y0, f (y0)), . . . , (yp, f (yp))} (5)

and p1 = p + 1. The original BOBYQA method is based on interpolation, however,
we formulate the problem more generally as interpolation or least squares regression
problem. The system matrix and the right hand side of the interpolation or regression
problem are then given by

M ≡ M(�, T ) with the entries Mi, j = φ j−1(yi−1) (6)

and

b ≡ b(T ) with the entries bi = f (yi−1) (7)

If p1 = q1 the system matrix M is quadratic and v ∈ R
q1=p1 solves the interpolation

problem

Mv = b. (8)

If p1 > q1 the system matrix M is in R
p1×q1 and v ∈ R

q1 , this leads to an
overdetermined interpolation problem and can be solved with least squares regression

Mv l.s= b ⇔ min
v∈Rq1

||Mv − b||2 ⇔ M�Mv = M�b. (9)

If thematrixM in (8) is non-singular, the linear system (8) has a unique solution. Then,
following (Conn et al. 2009, Chap. 3), the corresponding training data set is said to be
poised. Analogously, if the matrixM in (9) has full column rank, the linear system (9)
has a unique solution. And, following (Conn et al. 2009, Chap. 4), the corresponding
training data set is said to be poised for polynomial least-squares regression. When
talking about training data sets in the following, we always assume them to be poised,
if not specifically noted otherwise.

Although many of the results hold for any choice of a basis, in the following we
use the monomial basis of degree d = 2. Thus, if not mentioned differently, for the
remainder of this paper, � is defined by the (n + 1)(n + 2)/2-dimensional basis

� =
{
1, x1, . . . , xn,

1

2
x21 , x1x2, x1x3, . . . , xn−1xn,

1

2
x2n

}
. (10)
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3.2 3-poisedness

Many DFO algorithms are model based. Thus, in order achieve well behavior of the
optimization strategy or to even guarantee global convergence, we have to ensure that
themodel is good enough. In gradient basedmethods, typically someTaylor expansion
error bounds are considered. In DFO methods, which are based on interpolation or
regression, the quality of the model depends on the quality of the training data set.
This leads us to the introduction of the term �-poisedness. We recall the definitions
of �-poisedness from (Conn et al. 2009, Def. 3.6, 4.7, 5.3).

Definition 1 (�-poisedness in the interpolation sense) Given a poised interpolation
problem as defined in Sect. 3.1. Let B ⊂ R

n and � > 0. Then the training data set T
is �-poised in B (in the interpolation sense) if and only if

∀x ∈ B ∃l(x) ∈ R
p1 s.t.

p∑
i=0

li (x)�(yi ) = �(x) with ||l(x)||∞ ≤ �. (11)

Remark 1 Note that in case of using the monomial basis, the equality in Def. 1 can be
rewritten as M�l(x) = �(x) and the li (x), i = 0, . . . , p are uniquely defined by the
Lagrange polynomials and can be obtained by solving

Mλi = ei+1, (12)

where ei ∈ R
p1 denotes the i-th unit vector and the elements of λi are the coefficients

of the polynomial li , which will be evaluated at x.

Definition 2 (�-poisedness in the regression sense)Given a poised regression problem
as defined in Sect. 3.1. LetB ⊂ R

n and� > 0. Then the training data setT is�-poised
in B (in the regression sense) if and only if

∀x ∈ B ∃l(x) ∈ R
p1 s.t.

p∑
i=0

li (x)�(yi ) = �(x) with ||l(x)||∞ ≤ �. (13)

Remark 2 Note that the li (x), i = 0, . . . , p are not uniquely defined since the system
in (13) is underdetermined. However, the minimum norm solution corresponds to
the Lagrange polynomials (in the regression sense), cf. (Conn et al. 2009, Def. 4.4).
Analogously to remark 1 they can be computed by solving

Mλi
l.s.= ei+1 (14)

and using the entries of λi as coefficients for the polynomial li .

It can be shown, that the poisedness constant �, or rather 1/� can be interpreted
as the distance to singularity of the matrixM, or as the distance to linear dependency
of the vectors �(yi ), i = 0, . . . , p, respectively (Conn et al. 2009, Chap. 3).
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3.3 BOBYQA

The following description of BOBYQA’s main ideas follows the one in Cartis et al.
(2021). The BOBYQA algorithm is a trust region method based on a (typically under-
determined) quadratic interpolationmodel. The training data set defined in (5) contains
the objective function evaluations for each sample point yi , i = 0, . . . , p, and the size
of the training data set is given by |T | ∈ [n + 2, (n + 1)(n + 2)/2]. Note that set-
ting |T | = n + 1 is possible in PyBOBYQA, but then a fully linear (not quadratic)
interpolation model is applied.

Let x(k) denote the solution at the k-th iteration. At each iteration a local quadratic
model is built, i.e.,

f (x) ≈ m(k)(x) = c(k) + g(k)�(x − x(k)) + 1

2
(x − x(k))�H(k)(x − x(k)), (15)

fulfilling the interpolation conditions

f (y j ) = m(k)(y j ) ∀y j ∈ T . (16)

For |T | = (n + 1)(n + 2)/2 the interpolation problem is fully determined. For |T | <

(n+1)(n+2)/2 the remaining degrees of freedom are set by minimizing the distance
between the current and the last approximationof theHessianH in thematrixFrobenius
norm, i.e.,

min
c(k),g(k),H(k)

||H(k) − H(k−1)||2F s.t. (16) holds, (17)

where typically H(−1) = 0n×n . Once the quadratic model is built, the trust region
subproblem

min
x∈Rn

m(k)(x)

s.t. ||x − x(k)||2 ≤ �(k)

xlb ≤ x ≤ xub (18)

is solved, where �(k) > 0 denotes the trust region radius. Then, having the opti-
mal solution xopt of (18) in the k-th iteration calculated, we check if the decrease in
the objective function is sufficient. Therefore, the ratio between actual decrease and
expected decrease

r (k) = actual decrease

expected decrease
= f (x(k)) − f (xopt)

m(k)(x(k)) − m(k)(xopt)
(19)

is calculated. If the ratio r (k) is sufficiently large, the step is accepted (x(k+1) = xopt)
and the trust region radius increased (�(k+1) > �(k)). Otherwise, the step is rejected
(x(k+1) = x(k)) and the trust region radius decreased (�(k+1) < �(k)).
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An important question is now, how to maintain the training data set. An accepted
solution is added to T , i.e., T = T ∪ {(yadd, f (yadd))} with yadd = xopt, and since
|T | is fixed, another data point has to leave the training data set. Hereby, the aim
is to achieve the best possible quality of the model. We know from Sect. 3.2 that
the quality of the model depends on the training data set and can be expressed by
the poisedness constant �. Thus, the decision which point is replaced depends on
its impact on the �-poisedness. Let li , i = 0, . . . , p be the Lagrange polynomials
obtained by evaluating (12) and let

igo = argmax
i=0,...,p

(
|li (yadd)|max

{
1,

||yi − yadd||42
||�(k)||4

})
. (20)

Then, the point yi
go
is replaced by the new iterate yadd. This means, that the point with

the worst (largest) value of the corresponding Lagrange polynomial, evaluated at the
new iterate solution, is going to be replaced, i.e., the updated training data set is built by
T = T ∪{(yadd, f (yadd))}\{(yigo , f (yi

go
))}. Please note that (20) is the formula used

in Powell’s and Cartis’ implementations, however, in Powell’s work (Powell 2009, eq.
(6.1)) in numerator and denominator exponent 2 is used instead of exponent 4.

Regardless of the subproblem’s optimal solution, sometimes points are exchanged,
only in order to improve the training data set. Let yi be the training data point which
shall be replaced, e.g. the point furthest from the current optimal solution. Then we
consider the corresponding Lagrange polynomial li and choose a new point by solving

ynew = max
y∈B

|li (y)|
s.t. xlb ≤ y ≤ xub

||y − xopt|| ≤ �(k) (21)

For more details we refer to the original work by Powell (2009).

3.3.1 Solving the linear system

For the Hermite least squares method we modify BOBYQA’s linear system resulting
from the interpolation conditions (16). From this solution, the coefficients c(k), g(k)

and H(k) of the quadratic subproblem (15) are determined. Therefore, we recall how
the linear system is build in PyBOBYQA (Cartis et al. (2019). We denote the current
optimal solution by xopt ∈ T . Without limitation of generality we assume that xopt =
yp. The uniquely solvable system (i.e. p1 = q1 = (n+ 1)(n+ 2)/2) reads as follows

MIv(k) = bI (22)

with

MI ∈ R
p×q with the entries MI,i, j = φ j (yi−1 − xopt), (23)

bI ∈ R
p with the entries bI,i = f (yi−1) − f (xopt), (24)
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and v(k) =
(
g(k)

H(k)�

)
∈ R

q , (25)

where H(k)� is a vector in R
(n2+n)/2 containing the lower triangular and the diagonal

elements of the diagonal matrix H(k). The constant part is set to c(k) = f (xopt).
The case n+2 ≤ p1 < (n+1)(n+2)/2 is not of further interest for the construction

of the Hermite least squares system. Hence, we refrain from a detailed description here
and refer to Cartis et al. (2019).

3.3.2 Convergence

The convergence theory for gradient based optimization algorithms like SQP is typi-
cally based on error bounds of the Taylor expansion, in order to show the decreasing
error between the model m(k)(x) and the function f (x), between the corresponding
derivatives. In DFO the poisedness constant � can be used to formulate a Taylor type
error bound. In Conn et al. (2008a) an error bound is given by

||∇m(k)(x) − ∇ f (x)|| ≤ 1

(d + 1)!G�

p∑
i=0

||yi − x||d+1, (26)

whereG is a constant depending only on the function f and d is the polynomial degree
of the approximation model (i.e. here d = 2). Thus, in order to apply the convergence
theory of gradient based methods to DFO methods, it is required to keep � uniformly
bounded for all training data sets used within the algorithm.

The algorithm in (Conn et al. 2009, Algo. 11.2) is a modified version of Powell’s
DFOmethod, such that global convergence can be proven. However, in contrast to the
original BOBYQA method, bound constraints are not considered in Conn’s version.
Hence,Conn’s algorithm is rather an adaptation of Powell’sUOBYQA(Unconstrained
Optimization BY Quadratic Approximation) method (Powell 2002). Since UOBYQA
is similar to the BOBYQA method described in this section (but without considering
constraints), we refrain froma full description. Formore details, we refer to the original
work by Powell (Powell 2002), or the convergent modification by Conn (Conn et al.
2009, Chap. 11.3).

For the global convergence proof of Conn’s version, the �-poisedness plays an
important role. One key aspect is the fact, that the interpolation set is�-poised in each
step of the optimization algorithm – or, within a final number of steps, it can be trans-
formed into a �-poised set (using the so-called model improvement algorithm (Conn
et al. 2009, Algo. 6.3)). Since Powell’s and Cartis’ versions allow bound constraints,
the convergence proof from (Conn et al. 2009) cannot be simply applied. Even if bound
constraints were not provided in these algorithms, global convergence could not be
proven, since the�-poisedness of the interpolation set is not always guaranteed. They
apply strategies to update the training data set, which hopefully reduce the poisedness
constant�, but they do not provide bounds (Conn et al. 2008a). Therefore, they would
require �-poisedness checks more often and re-evaluations of the whole training data
set in situations of poorly balanced training data sets, i.e., an usage of the model
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improvement algorithm. However, to feature bound constraints and for the benefit of
less computational effort and thus, efficiency, they abdicate on provable convergence
and rely on heuristics, when and how to check and improve �-poisedness.

4 Hermite least squares method

InHermite interpolation a linear system is solved in order to find a polynomial approx-
imation of a function, considering function values and partial derivative values in given
training data points, cf. (Hermann 2011, Chap. 6.6) or Sauer and Xu (1995). In the
following we will build such a system, but with more information than required for
a uniquely solvable Hermite interpolation and solve it with least squares regression.
Thus, we call the optimization approach based on this techniqueHermite least squares
optimization.

As mentioned in Sect. 2 we assume that we know some partial derivatives of the
objective function f : Rn → R, i.e., we can calculate them with negligible computa-
tional effort compared to the effort of evaluating the objective function itself.We focus
on the information in (2), i.e., we neglect the second order derivatives. Our Hermite
training data set is then given by

TH =
{(

y0, f (y0),
∂

∂ y1
f (y0), . . . ,

∂

∂ ynkd
f (y0)

)
, . . .

. . . ,

(
yp, f (yp),

∂

∂ y1
f (yp), . . . ,

∂

∂ ynkd
f (yp)

)}
. (27)

We want to use this additional information in order to improve the quadratic model.
BOBYQA’s simple interpolation (22) is extended with derivative information yielding
least squares regression. First we introduce this approach starting with a uniquely
solvable interpolation problem, i.e., the number of training data points p1 coincides
with the dimension of the basis q1. Then, we allow to reduce the number of training
data points such that the initial interpolation problem is underdetermined, i.e., p1 < q1.
While for p1 = q1 global convergence can be ensured (in the unconstrained case), we
observe superior performance for p1 < q1, see numerical results in Sect. 5.1.

4.1 Build upon interpolation (p1 = q1)

First, we consider a training data set with |T I| = p1 ≡ q1, i.e., we could solve an
interpolation problem as in (22) based only on function evaluations in order to obtain
the quadratic model in (15). Instead, we provide additionally derivative information
for the first nkd partial derivatives of each training data point, i.e., we consider TH with
|TH| = p1(1+nkd), where p1 is the number of data points and |TH| denotes the number
of information. We extend the system with the gradient information available in form
of additional lines for the system matrix and the right hand side and obtain
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MH =

⎛
⎜⎜⎜⎝

MI

M(1)
H

...

M(nkd)
H

⎞
⎟⎟⎟⎠ and bH =

⎛
⎜⎜⎜⎝

bI
b(1)
H

...

b(nkd)
H

⎞
⎟⎟⎟⎠ , (28)

where MI and bI are defined in (23) and (24), respectively, and the entries of the
submatrices M(k)

H and b(k)
H , k = 1, . . . , nkd, are given by

M (k)
H,i, j = ∂

∂ yk
φ j (yi−1 − xopt) (29)

and

b(k)
H,i = ∂

∂ yk
f (yi−1). (30)

Solving the overdetermined linear system

MHv(k) l.s.= bH (31)

using least squares regression yields a quadratic model for the trust region subproblem
(v(k) defined as in (25)). The formulation of the system matrixMH and the right hand
side bH in case of second order derivatives is given in Appendix A.

An optional step is the weighting of the least squares information, cf. weighted
regression (Björck 1996). Information belonging to a training data point close to the
current solution could be given more weight, information belonging to a training data
point far from the current solution could be given less weight. However, since we
could not observe significant improvements in the numerical tests, weighting has not
been further investigated in this work.

In the following, we will discuss how good the quadratic model resulting from
solving (31) is. Therefore, we state the following theorem, which generalizes theorem
4.1 in Conn et al. (2008b).

Theorem 1 Given a poised training data set TI and the monomial basis � with
|TI| = |�|, and B ⊂ R

n. Let MI be the corresponding system matrix of the inter-
polation problem and bI the right hand side, respectively. Let TR ⊃ TI be a training
set containing further information. If TI is �-poised in B in the interpolation sense,
then TR is at least �-poised in B in the regression sense.

Proof The additional information can be added in formof additional lines to the system
matrix and the right hand side. Thus, we can set the system matrix and the right hand
side of the regression problem corresponding to TR to

MR =
(
MI
Madd

)
and bR =

(
bI
badd

)
. (32)
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Since TI is �-poised in the interpolation sense, by Definition 1 holds

∀x ∈ B ∃lI(x) ∈ R
|TI| s.t.

∑
yi∈TI

liI (x)m
i
I = �(x) with ‖lI(x)‖∞ ≤ �, (33)

where mi
I is the i-th column of M�

I . We define lR(x) = (lI(x), 0)� ∈ R
|TR|. Then

∑
yi∈TR

liR(x)mi
R = �(x) (34)

holds and ‖lR(x)‖∞ is bounded by �, since

‖lR(x)‖∞ = max
i=0,...,|TR|

|liR(x)| Def. lR= max
i=0,...,|TI|

|liI (x)| = ‖lI(x)‖∞
(33)≤ �. (35)

��
Theorem 1 shows, that it is enough to ensure that a subset of the regression data set

is�-poised in the interpolation sense, and then we can deduce that the regression data
set is at least �-poised in the regression sense. Thus, although there is no analogue
of the model improvement algorithm for the regression case (Conn et al. 2009, Chap.
6), we can apply the model improvement algorithm (Conn et al. 2009, Algo. 6.3)
for interpolation and the optimization algorithm (Conn et al. 2009, Algo. 11.2). This
ensures�-poisedness in the interpolation sense of a subsetwith |�| = (n+1)(n+2)/2
points, and then we build the quadratic model with least squares regression. And since
liR(x) = 0 for i > |TI|, the type of additional information in TR has no impact on
the proof – as long as the matrix MR has full column rank. This implies, that instead
of additional data points and their function evaluations, we can also add derivative
information according to (28), and our training data set remains at least�-poised. The
proof of convergence from (Conn et al. 2009) (holding for the unconstrained case)
remains unaffected. In practice we expect faster convergence due to better quadratic
models.

4.2 Build upon underdetermined interpolation (p1 < q1)

For fully determined quadratic interpolation, a large set of training data points is
required (p1 = |TI| = (n + 1)(n + 2)/2), such that the linear system is uniquely
solvable. Since in Hermite least squares we have additional gradient information we
can reduce the number of training data points and still have a determined or overde-
termined regression system. The number of rows in the Hermite least squares system
is given by p1(1 + nkd) − 1 and has to be larger than the number of columns, i.e.,
q = |�| − 1 = (n + 1)(n + 2)/2 − 1, cf. (28). Thus, the required number of training
data points in the Hermite least squares is only

p1 ≥
⌈

(n + 1) (n + 2)

2 (1 + nkd)

⌉
. (36)
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This allows the Hermite least squares system to be built as in (28–31), with the only
difference that p1 < q1. Since the regression data set does not contain a subset of
�-poised interpolation points anymore, the model improvement algorithm cannot be
applied to a subset. Thus, even in the unconstrained case, the scheme of the formal
convergence proof from (Conn et al. 2009) cannot be transferred. In the next subsection
we will discuss how to build and maintain the training data set, taking into account
the derivative information.

4.3 3-poisedness for Hermite least squares

Weaim to include the derivative information into the updating procedure of the training
data set. We start with the Hermite interpolation setting introduced in Sect. 4.1, i.e.,
initially we set

p1 = (n + 1)(n + 2)

2(1 + nkd)
(37)

s.t. |TH| = q1, implying that the system matrix MH is quadratic and hence, (31) is
a uniquely solvable Hermite interpolation problem. We adapt the definition of �-
poisedness to the Hermite interpolation case. However, the following definition does
not guarantee the required error bounds for provable convergence (cf. (Conn et al.
2009, Chap. 6.1)). This leads to an approach, without formal convergence proof such
as the common BOBYQA implementations.

Definition 3 (�-poisedness in the Hermite interpolation sense) Given a poised Her-
mite interpolation problem as defined above with p1 training data points, the training
data set TH and the monomial basis � with |TH| = p1(1 + nkd) = q1 = |�|. Let
B ⊂ R

n and � > 0. Then the training data set TH is �-poised in B (in the Hermite
interpolation sense) if and only if

∀x ∈ B ∃l(x) ∈ R
q1 s.t. M�

H l(x) = �(x) with ||l(x)||∞ ≤ �. (38)

We will define Lagrange-type polynomials for Hermite interpolation and show that
they solve (38).

Definition 4 (Lagrange-type polynomial for Hermite interpolation) LetMH ∈ R
q1×q1

be a Hermite interpolation matrix with respect to the basis � as defined in (28) and
ei ∈ R

q1 the i-th unit vector. Let λi solve

MHλi = ei+1. (39)

Then, the polynomial built with the coefficients of λi and the basis �

t i (x) = λi0φ0(x) + · · · + λiqφq(x), (40)

defines the i-th Lagrange-type polynomial for Hermite interpolation.
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Lemma 1 Let t(x) = (
t0(x), . . . , tq(x)

)�
be defined as in (40), �(x) defined as in

Sect. 3.1 and MH from (28). Then, t(x) solves M�
H l(x) = �(x), i.e., t(x) ≡ l(x).

Proof We rewrite (39) into

MHT = I, (41)

where I denotes the q1 × q1 identity matrix and T is defined by the solution vectors
of (39), i.e.,

T =
⎛
⎝ | |

λ0 . . . λq

| |

⎞
⎠ . (42)

Starting from (41), changing the order of the matrices, we derive

TMH = I.

Left multiplication by �(x)� yields

�(x)�TMH = �(x)�.

We apply (42)

(
φ0(x), . . . , φq(x)

) ⎛
⎝ | |

λ0 . . . λq .

| |

⎞
⎠MH = (

φ0(x), . . . , φq(x)
)

and (40)

(
t0(x), . . . , tq(x)

)
MH = (

φ0(x), . . . , φq(x)
)
.

Transposing yields

M�
H

⎛
⎜⎝
t0(x)

...

tq(x)

⎞
⎟⎠ =

⎛
⎜⎝

φ0(x)
...

φq(x)

⎞
⎟⎠ ,

which is per definition equivalent to

M�
H t(x) = �(x).

Thus, t solves (38). ��
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It holds that the (uniquely defined) polynomial solving the Hermite interpolation
problem MHv = bH withMH ∈ R

q1×q1 and bH ∈ R
q1 can be written as

mH(x) =
p∑

i=0

f (yi )t i (x) +
p∑

i=0

nkd∑
j=1

∂ f

∂x j
(yi )t j p1−1+i (x), (43)

where p1 = p + 1 is the number of training data points and q1 = (1 + nkd)p1.
Now, let us investigate Hermite least squares as introduced in Sect. 4.2, i.e., the

case |TH| > q1, implying

p1 >
(n + 1)(n + 2)

2(1 + nkd)
. (44)

Extending the concept above, the Lagrange-type polynomials for Hermite least
squares are obtained by solving

MHλi
l.s.= ei+1. (45)

instead of (39). We maintain the training data set based on �-poisedness in the Her-
mite least squares sense. This means, we maximize (20) over the first p1 Lagrange
polynomials and replace the chosen data point with all corresponding information (i.e.
function value and derivative information) by the new data point.

4.4 Scaling

In this section we will discuss some preconditioning steps for solving the linear equa-
tions systems. In PyBOBYQA (Cartis et al. 2019) the system is scaled in the following
way: instead of

Mv = b (46)

the system

LMRR−1v = Lb (47)

is solved, where L and R are diagonal matrices of the same dimension as M. Each
training data point entry yi is scaled by the factor 1/�, where � is the trust region
radius of the current step (for simplicity of notation we omit the index k for the current
iteration for both the trust region radius and the system). Thus, the scaling matrices in
PyBOBYQA (with p1 = q1) are given by

L = I and R = diag

(
1

�
. . .

1

�︸ ︷︷ ︸
p

1

�2 . . .
1

�2︸ ︷︷ ︸
p−n

)
, (48)
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i.e., the columns for the linear part are scaled by 1/�, the columns for the quadratic
part by 1/�2. Preserving the same scaling scheme, the following left scaling matrix
is obtained for the Hermite least squares approach

L = diag(1 . . . 1︸ ︷︷ ︸
p

� . . . �︸ ︷︷ ︸
p1nkd

), (49)

while the right scaling matrix remains unchanged as in (48).

5 Numerical tests

A test set of 29 nonlinear, bound constrained optimization problems with 2, 3, 4, 5
and 10 dimensions has been evaluated and compared. The complete test set and the
detailed results can be found at GitHub (Fuhrländer and Schöps 2022). As reference
solution we consult the solution of PyBOBYQA (Cartis et al. 2019) using the default
setting for the size of the training data set, i.e., p1 = 2n+1, in the following referenced
to as PyBOBYQA. For all remaining parameters we also apply the default settings.
Another reference solution is SQP, where the unknown derivatives are calculated
with finite differences. Therefore, the SciPy implementation of the SLSQP algorithm
from (Kraft et al. 1988) has been used. Please note that this is a completely different
implementation, thus a direct comparison should be handled with caution. In the
Hermite least squares approach, numerical tests showed that

p1 = max

(
2n + 1 − nkd,

⌈
(n + 1)(n + 2)

2(1 + nkd)

⌉)
. (50)

is a reasonable choice for the number of training data points. We vary the number of
known derivative directions nkd and always assume that these derivative directions are
then available for all training data points.

In the tests we are interested in two aspects: 1) do we find an optimal solution
and 2) how much computing effort is needed. For 1) we check if we find the same
solution as the reference methods. Please note that we considered only test functions
for which the reference PyBOBYQA method was able to find the optimal solution.
For 2) we compare the total number of objective function evaluations during the whole
optimization process.

5.1 Results

Before we evaluate the complete test set, we analyze the accuracy of the quadratic
modelm(k)(x)which is built in each iteration. Let us consider the Rosenbrock function
in R2, given by

f (x) = 100(x2 − x21 )
2 + (1 − x1)

2. (51)
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Fig. 1 Error of the quadratic
model m(k) in each iteration
compared to second order Taylor
expansion, cf. (52) with
δ = 0.01. Comparison between
proposed method Hermite least
squares and reference method
PyBOBYQA

0 20 40 60 80 100 120
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or
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We assume ∂ f /∂x1 to be unknown and ∂ f /∂x2 to be available. The second order
Taylor expansion T2 f (x; x(k)) in x(k) is considered as the reference model. We inves-
tigate the error between this Taylor reference and the quadratic model of PyBOBYQA
and of Hermite least squares, respectively, evaluated by using the L2-norm

‖m(k)(x) − T2 f (x; x(k))‖2L2
=

∫ x(k)+δ

x(k)−δ

|m(k)(x) − T2 f (x; x(k))|2 dx. (52)

In Fig. 1, the resulting error is plotted over the number of iterations. We observe that
the error of the quadratic model decreases first for the Hermite least squares model.
After 20 iterations, the error remains below 2.5 · 10−7. For PyBOBYQA the error is
also reduced to this magnitude, but it takes 65 iterations. The errors of the quadratic
models reflect the performance of the different optimization methods. Both find the
same optimal solution. Hermite least squares is more efficient, it terminates after 43
iterations. The reference method PyBOBYQA terminates after 106 iterations. Here,
the number of objective function calls is proportional to the number of iterations.

Test set In the following, the test set from (Fuhrländer and Schöps 2022) is evaluated.
The results are consistentwith the observations regarding error and performance for the
Rosenbrock function, which have been described above. In Figs. 2 and 3 the numerical
results for the test set are visualized. In Fig. 2 the arithmetic mean of the number of
objective function calls is considered, in Fig. 3 the geometric mean, respectively. We
compare PyBOBYQA with Hermite least squares and vary the number of known
derivatives nkd. For example, in Fig. 2b for Hermite least squares with nkd = 2 we
average over all 3-dimensional test problems, solved with Hermite least squares, with
three cases each, i.e., 1) ∂ f /∂x1 and ∂ f /∂x2 are known, 2) ∂ f /∂x1 and ∂ f /∂x3 are
known and 3) ∂ f /∂x2 and ∂ f /∂x3 are known. For the 10-dimensional test problems
we tested three random permutations of known derivatives per nkd.

For n = 4 and nkd = 1 some instances did not terminate within the limit of
2000 objective function calls using Hermite least squares. Hence, this case is left out
in Figs. 2c and 3c, respectively. However, the corresponding results are reported in
Fuhrländer and Schöps (2022).
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(a) 2-dimensional test problems.
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(b) 3-dimensional test problems.
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(c) 4-dimensional test problems.
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(d) 5-dimensional test problems.
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(e) 10-dimensional test problems.

Fig. 2 Arithmetic mean of the number of function evaluations for all test problems solved with the reference
method PyBOBYQA and Hermite least squares (Hermite l.s.) with varying number of known derivatives
nkd
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(b) 3-dimensional test problems.
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(d) 5-dimensional test problems.
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Fig. 3 Geometric mean of the number of function evaluations for all test problems solved with the reference
method PyBOBYQA and Hermite least squares (Hermite l.s.) with varying number of known derivatives
nkd
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We observe that if less than the half of the derivative directions are known, i.e.,
nkd < 1

2n, the Hermite least squares method is not reliably better than BOBYQA.
However, if at least the half of the derivatives are known, we can significantly save
computing effort by the proposed Hermite method. For nkd ≥ 1

2n, with Hermite least
squares the number of objective function calls canbe reducedby34%−80%compared
to PyBOBYQA, depending on dimension n and number of known derivatives nkd, see
Fig. 2. One exception is the case n = 10 and nkd = 5,wherewe can only see a reduction
by 3%. Although, we observe that there are instances of some test problems for which
the number of objective function calls increase (cf. Fuhrländer and Schöps (2022)),
in average the computational effort can be significantly reduced. The optimal solution
has been found in all considered cases. As expected, we observe that the more gradient
information we have, the less objective function evaluations are needed within one
optimization run using Hermite least squares. We can conclude that, assuming about
the half or more of the partial derivatives are known, using the Hermite least squares
approach instead of the classic PyBOBYQAmethod reduces the computational effort
significantly.

In the numerical tests, we also compared the reference BOBYQA and the proposed
Hermitemodificationwith SQP.While forHermite least squareswe tookPyBOBYQA
from Cartis et al. (2019) as a basis and included the required modifications for the
Hermite approach, the SQP method from SciPy based on Kraft et al. (1988) is a
different implementation, using for example different ways to solve the quadratic
subproblem. However, we could observe that in almost all cases, the SQP method
required a lower number of objective function calls than PyBOBYQA in order to find
the optimal solution, and in most cases also less than Hermite least squares. Please
note that in the SQP method we provided the known derivatives and only calculated
the remaining ones with finite differences.

5.2 Noisy data

Let us consider the Rosenbrock function from (51) and investigate the performance of
the differentmethods under noise. In accordance toCartis et al. (2019), for that purpose
we add random statistical noise to the objective function value and the derivative values
by multiplying the results with the factor 1 + ξ , where ξ is a uniformly distributed
random variable, i.e., ξ ∼ U(−10−2, 10−2). Again, for SQP andHermite least squares
we assume ∂ f /∂x1 to be unknown and ∂ f /∂x2 to be available.

The optimal solution of (51) is

xopt = (1, 1) with f
(
xopt

) = 0. (53)

We start the optimization with

xstart = (1.2, 2) with f
(
xstart

) = 31.4. (54)

First we apply the Hermite least squares method. It terminates after only 37 function
calls with the optimal solution
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Fig. 4 Results for the optimization of the noisy Rosenbrock function (51), solvedwith Hermite least squares
(Hermite l.s.), the reference method PyBOBYQA, the reference PyBOBYQA method for noisy data with
maximum budget 37 (PyBOBYQAN,37) and the reference SQP method

xH.l.s. = (1, 1) with f
(
xH.l.s.

)
= 1.02 · 10−23. (55)

Without noise, a similar number of function calls (namely 43) were needed to find the
optimum.Hence, the noise did not lead to an increase in computing effort.We compare
these results to the reference solution PyBOBYQA. After 43 objective function calls
the algorithm terminates without reaching the optimum

xPyB = (1.41, 1.98) with f
(
xPyB

)
= 0.16. (56)

Additionally to PyBOBYQAwe consider the PyBOBYQAversion for noisy data from
(Cartis et al. 2019, Sect. 7) as reference solution PyBOBYQAN. The main differences
compared to PyBOBYQA are another choice of default parameters for adjusting the
trust region radius (better suited for noisy data), sample averaging andmultiple restarts.
Even with a high budget of 2000 objective function calls the algorithm does not
terminate. In order to compare the results with Hermite least squares, we set the
budget to the number of required objective function calls to terminate the Hermite
least squares method, i.e., to 37, and evaluate PyBOBYQAN

xPyBN,37 = (1.08, 1.17) with f
(
xPyBN,100

)
= 0.01. (57)

Thismeans, the optimumcould not be sufficiently identifiedwithin this budget. Finally,
we apply the gradient based SQP. It terminates after 41 objective function calls, and
even though the solution has improved, the optimum could not be reached

xSQP = (0.21,−0.00) with f
(
xSQP

)
= 0.31. (58)

The results are visualized in Fig. 4 . We conclude that the gradient based solver
SQP fails as to be expected in optimizing the noisy Rosenbrock function. While the
standard PyBOBYQA method also terminates without reaching the optimum, the
noisy version PyBOBYQAN approaches the optimum, but does not terminate. The
regression approach in the Hermite least squares method robustify the optimization
under noisy data. It achieves the optimal solution at low computational costs (only 37
objective function calls).
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Table 1 Number of objective
function calls for Rosenbrock
function (51) depending on the
set of known derivatives and the
usage of first and second order
derivatives or first order
derivatives only

I d resp. I2d
[0] [1] [0, 1]

1st order 67 43 40

2nd order 62 40 38

5.3 Hermite least squares with second order derivatives

Again we consider the Rosenbrock function (51) as test function and investigate the
usage of second order derivatives, according to the formulation in Appendix A. In
this example we observe that the usage of second derivatives additionally to first
derivatives slightly reduces the computing effort. The results are given in Table 1 .
Since second order derivatives are rarely available in practice, so we do not further
extend the numerical tests.

6 A practical example: yield optimization

In this section we discuss a practical example where the case of known and unknown
gradients occur. In the field of uncertainty quantification, yield optimization is a com-
mon task (Graeb 2007). In the design process of a device, e.g. antennas, electrical
machines or filters, geometry and material parameters are chosen such that predefined
requirements are fulfilled. However, in the manufacturing process, there are often
uncertainties which lead to a deviation in the optimized design parameters and this
may cause a violation of the requirements. The aim of yield estimation is the quan-
tification of the impact of this uncertainty. The yield defines the probability, that the
device still fulfills the performance requirements, under consideration of the manufac-
turing uncertainties. Thus, the natural goal is to maximize the yield. Please note, the
task of yieldmaximization is equivalent to the task of failure probability minimization.
We will formally introduce the yield and discuss the task of yield optimization with
an example from the field of electrical engineering: a simple dielectrical waveguide
as depicted in Fig. 5. The model of the waveguide originates from (Loukrezis 2019),
and was used for yield optimization previously, e.g. in Fuhrländer et al. (2020).

The waveguide has four design parameters, which shall be modified. Two uncertain
geometry parameters: the length of the inlay p1 and the length of the offset p2. And
two deterministic material parameters: d1 with impact on the relative permittivity and
d2 with impact on the relative permeability. The uncertain parameters are modeled

Fig. 5 Model of a simple
waveguide with dielectrical
inlay and two geometry
parameters p1 and p2

p1

p2

p2

inlay
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as Gaussian distributed random variables. Let the mean value (for the starting point,
k = 0) and the standard deviation been given by

p(0)
1 = 9mm, p(0)

2 = 5mm, σ1 = σ2 = 0.7. (59)

The starting points for the deterministic variables are

d(0)
1 = d(0)

2 = 1. (60)

The multidimensional optimization variable is defined by

x = (p1, p2, d1, d2)
�. (61)

As quantity of interest we consider the scattering parameter Sr (S-parameter), which
gives us information about the reflection behavior of the electromagnetic wave passing
the waveguide. In order to calculate the value of the S-parameter for a specific setting,
the electric field formulation of Maxwell has to be solved numerically, e.g. with the
finite element method (FEM). The performance requirement is defined by

Sr (x) ≤ −24 dB ∀r ∈ Tr = [2π6.5, 2π7.5] in GHz, (62)

where the so-called range parameter r is the angular frequency. The range parameter
interval Tr is discretized in eleven equidistant points and (62) has to be fulfilled for each
of these points. The safe domain is the set of combinations of the uncertain parameters
fulfilling the requirements, and depends on the current deterministic variable, i.e.,

 ≡ d1,d2(p1, p2) := {(p1, p2) : Sr (x) ≤ −24 dB ∀r ∈ Tr } . (63)

We follow the definitions from Graeb (2007). The yield, i.e., the probability of
fulfilling all requirements (62) under consideration of the uncertainties (59), is defined
by

Y (x) := E [1(p1, p2)] =
∫
R

∫
R

1(p1, p2)pdfp1,p2,σ1,σ2(p1, p2) dp1 dp2, (64)

where 1(p1, p2) defines the indicator function with value 1 if (p1, p2) lies inside
the safe domain and 0 elsewise, and pdf defines the probability density function of the
two dimensional Gaussian distribution. Equation (64) can be numerically estimated
by a Monte Carlo analysis, i.e.,

YMC(x) = 1

NMC

NMC∑
i=1

1

(
p(i)
1 , p(i)

2

)
, (65)

where (p(i)
1 , p(i)

2 )i=1,...,NMC are sample points according to the distribution of the
uncertain design parameters. Since for each sample point the S-parameter has to be
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calculated (using a time consuming simulation tool), the yield estimator is a com-
putationally expensive function. In the next step, this function shall be optimized,
i.e.,

max
x

Y (x). (66)

Since p1 and p2 in (64) are only contained in the probability density function the
derivative with respect to the mean values of the uncertain parameters is given by

∂

∂ p j
Y (x) =

∫
R

∫
R

1(p1, p2)
∂

∂ p j
pdfp1,p2,σ1,σ2(p1, p2) dp1 dp2, j = 1, 2. (67)

And since the probability density function of the Gaussian distribution is an exponen-
tial function, it is continuously differentiable, thus the derivatives with respect to p1
and p2 can be calculated easily. Further, according to Graeb (2007), the derivative of
the MC yield estimator with respect to the uncertain parameters is given by

∂

∂ p j
YMC(x) = YMC(x)

1

σ 2
j

(p j, − p j ), j = 1, 2. (68)

where p j, is the mean value of all sample points of p j lying inside the safe domain.
This implies that there are not only closed-form expressions of these derivatives, but
also numerical expressions which require only the evaluation of the objective function
(which is anyway necessary), but no further computational effort. On the other hand,
the deterministic variables are contained in the indicator function in (64). Thus, the
corresponding partial derivatives are not considered as available. This leads to the
situation that two partial derivatives are available, and two are unknown. The Hermite
least squares approach described above can be applied and compared with standard
BOBYQA and SQP.

There are two possibilities for the generation of the Monte Carlos sample set: a)
the same sample set is used in each iteration and just shifted according to the current
mean value (no noise) and b) the sample set is generated newly each time the mean
value is changed (noise). Depending on the size of the sample set, the accuracy can
be controlled. In the following we investigate three different settings:

1. no noise: same sample set (a) and NMC = 2500
2. low noise: new sample sets (b) and NMC = 2500
3. high noise: new sample sets (b) and NMC = 100

We start with the no noise setting and compare the different optimization methods
with respect to the optimal value reached and the number of objective function calls
needed. The initial yield value is Y (0)

MC = 42.8%. The results are visualized in Fig. 6.
While the optimal yield values are similar (best for Hermite l.s. and SQP), the

computational effort varies significantly. SQP performs best with only 36 objective
function calls, Hermite l.s. is at the second position with 50%more, then PyBOBYQA
with 100% more. This coincides with our findings in Sect. 5. There we could also
observe that Hermite least squares performs best (excluding SQP).
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PyBOBYQA

SQP

Hermite l.s.

98

99.6

99.64

PyBOBYQA

SQP

Hermite l.s.

73

36

53

opt. yield in %
# obj. func. calls

Fig. 6 Results for yield optimization in the no noise setting, solved with the reference PyBOBYQAmethod,
the reference SQP method and Hermite least squares (Hermite l.s.)

PyBOBYQA

SQP

Hermite l.s.

99.64

98.96

99.96

PyBOBYQA

SQP

Hermite l.s.

75

43

55

opt. yield in %
# obj. func. calls

(a) Low noise setting.

PyBOBYQA

SQP

Hermite l.s.

100

93

100

PyBOBYQA

SQP

Hermite l.s.

71

72

53

opt. yield in %
# obj. func. calls

(b) High noise setting.

Fig. 7 Results for yield optimization for noisy settings, solved with the reference PyBOBYQAmethod, the
reference SQP method and Hermite least squares (Hermite l.s.)

In the next step we evaluate the noisy settings. The results for the low noise setting
are visualized in Fig. 7a, and for the high noise setting in Fig. 7b, respectively.

As in the no noise setting, PyBOBYQA and the Hermite least squares find the opti-
mal solution and the number of objective function calls does not change significantly
when noise is added. While in the low noise setting SQP finds a good optimal solution
with the lowest number of objective function calls, in the high noise setting SQP loses
its advantage in terms of computational effort, and at the same time breaks down in
finding an optimum.

In summary, for this practical example, the Hermite least squares method performs
best in terms of solution quality and computational effort. Further we observe that the
interpolation and regression based methods can handle the noise, while SQP based on
finite differences may not find the optimum anymore.

7 Conclusion

In this paper, we address the issue that in an optimization problem, some partial
derivatives of the objective function are available and others are not. Based on Powell’s
derivative-free solver BOBYQA, we have developed two the Hermite least squares
optimization method. Besides function evaluations, there we use the available first and
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second order derivatives of a training data set to build a quadratic approximation of
the original objective function. In each iteration, this quadratic subproblem is solved
in a trust region by least squares regression, and the training data set is updated.

Global convergence of the Hermite least squares method can be proven under the
same assumptions as in Conn’s BOBYQA version, i.e., for problems without bound
constraints. In the Hermite least squares method, additionally a comparatively high
number of interpolation points (p1 = q1) is required for the proof. However, in
practice, decreasing the number of interpolation points leads to higher performance
regarding the computational effort and thus to higher practical applicability. Numerical
tests on 30 test problems including a practical example in the field of yield optimization
have been performed. If half or more partial derivatives are available, the Hermite
least squares approach outperforms (Py)BOBYQA in terms of computational effort
bymaintaining the ability of finding the optimal solution. Depending on the dimension
and the amount of known derivative directions the number of objective function calls
can be reduced by a factor up to five. Further, the proposedmethod is particularly stable
with respect to noisy objective functions. In case of noisy data Hermite least squares
finds the optimal solution more reliably and quickly than (Py)BOBYQA or gradient
based solvers as sequential quadratic programming (SQP) using finite differences for
calculating missing derivatives.
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Appendix

Hermite least squares with second order derivatives

The usage of second order derivatives is straightforward. For the sake of completeness,
we formulate theHermite least squares system analog to (29–31).Wedenote thematrix
with the second order derivative information corresponding to the i-th training data
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point byMi
2d, the corresponding right hand side b

i
2d, respectively. They are given by

Mi
2d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂x1∂x1
φ1(yi − xopt) . . . ∂2

∂x1∂x1
φq(yi − xopt)

∂2

∂x1∂x2
φ1(yi − xopt) . . . ∂2

∂x1∂x2
φq(yi − xopt)

...
...

∂2

∂x1∂xn2kd

φ1(yi − xopt) . . . ∂2

∂x1∂xn2kd

φq(yi − xopt)
∂2

∂x2∂x2
φ1(yi − xopt) . . . ∂2

∂x2∂x2
φq(yi − xopt)

...
...

∂2

∂xn2kd∂xn2kd

φ1(yi − xopt) . . . ∂2

∂xn2kd∂xn2kd

φq(yi − xopt)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(69)

withMi
2d ∈ R

(n22kd+n2kd)/2×q and

bi2d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂x1∂x1
f (yi )

∂2

∂x1∂x2
f (yi )

...
∂2

∂x1∂xn2kd

f (yi )
∂2

∂x2∂x2
f (yi )

...
∂2

∂xn2kd∂xn2kd

f (yi )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(n22kd+n2kd)/2. (70)

Utilizing that the basis � is defined by (10) and assuming the second order
derivatives are available for all directions, i.e., n2kd = n,Mi

2d can be simplified to

Mi,simpl.
2d =

⎛
⎜⎝
0 . . . 0 1
...

...
. . .

0 . . . 0 1

⎞
⎟⎠ , (71)

i.e., the linear part vanishes and the quadratic part is given by the identity matrix.
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