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Abstract
Metaheuristic optimization algorithms (MOAs) are computational randomized search
processes which draw inspiration from physical and biological phenomena, with
an application spectrum that extends to numerous fields, ranging from engineering
design to economics. MOAs were originally developed for solving unconstrained NP-
complete problems, and hence their application to constrained optimization problems
(COPs) requires the implementation of specialized techniques that facilitate the treat-
ment of performance and bound constraints. While considerable research efforts have
been oriented towards the development and subsequent enhancement of novel con-
straint handling techniques (CHTs) for MOAs, a systematic review of such techniques
has not been conducted hitherto. This work presents a state-of-the-art review on CHTs
used withMOAs and proposes eight novel variants based on the feasibility rules and ε-
constrained techniques. The distinctive feature of the new variants is that they consider
the level and number of constraint violations, besides the objective function value, for
selection of individuals within a population. The novel variant performance is evalu-
ated and compared with that of four well-known CHTs from the literature using the
metaheuristic pity beetle algorithm, based upon 20 single-objective benchmark COPs.
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The computational results highlight the accuracy, effectiveness, and versatility of the
novel variants, as well as their performance superiority in comparison with existing
techniques, stemming from their distinctive formulation. The complete code can be
downloaded from GitHub (https://github.com/nikoslagaros/MOAs-and-CHTs).

Keywords Constrained handling techniques · Metaheuristic algorithms ·
Engineering problems · Optimization computing platform

Abbreviations

COP Constraint optimization problem
NLP Non-linear programming
CHT Constraint handling technique
EA Evolutionary algorithm
DE Differential evolution
ORPD Optimal reactive power dispatch
SA-DECV Surrogate-assisted differential evolution with combined variants
DCOPs Dynamic constrained optimization problems
PBA Pity beetle algorithm
OCP Optimization computing platform
HP-OCP High-performance optimization computing platform
APM Adaptive penalty method
ADP Automatic dynamic penalization
DSBO Dynamic surrogate-based optimization
EI Expected improvement
CHIP Constraint handling with individual penalty
OPF Optimal power flow
SR Stochastic ranking
NPGA Niched-pareto genetic algorithm
CVI Constraint violation with interval arithmetic
BSA Backtracking search algorithm
FOA Fruit fly optimization algorithm
SAR Search and Rescue optimization algorithm
WDOCHM-PSO PSO-based algorithm combined with dynamic objective constraint

handling method
DFIG Doubly fed induction generator
SCE Shuffled complex evolution
CCE Competitive complex evolution
EP Evolutionary programming
FS Feasible solutions
SPSA Simultaneous perturbation stochastic approximation
CMA-ES Covariance matrix adaptation evolution strategy
MOA Metaheuristic optimization algorithm
RST Random sampling technique
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1 Introduction

Mostmodern optimization problems are pronouncedly nonlinear and contain variables
subject to several function and bound constraints. Such problems are called constrained
optimization problems (COPs) or nonlinear programming (NLP) problems and their
formulation can be described in the following general form, according to Deb (2000):

Minimize f (x),

Subject :
g j (x) ≤ 0, j = 1, 2, . . . , J ,

hk(x) = 0, k = 1, 2, . . . , K ,

xli ≤ xi ≤ xui , i = 1, 2, . . . , n, (1)

where f (x) is the objective function of the vector variable x , g j (x) are inequality and
hk(x) are equality constraints, both referred to also as performance constraints, and
xli , x

u
i are respectively the lower and upper limit values of component xi in x . Equality

constraints can be converted into inequality constraints as gk(x) = |hk(x)| − e ≤
0, k = 1, 2, ..., K , where e is a small positive quantity (e.g. 1.0E-3), and hence the
two groups of performance constraints in expression (1) can be unified into a single
group g j (x) ≤ 0, j = 1, 2, ...,m, where m = J + K .

Metaheuristic optimization algorithms (MOAs) are computational randomized
search processes which draw inspiration from physical and biological phenomena.
Over the years, the application field ofMOAs has expanded vastly beyond physical and
biological sciences and into different fields, ranging from engineering to economics.
Nonetheless, most MOAs were originally developed for solving unconstrained NP-
complete optimization problems, and hence their application to COPs is rendered a
challenging undertaking due to the posed constraint handling requirement. However,
most of the problems where MOAs are used concern COPs. The effective overcom-
ing of the constraint handling obstacle has progressively evolved into an independent
research field, particularly since a unique constraint handling technique (CHT) which
guarantees search algorithm convergence to the global optimum does not exist. The
focus of research efforts has been shared between development of novel CHTs and per-
formance enhancement of existing CHTs. With focus on MOAs, several authors have
developed, enhanced, and evaluated different CHTs implemented in specific MOAs,
for application to COPs across a broad range of fields.

Coello andMontes (2002) conducted a detailed review and performance evaluation
of the most popular CHTs implemented in evolutionary algorithms (EAs), includ-
ing penalty, separation of constraints and objectives, special operators, hybrid and
repair-algorithms-based CHTs. The authors further evaluated several penalty-based
techniques implemented in a genetic algorithm (GA). A detailed review on several
CHTs integrated into nature-inspired algorithms, e.g. EAs, or based on swarm intelli-
gence, was conducted by Mezura-Montes and Coello (2011), including feasibility
rules, ε-constrained, penalty, stochastic ranking, special operators, multi-objective
concepts and ensemble CHTs. Focusing on the solution of optimal reactive power
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dispatch (ORPD) problems, Mallipeddi et al. (2012) evaluated penalty and adap-
tive penalty, superiority of feasible solutions, ε-constraint method, stochastic ranking,
and ensemble CHTs, implemented in differential evolution (DE) algorithms. With
focus on particle swarm optimization (PSO), the applicability and performance of
penalty-based CHTs, separatists, hybrids of PSO algorithm with other optimization
techniques, as well as other methods not falling under the aforementioned categories
was assessed by Jordehi (2015). Miranda-Varela and Mezura-Montes (2018) evalu-
ated four surrogate-assisted differential evolutionwith combined variants (SA-DECV)
algorithms combined with feasibility rules, ε-constrained method, stochastic ranking,
and diversitymaintenanceCHTs, on the basis of 24well known test functions, and con-
ducted comparisons with other surrogate-assisted algorithms. Ameca-Alducin et al.
(2018) evaluated a DE algorithm combined with penalty function, feasibility rules,
ε-constrained method and stochastic ranking CHTs, based upon benchmark dynamic
COPs. Lin et al. (2019) assessed the performance of four different dynamic multi-
modal population-based optimization algorithms with superiority of feasible solution,
ε-constraint method, penalty function, dynamic penalty function and stochastic selec-
tion and ranking CHTs, in the context of dynamic multimodal COPs. Caraffini et al.
(2019) analyzed the behavior of various popular DE schemes combined with different
CHTs, such as penalty function and correction techniques (saturation, toroidal), with
focus on establishing the mutation and crossover operators that introduce structural
bias in DE algorithms and appropriate combinations of CHTs, DE control parameters
and population size to moderate the bias.

Notwithstanding the substantial research outlined above, a systematic review of
existing CHTs for MOA has not been conducted hitherto. Within this backdrop, this
paper aims to provide a detailed and complete state-of-the-art review of the most
widely employed and efficient existing CHTs for MOAs. Moreover, the paper pro-
poses eight novel variants of the well-known feasibility rules and ε-constrained CHTs
and assesses their performance in comparison with existing CHTs using a swarm
intelligence pity beetle algorithm (PBA) (Kallioras et al. 2018), based upon 14 mathe-
matical and 6 engineering COPs. All computations are performed using theMATLAB
variant of High-Performance Optimization Computing Platform (HP-OCP), the evo-
lution of the original OCP (Lagaros 2014); OCP is founded on an object-oriented
general-purpose code in C#, specifically developed for structural design optimization
in civil engineering applications.

The paper proceeds with providing a comprehensive state-of-the-art review of
almost 60 CHT studies from the literature in Sect. 2. In Sect. 3, an overview of
the penalty methods, feasibility rules, ε-constrained, stochastic ranking, and ensemble
CHTs is provided and eight novel variants of the feasibility rules and ε-constrained
CHTs are introduced. Subsequently, a brief description of HP-OCP and PBA is pro-
vided in Sect. 4. Finally, a comparative performance evaluation of the existing and
novel CHTs presented in Sect. 3 is conducted in Sect. 5, based upon 14 mathemati-
cal and 6 engineering COP numerical examples, followed by concluding remarks in
Sect. 6.
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2 Comprehensive review on constraint handling techniques

This section provides a comprehensive review on the most widely employed and
efficient existing CHTs for MOAs, classified into six categories: (i) penalty-based
CHTs; (ii) CHTs based on separation of objective and constraints; (iii) combination
of CHTs; (iv) repair-algorithm-based CHTs; (v) boundary-based CHTs; and (vi) other
CHTs. Table 1 provides a summary of all reviewed CHTs, along with the MOA
employed in the respective work and the corresponding literature reference number.

2.1 Penalty-based constraint handling techniques

Objective function penalization is the oldest and yet most widely employed CHT. Sev-
eral penalty-based techniques have been developed over the years, including, among
others, the static, dynamic, adaptive and death penalty methods.

During the early 2000s, Miettinen et al. (2003) tested five penalty-based CHTs
with genetic algorithms to solve 33 mathematical test problems of different types,
concluding that the adaptive penalty method (APM) was the most efficient and the
parameter free penalty method the most reliable among them.

Nearly a decade later, Da Silva et al. (2011) proposed a parameter-free APM for
use with DUVDE algorithm, a DE that incorporates a mechanism named Dynamic
Use of Variants (DUV) that tries and automatically selects the variant with the best
performance during the procedure, in the context of structural and mechanical engi-
neering applications. This CHT, by using the feedback received from the current status
of candidate solution population to adaptively define the corresponding penalty factor
for every constraint combined with DUV, made DE more efficient in solving COPs
and achieved very competitive results compared with GA and simple DE.

Montemurro et al. (2013) proposed a parameter-free penalty-based CHT called
automatic dynamic penalization (ADP) and applied it to practical engineering design
problems, e.g.maximization of the first buckling load of composite laminates. The pro-
posed CHT is combined with a multi-population genetic algorithm named BIANCA,
where simultaneous evolution of different species individuals takes place by utilizing
special operators for crossover and mutation. ADP exploits the information of infea-
sible individuals, automatically selects, and updates the penalty factors, thus enabling
a wide exploration of the search space.

In Li et al. (2019a) employed a Kriging model in a dynamic surrogate-based opti-
mization (DSBO) of standard test functions and an engineering problem, utilizing two
criteria for sample selection:maximization of the expected improvement (EI) function;
and minimization of surrogate model prediction, and achieved constraint handling in
three different ways: (a) constraining EI function, (b) penalizing the prediction of
the surrogate model and (c) penalizing the objective function. DSBO achieved best
performance in two tests and a beam optimization problem with the simultaneous
employment of methods (a) and (b).

The same year, Kawachi et al. (2019) introduced a DE algorithm named LSHADE
equipped with an APMCHT, which is not based solely on the objective function value
or the constraint violation in the search region, but also considers their balance, and
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applied it to the optimization of benchmark functions provided by the Congress on
Evolutionary Computation (CEC) 2017. Using the right balance between constraint
violation and objective function values, the proposed method outperformed a conven-
tional APM CHT, as well as other CHTs, in most cases considered.

Also, that year Datta et al. (2019) proposed the constraint handling with individual
penalty (CHIP) technique, which is a combination of a common penalty-based CHT
with the bi-objective EA NSGA-II. The method considers an individual penalty factor
for each constraint, instead of utilizing a global factor for the overall constraint viola-
tion; nonetheless, the overall constraint violation is employed as an auxiliary objective
function subject to minimization, to adaptively compute the individual penalty fac-
tors. The benefits of the proposed CHT are the capability of constraint automatic
normalization and the low associated computational demand.

In Li et al. (2020) introduced the EJADE-SP algorithm for application to optimal
power flow (OPF) problems, which is an enhanced adaptive DE combined with a self-
adaptive penalty (SP)CHT that includesmany enhancements, e.g. strategy for dynamic
population reduction, crossover rate (CR) sorting mechanism, re-randomizing of CR
and scale factor F parameters. The combination of this algorithm with an SP CHT
achieved comparable performance to other representative algorithms such as simple
DE combined with different CHTs.

2.2 Techniques based on separation of objective and constraints

In Deb (2000) developed a penalty-based CHT called feasibility rules, applicable only
to population-based algorithms, e.g. genetic or other EAs, which requires no penalty
parameters and is based on comparisons between pairs of individuals according to the
so-called feasibility rules used in tournament selection. The major advantage of the
proposed method is the elimination of the requirement of appropriate penalty factor
selection by the user, which is otherwise a necessity in penalty-based CHTs to guide
the search to the optimum solution.

In the same year, Runarsson andYao (2000) introduced a novel CHT called stochas-
tic ranking (SR) which considers the balance between objective and penalty functions
via a stochastic bubble-sort algorithm and used it within an evolution strategy to solve
13 benchmark problems. Like the method proposed by Deb (2000), SR also offers the
considerable advantage of eliminating the requirement of penalty factor selection by
the user.

In Coello and Mezura-Montes (2002) employed within the context of structural
design optimization problems the niched-pareto genetic algorithm (NPGA), which
performs tournament selection based on the principle of nondomination frequently
employed in multi-objective problems. For the NPGA application to single-objective
COPs, the constraints are handled as additional objective functions. Using the multi-
objective concept, the proposed method handles constraints efficiently without using
penalty functions, while also maintaining the diversity in the population without any
niching.

InWang et al. (2009) introduced a hybrid EA that combines twomutation operators
with a simplex crossover operator to generate new offsprings and employed it in
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13 well-known benchmark test problems. Within the algorithm an adaptive CHT is
implemented, which considers a different CHT depending on the population status
based on infeasible, semi-feasible and feasible conditions. The proposed method has
numerous benefits, including simplicity of implementation, enhanced robustness, and
effectiveness.

In Takahama and Sakai (2010), proposed a DE algorithm with an archive and
gradient-based mutation operator combined with an ε-constrained CHT, and success-
fully applied it to 18 test problems from CEC2010. The proposed CHT conducts
ε-level comparisons between individuals with automatic control parameter adjust-
ment, to relax the constraints and keep useful information from infeasible individuals
during the search process.

In Mazhoud et al. (2013) examined a CHT called constraint violation with interval
arithmetic (CVI) and employed it with a customized PSO algorithm in 24 benchmark
mathematical and 3 engineering optimization problems. CVI employs the total con-
straint violation as an additional objective function subject to minimization, interval
arithmetic for total violation normalization, as well as a simple lexicographic method
for solving subsequent problems.

In Zhang et al. (2015) implemented in a new EA called backtracking search algo-
rithm (BSA) different CHTs, such as feasibility rules and ε-constrained method with
two ways of controlling the ε value and applied it to 13 benchmark functions and
4 engineering problems. The ε-constrained CHT with self-adaptive control of the ε

value exhibited superior performance in respect of efficiency and convergence speed
compared to the other two CHTs.

In Chehouri et al. (2016) used a GA as a numerical tool to implement a parameter-
free CHT for application to NLP problems. The approach is based on the use of the
violation factor and entails the population distinction into two families of feasible
and infeasible solutions, where the latter contains individuals violating at least one
constraint; for the population evolution at each generation, the first family is sortedwith
respect to the value of the fitness function, while the second according to comparison
rules (feasibility-based rules). The distinctive feature of these rules is the additional
consideration of the number of violated constraints, beyond the constraints violation
value, in the comparison of two infeasible individuals.

In Peng et al. (2018) employed EAs combinedwith a CHT based on biased dynamic
weights and applied it to 24 CEC2006 and 18 CEC2010 benchmark problems. Biased
weights enable the selection of individuals with low objective and constraints violation
values, following which the weights are dynamically adjusted to focus mostly on
those individuals. In this manner, the approach prioritizes the selection of infeasible
individuals from the population of parents and children, which are closer to the feasible
search space. This CHT has been shown to exhibit a stable, reliable, and competitive
performance when integrated in a DE algorithm.

In Fan et al. (2018) integrated an improved ε-constrained CHT called IEpsilon
into DE algorithm LSHADE44 and applied it to 28 CEC2017 benchmark problems.
The distinctive feature of IEpsilon compared to the classic ε-constrained handling
method is the adaptive control of the ε value with respect to the proportion of feasible
individuals in the current population, which balances the search between feasible and
infeasible space during the evolutionary process.
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In Rodrigues et al. (2018) proposed an alternative version of the balanced ranking
CHT method, called Extended-BRM, and implemented it in evolutionary algorithms
for application to CEC2006 and CEC2010 test functions and engineering problems.
The proposed technique employs a self-adaptivemechanism to rank feasible and infea-
sible individuals in two separate groups, and later merges them during the search
process with respect to the proportion of feasible and infeasible individuals in the cur-
rent population. This CHT requires no parameter adjustment by the user, produces the
most feasible solutions, and achieves superior performance compared to other CHTs,
such as stochastic ranking, adaptive penalty method, etc.

In Li et al. (2019b) employed a CHT based on fuzzy knowledge named FSB,
guided by a membership function, in conjunction with EAs to optimize 24 benchmark
test functions. Fuzzy knowledge is based on the principle that candidate solutions with
large constraints violation values lead the search to candidates with smaller constraints
violation valueswhich, in turn, leads to candidateswith better objective function value.
The FSBCHT integrated into different EAs (DE, ES, GA, PSO, EP) proved to bemore
robust and efficient compared to penalty function, stochastic ranking, ε-constrained
and feasibility rules CHTs.

Recently, Zhao et al. (2020) introduced a feasibility-rule-basedCHTnamed FROFI,
integrated into a radial basis function (RBF) surrogate-assisted DE algorithm, and
applied to 2 test problems and 2 reservoir models. FROFI integrates information from
the objective function through the DE algorithm operators, along with a replacement
procedure, into the well-known Deb rules, to achieve a more efficient balance between
objective function and constraints.

Based on the premise that among two solutions the one with better fitness function
value is preferred, in Liu et al. (2020) integrated an improved Deb rule called IDeb
into a Fruit fly optimization algorithm (FOA) (a search strategy based on memory,
inspired by the foraging behavior of fruit flies) for application to the optimization of
truss structures. The method initially employs the classic Deb rule to identify feasible
individuals in the solutions memory size and subsequently evaluates the constraints
violation, alas only of the individuals with better objective function values compared
to the worst one stored in memory. Using the IDeb CHT a substantial reduction in the
computational demand associated with structural analysis procedures can be achieved,
since in such problems constraints violation evaluations are more computationally
expensive compared to objective function evaluations.

In the same year, Chu et al. (2020) employed an ε-constraint CHT in a DE algo-
rithm for topology optimization of polyline-based core sandwich structures (PCSSs).
Amongst the volume, angle, and thickness constraints to be fulfilled, the predominant
volume constraint is approximated by the RBF surrogate model for low computational
cost, at first, and then handled through the EC method to compare different infeasible
solutions; in this manner a more effective search space exploration is achieved, while
potential errors arising from the prediction model RBF are reduced.

Shabani et al. (2020) proposed a metaheuristic search and rescue (SAR) optimiza-
tion algorithm, which simulates people behavior during search and rescue operations.
A high performance was achieved by SARwhen combinedwith an ε-constrained CHT
to several benchmark test functions and 7 engineering problems.
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In the work by Stanovov et al. (2020), several variations of the ε-constraint CHT are
usedwith aDEalgorithm to optimize benchmark functions and economic load dispatch
problems. Among the classical ε-constraint CHT, the proposed variants of ε-constraint
CHT, and the Iepsilon method, the most efficient was the combined fitness–ε vector
length with individual penalty levels (ECIFL) variant, which considers both constraints
violation and objective function values, as well as each constraint individually.

Rodrigues et al. (2020) proposed a PSO based algorithm combined with a weighted
dynamic objective constraint handlingmethod (WDOCHM-PSO) for design optimiza-
tion of doubly fed induction generators (DFIGs). This method entails splitting the
constrained problem into two unconstrained objective functions: the first considers
with the distance of infeasible individuals from the feasible region (i.e. violation); and
the second considers the optimization problem without constraints and is used only
for feasible individuals.

Mao et al. (2019) adopted the SR CHT integrated into an optimization algorithm
called shuffled complex evolution (SCE), which combines the competitive complex
evolution (CCE) algorithm with the simplex method to examine constrained reser-
voir scheduling problems. The SR CHT has been shown to be highly efficient in the
identification of feasible solutions, even in the early steps of the optimization process,
while its integration into SCE results in a highly robust algorithm, capable of detecting
feasible regions swift.

2.3 Combination of constraint handling techniques

A popular trend in recent years is the combination of different CHTs during the opti-
mization process. InMallipeddi andSuganthan (2010) employed an ensemble ofCHTs
(feasibility rules, self-adaptive penalty, ε-constraint method, and stochastic ranking)
combined with the Evolutionary Programming (EP) and DE algorithms in the context
of COPs. In the proposed approach each CHT refers to a different population, alas
every parent individual is compared with the produced children of all populations. A
combination of different CHTs achieved superior performance compared to individual
CHTs.

In Trivedi et al. (2017) adopted an ensemble of the penalty method and feasibility
rules CHTs, integrated in a Unified Differential Evolution (UDE) algorithm, for the
optimization of 28 CEC 2017 test problems. The proposed approach applies penaliza-
tion to the first half of maximum allowed function evaluations, for efficient exploration
of the search space, and feasibility rules to the other half FEs, for efficient exploitation.

In Biswas et al. (2018) examined standard IEEE 30 57- and 118-bus systems
for OPF objective functions, including cost, emission, voltage stability etc., using
a self-adaptive penalty CHT, a feasibility rules CHT, as well as an ensemble of these,
integrated within a DE algorithm. Inmost cases, a combination of CHTs outperformed
individual CHTs.

In the same year, Malan (2018) used a landscape-aware constraint handling
approach integrated in a DE algorithm for the optimization of 18 CEC2010 test
problems. The distinguishing feature of the landscape-aware approach compared to
well-known ensemble of CHTs is the algorithm switch between four CHTs based on
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the characteristics of the landscape gathered during the search process, with only one
CHT being active at a time.

In the work by Wang et al. (2019) in 2019, a DE algorithm variant called DEVNS,
which produces each trial individual using two special mutation strategies and random
crossover and mutation values, is combined with feasibility rules and ε-constrained
CHTs in the optimization of several CEC2017 test problems. In the proposed approach,
feasibility rules are applied for comparison of trial and target individuals, however all
individuals with lower constraint violation than the specified ε level are considered
feasible. In this manner a relaxation of constraints is achieved, and hence a more
efficient search.

Also in 2019, Javed et al. (2019) used an ensemble of feasibility rules, self-adaptive
penalty, ε-constrained and stochastic ranking CHTs, integrated into JADE and SADE
algorithms, in the optimization of 24 CEC2006 benchmark problems. Both algorithms
achieved very competitive feasibility rate, alas inferior success rate, compared to other
considered algorithms employing a single CHT, based upon the CEC2006 evaluation
criteria.

With focus on numerical optimization problems, Kaucic et al. (2020) introduced a
PSO-based algorithm called IC-PSO, combined with a hybrid CHT which combines
Deb rules with a correction mechanism. The proposed CHT utilizes a suitable oper-
ator for repairing infeasible individuals to become feasible and subsequently applies
feasibility rules, thus accelerating the PSO algorithm convergence to feasible regions.

2.4 Repair algorithm-based constraint handling techniques

In the solution of COPs, a specific procedure (typically heuristic) called repair algo-
rithm is implemented with the aim to repair an infeasible individual, i.e. convert it
to a feasible one. The repaired individual can then be used solely for fitness function
evaluation purposes or for replacing the initial individual into the next generation dur-
ing the evolutionary process. The use of the repaired individual depends principally
on the nature of the problem and the developer decision and varies between either
replacing the original individual with the repaired one, or only a small percentage, or
every infeasible individual in the population during the evolutionary process.

In Chootinan and Chen (2006) integrated into a simple GA a repair mechanism
based on the constraint gradient information, to solve 11 optimization test problems.
Constraint gradient information is obtained either via approximate finite differences or
direct derivatives of the constraints, with the aim of guiding the infeasible individuals
into the feasible search space. The considered CHT requires only a repair probability
parameter adjustment by the user and has been shown to achieve comparable perfor-
mance to other considered CHTs, such as stochastic ranking.

In the work by Salcedo-Sanz (2009), a comprehensive survey of the main repair
heuristics used with EAs is conducted, to examine their performance in COPs.

Recently, Zein et al. (2017) employed a repair operator integrated into a GA to
perform in the context of a composite structure preliminary design. The approach
considers an inner and an outer loop, where the inner solves the problem using the GA
and the surrogate models, while the outer reconstructs the surrogate model according
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to the optimal surrogate solution. The proposed method has been shown to achieve a
good balance between accuracy and computational demand.

In Li et al. (2018) integrated in PSO andDE algorithms amodified repair procedure,
to handle the equality constraints on Economic Dispatch problems using six different
test generators systems. The repair technique evaluates the objective function deriva-
tive and uses it to adapt incrementally the output of the unit by sharing the unbalanced
amount of the system constraint violation. The employed CHT has been shown to be
very efficient, mainly for large-scale power systems.

Gandomi and Deb (2020) in 2020 implemented a CHT called boundary update
(BU) method in EAs and mathematical algorithms and tested it in several engineering
andmathematical optimization problems. BU repairs the limits of selected variables to
avoid constraints violation by restricting and changing them during the optimization
process, generating solutions within the search space “updated” limits. Despite the BU
method requiring constraint variables pre-categorizing, it achieves a high performance
in the solution of COPs with complex constraints.

2.5 Boundary-based constraint handling techniques

The constraints in expression (1) can be distinguished into function constraints and
bound constraints. Function constraints encompass inequality or equality functional
forms of the decision variables, while bound constraints directly enforce upper and
lower values (bounds) to the decision variables. While most of the research has
focused on the development of CHTs for function constraint handling, a few signif-
icant research efforts have concentrated on the development of Boundary Constraint
Handling Methods (BCHMs). BCHMs modify and correct the position of infeasible
variable solution vectors, to reset them in the search space and convert them into
feasible.

In the work by Gandomi and Yang in (2012) a comparison of an evolutionary
boundary constraint handling (EBCH) scheme integrated intoDEwith other boundary-
basedmethods is conducted, based upon several test problems. In the proposedmethod,
individual components that violate a bound are replaced by a random component,
which lies in between the violated bound and the corresponding component of the
current best solution. The proposed scheme achieves very good performance, in most
cases surpassing other classical BCHMs, such as absorbing, toroidal, reflecting, and
random.

In Gandomi and Kashani (2018) proposed a probabilistic evolutionary boundary
constraint handling (PEBCH) method combined with PSO for optimizing 7 bench-
mark test functions. PEBCH is a probabilistic version of EBCH (Gandomi and Yang
2012), which additionally considers the boundaries violation quantity. Specifically, a
probability distribution function is employed, the density of which varies depending
on the distance of the violated solution and boundary, taking higher values close to
the violated boundary.

The results of utilizing various maps based on chaotic behavior within evolutionary
algorithms (EAs) are investigated by Mozaffari et al. (2019). To handle the boundary
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constraints, a controlling formula which transfers a violated solution into the accept-
able solution limits is used to achieve the correction of a violated solution position; in
this manner global search is enhanced and early convergence is prevented.

In Biedrzycki et al. (2019) conducted a performance assessment of various combi-
nations between seven DE algorithms and seventeen BCHMs, based upon CEC2017
benchmark functions, concluding that the efficiency of DE algorithms varies substan-
tially depending on the employed BCHM.

In the sameyear, Juárez-Castillo et al. (2019) implemented an adaptiveBCHscheme
in PSO and DE algorithms for the optimization of sixty single-objective COPs. The
adaptive approach employs a specific BCHM if the population consists entirely of
infeasible solutions, otherwise a BCHM from a predefined set is randomly selected,
based on a dynamically-updated probability associated with it. This adaptive scheme
achieved better performance compared to single BCHMs in COPs with moderate or
large number of variables or constraints, as well as in COPs where the identification
of feasible individuals is rendered cumbersome.

In Arouri and Sayyafzadeh (2020) developed a gradient-based algorithm that com-
bines features of simultaneous perturbation stochastic approximation (SPSA) and an
adaptive moment estimation framework, for application to production optimization
problems. The algorithm was tested using the projection and logarithmic transforma-
tion BCHMs, with the former achieving superior performance compared to the latter
in both cases examined.

In the work by Biedrzycki et al. in the same year (2020), the performance of the
covariance matrix adaptation evolution strategy (CMA-ES) algorithm is assessed in
the optimization of unimodal and multimodal CEC2017 and Black-Box Optimization
Benchmarking (BBOB) problems, considering 22BCHMs categorized as repair, feasi-
bility preserving, specialized and penalty functions. Amongst all considered BCHMs,
Darwinian reflection and resampling achieved the highest performance.

2.6 Other constraint handling techniques

In Atamna et al. (2020) implemented an augmented Lagrangian approach as CHT
in Evolution Strategies for optimizing sphere and ellipsoid functions with linear
constraints, where the initial constrained objective function is converted into an uncon-
strained augmented Lagrangian function, while its parameters are adopted during
optimization.

In the same year, Qian et al. (2020) employed a GA combined with a surrogate
model for solving 9 numerical and 2 engineering optimization problems, using the
Kriging surrogate prediction model instead of the actual constraints, which is con-
tinuously updated during the optimization procedure to avoid infeasible optimization
solutions. This method leads to optimal feasible solutions and is associated with a low
computational demand compared to other existing techniques.

Rosso et al. (2021) presented a new nonpenalty-based constraint handling approach
for PSO type of algorithms adopting support vector machine (SVM), that is a super-
vised classification machine learning approach. Due to its generality, constraint
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handlingwith SVMappearsmore adaptive both to nonlinear and discontinuous bound-
ary, while aiming to preserve the feasibility of the population, a simple bisection
algorithm was also implemented.

While recently, Rosso et al. (2022) a variant of the well-known swarm-based algo-
rithm, the Particle Swarm Optimization (PSO), is developed to solve constrained
problems with a different approach to the classical penalty function technique. State-
of-art improvements and suggestions are also adopted in the current implementation
(inertia weight, neighbourhood). Furthermore, a new local search operator has been
implemented to help localize the feasible region in challenging optimization prob-
lems. This operator is based on hybridization with another milestone meta-heuristic
algorithm, the Evolutionary Strategy (ES). The self-adaptive variant has been adopted
because of its advantage of not requiring any other arbitrary parameter to be tuned.

3 Constraint handling technique formulation

In this section, four of the most commonly employed CHTs identified in the literature
are described, specifically: (i) penalty methods; (ii) feasibility rules; (iii) ε-constrained
method; and (iv) stochastic ranking, while a brief description of methods based on
ensemble of CHTs (i)-(iv) is also provided. Furthermore, eight novel variants of the
feasibility rules and ε-constrained CHTs are introduced. The performance of these
novel variants is evaluated later in Sect. 5, based upon 20mathematical and engineering
COPs, and compared to four existingvariants ofCHTs (i)–(iv), specifically: (i) adaptive
penalty by Kawachi et al. (2019) (ii) feasibility rules by Deb (2000); (iii) improved
ε-constrained by Fan et al. (2018); and (iv) stochastic ranking by Runarsson and Yao
(2000), which are also described herein.

3.1 Penalty methods

In penalty methods the constrained problem is converted into an unconstrained one
with the addition of a penalty term to the objective function. The penalty term depends
on the level of violation of the constraint functions, as well as penalty factors whose
value can vary throughout the optimization process. The penalized objective function
can be expressed in the following general form (Coello and Montes 2002):

F(x) = f (x) ±
[∑J

j=1
r j · g j (x) +

∑K

k=1
ck · hk(x)

]
, (2)

where F(x) is the penalized objective function (also called fitness function), g j (x)
and hk(x) are the inequality and equality constraints, respectively, and r j and ck
are positive weight coefficients called penalty factors. Converting the equality into
inequality constraints, as previously discussed in Sect. 1, Eq. (2) can be rewritten as:

F(x) = f (x) ±
∑m

j=1
r j · g j (x). (3)
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Kawachi et al. (2019) proposed an adaptive procedure for calculating the penalty
factor during the evolution process, which effectively deals with issues of over- or
under- penalization that potentially led to divergence of the search process from the
optimum. More specifically, a fitness function is formulated:

F(x) = f (x) + PF · υ(x), (4)

where υ(x) is the mean constraint violation and PF is the penalty factor, and sub-
sequently three steps are implemented. First the penalty factor candidates (PFCs) are
calculated by comparing two individuals as follows:

PFCk,l = − f (xk) − f (xl)

υ(xk) − υ(xl)
, (5)

where subscripts k and l denote two distinct individuals; PFC is calculated for all
possible combinations in a given population. In the second step, the penalty factor
(PF) is defined, as follows: if the percentage of negative PFCs exceeds 50%, the
PF remains the same with the one of the previous generations; otherwise PF is
calculated as the average value of the positive PFCs. In the third step PF is updated.
If the proportion of feasible individuals r f in the population exceeds the p f eas , then
the penalty factor of the next generation is obtained as follows:

PFG+1 = prate · PFG , (6)

where prate ∈ [0, 1] and p f eas are user defined parameters.

3.2 Feasibility rules

In penalty methods, different values of the penalty factor need to be tested to establish
the best option, since inappropriate values can cause search process divergence from
the area of the optimum solution. To overcome this shortcoming Deb (2000) proposed
a new technique based upon a tournament selection operator for comparing two solu-
tions, in accordance with the following criteria: (i) any feasible solution is preferred
to any infeasible solution; (ii) among two feasible solutions, the one associated with
better objective function value is preferred; and (iii) among two infeasible solutions,
the one associated with smaller constraint violation value is preferred.

3.2.1 Original feasibility rules technique

According to the original feasibility rules technique, the fitness function is defined as
follows:

F(x) =
{

f (x) if g j (x) ≤ 0 ∀ j = 1, 2, ...,m
fmax + ∑m

j=1max
{
0, g j (x)

}
otherwise

, (7)
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where fmax is the objective function value for the worst feasible solution of the current
population. If no feasible solution exists in a population, fmax is set to zero. According
to this technique, all constraint violations are summed, and this sum is compared as
a single value. Therefore, in case of infeasible solutions, these are compared based
solely on the level of constraint violation.

3.2.2 New variants of the feasibility rules technique

In this section four new variants of the feasibility rules technique are presented. Specif-
ically, the comparison rules described above for the original technique have been
modified to bias the search direction towards better feasible solutions, instead of sim-
ply feasible ones, to achieve a global exploration of the design space. The formulation
of the proposed variants relies on the premise that a small constraint violation should
not be the sole criterion of selecting one individual over another, as is the case in
existing techniques.

Specifically, when comparing two infeasible individuals, the objective function
value and the number of violated constraint functions should also be considered,
alongside the maximum constraint violation value, and the product of these three
entities shall determine the final winner: if an individual is associated with a lower
level of constraint violation than another, but the objective function value of the first is
much larger compared to the second, maintaining the first one in the next generation
might direct the search process to a local optimum. Of course, if the second individual
corresponds to a very large level of constraint violation, it will be penalized with a
much larger penalization value. To avoid very small objective function values that
could misdirect the search process, the objective function value of the best feasible
individual found so far is used as the lower bound. Analogously, when comparing one
feasible and one infeasible individual, the second one could be chosen based on the
product of its objective function value and the level of the constraint violation. If the
objective function value of the feasible solution is very bad, then selecting it might
direct the search process to a local optimum, and hence the infeasible individual should
be preferred. Finally, since it is not sure which one is better between a solution with
many violated constraint functions with small level of violation compared to a solution
with just one violated constraint function of very large level of violation, the total
number of violated constraint functions is also considered together with the maximum
level of constraint violation. Taking the above into consideration, the formulation of
the new variants is described hereafter.Please note that the red colour value has been
changed to italic in Tables 8, 15, 18, 21, 22. Please check and confirm.Confirm

To calculate the fitness function of an infeasible individual, the pviolation factor is
introduced. This is the normalized maximum constraint violation of the individual,
which, depending on the variant, ismultipliedwith a term related to the relative number
of violated constraint functions for a solution over the total number of constraint
functions. The pviolation factor for each of the four variants proposed is defined as
follows:

pviolation = ∥∥max
{
max

{
0, g j (x)

}
,∀ j = 1, 2 . . . ,m

}∥∥ > 1, (8a)
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pviolation = ∥∥max
{
max

{
0, g j (x)

}
,∀ j = 1, 2 . . . ,m

}∥∥ ×
(
1 + nconstviol

nconst

)
> 1,

(8b)

pviolation = ∥∥mean
{
g j (x),∀ j = 1, 2 . . . ,m|g j (x) > 0

}∥∥ ×
(
1 + nconstviol

nconst

)
> 1,

(8c)

pviolation = ∥∥median
{
g j (x),∀ j = 1, 2 . . . ,m|g j (x) > 0

}∥∥ ×
(
1 + nconstviol

nconst

)
> 1,

(8d)

where g j (x) is the normalised value of the jth constraint (an example of a normalised
constraint is shown below in Eq. 9b), nconstviol is the number of violated constraint
functions and nconst is the total number of constraint functions. The fitness function
of an individual is calculated as the product of pviolation with the maximum among
the objective function value of the individual and the best objective function value of
the feasible individuals found so far, as stated in the following expression:

g j (x) : σ(x) ≤ σall

g j (x) : σ(x)

σall
− 1 ≤ 0 (9a)

F(x) =
{

f (x) if g j (x) ≤ 0,∀ j = 1, 2, ...,m

max
(
fbest f easible, f (x)

) × pviolation otherwise
. (9b)

where an example of a constraint function is shown in Eq. (9b), where σ(x) is the
principal stress developed into a specific structural element and σall is the corre-
sponding allowable value. On the basis of expression (9b), three criteria are used to
compare two solutions: (i) between two feasible solutions, the one associated with
better objective function value is preferred, (ii) between two infeasible solutions, the
one associated with lower level of constraint violation and lower number of violated
constraint functions is preferred; and (iii) between one feasible and one infeasible
solution, the selection of the feasible solution depends on its objective function value,
the level of constraint violation and the number of violated constraint functions of the
infeasible one. In case of a maximization problem the criteria are adapted accordingly.

3.3 ε-constrainedmethod

Amodified version of the feasibility rules technique was originally proposed by Taka-
hama and Sakai (2005), with the aim of providing comparison rules on constrained
optimization problems during the evolutionary process. According to this technique,
the overall constraint violation function ϕ(x) is defined as either the maximum or the
sum of all constraints, and is used in conjunction with the ε level comparison {<ε}; for
any ε ≥ 0, an individual ( f1, ϕ1) is considered better than another individual ( f2, ϕ2)
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according to the following comparison rules:

( f1, ϕ1)<ε( f2, ϕ2) ⇐⇒
⎧⎨
⎩

f1 < f2 if ϕ1, ϕ2 ≤ ε

f1 < f2 if ϕ1 = ϕ2

ϕ1 < ϕ2 otherwise
. (10)

Therefore: (a) if both overall constraint violations ϕ(x) of two individuals are either
less than or equal to ε, the one with better objective function value f is preferred; (b) If
the overall constraint violations ϕ(x) of two individuals are equal, the one with better
objective function value f is preferred; and (c) if either or both constraint violations
ϕ(x) of two individuals are larger than ε, the one with lower constraint violation ϕ(x)
is preferred. Building upon their previouswork, Takahama and Sakai (2010) suggested
that the ε level can be usually controlled according to the following expression:

ε(t) =

⎧⎪⎨
⎪⎩

ϕθ if t = 0

ε(0)
(
1 − t

TC

)cp
if 0 < t < TC

0 if t ≥ TC

⎫⎪⎬
⎪⎭, (11)

where the initial ε level is equal to ϕθ , that is the constraint violation of the top θ th

individual in the initial population, t is the number of iterations, TC is the control
generation and cp is a user defined parameter with value greater or equal to 3.

3.3.1 Improved ε-constrained method

In Fan et al. (2018) proposed the following improved ε setting approach, which applies
the ε level comparison {<ε} to establish comparison rules during the evolutionary
process, and further balance the evolutionary search of the population between feasible
and infeasible regions:

ε(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕθ if k = 0

ε(k − 1)
(
1 − FEs

TC

)cp
if rk < α and FEs < TC

(1 + τ)ϕmax if rk ≥ α and FEs < TC
0 if FEs ≥ TC

, (12)

where rk is the proportion of feasible solutions (PFS) in the generation; ϕθ is the θ th

largest overall constraint violation of all individuals in the initial population (sorted
in an array by their overall constraint violation), where θ = γ · Npop, Npop being
the population size and γ ∈ [0.2, 0.8]; ϕmax is the largest overall constraint vio-
lation of all individuals; TC is the termination function evaluations (FEs), where
TC ∈ [0.1maxFEs, 0.8maxFEs]; and cp ∈ [2, 10], τ ∈ [0, 1] and α ∈ [0, 1]
are user-defined parameters.
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3.3.2 New variants of the ε-Constrained method

Analogously to the new feasibility rules variants introduced previously in Sect. 3.2.2,
new variants of the ε-constrained technique are also proposed herein. The ε level com-
parison {<ε} in the new variants for two individuals 1, 2 is defined via the following
four rules:

( f1, p1) <ε ( f2, p2) ⇔

⎧⎪⎪⎨
⎪⎪⎩

f1 < f2 if p1, p2 ≤ ε

f1 < f2 if p1 = p2
max

(
fb f , f1

) × p1 < max
(
fb f , f2

) × p2 if p1, p2 ≥ ε

f1 < max
(
fb f , f2

) × p2 otherwise

,

(13)

where fb f stands for the objective function value of the best feasible individual found
so far, and p1, p2 denote the value of the pviolation factor calculated for individuals 1
and 2, based upon Eqs. (8a) to (8d).

Therefore: (a) if both maximum constraint violations of two individuals are either
less than or equal to ε level, the one associated with better objective function value f
is preferred; (b) if the maximum constraint violations of two individuals are equal, the
one associated with better objective function value f is preferred; (c) if bothmaximum
constraint violations of two individuals are larger than the ε level, the one associated
with better product of constraint violation and objective function value is preferred;
and (d) if only onemaximum constraint violation of two individuals is larger than the ε

level, the other individual is preferred only if its objective function value is better than
the product of the constraint violation with the objective function value of the second
individual. In line with the new variants of the feasibility rules technique, in addition
to the maximum constraint violation value the total number of violated constraint
functions is also considered. To control the ε level, the formulation proposed by Fan
et al. (2018) is adopted, as given in Eq. (12).

3.4 Stochastic rankingmethod

A frequently employed CHT that circumvents the shortcomings of penalty techniques
is the stochastic ranking method, originally proposed by Runarsson and Yao (2000).
Stochastic ranking is based upon comparing all adjacent individuals in a population
according to penalty and objective function dominance, to rank them from best to
worst.

A probability Pf ∈ [0, 1] associated with the sole use of the objective function
for the adjacent individual comparisons must be defined by the designer to achieve
enhanced performance. A value Pf = 1/2 means that the probability of a comparison
based on the objective function is the same as the probability based on the penalty
function. Ranking is achieved via a bubble-sort-type algorithm, where λ individuals
are ranked by comparing adjacent individuals in N sweeps (the leastλ sweeps) in every
generation. If both adjacent individuals are feasible or a randomly generated number
u is less than the selected probability Pf , the individuals are compared according to
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their objective function values; otherwise, if one or both are infeasible, the comparison
is based on the constraint violation value. The algorithm is terminated if no change
takes place in the ranking order within a complete sweep.

3.5 Ensemble of constraint handling techniques

It is not always easy to determine which CHT is better for determining the global
optimum in a given COP.While a specific CHTmight be more suitable than others for
a particular stage of the evolution process, it might be inappropriate for another one,
and hence different CHTsmight be more effective during different stages of the search
process. This depends on several factors, such as the multimodality of the problem, the
proportion of feasible search region in the whole search region, the adopted algorithm
etc. Motivated by these observations, Mallipeddi and Suganthan (2010) proposed a
combinationof fourCHTs (feasibility rules, self-adaptive penalty, ε-constraintmethod,
and stochastic ranking), a scheme called ECHT, to examine constrained optimization
problems, where each technique handles a different population. Parents and offsprings
of the population compete not only among each other, but also with the respective
entities of all the other populations. This means that if an offspring generated from a
particular population is not selected for the next generation based on this population’s
specific CHT, it could be selected by other populations that use a different CHT.

4 Optimization computing platform and pity beetle algorithm

The solution of real-world, large-scale optimization problems within the field of
structural engineering can only be achieved with a synergy of the following aspects
(Melchiorre et al. 2021; Lagaros et al. 2022; Cucuzza et al. 2022): (i) efficient numeri-
cal modelling of the physical problem; (ii) reliable numerical optimization algorithms
for enhanced structural design; (iii) rationalized modelling of the system uncertainties
(in the case of probabilistic design problems); and (iv) exploitation of modern High-
Performance Computing (HPC) facilities. The original OCP (Lagaros 2014) and its
evolution HP-OCP offer all aforementioned capabilities, including efficient numeri-
cal modelling tools and several MOAs with a great variety of embedded features and
CHTs, while its implementation enables its straightforward upgrade to incorporate
new tools and features.

In Kallioras et al. (2018) introduced the novel nature-inspired pity beetle MOA, a
single-objective optimization algorithm for unconstrained problems which has been
shown to handle NP-hard optimization problems efficiently. PBA is inspired by the
behavior of the six-toothedbark beetle (pityogenes chalcographus beetle)when search-
ing for food on the bark of trees and simulates the beetle behavior in three stages: (i)
population initialization; (ii) population regeneration; and (iii) location update. In the
initialization stage (i), a population consisting of males and females is randomly allo-
cated in the search space via a random sampling technique (RST), which ensures
adequate diversification to avoid premature convergences. The male particles act as
pioneers in search for the most suitable host, producing pheromone that attracts the
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other males and females. In the population regeneration stage (ii), each single parti-
cle seeks an improved position in the search space to create its own population. This
is achieved via five types of hypervolume selection patterns, namely global-scale,
large-scale, mid-scale, neighboring search, and memory consideration search volume
patterns, where in the latter the best positions identified are stored in memory. In the
location update stage (iii), the position of each mating male and female is updated
and the previous positions are eliminated, except for those stored in memory (memory
consideration search volume). Collectively, the hypervolume patterns are selected in
accordance with the following expression:

x (g)
j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RST
([

x (g)
bir th,i · (1 − fnb), x

(g)
bir th,i · (1 + fnb)

]
, n, Npop

)
, i f k = 1

else

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

RST
(
xli , x

u
i , n, Npop

)
, i f FE > FEun

else

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RST
([

x (g)
bir th,i · (1 − fms ), x

(g)
bir th,i · (1 + fms )

]
, n, Npop

)
, ∃ j f

(
x (g)
j,k−1

)
< f

(
x (g)
bir th

)

else

⎧⎨
⎩

RST
([

x (g)
bir th,i · (1 − fls), x

(g)
bir th,i · (1 + fls)

]
, n, Npop

)
, if r < pr

MEM, otherwise

i = 1, 2, . . . , n, j = 1, 2, . . . , Npop, k = 1, 2, . . . , Nbroods .

(14)

In expression (14): g refers to the current generation (pursuit step); i signifies the
component of the design vector; j denotes the member of the population; k designates
the brood (colony); n denotes the number of unknowns; NPOP is the population size;
Nbroods is the maximum number of broods (termination criterion); x (g)

bir th,i is the i
th

element of the birth position/solution vector; x (g)
j,k is the new position vector found in

population k; superscripts l, u denote the lower and upper bound; while the algorithmic
parameters of PBA are: the population of pioneer particles Npop; the neighboring
factor fnb; the fine tuning factor ftn , which is used to define the area size where a very
narrow local search is performed, in case a better position is identified; the mid-scale
factor fms ; the large-scale factor fls ; the probability of choosing large-scale search
or memory consideration pr ; and the function evaluations multiplication factor fFE ,
which is used to define the maximum number of unsuccessful function evaluations
FEun with reference to the total function evaluations FEun = FEtotal · fFE ; andMEM
denotes the memory of size Npop, where the best solutions found by the algorithm
up until the current step are stored in memory. A detailed description of PBA can be
found in Kallioras et al. (2018).

5 Numerical examples

In this section, the performance of the 8 novel feasibility rules and ε-constrained CHT
variants proposed in Sect. 3 is evaluated and compared against 4 well-known CHT
variants from the literature: (i) adaptive penalty by Kawachi et al. (2019) (ii) feasi-
bility rules by Deb (2000); (iii) improved ε-constrained by Fan et al. (2018); and (iv)
stochastic ranking by Runarsson and Yao (2000). Consideration is given to 20 COPs
previously investigated by other authors, encompassing: (i) 14 mathematical COPs,
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including a 2D problem investigated by Deb (2000) and 13 problems investigated by
Runarsson and Yao (2000) (labelled G1-G13); and (ii) 6 engineering COPs, including
a welded beam, pressure vessel and tension–compression string design investigated
by Tsipianitis and Tsompanakis (2020), as well as 2D and 3D truss design examples
investigated by Farshi and Alinia-ziazi (2010).

For each numerical example and each employed CHT, 20 independent optimiza-
tion computations are performed (20 COPs × 12 CHTs × 20 computations = 4800
total computations), to establish an adequate sample for a statistical analysis of the
obtained results. In all computations the PBA (Kallioras et al. 2018) implemented in
the MATLAB variant of HP-OCP is employed (Sect. 4), using identical parameters,
termination criteria and bound-constraint treatment (out of bounds solution vectors
corrected via projection to the closest bound), which eliminates the influence of the
PBA specifications, thus enabling a common basis for CHT comparison to be estab-
lished. The adopted PBA parameters are: Npop = 30, fnb = 0.08, ftn = 0.015,
fms = 0.90, fls = 100, fFE = 0.25 and pr = 0.20 (Kallioras et al. 2018), as well as
FEun = 20, 000. The specifications of the employed CHT variants are given in Table
2. All computations were conducted using MATLAB® version R2020b, on an x64 PC
with 14-Core Intel® Xeon® processor with 128 GB RAM memory.

The results obtained for each numerical example using the 12 CHT variants are
given in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
and 23, which include the best, median, worst, and mean optimal solutions achieved
amongst the 20 respective computations in each case, as well as the coefficient of
variation (CoV) as a standardized dispersion measure. The CHTs achieving the best
performance, in respect of objective function value and CoV in each numerical test,
are highlighted in bold in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

Table 2 Specifications of constrained handling techniques employed in numerical examples

ID Acronym Description Expression

1 FeasRulesOR Original version of the feasibility
rules

Equation (7)

2 FeasRulesNEW1 Variant 1 of the feasibility rules Equations (8a) and (9)

3 AdPenalty Adaptive penalty technique Eqs. (4), (5) and (6)

4 EconstOR Original version of the ε-constraint
technique

Equations (10) and (12)

5 EconstNEW1 Variant 1 of the ε-constraint technique Equations (8a), (12) and (13)

6 StochRanking Stochastic ranking technique See corresponding section

7 FeasRulesNEW2 Variant 2 of the feasibility rules Equations (8b) and (9)

8 FeasRulesNEW3 Variant 3 of the feasibility rules Equations (8c) and (9)

9 FeasRulesNEW4 Variant 4 of the feasibility rules Equations (8d) and (9)

10 EconstNEW2 Variant 2 of the ε-constraint technique Equations (8b), (12) and (13)

11 EconstNEW3 Variant 3 of the ε-constraint technique Equations (8c), (12) and (13)

12 EconstNEW4 Variant 4 of the ε-constraint technique Equations (8d), (12) and (13)
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Table 3 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem by Deb

Constraint
handling
technique

Best solution Median
solution

Worst
solution

Mean solution CoV(%)

1 13.6405 13.6438 13.7633 13.6685 0.389%

2 13.6029 13.6319 13.6590 13.6297 0.187%

3 13.5919 13.6680 13.7080 13.6480 0.357%

4 13.5924 13.6007 13.6721 13.6130 0.245%

5 13.6016 13.6445 13.6766 13.6390 0.205%

6 15.8271 17.3333 22.8357 18.8444 17.828%

7 13.6043 13.6218 13.7207 13.6424 0.350%

8 13.6104 13.6299 13.6809 13.6403 0.201%

9 13.5912 13.6716 13.7148 13.6549 0.393%

10 13.5944 13.6112 13.6397 13.6137 0.142%

11 13.6163 13.6476 13.7437 13.6736 0.388%

12 13.6052 13.6329 13.6598 13.6348 0.151%

Table 4 Specifications of mathematical constrained optimization problems G1-G13

Numerical
Example

Optimization
Type

Objective
Function
Type

Objective
Function
Value

Variables LE LI NE NI

G1 Min Quadratic − 15 13 0 9 0 0

G2 MAX Nonlinear 0.803619 20 0 1 0 1

G3 MAX Nonlinear 1 20 0 0 1 0

G4 Min Quadratic − 30,665.539 5 0 0 0 6

G5 Min Cubic 5126.4981 4 0 2 3 0

G6 Min Cubic −
6961.81388

2 0 0 0 2

G7 Min Quadratic 24.3062091 10 0 3 0 5

G8 MAX Nonlinear 0.095825 2 0 0 0 2

G9 Min Polynomial 680.6300573 7 0 0 0 4

G10 Min Linear 7049.3307 8 0 3 0 3

G11 Min Quadratic 0.75 2 0 0 1 0

G12 Min Quadratic 1 3 0 0 0 93

G13 Min Nonlinear 0.0539498 5 0 0 3 0
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Table 5 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G1

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 − 14.03 − 13.96 − 6.51 − 11.21 34.08%

2 − 14.76 − 8.07 − 6.96 − 10.29 38.14%

3 − 14.72 − 14.40 − 6.13 − 11.25 40.04%

4 − 14.87 − 14.13 − 6.13 − 11.30 40.00%

5 − 14.38 − 13.87 − 6.68 − 12.54 26.18%

6 − 14.75 − 14.15 − 13.16 − 13.92 4.81%

7 − 14.41 − 7.04 − 6.27 − 9.68 44.39%

8 − 14.52 − 13.73 − 13.41 − 13.82 3.25%

9 − 14.99 − 14.01 − 13.56 − 14.15 3.96%

10 − 14.86 − 14.00 − 6.41 − 11.23 38.14%

11 − 14.94 − 14.28 − 13.41 − 14.08 4.67%

12 − 14.22 − 13.93 − 13.79 − 13.97 1.36%

Table 6 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G2

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.7711604 0.7350424 0.7260033 0.7426673 2.48%

2 0.7930772 0.7403387 0.4855716 0.6514598 23.16%

3 0.7614887 0.5777608 0.4661263 0.5817679 19.41%

4 0.5022935 0.4659332 0.4623640 0.4783193 4.03%

5 0.4816939 0.4573892 0.4531349 0.4644524 2.84%

6 0.7511018 0.7411717 0.7229049 0.7371014 1.74%

7 0.7763752 0.4745132 0.4571342 0.5890534 28.34%

8 0.7774812 0.7344782 0.4568700 0.6531579 22.15%

9 0.4851802 0.4676234 0.4603978 0.4721634 2.45%

10 0.7992425 0.7491075 0.4827461 0.6637055 23.16%

11 0.7920154 0.7334940 0.4514678 0.6918536 19.82%

12 0.7911422 0.4625053 0.4481425 0.5290209 27.90%
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Table 7 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G3

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.975806 0.957341 0.934324 0.955949 1.55%

2 0.985784 0.955447 0.907347 0.949690 3.02%

3 0.985461 0.941339 0.932888 0.951327 2.22%

4 0.971099 0.945975 0.902593 0.938104 3.16%

5 0.966954 0.937744 0.895094 0.927956 3.19%

6 0.990351 0.959357 0.836282 0.931881 7.23%

7 0.956951 0.927027 0.897288 0.928813 2.66%

8 0.938294 0.907438 0.893265 0.911338 1.84%

9 0.983752 0.928372 0.904847 0.936557 3.42%

10 0.995233 0.952833 0.894044 0.953569 4.30%

11 0.972879 0.923372 0.898509 0.934129 3.31%

12 0.946160 0.936331 0.929124 0.937168 0.66%

19, 20, 21, 22 and 23 and summarized in Table 24. Cases where infeasible solutions
were derived are marked in italic in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22 and 23. In Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22 and 23 the Best out of the optimum solution achieved through
the 20 independent optimization runs along with the corresponding Median, Worst,
Mean and the coefficient of variation (CoV ) that is considered a standardized measure
for the dispersion, are used for assessing the performance of each constraint handling
technique for specific test example. The techniques with the better performance in
each problem are summarized in Table 24.

5.1 Mathematical constrained optimization problems

The first mathematical COP is a 2D minimization problem originally introduced by
Deb (2000), which is formulated as follows:

Minimize f (x) =
(
x21 + x2 − 11

)2 +
(
x1 + x22 − 7

)2
,

subject to :
g1(x) = (x1 − 0.05)2 + (x2 − 2.5)2 − 4.84 ≤ 0,

g2(x) = 4.84 − x21 − (x2 − 2.5)2 ≤ 0,

0 ≤ x1, x2 ≤ 6. (15)

The reported objective function value in Deb (2000) is equal to 13.59658. The
results obtained using the PBA and the various CHTs are given in Table 3. The best
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Table 8 Best, median, worst, andmean objective function values and coefficient of variation obtained for the
various constraint handling techniques in optimization problem G4 (solutions denoted in italic correspond
to infeasible designs)

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 − 30,513.242 −
30,299.343

− 30,046.170 − 30,297.569 0.56%

2 − 30,407.490 −
30,195.412

− 30,099.417 − 30,229.828 0.38%

3 − 30,541.540 −
30,175.502

− 30,146.467 − 30,282.546 0.57%

4 − 30,266.240 −
30,144.791

− 30,014.593 − 30,155.414 0.33%

5 − 30,388.244 −
30,290.855

− 30,241.275 − 30,318.903 0.22%

6 − 31,504.913 −
29,339.393

− 28,762.364 − 29,846.753 4.02%

7 − 30,540.597 −
30,210.981

− 30,182.475 − 30,287.673 0.49%

8 − 30,421.757 −
30,242.244

− 30,153.785 − 30,270.515 0.34%

9 − 30,227.128 −
30,107.508

− 29,967.899 − 30,104.948 0.35%

10 − 30,371.951 −
30,304.734

− 30,190.117 − 30,288.479 0.23%

11 − 30,180.255 −
30,135.559

− 30,001.176 − 30,099.464 0.26%

12 − 30,295.772 −
30,136.911

− 30,123.318 − 30,185.524 0.25%

performance was achieved by AdPenalty, EconstOR, FeasRulesNEW4 and Econst-
NEW2 CHTs with an optimized objective function value lower than 13.60, while
EconstNEW2 achieved the lowest CoV value of 0.142%

Subsequently, consideration is given to 13 mathematical COPs labelled G1-G13,
originally introduced by Runarsson and Yao (2000). The problem specifications are
given in Table 4, where LE, LI, NE and NI respectively denote the number of Linear
Equality, Linear Inequality, Nonlinear Equality and Nonlinear Inequality constraint
functions. The results obtained using the PBA and the various CHTs are given in
Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17.

G1 is a 13-dimensional minimization problem with 9 constraint functions and
reference objective function value equal to − 15.0 (Runarsson and Yao 2000). The
respective results are given inTable 5.AllCHTsproducedoptimized objective function
values below − 14.0 and the highest performance was achieved by FeasRulesNEW4
with − 14.99. The lowest CoV value of 1.36% was achieved by EconstNEW4.

123



2280 N. D. Lagaros et al.

Table 9 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G5

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 5177.734 5346.547 5653.663 5397.877 4.04%

2 5215.865 5553.208 5658.655 5471.029 3.23%

3 5298.059 5561.201 5753.248 5550.329 3.26%

4 5179.488 5364.924 5599.945 5344.883 3.11%

5 5292.990 5320.135 5423.499 5344.439 0.98%

6 2108.137 5521.316 6139.343 5032.023 33.27%

7 5195.300 5512.515 5675.418 5482.298 3.42%

8 5140.124 5312.207 5723.401 5377.013 4.69%

9 5368.789 5469.188 5693.304 5534.914 2.66%

10 5192.350 5358.056 5698.489 5417.474 3.94%

11 5127.392 5331.650 5378.559 5290.603 2.01%

12 5237.019 5506.964 5724.377 5447.294 3.71%

Table 10 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G6

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 − 6790.586 − 6358.391 − 6159.697 − 6382.404 3.85%

2 − 6912.992 − 6420.708 − 4858.393 − 6208.230 12.81%

3 − 6412.182 − 5862.079 − 4240.101 − 5414.184 19.34%

4 − 6667.991 − 5914.872 − 5558.692 − 6139.985 8.09%

5 − 6816.872 − 6499.084 − 4567.834 − 5834.570 18.36%

6 − 6537.467 − 6071.105 4710.211 − 4027.661 121.41%

7 − 6365.516 − 4712.400 − 2944.879 − 4773.019 31.70%

8 − 6479.756 − 4986.613 − 2863.977 − 5021.442 30.21%

9 − 6597.254 − 6397.199 − 3558.333 − 5837.619 21.95%

10 − 6829.290 − 6304.736 − 6217.506 − 6377.708 4.01%

11 − 6711.243 − 6306.255 − 4203.241 − 5631.175 21.73%

12 − 6803.016 − 6669.477 − 4679.405 − 6312.298 14.49%
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Table 11 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G7

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 24.335 25.473 26.848 25.749 4.23%

2 24.774 25.902 26.680 25.688 2.89%

3 24.859 25.672 26.537 25.743 2.94%

4 24.718 26.237 26.756 25.836 3.35%

5 24.524 25.053 26.408 25.180 2.91%

6 26.730 28.032 29.099 27.934 3.63%

7 25.164 26.364 26.575 26.119 2.16%

8 24.355 26.187 27.308 25.917 4.77%

9 25.156 26.379 26.790 26.263 2.53%

10 24.395 25.960 26.959 25.911 3.65%

11 24.876 26.201 27.273 26.160 4.08%

12 24.559 25.396 25.908 25.377 2.03%

Table 12 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G8

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.094446 0.082134 0.079666 0.084812 7.06%

2 0.090791 0.086852 0.061727 0.082233 14.69%

3 0.095308 0.092914 0.078204 0.090294 7.73%

4 0.095792 0.095702 0.095505 0.095648 0.13%

5 0.088702 0.077539 0.064085 0.078165 11.86%

6 0.092216 0.081623 0.079876 0.085110 6.68%

7 0.093141 0.092203 0.084332 0.089818 4.61%

8 0.088445 0.084444 0.076421 0.082722 6.64%

9 0.094060 0.084896 0.083960 0.087940 5.59%

10 0.090096 0.075877 0.074068 0.080064 9.32%

11 0.091973 0.091749 0.081898 0.088652 5.18%

12 0.095506 0.088928 0.064165 0.083105 15.59%
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Table 13 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G9

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 897.707 920.974 1159.158 963.366 11.41%

2 1000.375 1191.478 1194.215 1136.127 7.51%

3 872.839 891.833 1196.815 952.178 14.49%

4 894.120 899.778 921.734 906.594 1.50%

5 923.739 981.411 1158.647 1000.063 9.19%

6 740.834 758.508 1282.632 914.006 26.54%

7 955.942 1002.580 1045.615 995.212 3.85%

8 738.137 1399.981 1549.860 1199.989 32.32%

9 1155.802 1190.193 1470.834 1279.561 11.75%

10 862.965 1092.886 1187.899 1060.987 13.29%

11 807.131 899.927 1145.067 944.924 13.67%

12 743.261 941.784 1188.560 949.794 21.50%

Table 14 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G10

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 7201.763 7638.056 7864.345 7560.307 3.32%

2 7375.896 7604.305 7833.286 7580.116 2.27%

3 7144.402 7149.005 7459.088 7268.024 2.29%

4 7104.735 7607.826 7876.609 7555.498 4.50%

5 7058.463 7714.851 7886.231 7528.165 4.96%

6 8037.758 12,483.940 16,783.772 12,038.132 32.67%

7 7705.551 7858.799 7914.563 7839.422 1.07%

8 7080.111 7207.520 7772.763 7292.102 3.88%

9 7341.473 7558.836 7802.294 7591.445 2.39%

10 7209.965 7419.512 7615.370 7406.549 2.34%

11 7230.334 7614.661 7879.947 7556.595 3.87%

12 7197.730 7391.895 7818.409 7494.428 3.43%
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Table 15 Best, median, worst, and mean objective function values and coefficient of variation obtained
for the various constraint handling techniques in optimization problem G11 (solutions denoted in italic
correspond to infeasible designs)

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.765 0.843 1.000 0.875 13.53%

2 0.763 0.829 0.932 0.831 8.35%

3 0.753 0.759 0.806 0.774 3.11%

4 0.750 0.804 0.924 0.816 9.03%

5 0.751 0.780 0.818 0.783 3.76%

6 0.645 0.781 1.430 0.887 36.05%

7 0.752 0.763 0.997 0.809 13.05%

8 0.775 0.812 0.998 0.845 10.41%

9 0.766 0.800 0.837 0.802 3.48%

10 0.750 0.764 0.836 0.785 4.75%

11 0.761 0.827 0.989 0.870 12.65%

12 0.756 0.794 1.000 0.863 14.06%

Table 16 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G12

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 1.00000 1.00002 1.00005 1.00002 0.00%

2 1.00006 1.00012 1.00014 1.00011 0.00%

3 1.00000 1.00000 1.00005 1.00002 0.00%

4 1.00000 1.00002 1.00011 1.00004 0.00%

5 1.00005 1.00006 1.00013 1.00008 0.00%

6 1.00614 1.02384 1.04917 1.02770 1.75%

7 1.00003 1.00624 1.00726 1.00399 0.36%

8 1.00003 1.00010 1.00045 1.00018 0.02%

9 1.00001 1.00008 1.00022 1.00008 0.01%

10 1.00000 1.00004 1.00022 1.00009 0.01%

11 1.00008 1.00031 1.00778 1.00173 0.34%

12 1.00001 1.00009 1.00054 1.00022 0.02%
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Table 17 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in optimization problem G13

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.05403 0.05551 0.05906 0.05571 3.57%

2 0.05484 0.05539 0.06006 0.05630 3.79%

3 0.05460 0.05808 0.05923 0.05733 3.26%

4 0.05541 0.05603 0.05861 0.05639 2.30%

5 0.05402 0.05635 0.05891 0.05667 3.62%

6 0.05804 0.06149 0.06396 0.06141 3.50%

7 0.05458 0.05793 0.06044 0.05795 3.79%

8 0.05569 0.05708 0.05992 0.05758 3.19%

9 0.05454 0.05936 0.05986 0.05832 3.72%

10 0.05534 0.05632 0.05792 0.05663 1.78%

11 0.05462 0.05572 0.05796 0.05587 2.34%

12 0.05400 0.05499 0.05917 0.05622 4.36%

Table 18 Best, median, worst, and mean objective function values and coefficient of variation obtained
for the various constraint handling techniques in the welded beam design optimization problem (solutions
denoted in italic correspond to infeasible designs)

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 1.819183 1.877287 2.080079 1.896935 5.61%

2 1.783706 1.805245 1.867979 1.817916 2.05%

3 1.821214 1.832601 1.886860 1.845314 1.47%

4 1.783271 1.812088 1.846900 1.814719 1.33%

5 1.768195 1.843518 1.896582 1.841706 2.58%

6 0.789035 1.733331 2.624647 1.741458 42.68%

7 1.758677 1.776146 1.859217 1.795085 2.41%

8 2.693128 3.282202 3.874547 3.329804 14.90%

9 1.734493 1.897411 2.249491 1.946973 9.68%

10 1.802315 1.816971 1.865189 1.827903 1.35%

11 1.729478 1.780118 2.473322 1.909538 16.55%

12 1.751654 1.799929 2.155062 1.876898 8.93%
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Table 19 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in the pressure vessel design optimization problem

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean
solution

CoV(%)

1 6368.00 6810.20 7618.46 6950.99 8.13%

2 5987.72 6363.00 6488.27 6312.30 3.16%

3 5767.50 6311.44 6913.15 6269.59 6.84%

4 6017.10 6165.67 7100.19 6398.22 7.25%

5 6259.06 6509.27 7578.77 6679.68 7.79%

6 5951.17 6378.09 6731.42 6413.13 4.86%

7 6022.30 6546.09 6991.38 6560.92 5.56%

8 5964.41 6250.48 7222.21 6458.31 7.92%

9 6299.75 10,956.91 12,655.53 9578.73 30.70%

10 6681.82 6733.53 9823.63 7586.19 18.09%

11 5901.23 6484.85 8905.69 6840.02 17.55%

12 5953.96 6869.58 9691.62 7122.72 21.33%

Table 20 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in the tension–compression string design optimization problem

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 0.0127465 0.0132460 0.0134696 0.0131711 2.47%

2 0.0126911 0.0135908 0.0142398 0.0135285 4.21%

3 0.0127114 0.0129065 0.0140891 0.0132040 4.59%

4 0.0130122 0.0132534 0.0140961 0.0134624 3.31%

5 0.0129895 0.0133000 0.0141234 0.0135039 4.09%

6 0.0129869 0.0132778 0.0146449 0.0136458 5.23%

7 0.0130214 0.0138538 0.0141068 0.0137407 3.08%

8 0.0128321 0.0133278 0.0141465 0.0134180 3.55%

9 0.0129781 0.0132390 0.0136484 0.0132572 1.91%

10 0.0129213 0.0133623 0.0140796 0.0134175 3.65%

11 0.0127440 0.0134109 0.0137481 0.0132890 2.88%

12 0.0132850 0.0136333 0.0138492 0.0136283 1.69%
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Table 21 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in the 2D 10-bar truss design optimization problem (solutions
denoted in italic correspond to infeasible designs)

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 5402.606 5645.476 5826.191 5626.784 2.69%

2 5442.038 5723.340 5766.712 5643.266 2.62%

3 5293.971 5579.619 6289.305 5701.531 6.87%

4 5619.414 5986.972 6137.717 5883.129 4.05%

5 5674.229 5879.283 6048.491 5875.668 2.27%

6 2275.305 3854.001 5895.347 3829.106 37.97%

7 5324.794 5714.612 5886.631 5639.842 3.84%

8 5527.953 5721.189 5878.250 5738.699 2.44%

9 5440.772 5610.494 5861.193 5613.476 2.92%

10 5437.570 5688.695 5963.976 5658.574 3.63%

11 5458.437 5689.077 5896.616 5659.801 3.01%

12 5385.125 5512.638 6068.430 5594.182 4.90%

Table 22 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in the 3D 25-bar truss design optimization problem (solutions
denoted in italic correspond to infeasible designs)

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 558.305 565.372 576.959 566.204 1.30%

2 555.235 566.208 576.083 565.685 1.54%

3 557.540 567.227 571.198 564.360 1.09%

4 570.237 575.056 591.023 578.260 1.49%

5 557.583 577.849 586.473 573.751 1.94%

6 240.610 264.651 597.525 387.299 46.66%

7 563.104 569.576 577.552 570.890 0.98%

8 566.151 575.179 584.689 574.374 1.34%

9 559.576 566.308 573.174 566.697 0.89%

10 560.904 572.653 576.329 569.545 1.13%

11 557.275 565.446 576.859 566.122 1.33%

12 555.043 561.412 566.625 562.013 0.82%

123



Constraint handling techniques for metaheuristics: a state-of-the-art… 2287

Table 23 Best, median, worst, and mean objective function values and coefficient of variation obtained for
the various constraint handling techniques in the 3D 72-bar truss design optimization problem

Constraint
handling
technique

Best solution Median
solution

Worst solution Mean solution CoV(%)

1 403.107 411.682 429.065 414.864 2.47%

2 401.547 423.876 434.365 422.422 2.97%

3 419.607 424.087 425.538 423.308 0.54%

4 445.125 452.496 464.080 454.607 1.86%

5 409.065 435.853 439.018 429.530 2.97%

6 512.596 691.042 832.441 673.067 17.18%

7 399.669 422.896 438.794 419.232 3.65%

8 400.619 415.966 431.441 415.780 2.83%

9 400.818 417.094 435.493 418.635 3.05%

10 398.509 406.776 416.210 407.859 1.78%

11 402.448 420.500 448.062 422.559 3.89%

12 411.693 418.010 425.763 418.154 1.31%

G2 is a 20-dimensional maximization problem with 2 constraint functions and
reference objective function value equal to 803,619 (Runarsson and Yao 2000). The
respective results are given in Table 6. Almost half of the CHTs produced optimized
objective function values greater than 0.75 and the highest performance was achieved
by EconstNEW2 with 0.7992425. The lowest CoV value of 1.74% was achieved by
StochRanking.

G3 is a 20-dimensional maximization problemwith 1 constraint function and refer-
ence objective function value equal to 1.0 (Runarsson and Yao 2000). The respective
results are given in Table 7. Almost all CHTs produced optimized objective function
values greater than 0.95 and the highest performance was achieved by EconstNEW2
with 0.995233. The lowest CoV value of 0.66% was achieved by EconstNEW4.

G4 is a 5-dimensional minimization problem with 6 constraint functions and refer-
ence objective function value equal to − 30,665.539 (Runarsson and Yao 2000). The
respective results are given in Table 8. Almost all CHTs produced optimized objec-
tive function values lower than − 30,000 and the highest performance was achieved
by AdPenalty with − 30,541.540. Nearly all techniques achieved CoV values less
than 1.0%, with the lowest corresponding to EconstNEW1, StochRanking failed to
converge.

G5 is a 4-dimensional minimization problem with 5 constraint functions and ref-
erence objective function value equal to 5126.4981 (Runarsson and Yao 2000). The
respective results are given in Table 9. Almost all CHTs produced optimized objective
function values lower than 5300 and the highest performance was achieved by Econst-
NEW3with 5127.392. The lowest CoV value of 0.98%was achieved by EconstNEW1.

G6 is a 2-dimensional minimization problem with 2 constraint functions and refer-
ence objective function value equal to − 6961.81388 (Runarsson and Yao 2000). The
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Table 24 Synopsis of best-performing constraint handling techniques in numerical examples

Numerical example Objective function value CoV(%)

Deb AdPenalty, EconstOR,
FeasRulesNEW4, EconstNEW2

EconstNEW2

G1 FeasRulesNEW4 EconstNEW4

G2 EconstNEW2 StochRanking

G3 EconstNEW2 EconstNEW4

G4 AdPenalty EconstNEW1
(almost all less
than 1%)

G5 EconstNEW3 EconstNEW1

G6 FeasRulesNEW1 FeasRulesOR,
EconstNEW2

G7 FeasRulesOR EconstNEW4
(almost all less
than 4%)

G8 EconstOR EconstOR

G9 FeasRulesNEW3 EconstOR

G10 EconstNEW1 FeasRulesNEW2

G11 AdPenalty, EconstOR, EconstNEW1,
FeasRulesNEW2, EconstNEW2,
EconstNEW4

AdPenalty

G12 Almost all Almost all

G13 FeasRulesOR, EconstNEW1,
EconstNEW4

EconstNEW2

Welded beam design EconstNEW3 AdPenalty,
EconstOR,
EconstNEW2

Pressure vessel design FeasRulesNEW1, AdPenalty,
StochRanking, FeasRulesNEW3,
EconstNEW3, EconstNEW4

FeasRulesNEW1

Tension–compression string design FeasRulesNEW1 FeasRulesNEW4,
EconstNEW4

10-bar truss design AdPenalty FeasRulesOR,
FeasRulesNEW1,
EconstNEW1,
FeasRulesNEW3,
FeasRulesNEW4

25-bar truss design FeasRulesOR, FeasRulesNEW1,
AdPenalty, EconstNEW1,
FeasRulesNEW4, EconstNEW3,
EconstNEW4

FeasRulesNEW2,
FeasRulesNEW4,
EconstNEW4

72-bar truss design FeasRulesNEW2, EconstNEW2 AdPenalty
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respective results are given in Table 10. Almost half CHTs produced optimized objec-
tive function values lower than − 6700 and the highest performance was achieved by
FeasRulesNEW1 with − 6912.992. The lowest CoV values of 3.85% and 4.01% were
respectively achieved by FeasRulesOR and EconstNEW2.

G7 is a 10-dimensional minimization problem with 8 constraint functions and ref-
erence objective function value equal to 24.3062091 (Runarsson and Yao 2000). The
respective results are given in Table 11.Almost all CHTs produced optimized objective
function values lower than 25 and the highest performance was achieved by FeasRule-
sOR with 24.335. Nearly all techniques achieved CoV values less than 4.0%; the
lowest CoV values of 2.03% and 2.16% were respectively achieved by EconstNEW4
and FeasRulesNEW2.

G8 is a 2-dimensional maximization problem with 2 constraint functions and ref-
erence objective function value equal to 0.095825 (Runarsson and Yao 2000). The
respective results are given in Table 12. Almost all CHTs produced optimized objec-
tive function values greater than 0.090 and the highest performance was achieved
by EconstOR with 24.335. The lowest CoV values of 0.13% was also achieved by
EconstOR.

G9 is a 7-dimensional minimization problem with 4 constraint functions and ref-
erence objective function value equal to 680.6300573 (Runarsson and Yao 2000).
The respective results are given in Table 13. Almost all CHTs produced optimized
objective function values greater than 750 and the highest performance was achieved
by FeasRulesNEW3 with 738.137. The lowest CoV value of 1.50% was achieved by
EconstOR.

G10 is a 8-dimensional minimization problem with 6 constraint functions and
reference objective function value equal to 7049.3307 (Runarsson and Yao 2000).
The respective results are given in Table 14. Almost all CHTs produced optimized
objective function values lower than 7400 and the highest performance was achieved
by EconstNEW1 with 7058.463. The lowest CoV value of 1.07% was achieved by
FeasRulesNEW2.

G11 is a 2-dimensional minimization problemwith 1 constraint functions and refer-
ence objective function value equal to 0.75 (Runarsson and Yao 2000). The respective
results are given in Table 15. Almost all CHTs produced optimized objective func-
tion values lower than 0.78 and the highest performance was achieved by AdPenalty,
EconstOR, EconstNEW1, FeasRulesNEW2, EconstNEW2 and EconstNEW4 with val-
ues very close to 0.75. The lowest CoV value of 3.11% was achieved by AdPenalty.
StochRanking failed to converge.

G12 is a 3-dimensional minimization problem with 729 constraint functions and
reference objective function value equal to 1 (Runarsson andYao 2000). The respective
results are given inTable 16.AllCHTsproduced the reference objective function value,
with most of them being associated with an extremely low CoV below 0.02%.

G13 is a 5-dimensional minimization problemwith 3 constraint functions and refer-
ence objective function value equal to 0.0539498 (Runarsson andYao 2000). All CHTs
produced optimized objective function values lower than 0.056 and the highest per-
formance was achieved by FeasRulesOR, EconstNEW1 and EconstNEW4 with values
very close to 0.054. The lowest CoV value of 1.78% was achieved by EconstNEW2.
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5.2 Engineering constrained optimization problems

5.2.1 Welded beam design

This COP concerns the optimal design of a welded beam via minimization of the
fabrication cost, which depends on four design variables: weld thickness x1, weld
length x2, beam height x3, and beam width x4. The problem is formulated as follows:

Minimize f (x) = 1.10471x21 x2 + 0.04811x3x4(14.0 + x2),

subject :
g1(x) = τ(x) − τmax ≤ 0,

g2(x) = σ(x) − σmax ≤ 0,

g3(x) = x1 − x4 ≤ 0,

g4(x) = 0.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0,

g5(x) = 0.125 − x1 ≤ 0,

g6(x) = δ(x) − δmax ≤ 0,

g7(x) = P − Pc(x) ≤ 0, (16)

where τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2, τ ′ = P√

2x1x2
, τ ′′ = MR

J , M =
P

(
L + x2

2

)
, R =

√
x22+(x1+x3)2

4 , J = 2

{√
2x1x2

[
x22
12 + (x1+x3)2

4

]}
, σ (x) = 6PL

x4x23
,

δ(x) = 4PL3

Ex33 x4
, Pc(x) = 4.013E

√
x23 x

6
4

6L2

(
1 − x3

2L

√
E
4G

)
.

Identical parameters with (Tsipianitis and Tsompanakis 2020) are adopted, with
P = 6000 lb, L = 14 ∈, E = 30 × 106 psi,G = 12 × 106 psi, τmax = 13600 psi,
σmax = 30000 psi, δmax = 0.25 ∈. The reference objective function value is equal to
1.72485084 lb. The results obtained using the PBA and the various CHTs are given
in Table 18, where evidently the best solution was achieved by EconstNEW3, with an
objective function value lower of 1.729478, and the lowest CoV by AdPenalty, Econ-
stOR and EconstNEW2, with values below 2%. It should be noted that StochRanking
failed to converge to a feasible design solution.

5.2.2 Pressure vessel design

This COP concerns the optimal design of a cylindrical vessel with semispherical
heads at its two ends via minimization of the vessel weight, which depends on four
design variables: cylindrical vessel thickness x1, semispherical head thickness x2, and
cylindrical vessel inner and outer radii x3 and x4, respectively. The problem can be
formulated as follows:

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21 x4 + 19.84x21 x3,

subject
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g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx23 x4 − 4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0. (17)

Identical parameters with (Tsipianitis and Tsompanakis 2020) are adopted. The
reference cost objective function value is equal to 5885.3328 lb (Tsipianitis and Tsom-
panakis 2020). The results obtained using the PBA and the various CHTs are given
in Table 19. FeasRulesNEW1, AdPenalty, StochRanking, FeasRulesNEW3, Econst-
NEW3 and EconstNEW4 produced solutions lower than 6000 lb, where the highest
performance attained by AdPenalty with a value of 5767.50. The lowest CoV value of
3.16% was achieved by FeasRulesNEW1.

5.2.3 Tension–compression string design problem

This numerical example concerns the weight minimization of a tension–compression
string, which depends on three design variables: string diameter x1, mean coil diameter
x2, and coil number x3. The COP is formulated as follows:

Minimize f (x) = (x3 + 2)x2x
2
1 ,

subject

g1(x) = 1 − x32 x3
71785x41

≤ 0,

g2(x) = 4x22 − x1x2
12566

(
x2x31 − x41

) + 1

5108x21
− 1 ≤ 0,

g3(x) = 1 − 140.45x1
x22 x3

≤ 0,

g4(x) = x2 + x1
1.5

− 1 ≤ 0. (18)

Identical parameters with (Tsipianitis and Tsompanakis 2020) are adopted. The
reference objective function value is equal to 0.012665 lb. The results obtained using
the PBA and the various CHTs are given in Table 20. Almost all CHTs lead to weight
objective function values less than 0.013 lb, with the lowest value of 0.0126911 lb
achieved by FeasRulesNEW1, while CoV values less than 2.0% were achieved by
FeasRulesNEW4 and EconstNEW4.

5.2.4 2D and 3D truss design

Three sizing COPs previously investigated in Farshi and Alinia-ziazi (2010) are exam-
ined herein, concerned with the optimal structural design in respect of weight of the
2D 10-bar, 3D 25-bar and 3D 72-bar steel truss structures shown in Figs. 1, 2 and 3.
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Fig. 1 Geometric, boundary condition, material and loading specifications for 2D 10-bar truss constrained
optimization problem

The design variables are the cross-sectional areas of individual structural elements or
element groups.

For the 2D 10-bar truss problem shown in Fig. 1 an independent design variable is
employed for each bar, continuously defined in the interval [0.1, 33.5] in2. The COP
is formulated with 28 constraint functions, which impose: (i) tensile and compressive
stress limits of 25 ksi for each bar; and (ii) horizontal and vertical displacement limits
of 2.0 at each unrestrained node. More details on the problem formulation can be
found in Farshi and Alinia-ziazi (2010).

The reference structural weight objective function value found in the literature is
equal to 5057.88 lb (Farshi and Alinia-ziazi 2010). The results obtained using the
PBA and the various CHTs are given in Table 21. Evidently, most CHTs achieved
objective function values less than 5500 lb, with AdPenalty achieving the best solution
of 5293.971 lb. FeasRulesOR, FeasRulesNEW1, EconstNEW1, FeasRulesNEW3 and
FeasRulesNEW4 achieved the lowest CoV, with values below 3.0%. StochRanking
failed to converge to a feasible design.

For the 3D 25-bar truss problem shown in Fig. 2a–d, the structural elements are
allocated to 8 groups, each corresponding to a design variable continuously defined in
in the interval [0.01, 3.4] in2. The CPO is formulated with 110 constraint functions,
which impose: (i) a tensile stress limit of 35 ksi and a compressive stress limit in
accordance with the AISC code; and (ii) a limit of 0.35 on the absolute value of the
displacement components of each unrestrained node. More details on the problem
formulation can be found in Farshi and Alinia-ziazi (2010).

123



Constraint handling techniques for metaheuristics: a state-of-the-art… 2293

Fig. 2 Geometric, boundary condition, material and loading specifications for 3D 25-bar truss constrained
optimization problem: a perspective view; b elevation on X–Z plane; c elevation on Y–Z plane; and d plan
view on X–Y plane

The reference structural weight objective function value found in the literature is
equal to 545.175 lb (Farshi and Alinia-ziazi 2010). The results obtained using the PBA
and the various CHTs are given in Table 22. Evidently, most CHTs achieved objective
function values less than 560 lb. FeasRulesNEW2, FeasRulesNEW4 and EconstNEW4
achieved the lowest CoV, with values below 1.0%. StochRanking failed to converge
to a feasible design.

For the 72-bar truss problem shown in Fig. 3a–d, the structural elements are allo-
cated to 16 groups, each corresponding to a design variable continuously defined in
the interval [0.1, 3.0] in2. The CPO is formulated with 264 constraint functions which
impose: (i) tensile and compressive stress limits of 25 ksi for each bar; and (ii) a limit
of 0.35 on the absolute value of the displacement components of each unrestrained
node. More details on the problem formulation can be found in Farshi and Alinia-ziazi
(2010). The results obtained using the PBA and the various CHTs are given in Table
22.
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(a) (b)

(d)(c)

Fig. 3 Geometric, boundary condition, material and loading specifications for 3D 72-bar truss constrained
optimization problem: a perspective view; b elevation on X–Z plane; c elevation on Y–Z plane; and d plan
view on X–Y plane
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The reference structural weight objective function value found in the literature
is equal to 379.66 lb (Farshi and Alinia-ziazi 2010). The results obtained using the
PBA and the various CHTs are given in Table 23. FeasRulesNEW2 and EconstNEW2
achieved objective function values less than 400 lb. AdPenalty achieved the lowest
CoV of 0.54%.

5.3 Discussion

Evidently, the novel CHT variants overall outperform the original ones in most COPs,
in respect of both objective function values and CoV. This is attributed to their
novel feature of performing individual comparisons based not only upon the objective
function value, but also the level of constraint violation and the number of violated
constraints. At this point it must be mentioned that the derived conclusions concern
the 20 numerical examples examined herein and the specific PBA and CHT variant
implementation and can thus not be generalized.

6 Conclusions

This paper presents a comprehensive state-of-the-art review on almost 60 existing
CHT variants that can be implemented in MOAs to solve single-objective COPs.
Furthermore, eight new variants of the well-known feasibility rules and ε-constrained
CHTs are proposed. The distinctive feature of the proposed variants compared to the
original ones is that necessary comparisons between individuals depend not only on the
objective function value, but also on the level of constraint violation and the number of
violated constraint functions. The proposed variants were successfully implemented in
the metaheuristic PBA (Kallioras et al. 2018), within HP-OCP, and their performance
was evaluated and compared to that of thewell-known adaptive penalty (Kawachi et al.
2019), original feasibility rules (Deb 2000), improved ε-constrained (Fan et al. 2018)
and original stochastic ranking (Runarsson and Yao 2000) variants, based upon 20
single-objective benchmark mathematical and engineering COPs. The results clearly
demonstrate the performance superiority of the proposed novel variants in comparison
with the existing ones in most COPs, in respect of both objective function values and
CoV values. This highlights the effectiveness and versatility of the proposed approach
that considers the level and number of constraint violations for selecting individuals.
Concluding, it is important to emphasize that there is no unique constraint handling
technique that consistently performs best in any type of problem.
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