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Abstract
In this paper we study procedures for pathfollowing parametric mathematical pro-
grams with complementarity constraints. We present two algorithms, one based on
the penalty approach for solving standalone MPCCs, and one based on tracing active
set bifurcations arising from doubly-active complementarity constraints. We demon-
strate the performance of these two approaches on a variety of examples with different
types of stationary points and also a simple engineering problem with phase changes.

Keywords Parametric optimization · Pathfollowing · Model predictive control ·
Mathematical programs with complementarity constraints · Mathematical programs
with equilibrium constraints

1 Introduction

We are interested in tracing an approximate path of solutions to a parametric mathe-
matical program with complementarity constraints (PMPCC). Specifically, we study
the problem,
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min
x∈Rn+2nc

f (x, t)

s.t. g(x, t) ≥ 0,
h(x, t) = 0,
0 ≤ x j ⊥ x j+nc ≥ 0, for all j ∈ {n + 1, . . . , n + nc},

(PMPCC(t))

where f : Rn+2nc × R → R, g : Rn+2nc × R → R
mq , h : Rn+2nc × R → R

me

and a ⊥ b for a, b ∈ R implies that either a or b or both of them are zero. The
more general case of nonlinear complementarity constraints can be covered by this
form using slack variables. We will denote the feasible set as X(t), i.e., X(t) := {x :
g(x, t) ≥ 0, h(x, t) = 0, 0 ≤ x j ⊥ x j+nc ≥ 0, for all j ∈ {n + 1, . . . , n + nc}}. We
consider the situation wherein one has a reasonably accurate estimate of the solution
for (PMPCC(t)) at t = 0 and intends to find the solution at t = 1 using parametric
sensitivity, i.e., the directional derivative of solutions to (PMPCC(t)), or some related
problem that approximates it, with respect to t .

A primary motivation for this problem arises in real-time nonlinear model predic-
tive control (NMPC). Using the advanced step NMPC (Zavala and Biegler 2009) or
the real-time iteration (Diehl et al. 2005) framework, one can pathfollow along the
solution of an optimization problem defining the discretized optimal control problem
using sensitivity updates from the predicted and measured state. Instead of solving
the full NMPC optimization problem when new process measurements arrive, a fast
approximation of the updated optimal solution is found using one or several pathfol-
lowing steps. See Diehl et al. (2005), Zavala and Biegler (2009), Jäschke et al. (2014),
Suwartadi et al. (2017) for illustrations of this approach. NMPC is performed in prac-
tice by forming of a sequence of discretized optimal control problems into nonlinear
programs (NLPs) and performing these pathfollowing schemes. These algorithms are
not applicable to (PMPCC(t)). The problem (PMPCC(t)) can be re-written as an
NLP by writing the complementarity constraint as xi xi+nc ≤ 0 along with xi ≥ 0
and xi+nc ≥ 0, but under this reformulation, certain stringent regularity conditions
required for guarantees in the pathfollowing procedures are not generally satisfied.
This presents an important open problem as there are several applications arising
in process control engineering wherein the dynamic process has a complementar-
ity structure due to switching conditions and phase transitions, e.g., see Baumrucker
et al. (2008), Raghunathan and Biegler (2003). For this class of problems there do
not yet exist efficient pathfollowing algorithms, and it is the objective of this paper
to investigate how pathfollowing can be realized for problems with this challenging
complementarity structure.

The main contribution of this paper is the first study of pathfollowing for PMPCCs.
Currently, there is no literature presenting an algorithm to trace the solution of a para-
metric MPCC from an approximate solution at one value of a parameter to another.
In this paper we develop and study two methods based on NLP approximations of
the underlying MPCC for tracking the solution with respect to a parameter change. In
particular, we study the penaltymethod for solvingMPCCs, and also, noting the impor-
tance of doubly-active complementarity constraints in indicating potential branching
points of the PMPCC solution set, an “active-set” procedure that traces the parametric
NLP solutions corresponding to each branch.
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We found that the guarantees and experimental performance of pathfollowing
resembles solving standalone MPCCs in an analogous manner. In particular, the
penalty method is able to trace, just as the penalty method is able to solve, stationary
points satisfying weak necessary conditions, with weak in the sense of a relatively
larger class of problems for which descent directions exist. It is simple to implement,
however, and for problems without attractive but unsatisfactory stationary points or
many bi-active constraints it performs just as well and reliably as pathfollowing on a
standard parametric NLP. However, for problems in which B-stationarity, the tightest
form of computable stationarity is sought for, which is also difficult to solve as a stan-
dalone problem, a more complicated and combinatorial approach is necessary. Given
the necessary tracking of different potential branches, the gain in reliability of quality
solutions comes at the cost of a more difficult to implement and slower pathfollowing
algorithm.

1.1 Previous literature

Parametric optimization for standard parametric NLPs (PNLPs) has enjoyed two peri-
ods of intensive activity. First, around the publication of the seminal book (Guddat et
al. 1990), and more recently with the development of higher quality nonlinear models
for process control and the rise of nonlinear model predictive control, e.g., Diehl et al.
(2005), Zavala and Anitescu (2010), Dinh et al. (2012), Dontchev et al. (2013). In
Kungurtsev and Jäschke (2017) an algorithm was presented for pathfollowing PNLPs
satisfying weak constraint qualifications. The procedures are based on sensitivity, in
particular, the directional derivative of the solution of an NLP subject to a differential
parameter change, whose properties depend on the constraint qualifications holding
at the solution.

In general, for MPCCs reformulated as NLPs, it is possible that Guignard’s con-
straint qualification holds, but otherwise the complementarity constraints define the
feasible region to be such that, typically, the stronger constraint qualifications in the lit-
erature fail. Thus only the second algorithm inKungurtsev andDiehl (2014) for generic
branching could potentially be applicable for pathfollowing MPCCs. The algorithm
requires an approximation to the complete characterization of the optimal Lagrange
multiplier set, a computationally challenging task, and in general is not tailored for
MPCCs specifically.

There are a number of algorithms for solving standalone MPCCs. For a classic
text, see Luo et al. (1996). Most algorithms are based on regularization or penalization
(Ralph and Wright 2004), and have been proven to find C-stationary points of the
problem (a stationarity notion specific to MPCCs that will be discussed in the next
section). Some regularization methods are able to converge to M-stationary points;
a number of methods have been developed, for a detailed comparison of some of
these methods, see Hoheisel et al. (2013). C-stationary and M-stationary points could
have non-trivial directions of descent, however, so a filter sequential linear comple-
mentarity based approach was presented in Leyffer and Munson (2007) to only obtain
solutions satisfyingB-stationarity, a stationaritymeasure for which no feasible descent
directions exist for the linearization of the problem.
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Sensitivity of MPCCs is studied in Scheel and Scholtes (2000), Bouza et al. (2008),
Jongen et al. (2012). In combination with algorithmic pathfollowing ideas for PNLP
and algorithms for solving standalone MPCCs, these form the inspiration for the
procedures and analysis presented in this paper.

2 Background

In this section we first review the optimality conditions of a standalone MPCC, and
then proceed to describe the general properties of the solution paths of PMPCCs as
the value of the parameter changes, and finally review pathfollowing procedures for
parametric NLPs.

2.1 Optimality conditions and constraint qualifications

In this section we present some definitions of regularity properties and optimality
conditions specific to MPCCs. We introduce the index sets

Nc := {n + 1, . . . , n + 2nc},
N−

c := {n + 1, . . . , n + nc}, and N+
c := {n + nc + 1, . . . , n + 2nc}

in order to make the notation in the sequel more compact.
Let us denote the index sets of active complementary components associated with

a point x∗ ∈ X(t) as,

A1(x
∗, t) := {i |i ∈ N−

c , x∗
i = 0} and A2(x

∗, t) := {i |i ∈ N+
c , x∗

i = 0}.

We also define the set of complementarity constraints that are bi-active as follows,

A0
1(x

∗, t) := {i |i ∈ N−
c , x∗

i = 0, x∗
i+nc = 0} and A0

2(x
∗, t) := {i |i ∈ N+

c , x∗
i = 0, x∗

i−nc = 0}.

These play an important role in the regularity of MPCCs, as bi-active constraints pose
some of the primary difficulties associated with solving them.

Denote

J (x∗, t) := {I ⊆ {i |i ∈ A1(x
∗, t) ∪ A2(x

∗, t)} : ∀i ∈ N−
c , {i, i + nc} ∩ I �= ∅}

to be the collection of all sets of optimization variable indices corresponding to
complementarity variables which are active and such that at least one from every
complementarity pair of indices is included in the set.

We now present three related NLPs to (PMPCC(t)) based around a point x∗ ∈ X(t)
[see Scheel and Scholtes (2000) for more details]. The first, the tightened NLP, given
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t , is defined as,

minx∈Rn+2nc f (x, t)
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0 for i ∈ Nc such that x∗

i = 0,
xi ≥ 0 for i ∈ Nc such that x∗

i > 0,

(1)

Next, the relaxed NLP is defined as,

minx∈Rn+2nc f (x, t)
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0, xi+nc ≥ 0 for i ∈ N−

c such that x∗
i = 0 and x∗

i+nc
> 0,

xi = 0, xi−nc ≥ 0 for i ∈ N+
c such that x∗

i = 0 and x∗
i−nc

> 0,
xi , xi+nc ≥ 0 for i ∈ N−

c such that x∗
i = 0 and x∗

i+nc
= 0.

(2)

It holds that if x∗ is a local minimizer of the relaxed NLP then it is a local minimizer
of the MPCC, and if it is a local minimizer of the MPCC then it is a local minimizer
of the tightened NLP. It holds that if either x∗

i > 0 or x∗
i+nc

> 0 for all i ∈ N−
c then

the two converse assertions hold.
The Index I ∈ J (x∗, t) NLP is defined as,

minx∈Rn+2nc f (x, t),
s.t. g(x, t) ≥ 0,

h(x, t) = 0,
xi = 0, i ∈ I ,
xi ≥ 0, i ∈ Nc \ I .

(3)

We will denote the MPCC Lagrangian with multipliers (λ, μ, σ ) as,

L(x, λ, μ, σ, t) = f (x, t) − λT g(x, t) − μT h(x, t) − σ T x, (4)

where it is assumed that σi = 0 for i ≤ n.
Now we present the definitions of the various stationarity concepts for MPCC that

are used in this work. Note that there are multiple equivalent ways of formalizing these
concepts, and we present just one in accordance to preference for the exposition of our
results. Other (equivalent) definitions may be useful in different contexts can be found
in, e.g. Scheel and Scholtes (2000). We say that x∗ satisfies weak, or W-stationarity,
for the parametric MPCC at t if there exist multipliers (λ∗, μ∗, σ ∗) such that,

∇x f (x∗, t) − ∇x g(x∗, t)T λ∗ − ∇xh(x∗, t)Tμ∗ − σ ∗ = 0,
(λ∗)T g(x∗, t) = 0, λ∗ ≥ 0, g(x∗, t) ≥ 0, h(x∗, t) = 0,
0 ≤ x∗

i ⊥ x∗
i+nc

≥ 0, for all i ∈ N−
c ,

σ ∗
i = 0 for i < n + 1,

σ ∗
i x

∗
i = 0, for i ∈ Nc.

(5)
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The point x∗ is (Clarke) C-stationary if there exists a dual tuple (λ∗, μ∗, σ ∗) sat-
isfying (5) and σ ∗

i σ ∗
i+nc

≥ 0 for all i ∈ N−
c .

It is (Mordukhovich) M-stationary if there exists (λ∗, μ∗, σ ∗) satisfying the W-
stationarity multiplier conditions and, in addition, σ ∗

i > 0, σ ∗
i+nc

> 0, or σ ∗
i σ ∗

i+nc
= 0

for all i ∈ N−
c .

The point is (strongly) S-stationary if there exists (λ∗, μ∗, σ ∗) satisfying the cor-
responding W-stationarity conditions and, in addition σ ∗

i ≥ 0 for all i ∈ A0
1(x

∗, t) ∪
A0

2(x
∗, t). This is the strongest notion of stationarity. It is equivalent to the KKT

property of the relaxed NLP (2).
The tightest notion of stationarity we review here is (Bouligand) B-stationarity,

which implies that no linear feasible descent direction exists. B-stationarity holds
for a feasible point x∗ if d = 0 is the solution to the following linear mathematical
program with complementarity constraints (LPCC),

mind∈Rn+2nc ∇x f (x∗, t)T d
s.t. g(x∗, t) + ∇x g(x∗, t)d ≥ 0,

h(x∗, t) + ∇xh(x∗, t)d = 0,
0 ≤ x∗

i + di ⊥ x∗
i+nc

+ di+nc ≥ 0, i ∈ N−
c .

(6)

This is equivalent to x∗ ∈ X(t) and x∗ being stationary for all index I NLPs for
I ∈ J (x∗, t). If A0

1(x
∗, t) = A0

2(x
∗, t) = ∅ then B-stationarity is equivalent to

S-stationarity. Thus, by the criterion of set inclusion of stationarity measures, S-
stationarity is the strongest, by which we mean every other stationarity condition
is satisfied when (but not only when) S-stationarity holds. On the other hand B-
stationarity is the tightest stationarity measure, in that there is a strict set inclusion of
MPCC problems and points x∗ which are local minimizers for an MPCC for which
B-stationarity holds, but not necessarily S (or C, M, or W) stationarity. Otherwise,
S-stationarity, as the strictly strongest set of conditions defined above, implies B-
stationarity. Note that in the disjunctive programming literature (Gfrerer 2014), this
condition is also referred to as linearized B-stationarity.1

Constraint Qualifications forMPCC are defined as follows. A point x̄ ∈ X(t) is said
to satisfy the MPCC-Linear Independence Constraint Qualification (MPCC-LICQ) if
x̄ satisfies LICQ for the tightened NLP (1) defined with x∗ = x̄ . Analogously, x̄ can
satisfy the MPCC-MFCQ and other corresponding qualifications.

There are a number of second order conditions, here we present the strongest and
most relevant for this paper, whose definition appears in, e.g. Scheel and Scholtes
(2000).

Theorem 2.1 (Scheel and Scholtes 2000, Theorem 7)

• If x∗ is a local minimizer of (PMPCC(t)) at t and the MPCC-LICQ condition
holds at x∗, then it is an S-stationary point with unique corresponding multipliers

1 There, the label “B-stationarity” implies, instead that, for every index I NLP, in the tangent cone (instead
of linearized tangent cone) of feasible directions, there is no descent direction. In staying consistent with
the collection of papers in the literature cited in this paper, we maintain the original definition.
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(λ∗, μ∗, σ ∗) satisfying

dT
∂2

∂x2
L(x∗, λ∗, μ∗, σ ∗, t)d ≥ 0

for any d feasible for (6) and ∇x f (x∗, t)T d = 0. This corresponds to the MPCC-
SONC (second order necessary condition).

• If x∗ is a S-stationary point of (PMPCC(t)) at t , and for every direction d �= 0
feasible for (6) and satisfying dT∇x f (x∗, t) = 0, there exist (λ∗, μ∗, σ ∗) corre-
sponding to S-stationarity for x∗ such that

dT
∂2

∂x2
L(x∗, λ∗, μ∗, σ ∗, t)d > 0

then x∗ is a strict local minimizer of (PMPCC(t)) at t . This corresponds to the
MPCC-SOSC (second order sufficiency condition).

There are a number of other necessary second order optimality conditions corre-
sponding to each of the types of critical points describd above, see, e.g. Guo et al.
(2013). It is beyond the scope of the paper to describe each of the conditions, only to
say that they correspond to standard notions of second order optimality with critical
directions corresponding to cones natural to M- and C-stationarity. Note that given
that descent directions can exist in the case of M- and C-stationary points, there is no
corresponding notion of sufficient optimality conditions for these points.

2.2 Properties of the parametric solution path

Given the combinatorial structure of MPCCs, it is natural to consider that at a solution
x∗ of an MPCC, the parametric sensitivity properties will be partially inherited from
one or more index I ∈ J (x∗, t) NLPs. This is formalized in Scheel and Scholtes
(2000, Theorem9)which states that if theLICQand the strong second order sufficiency
condition hold at x∗ for every index I NLP, then there are unique local minimizers to
t-perturbations of every NLP.

The primal solution path as a function of t for the parametric index I NLP around
a base point will have a particular set of continuity properties (Lipschitz piecewise
continuity, for instance, under the LICQ and the SOSC), and the same path, as long
as it is feasible for the parametric MPCC, will define a path satisfying some level of
stationarity for the parametric MPCC with the same continuity properties.

For a reference on the type of continuity properties solution paths to parametric
NLPs may have, see Guddat et al. (1990). The paper (Bouza et al. 2008) gives some
of the implications these may have for PMPCCs.

Consider the condition of upper level strict complementarity.

Definition 2.1 Upper level strict complementarity holds at (x∗, λ∗, μ∗, σ ∗) satisfy-
ing (5) for (PMPCC(t)) at t if σ ∗

i �= 0 for all i ∈ A0
1(x

∗, t) ∪ A0
2(x

∗, t).
Theorem 11 in Scheel and Scholtes (2000) states that given this condition and

a linear independence condition on the Jacobians of particular sets of constraints,
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there exists a unique path of solutions for local perturbations of t in (PMPCC(t)).
These solutions maintain B-stationarity or C-stationarity, as the case may be, and if
B-stationarity and the MPCC-SOSC hold, then they are local minimizers. Upper level
strict complementarity will be used below in the application of a penalty method for
tracing parametric MPCC solutions, in Sect. 3.1.

We shall also use the notion of partial strict complementarity.

Definition 2.2 Partial strict complementarity holds at (x∗, λ∗, μ∗, σ ∗) satisfying (5)
for (PMPCC(t)) at t if σ ∗

i + σ ∗
i+nc

> 0 for i ∈ N−
c .

For a comprehensive exposition on the strong stability properties of S-stationary,
C-stationary, and M-stationary points please see Jongen et al. (2012). For a work
studying the value function, or the evaluation of the objective function at the problem
solution as a function of parameters, see Guo et al. (2014). Another paper that stud-
ies the stability of the more general class of mathematical programs with geometric
constraints, wherein constraint values must live in some closed set, that includes the
complementarity set and other nonconvex domains, is Guo et al. (2012).

2.3 Pathfollowing for parametric nonlinear programming

We recall here some basic notions about pathfollowing for standard (non-
complementarity) parametric nonlinear programming. Thus in this section we con-
sider (PMPCC(t)) with nc = 0. In pathfollowing algorithms we trace the (approxi-
mate) solution of a parametric optimization problem along a parameter t , starting from
t = 0 to t = 1. For a standard reference on this topic, see Guddat et al. (1990).

Let (x∗, λ∗, μ∗) be a primal-dual tuple satisfying stationarity, i.e., the system (5)
(note that these are the standard first order KKT conditions when nc = 0). Let�(x∗, t)
correspond to the set of all (λ∗, μ∗) satisfying the conditions for x∗. Define, I(x∗, t)
to be the set of inequality constraint indices such that for i ∈ I(x∗, t), gi (x∗, t) = 0,
I0(x∗, λ∗, t) ⊆ I(x∗, t) to be the set such that i ∈ I0(x∗, λ∗, t) implies that λ∗

i =
0 and I+(x∗, λ∗, t) ⊆ I(x∗, t) to be the set such that i ∈ I+(x∗, λ∗, t) implies
that λ∗

i > 0. We define I+(x∗, t) = ∪(λ∗,μ∗)∈�(x∗,t)I+(x∗, λ∗, t) and I0(x∗, t) =
∩(λ∗,μ∗)∈�(x∗,t)I0(x∗, λ∗, t), the index set of constraints corresponding to a positive
multiplier component for at least one element of the set of optimal multipliers and
those associated with only null multipliers, respectively.

The Lagrangian function for the NLP is L(x, λ, μ, t) = f (x, t) − g(x, t)T λ −
h(x, t)Tμ. The Hessian of the Lagrangian with respect to x is denoted by

H(x, λ, μ, t) := ∇2
xx f (x, t) −

mq∑

i=1

λi∇2
xx gi (x, t) −

me∑

i=1

μi∇2
xxhi (x, t).

The most important second order condition for pathfollowing is the strong form of
the second order sufficiency condition, defined as follows.
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Definition 2.3 (Strong second order sufficient conditions (SSOSC)) The vectors
(x∗, λ∗, μ∗) satisfy the strong second order sufficient optimality conditions at t if
they satisfy the first-order KKT conditions ((5) with nc = 0) and

dT H(x∗, λ∗, μ∗, t)d > 0 for all d ∈ C̃(x∗, λ∗, μ∗, t) \ {0}, (7)

where d ∈ C̃(x∗, λ∗, μ∗, t) if ∇x gi (x∗, t)T d = 0 for all i ∈ I+(x∗, λ∗, t) and
∇xh(x∗, t)d = 0.

It will also be useful to know the (general) second order sufficient conditions for
optimality.

Definition 2.4 (Second order sufficient conditions (SOSC)) The vectors (x∗, λ∗, μ∗)
satisfy the second order sufficient optimality conditions at t if they satisfy the first-order
KKT conditions ((5) with nc = 0) and

dT H(x∗, λ∗, μ∗, t)d > 0 for all d ∈ Ĉ(x∗, λ∗, μ∗, t) \ {0}, (8)

where d ∈ Ĉ(x∗, λ∗, μ∗, t) if ∇x gi (x∗, t)T d = 0 for i ∈ I+(x∗, λ∗, t),
∇x gi (x∗, t)T d ≥ 0 for i ∈ I0(x∗, λ∗, t), and ∇xh(x∗, t)d = 0.

Recalling (Jittorntrum 1984), we know that there is a quadratic program (QP)
whose solution characterizes the directional derivative of the solution to the parametric
NLP at a primal-dual solution (x∗, λ∗, μ∗) at t . In Kungurtsev and Diehl (2014) [see
also Diehl (2001)] a predictor-corrector QP is introduced, which incorporates the
directional derivative of the solution together with a step towards the solution at the
next value of the homotopy parameter in one QP. It is noted that by lifting the nonlinear
dependence (i.e., introducing a variable xn+2nc+1 in place of t in the problem functions
and adding the constraint xn+2nc+1 = t) any parametric NLP can be written such that
∇2
xt f (x, t), ∇t g(x, t) and ∇t h(x, t) are all constant.2 We consider starting with an

approximate solution (x̄, λ̄, μ̄) which is sufficiently close to the primal-dual solution
(x∗(t), λ∗(t), μ∗(t)) at the initial value of the parameter t . Let �t be the stepsize for
t and consider an iteration of pathfollowing. The predictor-corrector QP is given as,

min�x∈Rn ∇x f (x̄, t + �t)T�x + 1
2�xT H(x̄, λ̄, μ̄, t)�x

s.t. h(x̄, t) + ∇t h(x̄, t)�t + ∇xh(x̄, t)�x = 0,
gi (x̄, t) + ∇t gi (x̄, t)T�t + ∇x gi (x̄, t)T�x = 0, for i ∈ I+(x̄, λ̄, t),
gi (x̄, t) + ∇t gi (x̄, t)T�t + ∇x gi (x̄, t)T�x ≥ 0, for i ∈ I0(x̄, λ̄, t).

(9)

2 Affine parametric dependence is a standard assumption for pathfollowing algorithms for parametric NLP,
see Kungurtsev and Diehl (2014) and Diehl (2001). Nonlinear dependence can also be taken care of by
means of additional terms in the parametric QP. However the presentation becomes more cumbersome
without contributing to insight on the problem.
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Starting at t = 0 with a given initial approximate solution (x, λ, μ), we iteratively
solve (9), take a step in the direction of the primal-dual QP solution, and perform an
estimate of the strongly and weakly active sets for t = 0 < t1 < t2 < · · · < tN = 1. If
the original problem satisfies the SSOSC throughout the path, this QP is has a unique
solution, as it is strongly convex along the subspace defined by the linearization of the
constraints, and this procedure is well defined.

The active sets I+(x̄, λ̄, t) and I0(x̄, λ̄, t) are estimated along the path using a
technique based on Facchinei et al. (1998), also used in Kungurtsev and Diehl (2014).
In particular, for a standard NLP (i.e., nc = 0), we define the optimality residual as

η(x, λ, μ, t) =
∥∥∥∥∥∥

⎛

⎝
∇x f (x, t) − ∇xh(x, t)Tμ − ∇x g(x, t)T λ

min(g(x, t), λ)

h(x, t)

⎞

⎠

∥∥∥∥∥∥∞
, (10)

and estimate the active sets as follows,

Ī(x, λ, μ, t) = {i : gi (x, t) ≤ η(x, λ, μ, t)γ },
Ī+(x, λ, μ, t) = {i ∈ I(x, λ, μ, t) : λi > η(x, λ, μ, t)γ },
Ī0(x, λ, μ, t) = Ī(x, λ, μ, t) \ Ī+(x, λ, μ, t),

(11)

where 0 < γ < 1.
For the MPCC pathfollowing algorithms discussed later in Sect. 3, we trace the

MPCC solutions by tracing some auxiliary parametric NLPs by estimating, at each
value of t , the active sets as above, and computing the steps using (9).

3 Algorithms

3.1 Penalty method

In order to obtain a solution of (PMPCC(t)) for a given t , the standard penalty method
instead solves the NLP,

minx∈Rn+2nc f (x, t) + ρ
∑

i∈N−
c
xi xi+nc

s.t. g(x, t) ≥ 0,
h(x, t) = 0,
x j ≥ 0, for all j ∈ Nc

(Pρ(t))

for some penalty parameter ρ > 0.
There are several important results relating the stationarity properties of the original

problem (PMPCC(t)) and its relaxed penalty surrogate problem (Pρ(t)).
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Theorem 3.1 (Ralph and Wright 2004, Theorem 5.1–5.2, Proposition 5.3)

• If x∗ is S-stationary for (PMPCC(t)) at t then for ρ sufficiently large, x∗ is station-
ary for (Pρ(t)). Furthermore, if theMPCC-LICQ,MPCC-MFCQ,orMPCC-SOSC
hold for (PMPCC(t)) at t at x∗ then the LICQ, MFCQ or SOSC hold at (Pρ(t))
at t at x∗, respectively.

• If x∗ is stationary for (Pρ(t)) and x∗ ∈ X(t), then it is S-stationary
for (PMPCC(t)). Furthermore if the LICQ and SOSC hold at x∗ for (Pρ(t)) at
t , then the MPCC-LICQ and MPCC-SOSC hold at x∗ for (PMPCC(t)) at t .

• If x∗ is S-stationary with associated (λ∗, μ∗, σ ∗) for (PMPCC(t)) at t , and the
MPCC-LICQ and partial strict complementarity hold at x∗, then for ρ sufficiently
large, there is a neighborhood B of x∗ such that every stationary point of (Pρ(t))
in B is an S-stationary point for (PMPCC(t)).

From the proofs in Ralph and Wright (2004), the minimum ρ that is required for the
first two results of this Theorem is equal to,

ρ̄1 = 1 + max

(
0, max

i∈A1(x∗,t)\A0
1(x

∗,t)

σ ∗
i

x∗
i+nc

, max
i∈A2(x∗,t)\A0

2(x
∗,t)

σ ∗
i

x∗
i−nc

)
, (12)

and for the third result, it must satisfy,

ρξ + max
i

σ ∗
i − ξ > 0,

where ξ is equal to,

ξ = 1

2
min

(
min

i∈(A1(x∗,t)+nc)∪(A2(x∗,t)−nc)
x∗
i , min

i :σ ∗
i >0

σ ∗
i

)
.

Note, however, that the MPCC-SOSC does not imply the strong second order suffi-
ciency conditions for the penaltyNLP,which is required for the theoretical convergence
properties of the predictor-corrector QP (9) for pathfollowing.

One can obtain the multipliers σ ∗ from the solution of the penalty function mini-
mization by taking,

σ ∗
i =

{
z∗i − ρx∗

i+nc
, i ∈ N−

c ,

z∗i − ρx∗
i−nc

, i ∈ N+
c ,

(13)

where z∗ are the multipliers for the bound constraints xi ≥ 0, i ∈ Nc in the penalty
problem (see Coulibaly and Orban 2012).
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3.1.1 Description of the penalty pathfollowing algorithm

Now we describe an algorithm that approximately traces the solution trajec-
tory (PMPCC(t)) by following the solution path of the corresponding parametric
penalty formulation.

We write the penalty objective as,

f p(x, t; ρ) = f (x, t) + ρ
∑

i∈N−
c

xi xi+nc

and correspondingly the Lagrangian of the penalty problem as,

Lp(x, λ, μ, z, t; ρ) = f p(x, t; ρ) − λT g(x, t) − μT h(x, t) − zT x

with Hessian matrix,

Hp(x, λ, μ, t; ρ) = ∇2
xxLp(x, λ, μ, z, t; ρ).

We present the Penalty Pathfollowing Algorithm as Algorithm 1. We start with
a point close to x∗(0) and estimate both the strongly and weakly active inequality
constraints using (11). This set includes the complementarity variables treated as
constraints, i.e. xi ≥ 0 for i ∈ Nc are included and identified as being (strongly) active
or not.We shall denote the index set of the complementarity variables deemed strongly
active to be N̄+

c (x, (λ, z), μ, t).Note thatwhen discussing the penaltymethod,η given
in (10) includes the dual complementarity measure min(xNc , z), i.e.,

η(x, λ, μ, z, t) =

∥∥∥∥∥∥∥∥

⎛

⎜⎜⎝

∇x fρ(x, t; ρ) − ∇xh(x, t)Tμ − ∇x g(x, t)T λ − z
min(g(x, t), λ)

h(x, t)
min(xNc , z)

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥∞

,(14)

Note that if the strongly active set is identified correctly and upper level strict comple-
mentarity holds, then the solution set of the tightened NLP is equivalent to the MPCC,
and thus η is an error bound for the latter.

At each iteration, the predictor-corrector QP (9) is constructed for (Pρ(t)) and
solved to obtain the primal-dual tuple (�x, (λ̂, ẑ), μ̂).
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Algorithm 1 Penalty Pathfollowing Method for MPCC
Input:Desired tolerance ε, initial�t > 0, adjustment factor α > 1, sufficiently large ρ > 0, t = 0, x , λ,μ,
z close to vectors (x∗, λ∗, μ∗, z∗) that satisfy the KKT conditions of (Pρ(t)) at t = 0 and with x∗ ∈ X(0),
i.e., x∗ is feasible for (PMPCC(t)) at t = 0.
1: Compute η(x, λ, μ, z, t).
2: Estimate the active set Ī(x, (λ, z), μ, t) and the strongly active sets Ī+(x, (λ, z), μ, t) and

Ī0(x, (λ, z), μ, t) by (11). Let N̄+
c ⊂ Ī+(x, (λ, z), μ, t) corresponding to the constraints defining

the nonnegativity bounds on the complementarity variables.
3: while t < 1 do
4: Solve

min�x ∇x f p(x, t + �t; ρ)T �x + 1
2�xT Hp(x, (λ, z), μ, t; ρ)�x

s.t. h(x, t) + ∇t h(x, t)�t + ∇x h(x, t)�x = 0,
gi (x, t) + ∇t gi (x, t)

T �t + ∇x gi (x, t)
T �x = 0, for i ∈ Ī+(x, (λ, z), μ, t),

gi (x, t) + ∇t gi (x, t)
T �t + ∇x gi (x, t)

T �x ≥ 0, for i ∈ Ī0(x, (λ, z), μ, t),
xi = 0, i ∈ N̄+

c (x, (λ, z), μ, t)
xi ≥ 0, i ∈ Nc \ N̄+

c (x, (λ, z), μ, t)

(15)

to obtain the primal-dual QP solution (�x, (λ̂, ẑ), μ̂).
5: If

∑nc
i=1[x + �x]i+n [x + �x]i+n+nc > ε, then increase ρ, repeat loop from Step 4.

6: if η(x + �x, (λ̂, ẑ), μ̂, t + �t) < ε then
7: Set t = t + �t , x = x + �x , λ = λ̂, μ = μ̂, z = ẑ, and set �t = min(α�t, 1 − t).
8: Re-estimate the active and the strongly active sets.
9: else
10: Set �t = �t/α.
11: end if
12: end while

3.1.2 Theoretical guarantees

The tracking convergence guarantees associated with the penalty algorithm is given
below in Theorem 3.2. In particular we use the aforementioned correspondence
between necessary and sufficient optimality conditions for the MPCC and the asso-
ciated penalty problem to show that for a well behaved PMPCC, there is sufficient
regularity for the penalty formulation that the solutions are isolated, and thus 1) the
problem satisfying complementarity is the only solution to the penalty form and 2) the
QP (15), which is its linearization, has a unique solution. Then from standard results
in pathfollowing for NLPs the procedure is shown to generate a set of iterates with
theoretical tracking guarantees to the parametric solution curve.

In general, for well-behaved problems the procedure successfully traces the solu-
tions, but has several limitations. First, only S-stationary points are guaranteed to be
traced. This does not necessarily imply that weaker notions of stationarity that could be
spurious, like M or C-stationarity, will not be traced, and it also implies that not all B-
stationary points will be traced. Furthermore, an “a posteriori” assumption must hold,
that the SSOSC conditions hold for the penalty problem associated with the MPCC.
The SOSC for the original MPCC is not enough to ensure the predictor-corrector QP
is able to generate the solution path for the MPCC.
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2808 V. Kungurtsev, J. Jäschke

Theorem 3.2 Assume there exists x∗ : [0, 1] → R
n+2nc such that x∗(t) is an iso-

lated S-stationary point for (PMPCC(t)) satisfying MPCC-SOSC and MPCC-LICQ3

for all t , and partial strict complementarity holds for all dual vectors (λ∗, μ∗, σ ∗)
corresponding to S-stationarity with x∗(t) for all t ∈ D for a set D ⊆ [0, 1] sat-
isfying {0, 1} ∈ D, and [0, 1] \ D is a finite set of points. Then there exists a ρ

sufficiently large such that, for all t ∈ D, x∗(t) is a solution for (Pρ(t)) at t . Further-
more consider the iterations of Algorithm 1 performed with this ρ appearing in the
subproblem (15) with such sufficiently large ρ. Denote by T the set of pathfollowing
parameters {t0 = 0, t1, t2, . . .}. If it holds that,
1. there is an initial estimate x0 sufficiently close to x∗(0),
2. the SSOSC holds for (Pρ(t)) for x∗(t) for all t ∈ [0, 1],
3. there exists only a finite {tak } ⊆ [0, 1] for which

lim inf
t→(tak )−

A1(x
∗(t), t) ∪ A2(x

∗(t), t) �= lim inf
t→(tak )+

A1(x
∗(t), t) ∪ A2(x

∗(t), t)

i.e., the number of optimal complementarity active set changes across x∗(t) is
finite,

4. tk ∈ D for all k,

Then it holds that Algorithm 1 successfully generates an approximate solution path
{(tk, xk)} with T = {t0 = 0, t1, . . . , tk, . . . , tK = 1} finite, i.e., for any ε, there exists
a ε0 such that if ‖x0 − x∗(0)‖ ≤ ε0 then ‖xk − x∗(tk)‖ ≤ ε for all k = 0, 1, . . . , K.

Proof Outline: There are two primary steps of the proof. First is to show that there
is a one to one locally unique correspondence between x∗(t) as a solution of the
original problem and as a solution to the penalty formulation. After establishing this,
we can use the results on the properties of the penalty formulation above to infer
that corresponding strong regularity conditions are satisfied for the penalty problem
along the entire path T . What remains is to show that the required minimal ρ for the
aforementioned equivalence to hold must be bounded across the homotopy, which
corresponds to the quantity defined in (12) having a uniform bound across t ∈ [0, 1].
Strong regularity for the penalty problem already implies local boundedness of the
primal-dual solution for t ∈ D, thus the onus is to show that the quantity in (12) cannot
growwithout bound as one approaches some t ∈ [0, 1]\D, which correspond to points
at which strict complementarity is lost, i.e., active set changes for the complementarity
variables. We split the proof into two cases as depending on the form of the bifurcation
occurring at these exceptional points.

Proof First consider x∗(0) as given by the conditions of the Theorem, i.e., satisfying
S-stationarity for (PMPCC(t)) at t = 0. From Theorem 3.1 we can conclude that
x∗(0) is a solution to (Pρ(t)) at t = 0 for all ρ ≥ ρ̂0 for some ρ̂0. Furthermore, the
LICQ and, by the second assumption in the Theorem, the SSOSC hold at x∗(0) as a

3 Note that we could implement a version for which MPCC-MFCQ, rather than the MPCC-LICQ, is
sufficient for convergence and tracking, as given in Kungurtsev and Jäschke (2017), however, for ease of
presentation we use the variant requiring unique multipliers.
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solution to (Pρ(0)). We can extend this to say that these conditions hold for all x∗(t)
as solutions to (Pρ(t)), due to the stability of the LICQ and SSOSC (Kojima 1980,
Corollary 5.6) and the assumption of x∗(t) being an isolated solution path. The final
statement of Theorem 3.1, that there is a neighborhood B(t) of x∗(t) such that every
stationary point of (Pρ(t)) in B(t) is an S-stationary point for (PMPCC(t)), implies
there is a one-to-one correspondence between x∗(t) as a solution to (Pρ(t)) and for
the MPCC in a region around x∗(t) for all t ∈ D.

Now we show that for all t ∈ D, the right-hand side of (12) is uniformly bounded
by some ρ̂ for all primal-dual complementarity solutions x∗(t), σ ∗(t), i.e., that the
required ρ to satisfy the correspondence between solutions to (PMPCC(t)) and (Pρ(t))
has a uniform lower bound. Now for t /∈ {tak } the solution x∗(t) is also a solution to
the tightened NLP, and since the LICQ and SSOSC hold, its primal-dual solution set
is Lipschitz stable (Bonnans and Shapiro 2013, Theorem 4.51).

Together with no components of x∗(t) changing from positive to zero (inactive to
active) or vice versa for such t , we obtain for any small δ > 0, the uniformboundedness
of the quantity in (12) for solutions associated with t ∈ (tak−1 + δ, tak − δ). Thus we
must only consider the change in ρ̄1 in (12) across and close to active set changes tak .
Without loss of generality, consider that there is only one complementarity constraint,
i.e., nc = 1. Now, given a tc ∈ {tak }, again without loss of generality, we can consider
two exhaustive cases.

Case 1: For t with tc − δ < t < tc, the index i ∈ Nc, and, without loss of generality,
assume i ∈ N−

c , corresponds to an inactive primal solution component (i.e., x∗
i (t) >

0), and for t satisfying tc ≤ t ≤ tc+δ, x∗
i (t) = 0 (is active). In addition, x∗

i+nc
(t) = 0

for all t with tc − δ < t < tc + δ. By complementarity of the solution set and Partial
Strict Complementarity for t ∈ [tc − δ, tc + δ] \ {tc}, we also have σ ∗

i (t) = 0 and
σ ∗
i+nc

(t) > 0 for t with tc − δ < t < tc.
Given the continuity of the primal-dual solution set to the tightened NLP for

t < tc as established in the first part of the proof, it must be that x∗
i (tc) = 0 (by

the case assumption) and σ ∗
i (tc) = 0 (by continuity of the tightened NLP multipli-

ers) for a primal-dual solution to the tightened NLP at tc based around x∗(tc). With
σ ∗
i (t), σ ∗

i+nc
(t) ≥ 0, one can see the one to one correspondence of the dual solution set

to the tightenedNLPand the set ofmultipliers satisfyingS-stationarity for (PMPCC(t))
at tc with x∗(tc). Now, for t ≥ tc, {i, i + nc} ⊆ A0

1(x
∗(t), t) ∪ A0

2(x
∗(t), t) and so

by the definition of ρ̄ in (12), indices i and i + nc are not included in the set under
consideration, and ρ̄ is simply 1 for tc ≤ t ≤ tc + δ.

Thus, for tc − δ < t < tc + δ, we need only be concerned with t < tc, and since

σ ∗
i (t) = 0 for such t , we are left with showing boundedness of the quantity

σ ∗
i+nc
x∗
i

for

tc − δ < t < tc. Now for t →− tc we have x∗
i (t) → 0 but possibly σ ∗

i+nc
(t) ≥ σ̄

and thus the expression
σ ∗
i+nc
x∗
i

is now unbounded. However, notice that in this scenario,

given that x∗(t) with σ ∗(t) as multipliers for the conditions x j ≥ 0, j ∈ Nc, is a
primal-dual solution to the tightened NLP, we notice that for (Pρ(t)) for any ρ ≥ 0,
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∇xi f p(x
∗(t), t; ρ) = ∇xi f (x

∗(t)) + ρx∗
i+nc

(t) = ∇xi f (x
∗(t)) = σ ∗

i (t) = 0
∇xi+nc

f p(x∗(t), t; ρ) = ∇xi+nc
f (x∗(t)) + ρx∗

i (t) = σ ∗
i+nc

+ ρx∗
i (t)

where the final equalities come from weak stationarity, assuming without loss of
generality that there are no general inequality and equality constraints, or that the
sum of their multiplier weighted gradients is equal to zero. From this, it can be seen
that the necessary optimality conditions of the penalty problem hold for x∗(t) with
σ

ρ
i (t) = σ ∗

i (t) = 0 and σ
ρ
i+nc

(t) = σ ∗
i+nc

(t) + ρx∗
i (t) for all ρ ≥ 0. We have already

established the local uniqueness of the solutions to (Pρ(t)), thus, this primal-dual pair
is the only solution and must be the one the algorithm tracks.

Case 2: it holds that x∗
i (t) > 0 and x∗

i+nc
(t) = 0 for t < tc, and x∗

i (t) = 0 and
x∗
i+nc

(t) > 0 for t > tc. Note that amultiplier tuple satisfying S-stationaritywith x∗(t)
must satisfy σ ∗

i (t) = 0 for t ≤ tc and σ ∗
i+nc

(t) = 0 for t ≥ tc. Thus Partial Strict
Complementarity does not hold at tc. Otherwise, for consistency with the assumption
on D it must hold that σ ∗

i (t) > 0 for t > tc and σ ∗
i+nc

(t) > 0 for t < tc. By
the Theorem assumptions, the Algorithm never attempts to solve the pathfollowing
problem for tk = tc. At t = tc the situation is now defined exactly as in (Bouza et al.
2008, Proposition 4.4). In particular, for the two tightened NLPs, with xi = 0 fixed
for t > tc and xi+nc = 0 fixed for t < tc, x∗(t) is optimal with the associated σ ∗(t)
as optimal multipliers for the complementarity constraints now as variable bound
inequality constraints. As according to Bouza et al. (2008, Proposition 4.4) there is
one homotopy path of solutions that is feasible and it is characterized by,

lim
α→0+

x∗
i (tc+α)−x∗

i (tc)
α

= 0, lim
α→0−

x∗
i (tc+α)−x∗

i (tc)
α

�= 0,

lim
α→0+

x∗
i+nc

(tc+α)−x∗
i+nc

(tc)
α

�= 0, lim
α→0−

x∗
i+nc

(tc+α)−x∗
i+nc

(tc)
α

= 0

lim
α→0+

σ ∗
i (tc+α)−σ ∗

i (tc)
α

�= 0, lim
α→0−

σ ∗
i (tc+α)−σ ∗

i (tc)
α

= 0,

lim
α→0+

σ ∗
i+nc

(tc+α)−σ ∗
i+nc

(tc)
α

= 0, lim
α→0−

σ ∗
i+nc

(tc+α)−σ ∗
i+nc

(tc)
α

�= 0

which imply the uniform boundedness of the quantity defined by (12) as t → tc.
Now we can bring x0 as close as necessary to x∗(0) such that the conditions

of Kungurtsev and Diehl (2014, Theorem 4.2) are satisfied as applied to (Pρ(t)).4

Thus the predictor-corrector QP (15) associated with the appropriate active and
strongly active set estimates, is able to successfully trace a primal-dual solution with
‖xk − x∗(tk)‖ ≤ ε.

For illustration of the main ideas in the proof, we point to Fig. 1.
We now discuss the assumptions in the previous Theorem. The first is standard and

natural. The second indicates the gap between the second order necessary and sufficient
conditions can only be assumed away, and cannot be guaranteed by any preceding
assumptions. The third assumption simply indicates that there are a finite number of

4 Alternatively, as these conditions imply strong regularity for the KKT system defined as a variational
inequality, one can use results from Dontchev et al. (2013) to prove the statement as well.
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Fig. 1 Illustration of the cases described in Theorem 1. The figures on top are potential primal-dual solution
paths, as the parameter t changes, the solution undergoes an active set change at tc . This is reflected in
the blue lines showing the value of the primal solution of a complementarity pair. The green lines show
two possible scenarios of the change in the dual solutions, for Case 1, on the left, and Case 2, on the right,
respectively. The figures at the bottom represent the value of thereshold ρ required in the main result, as
the parameter t changes. Note that in the first case, this value approaches infinity asymptotically as t → tc ,
but the structure of the problem remains such that a smaller penalty parameter is adequate

active set changes along the solution path, which is expected to hold except for cases
of increasingly oscillatory behavior (e.g., with a function of the form sin(1/x)).

It could be of concern that the assumption in the Theorem that tk ∈ D for all k is
a posteriori, i.e., depending on the outcome of the Algorithm rather than an a priori
condition on the problem itself. However, note that since [0, 1] \ D is finite, also by
assumption, and yet tk ∈ R, then this should reasonably be satisfied, and otherwise
can be assured with probability one by adding a tiny perturbation to tk .

3.2 Active set indexmethod

The next pathfollowing algorithm is intended to trace B-stationary points, which as
indicated describe the tightest computable notion of necessary first order optimality.
Their importance and the combinatorial approach of the active set algorithm described
here is inspired by the “SLPEC-EQP" algorithm presented in Leyffer and Munson
(2007) and more recently (Kirches et al. 2022) [see also Lenders (2018, Chapter 7)].

In this line of work, it was observed that M, C and W-stationary points could have
linearly feasible descent directions, and B-stationarity is the precise stationarity con-
cept associated with the lack of such descent directions. S-stationarity is the strongest
notion of stationarity, but an algorithm with guarantees in finding only S-stationarity
could neglect finding points that are B- but not S-stationary.
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Consider the LPCC,

mind∈Rn+2nc ∇x f (x, t)T d,

s.t. g(x, t) + ∇x g(x, t)d ≥ 0,
h(x, t) + ∇xh(x, t)d = 0,
0 ≤ xi + di ⊥ xi+nc + di+nc ≥ 0, i ∈ N−

c ,

‖d‖∞ ≤ β,

(16)

where β > 0 is a trust-region parameter. It is clear from considering the LPCC
associated with the definition of B-stationarity (6) that d = 0 being the solution
to (16) corresponds to B-stationarity. The algorithms in Leyffer and Munson (2007)
and Kirches et al. (2022) solve this LPCC, using the solution to estimate the active
set and subsequently perform acceleration steps on the active set. The authors prove
the global convergence of this procedure to a B-stationary point. Recall that d = 0
solving the LPCC ((6) and (16)) at some (x∗, t) implies that every index I NLP for
I ∈ J (x∗, t) is optimal.We focus on estimating the setJ (x∗, t), noting that the double
active set indicates possible branching in the directional derivative of the solution.

Thus, given t and an initial point x that we expect to be close to a solution for
problem (PMPCC(t)) at t , we first seek to estimate the active set of complementarity
variables at the optimal point closest to x . Denoting B(t) as the set of B-stationary
points for (PMPCC(t)) at t , we write this as,

A0(x, t) := {i ∈ Nc : x∗
i = 0 for x∗ ∈ argminy∈B(t)‖y − x‖}

Next we must identify the set of index I NLPs which requires a reliable active set
identification procedure for MPCCs. However, there is no certifiably accurate method
to do this and we make the following assumption.

Assumption 1 We have a reliable means of estimating A0(x, t) from x , if x is suffi-
ciently close to x∗(t), a B-stationary point of (PMPCC(t)).

Heuristically, we consider i as active, and thus a potential member of the index I
NLP when xi ≤ ε0 for some (problem-tuned) tolerance ε0. Practically, we form the
set of branches based on the estimate of the corresponding doubly-active set, i.e.,
{i : xi ≤ ε0, xi+nc ≤ ε0}.

We then use this to form an estimate of the set J (x∗, t) and perform parametric
pathfollowing on every NLP. Denote this estimate to be C0(x, t), i.e.,

C0(x, t) := {I ⊆ A0(x, t)|∀i ∈ N−
c : |I ∩ {i, i + nc}| = 1}. (17)
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3.2.1 Description of the algorithm

We present the Active SetMPCC pathfollowing algorithm as Algorithm 2. First, given
an approximate B-stationary solution x to the MPCC at t = 0, we estimate and prune
the set of index I NLPs. For each I ∈ C0(x, 0) defined in (17), we form the NLP
and solve it using an appropriate solver for standalone NLPs in order to obtain the
multiplier estimates for the initial (PMPCC(t)) at t = 0. If no appropriate dual variable
approximate solutions (i.e., with the right signs) exist, then this I is not in C0(x, t)
and we discard it. Otherwise, for every I in C0(x, t), the corresponding predictor-
corrector QP is then used to obtain the next solution. The QP we solve is the following
(assuming, again, affine as welldependence of g(x, ·) and ∇x f (x, ·) with respect to
the parameter t).

min�x ∇x f (x, t)T�x + 1
2�xT H(x, λ, μ, t)�x

s.t. h(x, t) + ∇t h(x, t)�t + ∇x h(x, t)�x = 0,
gi (x, t) + ∇t gi (x, t)T�t + ∇x gi (x, t)T�x = 0, for i ∈ Ī+(x, λ, μ, t),
gi (x, t) + ∇t gi (x, t)T�t + ∇x gi (x, t)T�x ≥ 0, for i ∈ Ī0(x, λ, μ, t),
xi = 0, i ∈ A0(I ),
xi ≥ 0, i ∈ Nc \ A0(I )

(18)

whereA0(I ) is the active set designated by index I . We solve the QP for every feasible
I to obtain a set of solutions {�xI }.

We then check, after the step, if the solution still satisfies the full set of complemen-
tarity constraints. Then, for each I , we recalculate C0(x + �xI , t + �t) if necessary
and investigate if the new primal solution estimate remains stationary for every sin-
gle index I NLP in C0(x + �xI , t + �t) by obtaining the appropriate dual solution
minimizing the stationarity norm,

min
σI+≥0,λ≥0

‖∇x f (x + �xI , t + �t) − ∇x g(x + �xI , t + �t)T λ

−∇xh(x + �xI , t + �t)Tμ − σ‖2 (19)

where I+ ⊆ Nc is a set such that i ∈ I+ implies xi = 0. In particular, if the objective
value of (19) is less than ε0 then we consider it approximately stationary in our
Algorithm.

If the point x + �xI is not feasible, or not approximately optimal for every
I ∈ C0(x + �x, t + �t), then we cut this branch and proceed to starting the next
branch, i.e., move on to the next I . Finally, if it tracks the solution until the final
iterate at t = 1, for the sake of completeness we pathfollow the other branches as
well.

123



2814 V. Kungurtsev, J. Jäschke

Algorithm 2 Active Set Pathfollowing Method for MPCC
Input: t = 0, x sufficiently close to x∗, a B-stationary point for (PMPCC(t)) at t = 0. Choose initial
�t > 0 and adjustment factor α > 1.
1: Compute C0(x, 0).
2: while t < 1 do
3: for Each I ∈ C0(x, t) do
4: For the index I NLP, compute an estimate for the multipliers (λ, μ, σ ) using (19).
5: Compute active set estimates Ī(x, λ, μ, σ, t), Ī+(x, λ, μ, σ, t) by (11).
6: Solve (18) to obtain a predictor-corrector step �xI .
7: If min

i∈N+
c

{
min{[x + �xI ]i , [x + �xI ]i+nc }

}
> ε0, set �xI = 0.

8: for All I ′ ∈ C0(x, t), I ′ �= I do
9: if the objective value of (19) with I+ set to I ′ is greater than ε0 then
10: Set �xI = 0.
11: end if
12: end for
13: end for
14: If there exists a �xI �= 0 for some I , set x = x + �xI and set �t = α�t , t = t + �t .
15: If there is more than one such �xI , in parallel branch the algorithm from each new primal solution

estimate.
16: If for all I , �xI = 0, set �t = �t/α.
17: Re-estimate the double complementary active set C0(x + �xI , t + �t) by (17).
18: end while

3.2.2 Theoretical guarantees

Given that the algorithm consists of pathfollowing the set of index I NLPs, the con-
vergence properties can be inferred from the corresponding results for standard NLP
pathfollowing using the predictor-corrector QP as presented in Kungurtsev and Diehl
(2014).

Theorem 3.3 Assume there exists a set {x∗
k }k=1,...,K of functions x∗

k (t) : [tak , tbk ] →
R
n+2nc , k = 1, . . . , K such that xk(t) is B-stationary for t ∈ [tak , tbk ] for all k ∈

{1, . . . , K } and ∪k[tak , tbk ] = [0, 1]. Assume that for every k1 ∈ {1, . . . , K } there
exists some k2 ∈ {1, . . . , K } such that for some tk1k2 ∈ [0, 1] it holds that x∗

k1
(tk1k2) =

x∗
k2

(tk1k2). Assume this set is maximal, i.e., there is no K̂ > K that strictly includes
{x∗

k }k=1,...,K such that these conditions are satisfied. Given an initial point x1(0)

sufficiently close to x∗
k̂
(0) for some k̂, and desired threshold D, Algorithm 2 will

generate a set of iterates {xl(t j )}l=1,...,K̄ , j=1,...,Jl with K̄ ≤ K such that ‖xl(t j ) −
x∗
k (t j )‖ ≤ D for some k ∈ {1, . . . , K } for all l ∈ {1, . . . , K̄ } and j ∈ {1, . . . , Jl} and
t j ∈ [tak , tbk ] for this k and max

j
{t j } = 1.

Proof Under Assumption 1, since B-stationarity is equivalent to a set of NLPs satisfy-
ing the first order necessary optimality conditions, x1(0) is an approximate stationary
point to each Index I NLP found in C0(x, 0). If there exists a branch x∗

k̂
(t0 + �t)

for any �t > 0, then by Kungurtsev and Diehl (2014, Theorem 4.2) the active set
estimation and predictor-corrector QP will trace it to desired accuracy. By the fact that
the distance to the solution of any NLP is O(·) of the value of the optimality residual
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η(·) (see, e.g. Hager and Gowda 1999), a true B-stationary point will satisfy a low
objective value of (19) for every index I NLP.

If during the pathfollowing another constraint becomes doubly-active at t̄ , it is
added to C0(x(t̄), t̄), and subsequently traced from t̄ on. ��

4 Examples

In this section we present the results of Algorithms 1 and 2 on a set of toy problems
and a phase transition engineering case study. We performed the experiments using
MATLAB 2018a. The initial point was obtained usingfminconwith the SQP option,
constraint tolerance1e-7 and step tolerance1e-12 for the penalty algorithm, and the
multistart based global optimization toolbox for the active set algorithm.
Quadprogwith the default settingswas used to solve the subproblems.A constraint is
considered active if it is so approximately under a tolerance of 1e-5.�t is initialized
to 0.1 and is increased or decreased by a factor of α = 1.5 upon a successful or
unsuccessful pathfollowing step.

4.1 Example 1

Consider the problem,

minx∈R2 (x1 − t)2 + (x2 + t)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

For t < 0, (0,−t) is a local minimizer and the origin is W-stationary. For t = 0, the
origin is a strongly stationary local minimizer. For t > 0, (t, 0) is a local minimizer
and the origin is W-stationary.

Penalty Method
The penalty method is able to successfully trace the solution (0,−t) for t ∈ [−1, 0]
through (t, 0) for t ∈ [0, 1].

The primal solutions as well as the complementarity multiplier estimates given
by (13) are shown in Fig. 2.

Active Set Method
The active set method is able to successfully trace the solution (0,−t) for t ∈ [−1, 0]
through (t, 0) for t ∈ [0, 1]. It recognizes the double-active set at t = 0 and discards
the branch of the Index I NLP associated with the path of solutions for t ∈ [−1, 0],
switching to the other branch thereafter.

4.2 Example 2

This problem is inspired by Leyffer and Munson (2007).

minx∈R2 (x1 − t)2 + x32 + x22
s.t. 0 ≤ x1 ⊥ x2 ≥ 0.
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Fig. 2 Illustration of the traced solutions to Example 1 found using the penalty algorithm. The circles are
the points visited by the method. As expected, since the solutions are all S-stationary, the complementarity
multipliers are zero when the corresponding variable is inactive and become positive as they become active,
and vice versa.
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Fig. 3 Illustration of the penalty algorithm solutions for Example 2

For t < 0, the origin is the local minimizer and only stationary point. For t > 0, the
point (t, 0) is a local minimizer and the origin is M-stationary.

Penalty Method
In this case, the penalty method always traces the origin for t ∈ [−1, 0], and the local
minimizer (t, 0) for t ∈ [0, 1]. Thus it does not appear to follow the M-stationary
point. The set of points traced along the homotopy is shown in Fig. 3.

Active Set Method
The active set method traces two solutions along the bi-active set for t ∈ [−1, 0].
Subsequently, the solution branch for which x1 = 0 stops pathfollowing at t = 0 and
the one with x2 = 0 pathfollows successfully along (t, 0) for t ∈ [0, 1]. The solutions
are shown in Fig. 4.

4.3 Example 3

This problem arises from Scheel and Scholtes (2000). Consider,

minx∈R2 (x1 − t)2 + (x2 − t)2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.
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Fig. 4 Illustration of the active set algorithm solutions for Example 2

t=-1

t=1

x∗(t), −1 ≤ t ≤ 0

x∗(t), t = 1

f(x, t)

f(x, t)

Fig. 5 Illustration of Example 3. The level sets of the objective function at t = −1 and t = 1 are drawn as
circles. As t traces from −1 to 1, the level sets move continuously from the bottom left to the top right. The
local minimizers are marked as red dots. Up until t = 0, i.e., for t ∈ [−1, 0], the unique local minimizer is
the origin. For t ∈ (0, 1] there are two local minimizers, (t, 0) and (0, t). In addition, there is a C-stationary
point at the origin, for which clearly both axes are a descent direction, indicating the weakness of this
stationarity condition

For t ≤ 0, the origin is the unique minimizer, and is S-stationary. For t > 0, the
origin is C-stationary, and (t, 0) and (0, t) are both local minimizers. For any t , the

Lagrangian Hessian is ∇2
xxL =

(
2 0
0 2

)
, as this matrix is positive definite, it is also

positive definite on any cone of directions. We illustrate the problem in Fig. 5.
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Fig. 6 Illustration of the active set algorithm solutions for Example 3

Penalty Method

Note that for t = 0, the Lagrangian Hessian for (Pρ(t)) is ∇2
xxLp =

(
2 ρ

ρ 2

)
. At the

origin, every multiplier is null, i.e., σ ∗
1,2 = z∗1,2 − ρx∗ = 0, thus for (Pρ(t)) at t = 0,

no constraint is strongly active and both variables are weakly active at the origin, i.e.,
x∗
1 = x∗

2 = z∗1 = z∗2 = 0. Thus, although ∇2
xxLp is positive definite along the cone of

feasible directions, which are
(
1 0

)T and
(
0 1

)T , for proper pathfollowing of (Pρ(t))
using (15), the strong SOSC conditions must hold for (Pρ(t)) at x∗, and ∇2

xxLp

must be positive definite on the subspace orthogonal to the null-space of the strongly
active constraint gradients, which is trivially R

2, and thus includes
(
1 −1

)T . Thus,
predictably the penalty algorithm is not able to pathfollow past t = 0, in particular, as
the reduced Hessian in the constraint gradient null-space of the pathfollowing QP (9)
is indefinite, the corresponding QP is nonconvex. Thus, theoretical guarantees on
NLP pathfollowing do not apply to the corresponding predictor-corrector QP for this
problem.

The optimality conditions for the QP (9) based from the origin are,

−2t + 2�x1 + ρ�x2 = 0,

−2t + 2�x2 + ρ�x1 = 0,

�x1 ≥ 0, �x2 ≥ 0.

From these equations, it must hold that�x1 = �x2 > 0. Note that this is not a feasible
direction for the original problem, and thus the QP for the pathfollowing of (Pρ(t))
for any ρ > 0 does not correspond to pathfollowing for the original MPCC.

The penalty method is able to trace the origin solution for t < 0, and for t > 0 it
appears to pick either local minimizer with equal probability, while never converging
to the C-stationary point, and finds it impossible to pathfollow too close to t = 0.

Active Set Method The active set method, started at t = −1, recognizes the presence
of the doubly-active set and proceeds with two separate solution paths, one with fixed
x1 = 0 and the other with fixed x2 = 0. The algorithm is able to follow the origin for
t ∈ [−1, 0] and each path follows the separate local minimizers ((t, 0) and (0, t) for
t ∈ [0, 1]). The two branches of solutions are shown in Fig. 6.
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4.4 Example 4

This problem is original to this paper. It illustrates how the penalty method can fail to
find local minimizers that are B-stationary but not S-stationary, whereas the active set
method can do so. Note that this problem fails the MPCC-LICQ condition.

minx∈R2 (x1 − 1)2 + (x2 + t)2

s.t. x2 − x1 ≥ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

For all t ∈ [0, 1] the origin is the unique local minimizer. The stationarity conditions
for the problem are,

σ1 − λ = −2,
σ2 + λ = 2t,
λ ≥ 0.

Thus x∗ = (0, 0) with both (λ∗, σ ∗
1 , σ ∗

2 ) = (2, 0, 2t − 2) and (λ∗, σ ∗
1 , σ ∗

2 ) =
(2t, 2t − 2, 0) is M-stationary, and furthermore for the index {1} NLP, the second
set of multipliers is optimal as well as (0,−2, 2t), and for the index {2} NLP the first
set is optimal, and thus the origin is also B-stationary for all t ∈ [0, 1].
Penalty Method
The standalone penalty method is unable to find a satisfactory initial point. Initializing
from one of the stationary points does not result in any successful pathfollowing step.

Active Set Method
The active set method is able to trace both index I NLPs for this set of problems,
tracing the origin for t = [0, 1] along the multipliers (0,−2, 2t) for the index {2}
NLP and (2, 0, 2t − 2) for the index {1} NLP. The primal and dual solutions traced
are shown in Fig. 7.

4.5 Example 5

This problem arises in the MacMPEC collection of MPCC problems (Leyffer 2000).

minx∈R3 x1 + x2 − (1 − t)x3
s.t. 4x1 − x3 ≥ 0,

4x2 − x3 ≥ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

The point x∗ = (0, 0, 0) is a B-stationary global minimizer for t ∈ [0, 3
4 ] and an

S-stationary global minimizer for t ∈ [ 1
2 , 1

]
. The problem does not satisfy MPCC-

LICQ, and two options of multipliers are λ∗ = (0, 1 − t) with σ ∗ = (1,−3 + 4t) as
well as λ∗ = (1 − t, 0) and σ ∗ = (−3 + 4t, 1), indicating that x∗ is optimal for both
the index {1} and index {2} NLP, but is otherwise only W-stationary. There are other
multipliers that are M-stationary, however, that are not found by either solver.
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Fig. 7 Illustration of the active set algorithm solutions for Example 5

Penalty Method
The penalty method is unable to find a satisfactory initial point, i.e., a solution at
t = 0. Initializing from one of the stationary points does not result in any successful
pathfollowing step, with the error that every predictor-corrector QP problem is non-
convex (note that the problem itself is linear, but the penalty method adds a bilinear
term to the objective). For t ∈ [ 34 , 1] the algorithm is able to pathfollow the solution
x∗ = (0, 0, 0).

Active Set Method
The active set method pathfollows along the origin, doing so twice, once for each
index in the double active set, for t ∈ [0, 1].

4.6 Example 6

We now consider a nonlinear example, to demonstrate the properties of the pathfol-
lowing algorithms on a nonlinear problem.

minx∈R2 e−x1+x2

s.t. (x1 − 2)2 + (x2 + 1)2 ≥ 6 + 2t,
x1 ≤ 1,

0 ≤ x1 ⊥ x2 ≥ 0.

The constraints and solutions are shown in Fig. 8a. The point must lie outside of the
circle and to the left of x1 ≤ 1, and the objective function seeks to increase x1 and
decrease x2. As t changes from −1 to 1, the circle expands, modifying the feasible
region to exclude any part of the x1-axis. The solution is always S-stationary. We plot
the result of the penalty algorithm applied to this problem in Fig. 8b and the active set
based procedure performs similarly.
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t = −1 t = 1

(a) The Constraint and Optimal Solution for
Example 6

(b) Solution generated by the Penalty Path-
following Algorithm for Example 6

Fig. 8 Nonlinear Example

4.7 Flash calculation example

This section describes a classic chemical engineering problem appearing in, e.g.,
Skogestad (2008, Chapter 7). It models vapor/liquid equilibrium, wherein the Gibbs
energy is minimized at some given temperature and pressure. In this case we consider
pressure to be fixed and vary the temperature. Pathfollowing for a similar PMPCCwas
considered in Nakama et al. (2022), using a different approach that does not attempt
to trace each branch.

During the operation of chemical processes, sometimes the thermodynamic phase
in a system is not known a-priori. It may be liquid, gas, or a mixture of both, and each
of these three cases must be described by a different set of equations. For example in
natural gas liquification plants, some sections of the heat exchangers may be filledwith
liquid, which evaporates as the operating conditions change. A priori, it is not known
what conditions will be present, and when optimizing the operation one can model the
system using complementarity constraints. A large scale optimization model of a full
process is out of the scope of this article, but we present a case as a proof of concept
that the algorithms from this paper can be applied successfully to such a system.

We consider an exogenous feed stream F that is separated into vapor V and liquid L
product, of three different compounds {yi } and {xi }, respectively. The relative split of
F to V and L as well as the quantity of each of the three compounds in each phase are
considered variables we must solve for. They must satisfy

∑
i xi = 1 and

∑
i yi = 1,

and xi L + yi V = zi F for the total given quantities {zi }. Using Raoult’s law, we have
that,

yi/xi = Ki = psati (T )/p

where psati is a nonlinear function of temperature,

psati = 10
Ai− Bi

T+Ci .

where Ai , Bi and Ci are physical constants.
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The fraction a ∈ [0, 1] = V /F of gas is determined by theRachford-Rice equation,
however, with a caveat. Specifically, attempt to solve the following equation for at :

∑

i

zi (Ki − 1)

1 + at (Ki − 1)
= 0.

Now, the bubble point temperature is Tb = 382.64 and the dew point Td = 393.30,
and thus for T < Tb, the solution for at will be negative, but clearly the ratio a cannot
be negative, instead it implies that every substance must be a liquid, i.e., a = 0 and
similarly for T > Tb, the solution for at will be greater than one, but clearly every
substance must be gas, i.e., a = 1.

Thus, we need to, after solving the Rachford-Rice equation for at , obtain the value
of a by max(0,min(1, at )), a nonsmooth operation problematic for gradient-based
optimization solvers. To avoid this, the true ratio of gas a will be determined by the
complementarity system,

a − sv + sl − at = 0,
0 ≤ sl ⊥ L ≥ 0,
0 ≤ sv ⊥ V ≥ 0,
0 ≤ a ≤ 1,

where we introduce slack variables sl and sv complementary with L and V (i.e., sl is
zero if L is positive, and L is zero if sl is positive) to compute a from at by solving
the first equation.

The resulting problem is a nonlinear complementarity system involving the 13
variables V , L , {xi }i=1,2,3, {yi }i=1,2,3, a, at , T , sv and sl . In addition, the nonlin-
ear equations relating temperature to the component distributions are ill-conditioned.
Thus, to define the MPCC, we,

• lift Raoult’s law and the Rachford-Rice equation, making Ki , 1
(Ki−1) (which we

write as ki ), log psati variables, alongside V , L , xi , yi , a, at , T , sv and sl for a total
of n = 22.

• Weconsider T as both a parameter and a variable, by defining an additional equality
constraint T = Ttarget, and we trace the solution for Ttarget = 380 to 400.

• If we were to add the constraint defining the proportial of gas as a = V
F , then all

of these equations define a nonlinear complementarity problem (NCP). However,
when taking into account active constraints at the solutions of the NCP, the entire
system does not satisfy MPCC-LICQ, thus we do not make the vapor fraction
a = V /F a hard constraint, but define our objective to be,

f (a, V ) = 1

2
(aF − V )2

and thus define an MPCC .
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Table 1 Constants used in the flash calculation

A1 A2 A3 B1 B2 B3

3.97786 4.00139 3.93002 1064.840 1170.875 1182.774

C1 C2 C3 z1 z2 z3

−41.136 −48.833 −52.532 0.5 0.3 0.2

In summary, the MPCC we solve is defined as follows,

min
V ,L,{xi },{yi },a,at ,T ,sv,sl

1
2 (aF − V )2

s.t. ki = 1
(Ki−1) , i = 1, 2, 3

qi = log psati , i = 1, 2, 3
qi = log(10)(Ai − Bi

T+Ci
), i = 1, 2, 3

Ki = psati /p, i = 1, 2, 3∑
i

zi
ki+at

= 0,
a − sv + sl − at = 0,
0 ≤ sl ⊥ L ≥ 0,
0 ≤ sv ⊥ V ≥ 0,
0 ≤ a ≤ 1.

(20)

The constants we use in the experiments are given in Table 1.

4.7.1 Penalty method

The penalty method accurately tracks the solution, achieving the liquid–gas balance
as expected.

Every solution is a S-stationary point, and the objective function is strictly convex,
which means that for any point satisfying the first order necessary conditions for
optimality, the second order sufficient conditions also hold. Thus all the necessary
conditions for the convergence of the penalty method for solving the MPCC and
tracing a parametric curve are satisfied.

The solutions for all of the variables are given in Fig. 9. As expected, the variables
X and sx , as well as Y and sy are complementary, with the slacks being positive
when their corresponding complementary variables are zero, and zero when they are
inactive. The proportion of gas a corresponds to V . The variables ki (representing

1
(Ki−1) ) appear to vary the most nonlinearly, resembling an exponential function with
respect to the parameter, which is equivalent to the temperature.

Note that the required step-size for pathfollowing is generally fairly small, and gets
smaller during active set changes.
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Fig. 9 Primal solutions for the Liquid-Phase flow problem

4.7.2 Active set method

The active set method also traces the set of solutions. At each active set change,
a double-active set was recognized. The previous branch was eventually cut, and
the other branch initiated. Although the method converged for this problem, it took
considerable tuning with regards to tolerances for the double-active constraints, on
the one hand, and the required tolerance for checking the other index I NLPs, while
tracing a branch, on the other. In particular, numerically, a double-active constraint
will stay active for a few homotopy steps before being seen as no longer bi-active, and
meanwhile the steps must still be accepted as valid for all index I NLPs.

4.8 Discussion

The two phase flow example illustrates the general efficacy of the two Algorithms
on a real problem. The simpler problems indicate some subtle distinctions of the two
methods. In particular, the penalty method is easier to tune and implement, traces
S-stationary but not B-stationary points, and also can trace C-stationary points, which
may not be desired by the user. By contrast, the active set method is able to trace
B-stationary points and does not trace spurious stationary points. However, since it
must trace every combination of selections of doubly-active constraints, it is generally
slower and more difficult to tune for problems with many complementarity constraints
and suspected bi-activity.

5 Conclusion

In this paper we studied the parametric mathematical program with complementarity
constraints, presenting the first investigation of algorithmically pathfollowing these
programs. We formulated two algorithms, one based on the penalty method for stan-
dalone MPCCs, and one based on following the possible branches of NLPs suggested

123



Pathfollowing for parametric mathematical programs with… 2825

by double-active constraints and the B-stationarity condition. We studied their per-
formance on a set of examples constructed to distinguish the types of parametric
properties there could be, illustrating the performance on this set of problems, as well
as a “real-world” problem associated with chemical process engineering.

Pathfollowing parametric optimization problems can be important in a number of
applications, including nonlinear model predictive control, as well as assessing the
practical sensitivity of a solution with respect to a parameter in industrial design. We
intend that this work presents a solid first step in the development of literature and
algorithms for the pathfollowing of parametric MPCCs. In general, the tradeoffs asso-
ciated with seeking tighter versus looser notions of stationarity inherent to standalone
methods for solving MPCCs carries over to pathfollowing parametric ones, and we
expect this to enrich further understanding of MPCCs in general and algorithms for
pathfollowing parametric MPCCs in particular.
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