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Abstract
We present a robust approximation of joint chance constrained DC optimal power 
flow in combination with a model-based prediction of uncertain power supply via 
R-vine copulas. It is applied to optimize the discrete curtailment of solar feed-in 
in an electrical distribution network and guarantees network stability under fluc-
tuating feed-in. This is modeled by a two-stage mixed-integer stochastic optimiza-
tion problem proposed by Aigner et al. (Eur J Oper Res (2022) https://​doi.​org/​10.​
1016/j.​ejor.​2021.​10.​051). The solution approach is based on the approximation of 
chance constraints via robust constraints using suitable uncertainty sets. The result-
ing robust optimization problem has a known equivalent tractable reformulation. To 
compute uncertainty sets that lead to an inner approximation of the stochastic prob-
lem, an R-vine copula model is fitted to the distribution of the multi-dimensional 
power forecast error, i.e., the difference between the forecasted solar power and the 
measured feed-in at several network nodes. The uncertainty sets are determined by 
encompassing a sufficient number of samples drawn from the R-vine copula model. 
Furthermore, an enhanced algorithm is proposed to fit R-vine copulas which can be 
used to draw conditional samples for given solar radiation forecasts. The experimen-
tal results obtained for real-world weather and network data demonstrate the effec-
tiveness of the combination of stochastic programming and model-based prediction 
of uncertainty via copulas. We improve the outcomes of previous work by showing 
that the resulting uncertainty sets are much smaller and lead to less conservative 
solutions while maintaining the same probabilistic guarantees.
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1  Introduction

The proportion of renewable energy, such as solar and wind energy, in electri-
cal distribution networks is constantly increasing. Due to these difficult to predict 
and highly fluctuating energy sources, the operational management of electrical 
networks becomes very challenging. Transmission system operators (TSO) have 
to control the feed-in and the power distribution in the network and have to meet 
safety requirements at the same time. If the network risks a system overload, the 
feed-in from renewables must be curtailed. However, the curtailed energy has 
to be minimized for financial and ecological reasons. Therefore, there is a high 
demand for the combination of advanced forecasting and optimization models. In 
this work, we show how these models can be applied and combined for the opti-
mal curtailment of solar feed-in in an electrical distribution network.

The predominantly used model and optimizing the production and distribution 
of power in an electrical network is the Optimal Power Flow (OPF) model. In 
its classic version this is a non-linear non-convex optimization problem which 
is hard to solve and was originally introduced in Carpentier (1962). For a broad 
overview of the literature on OPF, we refer to Frank et  al. (2012a) and Frank 
et  al. (2012b). Due to the computational difficulty of the OPF problem, there 
are some approximation approaches in the literature. One of the most frequently 
used approximations is the DC Optimal Power Flow (DC OPF), see Christie et al. 
(2000). It results in a power flow model including only linear constraints and can 
be solved efficiently with standard software. For the optimization of power grids 
under uncertainty the DC OPF model is also used in this work.

In applications to power grids, it is important to ensure that there is a suf-
ficiently high probability (chosen beforehand) that all safety constraints like 
transmission limits are satisfied. This can be modeled with a two-stage stochas-
tic optimization model incorporating joint chance constraints that enforce the 
simultaneous satisfaction of several constraints with a predefined probability. In 
the first stage, the nominal network operating solution, including generator out-
put, (discrete) curtailment, power flows and voltage angles, is decided before the 
realization of uncertainty is revealed (here-and-now). After the uncertain param-
eters manifest themselves, the two-stage variables react to them. In the second 
stage, the network response to fluctuation ensures that there is a high probability 
of transmission limits being maintained. From a practical perspective, protection 
through probabilistic constraints is suitable because short-term overloads in the 
electrical network are acceptable. In the event of larger or longer lasting over-
loads, countermeasures will need to be taken, where a TSO will need to (re-)
optimize interventions in order to stabilize the network. In our model, curtailment 
limits the output of renewable power production to a specific percentage propor-
tion of the installed power.

We approximate the probabilistic constraints in the optimization problem using 
robust constraints within a robust safe approximation, see Nemirovski (2012). By 
a suitable choice of the uncertainty set we can ensure that all robust feasible solu-
tions are also feasible for the stochastic optimization problem. The constraints of 



1953

1 3

Robust DC optimal power flow with modeling of solar power supply…

the robust approximation thus lead to sufficient conditions for the chance con-
straints being satisfied. In particular, we use a mixed-integer linear reformula-
tion for the approximation introduced in Aigner et al. (2021). Hence, by solving 
only one mixed integer optimization model to global optimality, a robust solution 
is computed that is feasible for the chance constrained problem. The respective 
uncertainty sets are computed with the procedure proposed in Margellos et  al. 
(2014) based on the scenario approach (see Calafiore and Campi (2005)) of sto-
chastic optimization, which uses samples from a suitably chosen probability dis-
tribution. The present paper proposes several enhancements of our previous work, 
which consist in the utilization of R-vine copulas (see e.g. Joe (2015)), a flexible 
parametric model to construct multivariate probability densities by decomposing 
them into several bivariate conditional (and univariate) densities to fit distribu-
tions to available data. Note that R-vine copulas contain the family of D-vine cop-
ulas as special case, which we used so far to model data from meteorology and 
solar power supply, see Schinke-Nendza et al. (2021); von Loeper et al. (2021). 
From the fitted R-vine copula model we draw samples in order to obtain the 
uncertainty sets with the help of the scenario approach mentioned above. Then, 
in a second step, we modify the R-vine copula model such that we can draw sam-
ples from conditional distributions. This allows us to determine uncertainty sets 
depending on weather forecasts provided by DWD (German Meteorological Ser-
vice) which are significantly smaller and lead to a drastic reduction of conserva-
tism and less costly curtailment with same probabilistic guarantees.

There are many research activities regarding OPF under uncertainty. The goal is 
to determine an optimal network configuration that remains feasible under uncer-
tainty where the approach considered in this paper uses methods and models from 
stochastic and robust optimization. We refer to Ben-Tal et  al. (2009) and Prékopa 
(1995) for a broad overview of these two paradigms regarding optimization under 
uncertainty. Note that due to the non-convexity of the nominal AC OPF, only solu-
tions that are approximately protected against uncertainty can be computed as 
in  (Dall’Anese et  al. 2017; Roald and Andersson 2018; Zhang and Li 2011) with 
robust or probabilistic constraints.

Essential for an algorithmically tractable treatment of uncertainty in optimiza-
tion problems is the possibility to solve the underlying deterministic problems (with-
out uncertainty) efficiently. This is why the linear DC OPF model is suitable and of 
great interest. Such uncertain optimization problems are usually solved by reformu-
lating them under specific assumptions on the underlying probability distribution or 
by using approximation techniques from stochastic programming. Most chance con-
strained OPF problems considered in the literature have separate chance constraints 
for each engineering limit, including both generation and transmission limits. For 
example, the authors of Bienstock et al. (2014); Lubin et al. (2016) focus on OPF 
with individual probabilistic constraints under Gaussian distributions. Uncertainty 
probabilities for specific classes of probability distributions are considered robustly 
in Roald et al. (2015); Xie and Ahmed (2018). Furthermore, there is a limited num-
ber of papers that deal with joint chance constraints OPF models. They allow much 
stronger system security guarantees, but are much harder to solve, see Geng and Xie 
(2019). Most common solution methods are based on the Boolean or Bonferroni 
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approximation (see e.g. Jia et al. (2021)) and on scenario approximations (see e.g. 
Peña-Ordieres et al. (2021)).

In addition, the curtailment of renewable power is used in practice to reduce the 
feed-in of renewable energy sources, maintaining network stability and avoiding 
overloads of transmission lines. The curtailment of uncertain feed-in from renew-
ables has also been considered in several OPF models. Examples can be found 
in  (Aigner et al. 2021; Roald et al. 2016; Qiu and Wang 2014; Wang et al. 2011; 
Dall’Anese et al. 2017). Note that there are two principal types of curtailment strate-
gies, which are usually modeled by additional discrete or continuous decision varia-
bles or fixed parameters. The first and more common type of curtailment uses output 
capacities, which restrict the maximum possible power input. This limit cannot be 
exceeded and any potential power production above the limit is cut off. The second 
type of curtailment reduces the produced energy by a fixed value regardless of how 
high the feed-in amount is. Chance constraints in combination with curtailment are 
usually tackled by sampling techniques from stochastic optimization already men-
tioned above. In the present paper we use discrete curtailment levels as it is common 
practice in many industrial applications and set by law in Germany.

To construct parametric models for multivariate distributions, vine copulas 
are a versatile tool which has been used in the literature for similar problems. For 
example, in Guo et al. (2021); Khuntia et al. (2019); Xiao et al. (2020), copulas are 
applied for dependency modeling of wind power in conjunction with OPF. Further-
more, in Xu et al. (2021), Gaussian copulas are used to determine uncertainty sets 
for an OPF problem with chance constraints.

The main contribution of the present paper is an extension of the safe approxi-
mation of the joint chance constrained DC OPF model introduced in Aigner et al. 
(2021), by combining it with a model-based prediction of solar power supply via 
copulas. Furthermore, additional information gained from weather data can be inte-
grated into the copula approach and thus conditional distributions of solar power 
supply can be modeled. However, with regard to conditional sampling, vine copulas 
have some restrictions as described in Cooke et al. (2015), i.e., when drawing condi-
tional samples from a given vine copula model, only some components of the under-
lying vector data can be taken into account in the conditioning set. To resolve this 
issue, various algorithms for conditional sampling from D- and C-vine copulas have 
been considered in the literature, see Bevacqua et al. (2017). In the present paper we 
propose a modification of the fitting procedure for the more general class of R-vine 
copulas. This modification allows us to obtain a suitable R-vine copula for any set 
of components on which we want to condition. To the best of our knowledge, this 
modification has not yet been considered before.

This rest of this paper is structured as follows. Section 2 recalls the joint chance 
constrained DC OPF model considered in Aigner et  al. (2021), together with its 
robust approximation using box uncertainty sets. Then, in Sect. 3, the modeling of 
the underlying multivariate probability distribution with the help of R-vine copulas 
is introduced, where suitable uncertainty sets are constructed via the novel combina-
tion of the scenario approach and the fitted R-vine copulas. The numerical results 
of case studies based on real-world data for the distribution network of N-ENER-
GIE GmbH are presented in Sect.  4. They demonstrate the benefit of combining 
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stochastic programming with a model-based prediction of uncertainty via copulas. 
The computed solutions are robust and lead to relatively small cost increase com-
pared to the nominal optimization model that ignores uncertainty. The consideration 
of conditional probability distributions further improves the solution quality. Finally, 
Sect. 5 concludes.

2 � Chance constrained DC optimal power flow model

In this section, we recall the chance constrained DC optimal power flow model with 
the possibility to curtail feed-in proposed in Aigner et al. (2021), which is based on 
Bienstock et al. (2014).

2.1 � Nominal DC optimal power flow with curtailment

We model the electrical distribution network as an undirected graph G = (N,L) 
where N = {1,… , n} for some integer n > 1 represents the set of vertices and 
L ⊆ N ×N  denotes the set of edges. In the context of power system optimization, 
vertices are also called nodes or buses, and edges are called (transmission) lines. 
The set of those nodes that are connected with (continuously controllable) slack gen-
erators of higher network hierarchies is denoted by NG ⊆ N  . Furthermore, for each 
k ∈ N  we denote the set of adjacent nodes with N(k) ⊆ N  . For notational ease, we 
assume that every node is connected to (discretely) controllable solar power genera-
tion units. The energy production on a bus without solar feed-in is set equal to zero.

In order to control the solar feed-in, discrete regulation decisions can be made at 
each node. Curtailment is realized by restricting the maximum feed-in to a certain 
fraction vector 𝛽 = (𝛽1,… , 𝛽n) ∈ S = S1 ×… × Sn ⊂ [0, 1]n of the installed capac-
ity vector

Note that the installed capacity is the intended full-load sustained solar energy 
production at each node. In practice, sets of curtailment factors with a small num-
ber of levels are common. Typical sets of curtailment factors for single nodes are 
{0, 0.3, 0.6, 1.0} or {0, 0.1, 0.2, … , 1.0}.

Thus, at a node k ∈ N  , the power fed into the network cannot exceed �kPI
k
 . Any 

potential feed-in above this value is cut off. We model the curtailed uncertain solar 
feed-in Pin

k
 based on a given solar power production PPV

k
≥ 0 via

i.e., Pin
k
= min{PPV

k
, �kP

I
k
}.

In the following, we briefly recall the DC optimal power flow model with discrete 
curtailment of solar feed-in proposed in Aigner et al. (2021), where Table 1 summa-
rizes the notation used for decision variables and input parameters.

PI = (PI
1
,… ,PI

n
) ∈ [0,∞)n.

Pin
k
=

{
PPV
k
, if PPV

k
≤ �kP

I
k
,

�kP
I
k
, otherwise,
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Decision variables are the vectors of generator outputs PG = (PG
k )k∈G

∈ [0,∞)|G| , voltage angles � = (�1,… , �n) ∈ [−�,�]n , power flows p = (pkl)(k,l)∈
∈ R|| and curtailment factors � ∈ S , where |NG| , |L| denote the cardinalities of 

the sets NG and L , respectively. The model reads as follows: 

 where the functions fk ∶ [0,∞) → [0,∞) and ck ∶ [0, 1] → [0,∞) model generator 
and curtailment costs, respectively.

The equality constraints (1b)–(1d) model the active power flow, which is determined 
by the power flow equations (1d) and Kirchhoff’s first law where we distinguish the two 
cases with and without generators, see (1b) and (1c) respectively. Note that the power 
at each node has to be balanced. This means that at each node k ∈ N  the active power 
production PG

k
+ Pin

k
∈ [0,∞) from generators and renewables equals the demand 

(1a)min
PG,�,p,�

∑
k∈NG

fk(P
G

k
) +

∑
k∈N

ck(�k)

(1b)such that PG
k
+min{PPV

k
, �kP

I
k
} − PD

k
=
∑

l∈N(k)
pkl for all k ∈ NG,

(1c)min{PPV
k
, �kP

I
k
} − PD

k
=
∑

l∈N(k)
pkl for all k ∈ N ⧵NG,

(1d)pkl = bkl(�k − �l) for all (k, l) ∈ L,

(1e)− d+
kl
≤ pkl ≤ d+

kl
for all (k, l) ∈ L,

(1f)P
G,−

k
≤ PG

k
≤ P

G,+

k
for all k ∈ NG,

Table 1   Notation for decision variables and input parameters

Symbol Variable

PG

k
> 0 Generator output on bus k

�k ∈ [−�,�] Voltage angle on bus k
pkl ∈ R Power flow on line (k, l)
�k ∈ Sk Curtailment level on bus k

 Symbol Parameter

PD

k
≥ 0 Power demand on bus k

bkl > 0 Line susceptance of line (k, l)
PI

k
≥ 0 Installed solar power on bus k

PPV

k
≥ 0 Uncertain solar feed-in on bus k

P
G,−

k
≥ 0 Lower generator bound on bus k

P
G,+

k
> 0 Upper generator bound on bus k

d+
kl
> 0 Transmission limit of line (k, l)
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PD
k
≥ 0 plus the active power sent to adjacent nodes 

∑
l∈N(k) pkl ∈ R . The active 

power flow on transmission line (k, l) ∈ L is the product of voltage angle difference 
�k − �l ∈ [−2�, 2�] and susceptance bkl > 0 . At the same time, the transmission limits 
considered in (1e) must not be exceeded. The vector of generator outputs PG can be 
continuously controlled within the generator bounds considered in (1f). Furthermore, 
we assume that there is a bus k0 ∈ N  with a reference angle �k0 = 0.

The optimization task consists in minimizing the objective function given in (1a) 
which is the sum of power generation costs ( fk ) and curtailment costs ( ck ) subject to 
the constraints mentioned above. Note that the functions fk for all k ∈ NG and ck for 
all k ∈ N  can be assumed to be linear or convex quadratic in the generator output. 
Since the minimum expressions in (1b) and (1c) can be linearized by introducing auxil-
iary variables and additional linear constraints (see e.g. Sherali and Adams (2013)), the 
optimization problem considered in (1) is a mixed-integer linear or convex quadratic 
program and can be solved efficiently to global optimality with standard techniques and 
software using, e.g., the Gurobi optimizer [23].

2.2 � Uncertainty modeling

In practice, the vector of solar power production PPV = (PPV
1
,… ,PPV

n
) ∈ [0,∞)n is 

not known in advance. In addition, the production of renewable power can be subject 
to high fluctuations and is therefore an uncertain quantity. Using a network operat-
ing strategy that is computed by ignoring such uncertainties, a sudden fluctuation of 
renewable energy can lead to overloads in the electrical network. In the worst case, 
this can lead to failure of network elements owing to cascade effects. To prevent this, 
the optimization model explained in Sect. 2.1 has to be extended in order to take such 
fluctuations into account, and individual feed-in units may have to be regulated. In 
particular, we model the vector of produced solar power PPV as the sum of a vector 
PF = (PF

1
,… ,PF

n
) ∈ [0,∞)n of forecasted solar power and a random fluctuation vector 

X = (X1,… ,Xn) ∶ Ω → Rn defined on some probability space (Ω,F,ℙ) , i.e.,

However, in a first step, we need to determine a nominal operating solution 
(PG, �, p) together with a curtailment decision � that is feasible for the nominal 
feed-in vector PF (corresponding to X = 0 ), i.e., the decision variables PG, �, p, � 
have to fulfill the constraints (1b)–(1e), where PPV is given in (2) with X = 0 . In 
addition, we require that, with high probability, the network reaction to fluctu-
ating feed-in remains feasible, see the chance constraint given in (6g) below. 
To model this kind of network reaction, we consider randomized duplicates 
PG,X ∶ Ω → [0,∞)|NG|, �X ∶ Ω → [−�,�]n and pX ∶ Ω → R|L| of the decision var-
iables PG, �, p introduced in Sect.  2.1, which depend on the realizations X(�) for 
� ∈ Ω of the random fluctuation vector X. Note that realizations X(�) ≠ 0 of X may 
lead to a changed distribution of power in the network and, therefore, to an imbal-
anced network. The generators then change their output to PG,X(�) in order to balance 
the total active network power. Furthermore, the decision variables �X and pX are 
adjusted correspondingly to ensure feasibility.

(2)PPV

k
= PF

k
+ Xk for all k ∈ N.
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Thus, in the setting of the two-stage stochastic optimization problem described 
above (see also Sects.  2.3 and 2.4), the variables PG, �, p refer to first-stage (or 
here-and-now) decisions. They must be decided for the nominal feed-in vector 
PF (corresponding to X = 0 ), before uncertainty is revealed. Moreover, for fixed 
first-stage variables PG, �, p , any realization X(�) ≠ 0 of X leads to a reaction 
of the network by choosing optimal second-stage (or wait-and-see) variables 
PG,X(�), �X(�), pX(�) , where we assume that the power generation is balanced by 
the Automatic Generation Control Borkowska (1974). This means that the total 
power generation mismatch ΔX =

∑
k∈N(min{PF

k
+ Xk, �kP

I
k
} −min{PF

k
, �kP

I
k
}) is 

shared among all generators according to given participation factors �k ∈ [0, 1] 
for every k ∈ NG such that 

∑
k∈NG

�k = 1 . More precisely, for each � ∈ Ω we put

The vector of decision variables �X is adjusted in a way that the power balance 
equations 

 are fulfilled for each � ∈ Ω . Furthermore, for each � ∈ Ω we put

It can be shown, see Aigner et  al. (2021), that for each realization X(�) of X the 
equation system given in (4a)–(4b) has a uniquely determined solution �X(�) , i.e., 
the wait-and-see variables PG,X(�), �X(�) , and pX(�) are uniquely determined by (3), 
(4a)–(4b), and (5).

2.3 � Chance constrained DC optimal power flow

By construction, the vectors pX and PG,X of power flows and generator outputs are 
random variables that depend on the realization X(�) of the random fluctuation 
vector X and on the values of first-stage decision variables PG, �, p, � . Thus, we 
are searching for solutions (PG, �, p, �) which satisfy the limits of type (1e) and 
(1f) for power flows and generators outputs, respectively, with a probability of at 
least 1 − � for some small number � ∈ [0, 1].

We model this requirement by a joint chance constraint in order to guaran-
tee network stability. This means that the desired compliance probabilities for all 
power flows and generator outputs are simultaneously met. Thus, combining all 
modeling elements considered in the previous sections, we formulate the joint 
chance constrained DC optimal power flow problem with discrete curtailment as 
follows: 

(3)P
G,X(�)

k
= PG

k
− �kΔX(�) for all k ∈ NG.

(4a)
2PG,X(�)

k +min{PF
k + Xk(�), �kPI

k} − PD
k =

∑

l∈ (k)
bkl(�

X(�)
k − �X(�)l ) for all k ∈ G,

(4b)
min{PF

k
+ Xk(�), �kP

I
k
} − PD =

∑
l∈N(k)

bkl(�
X(�)

k
− �

X(�)

l
) for all k ∈ N ⧵NG

(5)p
X(�)

kl
= bkl(�

X(�)

k
− �

X(�)

l
) for all (k, l) ∈ L.
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 where the wait-and-see variables PG,X(�)

k
, p

X(�)

kl
 are defined in (3) and (5), 

respectively.

2.4 � Safe approximation of the chance constraints

Chance constrained optimization problems like (6) are in general hard to solve and 
may not be algorithmically tractable. Therefore, a large number of approximation 
techniques can be found in the literature, see Prékopa (1995) for a broad overview of 
the paradigm of stochastic optimization.

Thus, following Nemirovski (2012), we will replace the chance constraint consid-
ered in (6g) by a strictly robust protection against a suitably chosen uncertainty set 
B ∈ B(Rn) that fulfills

where B(Rn) denotes the �-algebra of Borel sets in the n-dimensional Euclidean 
space Rn.

The robust approximation of (6) is then given by 

(6a)min
PG,�,p,�

∑
k∈NG

fk(P
G
k
) +

∑
k∈N

ck(�k)

(6b)such that PG
k +min{PF

k , �kP
I
k} − PD

k =
∑

l∈ (k)
pklfor all k ∈ G,

(6c)min{PF
k , �kP

I
k} − PD

k =
∑

l∈ (k)
pklfor all k ∈  ⧵G,

(6d)pkl = bkl(�k − �l)for all (k, l) ∈ ,

(6e)− d+kl ≤ pkl ≤ d+klfor all (k, l) ∈ ,

(6f)PG,−
k ≤ PG

k ≤ PG,+
k for all k ∈ G,

(6g)ℙ

({
� ∈ Ω ∶ −d+

kl
≤ p

X(�)

kl
≤ d+

kl
for all (k, l) ∈ L

}
∩{

� ∈ Ω ∶ P
G,−

k
≤ P

G,X(�)

k
≤ P

G,+

k
for all k ∈ NG

}
)

≥ 1 − �,

(7)ℙ({� ∈ Ω ∶ X(�) ∈ B}) ≥ 1 − �,

(8a)min
PG,�,p,�

∑
k∈NG

fk(P
G

k
) +

∑
k∈N

ck(�k)

(8b)such that PG

k
+min{PF

k
, �kP

I

k
} − PD

k
=
∑

l∈N(k)
pkl for all k ∈ NG,

(8c)min{PF
k
, �kP

I
k
} − PD

k
=
∑

l∈N(k)
pkl for all k ∈ N ⧵NG,
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 where PG,u

k
, pu

kl
 are determined as in (3) and (5) replacing X(�) by u.

One can show that every feasible solution of the safe approximation (8) is feasible 
for (6), see Gorissen et al. (2015). To ensure that the safe approximation generates 
not overly conservative solutions, the uncertainty set B should be chosen as small as 
possible, but as large as necessary.

Assuming that

for some � = (�1,… ,�n), u = (u1,… , un) ∈ Rn such that �k < uk for all k ∈ N  , it 
has been shown in Aigner et al. (2021) that the optimization problem (8) possesses 
an equivalent mixed-integer linear reformulation which - although being NP-hard in 
general - can be solved e.g. with the Gurobi optimizer [23] within reasonable time 
also for huge instances.

3 � Modeling the distribution of the random forecasting error

In order to solve the safe approximation (8) of the stochastic optimization problem 
(6) described in Sect. 2.3, a suitable uncertainty set B ⊂ Rn has to be determined 
such that (7) holds. For the novel construction of uncertainty sets with the help of 
copulas, we propose a method for modeling the multivariate probability distribu-
tion of the n-dimensional power forecasting error X = PPV − PF introduced in (2). 
The model for the distribution of X is based on R-vine copulas, which are fitted to 
empirical data.

To make the paper self-contained, we first give a brief overview of some fundamen-
tals of copula theory in Sect. 3.1. In Sects. 3.2 and 3.3 we explain how R-vine copulas 
are structured and how they can be fitted to empirical data. Once an R-vine copula is 
fitted for the distribution of the random fluctuation vector X, in Sect. 3.4 we explain 
how samples can be drawn from it, in order to determine an uncertainty set B ⊂ Rn 
of the form given in (9) which satisfies a slightly modified version of condition  (7), 
see Sect. 3.6. Furthermore, in Sect. 3.5 we propose a modification of the fitting proce-
dure for R-vine copulas in order to fit the distribution of the (2n)-dimensional random 

(8d)pkl = bkl(�k − �l) for all (k, l) ∈ ,

(8e)− d+
kl
≤ pkl ≤ d+

kl
for all (k, l) ∈ L,

(8f)PG,−
k ≤ PG

k ≤ PG,+
k for all k ∈ G,

(8g)max
u∈B

pu
kl
≤ d+

kl
, min

u∈B
pu
kl
≥ −d+

kl
for all (k, l) ∈ L,

(8h)max
u∈B

PG,u
k ≤ PG,+

k , min
u∈B

PG,u
k ≥ PG,−

k for all k ∈ G,

(9)B = [�1, u1] ×… × [�n, un] ⊂ R
n
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vector (S, X) to empirical data, where S ∶ Ω → [0,∞)n models the forecasted solar 
radiation at the n nodes of the electrical network. This allows for an enhanced modeling 
of uncertainty sets Bs ∈ B(Rn) conditioned on S = s for any given radiation forecast 
s ∈ [0,∞)n.

3.1 � Copulas: definition and sklar’s representation formula

A bivariate copula C ∶ [0, 1]2 → [0, 1] is the cumulative distribution function (CDF) 
of a two-dimensional random vector U = (U1,U2) ∶ Ω → [0, 1]2 , where both mar-
ginal distributions (of U1 and U2 ) are the standard uniform distribution on the unit 
interval [0, 1], i.e., it holds that C(u1, u2) = ℙ(U1 ≤ u1,U2 ≤ u2) with C(u, 1) = u1 
and C(1, u2) = u2 for any u1, u2 ∈ [0, 1] . Moreover, by the choice of the copula 
C ∶ [0, 1]2 → [0, 1] the mutual interdependence of the components U1 and U2 can be 
described. For example, the product copula, where

models the case that U1 and U2 are independent random variables. On the other 
hand, if C(u1, u2) = min{u1, u2} for all u1, u2 ∈ [0, 1] , then ℙ(U1 = U2) = 1 , i.e., the 
components U1 and U2 are identical almost surely. Besides these two extreme cases, 
many further (parametric) families of bivariate copulas C ∶ [0, 1]2 → [0, 1] can be 
found in the literature, which model the case that U1 and U2 are neither independ-
ent nor identical. In particular, for the purposes of the present paper, the following 
bivariate copula families will be considered: Gaussian, Student t, Clayton, Gumbel, 
Frank, Joe, BB1, BB6, BB7, BB8 and their rotations, see e.g. Joe (2015); Nelsen 
(2006) for details.

Note that the notion of a copula is not restricted to the bivariate case. For any 
integer m ≥ 2 , the function C ∶ [0, 1]m → [0, 1] is called a copula if it is the CDF 
of an m-dimensional random vector U = (U1,… ,Um) ∶ Ω → [0, 1]m such that the 
(marginal) distributions of U1,… ,Um are the standard uniform distribution on the 
unit interval [0, 1]. The importance of copulas results from Sklar’s representation 
formula, see Joe (2015); Nelsen (2006), which states that the CDF of any random 
vector Y = (Y1,… , Ym) ∶ Ω → Rm with arbitrary (not necessarily uniform) marginal 
distributions can be written as the superposition of the univariate CDFs of Y1,… , Ym 
and a certain copula C ∶ [0, 1]m → [0, 1] . More precisely, it holds that

where F1,…,m ∶ Rm
→ [0, 1] with F1,…,m(y1,… , ym) = ℙ(Y1 ≤ y1,… , Ym ≤ ym) 

is the CDF of the m-dimensional random vector Y and Fi ∶ R → [0, 1] with 
Fi(yi) = ℙ(Yi ≤ yi) is the CDF of its ith component Yi for each i ∈ {1,… ,m} . Vice 
versa, for any sequence F1,… ,Fm of univariate CDFs and for any copula C, the 
superposition of F1,… ,Fm and C considered on the right-hand side of (11) is the 
CDF of an m-dimensional random vector.

(10)C(u1, u2) = u1 u2 for all u1, u2 ∈ [0, 1],

(11)F1,…,m(y1,… , ym) = C(F1(y1),… ,Fm(ym)) for all y1,… , ym ∈ R,
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3.2 � R‑vine copulas

Note that the representation formula given in (11) can not directly be used in 
order to fit multivariate probability distributions to data. For this, sufficiently 
simple and, simultaneously, flexible parametric families of multivariate copu-
las C ∶ [0, 1]m → [0, 1] are needed. One possible way to construct such paramet-
ric copula families is given by so-called R-vine copulas (regular vines), which 
is a generalization of D-vine copulas recently applied, e.g. in Schinke-Nendza 
et al. (2021); von Loeper et al. (2021), to model data from meteorology and solar 
power supply.

The structure of R-vine copulas offers the advantage that the probability distri-
bution of the m-dimensional random vector Y = (Y1,… , Ym) to be modelled can 
be expressed in terms of a number of bivariate copulas. Hereby the structure of 
an R-vine copula is given by a vector of trees R = (T1,… , Tm−1) with the follow-
ing properties, see also Fig. 1: 

1.	 T1 = (V1, E1) consists of the set of vertices V1 = {1,… ,m} and some set of edges 
E1 ⊂ V1 × V1.

2.	 For the remaining trees T2 = (V2, E2),… , Tm−1 = (Vm−1, Em−1) , it holds that 
Vi = Ei−1 for each i = {2,… ,m − 1} , i.e., the set of vertices Vi of Ti consists of 
the edge set of the previous tree Ti−1.

3.	 For each i ∈ {1,… ,m − 2} , two edges in tree Ti are joined by an edge in tree Ti+1 
only if these edges share one common vertex.

Fig. 1   Example of the structure R = (T1,… , T4) for an R-vine copula consisting of four trees with T1 at 
the bottom and T4 at the top
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Let E(R) denote the set of all edges in R , meaning that E(R) = E1 ∪… ∪ Em−1 . 
Furthermore, we need the following notation. First, for each e = {v1, v2} ∈ E1 we 
define S(e) = � and O(e) = {v1, v2} . Next, we iterate over i ∈ {2,… ,m − 1} and, 
for each e = {v1, v2} ∈ Ei , we define S(e) = S(v1) ∪ S(v2) ∪ (O(v1) ∩O(v2)) and 
O(e) = (O(v1) ∪O(v2)) ⧵ S(e) . We call S(e) the conditioning set and O(e) the condi-
tioned set of edge e. According to Kurowicka and Joe (2010), it holds that |O(e)| = 2 
for each e ∈ E(R) and, for each pair of indices {i, j} ∈ {1,… ,m} × {1,… ,m} with 
i ≠ j , there is exactly one edge e ∈ E(R) such that O(e) = {i, j} . Thus, for each each 
e ∈ E(R) , there are indices o1, o2 ∈ {1,… ,m} such that {o1, o2} = O(e) and o1 < o2.

Suppose now that Y = (Y1,… , Ym) is a random vector with continuously differen-
tiable CDF F1,…,m ∶ Rm

→ [0, 1] , where the joint probability density of Y is denoted 
by f1,…,m ∶ Rm

→ [0,∞) , and f1,… , fm ∶ R → [0,∞) are the marginal (univariate) 
densities of the components Y1,… , Ym . Furthermore, let R = (T1,… , Tm−1) be a vec-
tor of trees with the properties mentioned above. Then, the following representation 
formula is true, see Czado (2019); Bedford and Cooke (2001); Joe (2015): For any 
y = (y1,… , ym) ∈ Rm such that f1,…,m(y) > 0 it holds that

where YS(e) denotes the random vector consisting of those components of 
Y = (Y1,… , Ym) the indices of which belong to the set S(e) ⊂ {1,… ,m} , and, anal-
ogously, yS(e) is the corresponding subvector of (y1,… , ym) . Furthermore, 
co1,o2∣YS(e)=yS(e) ∶ R2

→ [0,∞) denotes the bivariate copula density of the conditional 
probability distribution of the two-dimensional random vector (Yo1 , Yo2 ) given that 
YS(e) = yS(e) , and Foj∣YS(e)=yS(e)

∶ R → [0, 1] is the conditional CDF of Yoj given that 
YS(e) = yS(e) , where j = 1, 2.

Note that the right-hand side of (12) is the product of uni- and bivariate functions. 
Thus, in order to determine the multivariate probability density f1,…,m , we just have 
to determine the univariate (marginal) densities f1,… , fm , the (conditional) univari-
ate CDFs Foj∣YS(e)=yS(e)

 , and the (conditional) bivariate copula densities co1,o2∣YS(e)=yS(e) 
for all e = (o1, o2) ∈ E(R) , where the recursion formulas (see Aas et al. (2009))

and

are used in order to determine the univariate CDFs Foj∣YS(e)=yS(e)
 for j = 1, 2.

(12)

f1,…,m(y) =
∏

e=(o1,o2)∈E(R)

co1,o2∣YS(e)=yS(e)

(
Fo1∣YS(e)=yS(e)

(yo1 ),Fo2∣YS(e)=yS(e)
(yo2 )

) m∏

i=1

fi(yi),

(13)

Fo1∣YS(e)∪{o2}
=yS(e)∪{o2}

(yo1 ) =

d

dyo2

Co1,o2∣YS(e)=yS(e)

(
Fo1∣YS(e)=yS(e)

(yo1 ),Fo2∣YS(e)=yS(e)
(yo2 )

)

d

dyo2

Fo2∣YS(e)=yS(e)
(yo2 )

(14)

Fo2∣YS(e)∪{o1}
=yS(e)∪{o1}

(yo2 ) =

d

dyo1

Co1,o2∣YS(e)=yS(e)

(
Fo1∣YS(e)=yS(e)

(yo1 ),Fo2∣YS(e)=yS(e)
(yo2 )

)

d

dyo1

Fo1∣YS(e)=yS(e)
(yo1 )
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3.3 � Fitting R‑vine copulas to empirical data

In this section we outline how the representation formula given in (12) can be utilized in 
order to fit an m-dimensional probability density f1,…,m to empirical data, i.e., for a given 
sample of k realizations y(1) = (y

(1)

1
,… , y(1)

m
),… , y(k) = (y

(k)

1
,… , y(k)

m
) ∈ Rm of the ran-

dom vector Y = (Y1,… , Ym) , where we use the sequential algorithm proposed in Diss-
mann et al. (2013). First, for each i ∈ {1,… ,m} , we use the sample yi = (y

(1)

i
,… , y

(k)

i
) 

to determine a kernel density estimator (KDE) f̂i ∶ R → (0,∞) , see Silverman (1986), 
for the marginal density fi of the i-th component Yi of Y, which is numerically integrated 
in order to obtain the univariate CDF F̂i ∶ R → [0, 1] . Then, in the next step, a valid tree 
T1 = (V1, E1) with V1 = {1,… ,m} is chosen such that the expression

is maximized with respect to E1 , where �̂  denotes an empirical version of Kendall’s 
tau, which is defined for pairs of realizations {(x1, y1)… , (xn, yn)} of two random 
variables X and Y

where x = (x1,… , xn) and y = (y1,… , yn).
In other words, the edge set E1 is chosen such that the sum of pairwise empirical 

correlations between Yo1 and Yo2 is maximized, where the sum extends over all edges 
e = (o1, o2) ∈ E1 . Subsequently, for each e = (o1, o2) ∈ E1 , a bivariate copula Ce is 
fitted. For this, the independence of Yo1 and Yo2 is checked via a statistical test Diss-
mann et al. (2013). If the null hypothesis (stating that Yo1 and Yo2 are independent) is 
not rejected, then the product copula given in (10) is chosen for Ce . Otherwise, an 
(unconditional) bivariate copula Ĉe and its parameters are fitted to the data vectors 
(F̂o1

(y(1)
o1
),… F̂o1

(y(k)
o1
)) and (F̂o2

(y(1)
o2
),… F̂o2

(y(k)
o2
)) with the help of a maximum likeli-

hood method Joe (2015).
Now, analogously to (15), a valid tree T2 = (V2, E2) with V2 = E1 is selected such 

that the following expression is maximized:

Note that |S(e)| = 1 for all e ∈ E2 . Thus, using (13) and (14), the conditional CDFs 
F̂
o1∣YS(e)=y

(�)

S(e)

 and F̂
o2∣YS(e)=y

(�)

S(e)

 for � ∈ {1,… , k} , can directly be obtained from the 

(15)

I(E1) =
∑

e=(o1,o2)∈E1

||||
�̂
((

F̂o1

(
y(1)
o1

)
,… , F̂o1

(
y(k)
o1

))
,
(
F̂o2

(
y(1)
o2

)
,… , F̂o2

(
y(k)
o2

)))||||

(16)�𝜏(x, y) =
2

n(n − 1)

∑

i<j

sgn(xi − xj) sgn(yi − yj),

I(E2) =
∑

e∈E2

||�̂
((
F̂
o1∣YS(e)=y

(1)

S(e)

(
y(1)
o1

)
,… , F̂

Yo1
∣YS(e)=y

(k)

S(e)

(
y(k)
o1

))
,
(
F̂
o2∣YS(e)=y

(1)

S(e)

(
y(1)
o2

)
,… ,

F̂
Yo2

∣YS(e)=y
(k)

S(e)

(y(k)
o2

)))||.
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(unconditional) bivariate copula Ĉo1,o2
 and the (unconditional) CDFs F̂o1

 and F̂o2
 , 

which are determined as described above. Then, for each e ∈ E2 and o1, o2 ∈ O(e) , a 
bivariate copula Ĉo1,o2∣S(e)

 and its parameters are fitted to the data vectors 

(F̂
oj∣YS(e)=y

(1)

S(e)

(y(1)
oj
),… , F̂

Yoj
∣YS(e)=y

(k)

S(e)

(y(k)
oj
)) for j = 1, 2 , where the simplifying assump-

tion is made that the copula Ĉo1,o2∣S(e)
= Ĉo1,o2∣YS(e)=yS(e)

 does not depend on the given 
realization yS(e) of YS(e) , see e.g. Haff et al. (2010).

Finally, in the same way as described above, the trees Ti = (Vi, Ei) , the condi-
tional CDFs F̂

oj∣YS(e)=y
(�)

S(e)

 for j = 1, 2 and � = 1,… , k , and the bivariate copulas 

Ĉo1,o2∣S(e)
 are determined for all e ∈ Ei and i = 3,… ,m − 1.

3.4 � Sampling from multivariate probability densities

In Sect. 3.3 we showed how the multivariate probability density f̂ ∶ Rm
→ [0,∞) 

given by the representation formula

for (y1,… , ym) ∈ Rm can be fitted to empirical data. We now explain how samples 
can be drawn from the probability density given in (17).

Recall that the Rosenblatt transform Joe (2015) maps a sample y = (y1,… , ym) of 
a random vector Y = (Y1,… , Ym) with joint probability density f1,…,m ∶ Rm

→ (0,∞) 
onto a sample u = (u1,… , um) of a vector of independent and uniformly distributed 
random variables U = (U1,… ,Um) ∶ Ω → [0, 1]m such that

where FYi∣Y1=y1,…,Yi−1=yi−1
∶ R → [0, 1] denotes the (conditional) CDF correspond-

ing to the conditional density fYi∣Y1=y1,…,Yi−1=yi−1
∶ R → (0,∞) for i = 1,… ,m − 1 . 

Assuming that the densities fYi∣Y1=y1,…,Yi−1=yi−1
 for i = 1,… ,m − 1 are positive, the 

CDFs FYi∣Y1=y1,…,Yi−1=yi−1
 are bijective for i = 1,… ,m − 1 and thus, by applying the 

(17)

f̂1,…,m(y1,… , ym) =
∏

e∈E(R)

ĉo1,o2∣S(e)

(
F̂o1∣YS(e)=yS(e)

(
yo1

)
, F̂o2∣YS(e)=yS(e)

(
yo2

)) m∏

i=1

f̂i(yi)

u1 = FY1
(y1),

u2 = FY2∣Y1=y1
(y2),

u3 = FY3∣Y1=y1,Y2=y2
(y3),

um
⋮

=FYm∣Y1=y1,…,Ym−1=ym−1
(ym),
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inverse CDFs to both sides of the above equations, we obtain the inverse Rosenblatt 
transform:

which maps a sample u = (u1,… , um) of U onto a sample y = (y1,… , ym) of Y. Note 
that the (inverse) Rosenblatt transform works for any permutation of the indices 
1,… ,m.

Now, consider some sequence of edges e(1),… , e(m−1) with e(i) ∈ Ei for 
i = 1,… ,m − 1 such that e(i) ∈ e(i+1) for i = 1,… ,m − 2 . For the given edges, 
it follows from the third property of the trees T1,… , Tm−1 introduced in Sect.  3.2 
that there is a permutation (o1,… , om) of (1,… ,m) such that o1 ∈ O(e(1)) and 
oi+1 ∈ O(e(i)) for i = 1,… ,m − 1 . Thus, the inverse Rosenblatt transform can be 
used as follows, in order to draw a sample (y1,… , ym) from the probability density 
f̂1,…,m given in (17):

where u = (u1,… , um) is a sample of a vector of independent and uniformly distrib-
uted random variables U = (U1,… ,Um) ∶ Ω → [0, 1]m , the (unconditional) CDF F̂o1

 
is given by an integrated kernel density estimator (KDE), and the (conditional) 
CDFs F̂oi∣YS(e(i−1) )∪{oi−1}

 for i = 2,… ,m are determined as described in Sect. 3.3.
Later on, in Sect.  4, the algorithms stated in Sects.  3.3 and 3.4 are applied to 

derive the numerical results presented in this paper, where the implementation pro-
vided by the python library pyvinecopulibNagler and Vatter (2021) is used.

3.5 � Conditional sampling

In the previous section we described a method how to sample from a multivariate 
distribution with the help of the Rosenblatt transform. This method is used in Sect. 4 
below in order to draw samples from the (unconditional) distribution of the forecast-
ing error X = PPV − PF . Furthermore, to model the distribution of the random fluc-
tuation vector X more accurately, we modify the approach considered in Sects. 3.3 
and 3.4 such that we can draw samples from the conditional distribution of X for any 
given radiation forecast S = s . For D-vine copulas, a similar conditional sampling 
algorithm can be found in Aas et al. (2021) and Bevacqua et al. (2017).

F−1
Y1
(u1) = y1,

F−1
Y2∣Y1=y1

(u2) = y2,

F−1
Y3∣Y1=y1,Y2=y2

(u3) = y3,

F−1
Ym∣Y1=y1,…,Ym−1=ym−1

(um)
⋮

=ym,

F̂−1
o1
(uo1 ) = yo1 ,

F̂−1
oi∣YS(e(i−1))∪{oi−1}

=y
S(e(i−1))∪{oi−1}

(uoi) = F̂−1
oi∣Y{o1,…,oi−1}

=y{o1,…,oi−1}
(uoi)

⋮

=yoi ,

F̂−1
om∣YS(e(m−1))∪{om−1}

=y
S(e(m−1))∪{om−1}

(uom) = F̂−1
om∣Y{o1,…,om−1}

=y{o1,…,om−1}
(uom)

⋮

=yom ,
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Let m,m′ ≥ 1 be some integers with m′ < m . We first explain the reasons why the 
fitting and (unconditional) sampling approach considered in Sects. 3.3 and 3.4 has 
to be modified such that we can draw samples from arbitrary conditional distribu-
tions of a random vector Y = (Y1,… , Ym) , i.e., to draw samples y = (y1,… , ym) from 
the conditional distribution of Y = (Y1,… , Ym) , given that Yi1 = yi1 ,… , Yim� = yim� 
for some subset of indices D = {i1,… , im� } ⊂ {1,… ,m} and some vector 
(yi1 ,… , yim� ) ∈ Rm�,

Recall that the (direct and inverse) Rosenblatt transform considered in Sect. 3.4 
works for arbitrary permutations of the sampling order provided that all conditional 
CDFs required for this transformation are known. Here, the sampling order refers to 
the order of the marginal dimensions from which samples are drawn. However, if we 
want to obtain these CDFs with the help of (13) and (14), the structure of the under-
lying R-vine copula restricts the choice of possible sampling orders. To understand 
why this is the case, note that in order to sample in any given order would require 
the construction of arbitrary (conditional) CDFs, the total number of which is equal 
to m2m−1 . However, an R-vine copula of dimension m consists of m(m−1)

2
 bivariate 

copulas. With the help of (13) and (14) two (conditional) CDFs can be obtained 
from each bivariate copula, i.e., we can obtain m(m − 1) (conditional) CDFs in total 
from a given R-vine copula, which limits the number of possible sampling orders.

Consider the R-vine copula in Fig. 1 which has (1, 2, 3, 5, 4) as a possible sam-
pling order. To sample in this order with the inverse Rosenblatt transform, we obtain 
the required inverse CDFs F−1

Y1
 , F−1

Y2∣Y1=y1
 , F−1

Y3∣Y1=y1,Y2=y2
 , F−1

Y5∣Y1=y1,Y2=y2,Y3=y3
 and 

F−1
Y4∣Y1=y1,Y2=y2,Y3=y3,Y5=y5

 from the marginal distribution 1  and the copulas 1, 2  , 

1, 3 ∣ 2  , 1, 5 ∣ 2, 3  and 1, 4 ∣ 2, 3, 5  respectively. Note that this sampling order is 
possible because each copula corresponds to an edge connected to the previous cop-
ula or marginal distribution, e.g., 1, 3 ∣ 2  corresponds to an edge connected to 

1, 2  while 1, 2  corresponds to the edge connected to 1  . This ensures that a suit-
able copula for the next dimension in the sampling order exists.

Now consider the sampling order (1, 2, 3, 4, 5), which is impossible. Analogously 
to the previous sampling order the inverse CDFs F−1

Y1
 , F−1

Y2∣Y1=y1
 and F−1

Y3∣Y1=y1,Y2=y2
 can 

be obtained. However, to obtain the 4th necessary inverse CDF F−1
Y4∣Y1=y1,Y2=y2,Y3=y3

 

for the inverse Rosenblatt transform, the copulas 1, 4 ∣ 2, 3  or 3, 4 ∣ 1, 2  are 
required which do not exist within the considered R-vine copula.

As shown in Theorem  5.1 in Cooke et  al. (2015), an R-vine copula of dimen-
sion m has only 2m−1 possible sampling orders. This is due to the fact that every 
possible sampling order corresponds to a vector � = (�1,… , �m) = (v1,… , vm−1, e) 
with vi ∈ Ti and e ∈ Em−1 , i.e., the CDF used in the first equation of the Rosenb-
latt transform is the marginal CDF Fv1

 whereas the conditional CDFs of the equa-
tions thereafter are given by the copulas corresponding to �2,… , �m . Recall that for 
each equation of the Rosenblatt transformation the dimension of the condition of 
the corresponding conditional CDF grows by one. This restricts the choice of �i+1 to 
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copulas for which it holds that �i ∈ �i+1 for all i ∈ {1,… ,m − 2} , i.e., �i ∈ Ti must 
be a vertex of the edge �i+1 ∈ Ti+1 , because only then the copula corresponding to 
�i+1 can be used to construct a conditional CDF with a valid condition for the (i + 1)

-th equation of the Rosenblatt transform.
We thus modify the fitting process for vine copulas presented in Sect.  3.3 

such that a vector � = (�1,… , �m) as described above exists for a given 
set of indices D = {i1,… , im� } ⊂ {1,… ,m} . For this, we consider 
TD
1
= (VD

1
, ED

1
) = (D, {e ∈ E1 ∶ e ⊆ D}) , i.e., TD

1
 is a graph with vertex set D and 

edges e ∈ E1 which connect two vertices in D. For i > 1 , we recursively define 
TD
i
= (VD

i
, ED

i
) = (ED

i−1
, {e ∈ Ei ∶ e ⊆ ED

i−1
}) . Note that in general TD

i
 is not a tree but a 

forest, however, only if all TD
i
 are trees the vector (TD

1
,… , TD

m� ) is a valid R-vine copula. 
This is necessary to construct an inverse Rosenblatt transform for the dimensions in D, 
or more generally speaking, it is necessary for the construction of an inverse Rosenblatt 
transform for all dimensions {1,… ,m} where the dimensions in D occur at the beginning.

To ensure that there is a sampling order in which all indices in D are in succes-
sive order, we choose the graphs TD

i
 in the fitting process of the R-vine copula such 

that I(ED
i
) in (15) is maximized (as in the unmodified fitting process considered in 

Sect.  3.3), where additionally it must hold that TD
i
 is a tree for all i ∈ {1,… ,m�} 

because only then we can chose a sampling order where �i ∈ �i+1 holds for all 
i ∈ {1,… ,m − 1}.

Without loss of generality, we now assume that D = {1,… ,m�} . Thus, we 
omit the first m′ equations of the inverse Rosenblatt transform and sample values 
ym�+1,… , ym for the remaining m − m� components via

As an example, consider again the R-vine copula in Fig. 1 and the set D = {1, 2, 3} 
to sample from the conditional distribution of (Y4, Y5) ∣Y1=y1,Y2=y2,Y3=y3 . The graphs 
TD
1
 , TD

2
 and TD

3
 with the sets of vertices { 1 , 2 , 3 } , { 1, 2 , 2, 3 } , { 1, 3 ∣ 2  } and 

the corresponding edges correspond to the lower left part of the diagram. Since the 
graphs TD

1
 , TD

2
 and TD

3
 are trees and (TD

1
, TD

2
, TD

3
) is a valid R-vine copula, sampling 

orders with 1, 2 and 3 at the beginning are possible.
Now consider D = (1, 2, 4) for which TD

1
= ({ 1 , 2 , 4 }, {{ 1 , 2 }}) is not a 

tree and the vector (TD
1
, TD

2
, TD

3
) is not an R-vine copula. Since 4  is not connected to 

1  or 2  in TD
1
 there can be neither 1, 4  nor 2, 4  in TD

2
 and in turn there can be 

neither 2, 4 ∣ 1  nor 1, 4 ∣ 2  in TD
3
 . Therefore it is not possible to obtain the required 

inverse CDFs for an inverse Rosenblatt transform for which the sampling order 
begins with the elements of D.

In the following section, we explain how the construction of uncertainty sets is 
performed with the scenario approach from stochastic optimization. We then use the 
copula-based modeling from this section in order to construct high-quality uncer-
tainty sets for given weather situations.

F−1
Yn+1∣Y1=y1,…,Yn=ym�

(um�+1) = ym�+1,

F−1
Ym∣Y1=y1,…,Ym−1=ym−1

(um)
⋮

=ym.
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3.6 � Scenario approach to determine a suitable uncertainty set

In order to determine a suitable uncertainty set of the form given in (9) which satisfies 
(a slightly modified version of) condition (7), we apply, as in Aigner et al. (2021), an 
idea described in Margellos et  al. (2014) and formulate the estimation of the uncer-
tainty set B = [�1, u1] ×… × [�n, un] ⊂ Rn as an auxiliary probabilistic optimiza-
tion problem. Then, for this problem with chance constraints, we apply the scenario 
approach proposed in Campi and Garatti (2008), i.e., the chance constraints consid-
ered in (7) are replaced by constraints based on a sufficiently large number of samples 
drawn from the probability distribution of the random forecasting error X = PPV − PF . 
In this work this distribution is fitted to empirical data, using the algorithm described in 
Sect. 3.3, and simulation is performed with the technique described in Sect. 3.4.

The auxiliary optimization problem in its general form consists of a chance con-
straint model for the enclosure B ∈ B(Rn) of the probability mass of X = (X1,… ,Xn) 
satisfying the condition ℙ({� ∶ X(�) ∈ B}) ≥ 1 − � for some � ∈ (0, 1) , see (7). At 
the same time, this problem aims for an uncertainty set B such that its size is as small as 
possible. Thus, in order to apply the scenario approach proposed in Campi and Garatti 
(2008) to determine an uncertainty box B = [�1, u1] ×… × [�n, un] ⊂ Rn , we con-
sider the probabilistic optimization problem 

 where the minimum in (18a) extends over all � = (�1,… ,�n), u = (u1,… , un) ∈ Rn 
with �k < uk for all k = 1,… , n.

Thus, to control the size of the set B, we minimize the sum of interval lengths 
uk − �k . In contrast, if minimization of the box volume were used instead, this would 
lead to a non-convex objective. In this case, the scenario approach proposed in Campi 
and Garatti (2008) is no longer applicable. Although the solution of (18) does not nec-
essarily minimize the box volume, the solution of the following scenario program does. 
This is why this choice of objective is suitable. We further explain this after introducing 
our scenario program.

Suppose that N > 0 samples x1,… , xN are independently drawn from the probabil-
ity distribution of X. Instead of (18b), in our scenario approach we want to ensure that 
the samples x1,… , xN are included in the uncertainty set B. The resulting scenario pro-
gram for computing B = [�, u] is thus given by 

(18a)min
�,u∈�n

∑

k∈
(uk − �k)

(18b)
such that

ℙ({� ∶ �k ≤ Xk(�) ≤ uk for allk = 1,… , n}) ≥ 1 − �,

(19a)2 min
�,u∈�n

∑

k∈ (uk − �k)

(19b)
such that

� ≤ xi ≤ u for all i = 1,… ,N.
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 The solution of this optimization problem can be written explicitly as [�∗, u∗] , 
where �∗

k
= mini=1,...,N{x

i
k
} and u∗

k
= maxi=1,...,N{x

i
k
} for every vector component k. It 

is true that set B∗ = [�∗, u∗] also minimizes the volume over all sets [l, u] containing 
the samples x1,… , xN . Although, in general, the solution of problem (18) does not 
calculate boxes with minimal volume, this is the case for the optimization problem 
given in (19).

From the results presented in Campi and Garatti (2008), we know that the opti-
mal solution B∗ = [�∗, u∗] of (19) fulfills condition (18b) with a confidence prob-
ability of at least 1 − � for some small � ∈ (0, 1) if N > 0 is chosen such that

Note that in the latter inequality, the necessary number of samples N > 0 for a pre-
defined confidence level 1 − � ∈ (0, 1) is given implicitly. However, an explicit suf-
ficient condition has been derived in Alamo et al. (2010), which reads as

Furthermore, we determine the optimal solution B∗
s
= [�∗

s
, u∗

s
] of (19) based on sam-

ples drawn, as described in Sect. 3.5, from the conditional distribution of X for given 
radiation forecasts S = s.

4 � Numerical results

In order to derive the results presented in this section we used the library pyvi-
necopulib Nagler and Vatter (2021). Furthermore, we utilized Gurobi 9.1.2 
[23] as solver for mixed-integer linear programs. The computations were carried out 
by means of a python implementation on a cluster using 4 cores of a machine with 

2n−1∑

j=0

(
N

j

)
�j(1 − �)N−j ≤ �.

(20)N ≥

⌈
1

�

e

e − 1

(
2n − 1 + ln

1

�

)⌉
.

Fig. 2   Sketch of NNG subnet-
work, where (slack-)generator 
nodes are denoted by + , solar 
feed-in points by ⋆ and load 
buses by •
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two Xeon E3-1240 v6 “Kaby Lake” chips (4 cores, HT disabled) running at 3.7 GHz 
with 32 GB of RAM.

4.1 � Data description

Data regarding power measurements as well as weather forecasts were provided by 
the distribution network operator N-ERGIE Netz GmbH (NNG) and the German 
weather service Deutscher Wetterdienst (DWD). In particular, NNG provided data of 
solar power supply at more than 150 feed-in points and corresponding active power 
measurements at 13 network nodes (buses) measured in 15 min intervals. Moreover, 
NNG provided data regarding the positions of network nodes (buses) and their con-
nections through lines (branches) which include resistance values and transmission 
limits of each line in the distribution network. A fragment of the NNG distribution 
network with 34 nodes and 37 lines is visualized in Fig. 2. The solar power forecast 
PF is provided by a model proposed in Schinke-Nendza et al. (2021).

DWD provided hourly forecasts of global horizontal irradiation, which were gener-
ated by the ensemble system of the numerical weather prediction model COSMO-DE, 
called COSMO-DE-EPS, and statistically interpreted based on synoptic observations 
at weather stations by Ensemble-MOS of DWD, see Hess (2020). The weather fore-
casts are issued on a 20 km × 20 km grid covering Germany and parts of the neighbor-
ing countries at every third hour. The forecasts of global horizontal irradiation were 

Fig. 3   Histograms and fitted KDEs of forecasting errors Xk,Xk′ (left, in MW) and forecasted radiations 
Sk, Sk′ (right, in kWh

m2
 ) for two examples of solar feed-in points k, k� ∈ {1,… , n}
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provided with forecast lead times up to 19 h, where the measurements and forecasts 
range over the months May, June and July of the years 2015–2017.

We split the data into a training set and a validation set. The training set is used to 
fit model parameters and consists of data from the years 2015 and 2016. Based on the 
validation set from 2017 the accuracy of the predictions generated by the fitted model 
is evaluated.

4.2 � Fitting unconditional and conditional distributions of forecasting errors

In this section we discuss the fitting of R-vine copulas, as outlined in Sects. 3.3 and 
3.5, in order to determine uncertainty sets B∗ of the form introduced in Sect. 3.6. First 
we explain how to model the (unconditional) distribution of the n-dimensional ran-
dom vector X = PPV − PF of power forecasting errors at the n nodes of the electricity 
network considered in the present paper, where n = 13 . Besides this, we additionally 
consider the random vector S = (S1,… , Sn) ∶ Ω → [0,∞)n , which describes the fore-
casted solar radiation at the n nodes of the electricity network, and we model the con-
ditional distribution of X given that S = s for some s ∈ [0,∞)n . Moreover, we consider 
two further types of conditional distributions of X under the condition that S = s and 
Sk = sk , respectively, for some s ≥ 0 , sk ≥ 0 and k ∈ {1,… , n} , where

As outlined in Sect. 3, copula theory allows for the modeling of the multivariate 
distribution of random vectors like the random power forecasting error X ∶ Ω → Rn . 
In order to estimate the univariate (marginal) CDFs FX1

,… ,FXn
 we use numerically 

integrated KDEs, with a Gaussian kernel and a bandwidth being equal to the esti-
mated standard deviations �k of Xk for k = 1,… , n , see the left column of Fig. 3. 
Once an R-vine copula is fitted to the distribution of X, as descibed in Sect. 3.3, we 
are able to draw realizations from the fitted distribution of X, with which the uncer-
tainty set B∗ can be determined as described in Sect.  3.6. This method results in 
one single uncertainty set B∗ for all considered hours, since the fitted R-vine copula 
models the (unconditional) distribution of X, irrespective of other variables, which 
are possibly correlated with X. Thus, it is sensible to investigate if and to which 
extent the random vector X of power forecasting errors depends on various other 
variables, like the random vector S of forecasted solar radiations at the n nodes. For 
this reason, we also model various conditional distributions of X.

To condition on the forecasted solar radiation vector S, we consider the three 
cases mentioned above, i.e., S = s , S = s , and Sk = sk for some k ∈ {1,… , n} . From 
a meteorological perspective, the network nodes in N  are in close geographical 
proximity and, therefore, the forecasted solar radiations S1,… , Sn at the n network 
nodes are highly correlated. Thus, it might be sufficient to consider either the aver-
age solar radiation S or the solar radiation Sk for one single node, instead of the 

S =
1

n

n∑

k=1

Sk.
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random vector S, which reduces the complexity of the copula model without much 
loss of information.

As can be seen in Fig. 3, the power forecasting errors Xk,Xk′ have unimodal dis-
tributions which are well approximated by KDEs. For the forecasted solar radia-
tions, Sk, Sk′ , however, the values of the densities are significantly larger than zero at 
the distribution limits. Since the kernel of the KDE would cross the bounds of the 
distribution for data points close to those bounds, we first transform the components 
of S, as well as S and Sk , using the mapping T ∶ [a, b] → [−∞,∞] with 
T(x) = F−1

N(0,1)
(FU(a,b)(x)) for each x ∈ [a, b] , where FN(0,1) is the CDF of the standard 

normal distribution and FU(a,b) is the CDF of U(a, b), the uniform distribution for the 
interval [a, b] for some a, b ∈ R with a < b . Thus, T maps the bounded interval 
[a, b] onto R . Since the endpoints a and b are mapped to −∞ and ∞ , respectively, 
we choose them to be slightly outside the bounds of the solar radiation distribution 
such that T does not map any data point to ±∞ . The ranges of values of the trans-
formed random variables T(S), T(S) and T(Sk) are unbounded and we can apply ker-
nel density estimators to their transformed data points T(s), T(s) and T(sk) , where 
T(s) = (T(s1),… , T(sn)) . Finally, we transform the density functions f̂T(Si) back to 
the interval [a, b] with f̂S(x) =

1

c
f̂T(S)(T(x)) for each x ∈ [a, b] , where c > 0 is a nor-

malizing constant.
Once the densities of the marginal distributions of X and S, as well as the densi-

ties of S and Sk are determined, they are numerically integrated to obtain the cor-
responding CDFs with which an R-vine copula is fitted, as described in Sect. 3.3. 
Now we can draw samples from the (unconditional and conditional) R-vine copula 
model with which we construct uncertainty sets B∗ , as described in Sect. 3.6. Fig-
ure 4 shows the histograms of samples drawn from conditional R-vine copula mod-
els for different solar radiation forecasts and, in particular, how the conditional error 
distribution changes for different forecasted solar radiations.

To check how well the R-vine copula model captures the correlations of the 
dataset of forecasted radiations and power forecasting errors, we compare the val-
ues of empirical Kendall’s tau (see (16)) for all pairs of components of the vector 
(S1,… , Sn,X1,… ,Xn) . It can be seen in Fig. 5 that the R-vine copula model man-
ages to capture the correlation within the underlying dataset quite well, since the 
values of empirical Kendall’s tau computed from the dataset of forecasted radiations 
and power forecasting errors (left) and from simulated realizations of the R-vine 
copula model (right), respectively, show very similar correlation structures.

Note that we consider copulas with up to 26 dimensions while the available data-
set contains only 180 data points. This makes it difficult to reliably assess the good-
ness of fit of the copula model. However, in the following we evaluate the entire 
model chain with various validation scores in order to assess the additional benefit 
of the copula model.
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4.3 � Analyzing the size of uncertainty sets

We now analyze the size of uncertainty sets for the robust approximation of 
chance constraints using the scenario approach described in Sect.  3.6. The 
resulting sets depend on the samples drawn from the unconditional probability 
distribution and the three conditional distributions of power forecasting errors, 
respectively, considered in Sect. 4.2. Note that the minimum number N of sam-
ples required for the scenario approach, determined by means of (20), goes 

Fig. 4   Histograms of 10,000 simulated conditional forecasting errors Xk,Xk′ (in MW), given that 
S = s (left), S = s (middle), and Sk = sk, Sk� = sk� (right), for two examples of solar feed-in points 
k, k� ∈ {1,… , n} and for three different quantile values of s, sk , sk′ or a vector of quantile values 
s ∈ [0, 1]13 . The colors indicate the quantiles of forecasted solar radiation on which the samples are con-
ditioned, i.e., blue, green and red corresponds to low, medium and high solar radiation, respectively

Fig. 5   Empirical Kendall’s tau computed from the dataset of forecasted radiations and power forecasting 
errors (left) and from simulated realizations of the R-vine copula model (right) for all pairs of compo-
nents of the vector (S1,… , Sn,X1,… ,Xn) . Top left: �(Xi,Xj) . Bottom right: �(Si, Sj) . Top right and bot-
tom left: �(Xi, Sj)
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from N = 48 (for 1 − � = 0.01 ) over N = 469 ( 1 − � = 0.9 ) to N = 4684 samples 
(for 1 − � = 0.99 ). In practice, a coverage probability 1 − � of about 0.9 is often 
practically relevant and therefore N = 469 samples are sufficient for the scenario 
approach with a confidence of 1 − � = 0.99.

For the numerical results discussed in the present section, we use an average 
uncertainty set which is obtained from applying the scenario approach 500 times. In 
this way, our numerical results become reproducible because the average uncertainty 
set does not change significantly, when the procedure described above is repeated.

Figure  6 shows values of the size measure given in  (18a), i.e. for the sum of 
interval lengths, of uncertainty sets computed exemplarily for a usual summer day 
at noon with an average hourly global horizontal irradiation of 0.63kWh

m2
 , in depend-

ence of different values of the coverage probability 1 − � with a confidence of 
1 − � = 0.99 . Note that smaller confidence levels would lead to smaller uncertainty 
sets, but the quality of these sets also decreases. In particular, there would no longer 
be a confidence probability of 0.99 that the computed uncertainty set covers the cho-
sen probability mass of 1 − �.

The values displayed in Fig. 6 are normalized by the size of the largest uncer-
tainty set, namely the unconditional uncertainty set for a coverage probability of 
0.99. It can be seen that the sizes of the uncertainty sets increase with increasing 
probabilities 1 − � as the confidence regions cover a larger set of realizations of the 
random vector X of power forecasting errors. In comparison to the uncertainty sets 
constructed with conditional probability distributions of X, the unconditional dis-
tribution of X leads for all coverage probabilities 1 − � to larger uncertainty sets. 
Thus, with knowledge on the forecasted solar radiation, it is possible to adapt the 
uncertainty sets to the current weather situation, which leads to small sizes. Not sur-
prisingly, the conditional distribution of X with given solar radiation at all n solar 
feed-in nodes yields the smallest uncertainty sets for all coverage probabilities 1 − � . 
However, the differences between these sizes and those obtained for the other two 
conditional settings with less complete information on the forecasted solar radiation, 
i.e. knowledge of average solar radiation (avg), and at one single node (one), are not 
too large. Furthermore, the size differences between the conditional settings ’avg’ 
and ’one’ are negligible.

Fig. 6   Average size of uncer-
tainty sets for varying coverage 
probabilities 1 − � and with 
a confidence of 1 − � = 0.99 , 
using the unconditional 
distribution of X (no), and the 
conditional distribution given 
that S = s (all), S = s (avg) and 
S19 = s19 (one), respectively
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The numerical results presented in the remaining part of this section concern the case 
1 − � = 0.9 , i.e. the practically most relevant value of the coverage probability 1 − � . 
For this safety margin, we analyze the uncertainty sets obtained for the four (uncondi-
tional and conditional) distributions of X described above and for each day in the valida-
tion dataset. In particular, we determine the empirical coverage probability by counting 
how often the realizations drawn from the respective distribution of the random vector 
X belong to the corresponding uncertainty set. Furthermore, we compute and compare 
the average size of the uncertainty sets, i.e. the sum of interval lengths, and their aver-
age volume, i.e. the product of interval lengths. The results are displayed in Table 2, 
where it can be seen that the four different settings lead to similar empirical coverage 
probabilities around the given level of 0.9. On the other hand, the reductions of size 
and volume of uncertainty sets implied by considering conditional distributions of the 
power forecasting error X are clearly visible. Again, the case with given solar radiation 
at all n solar feed-in nodes yields the smallest uncertainty sets, whereas the size differ-
ences between the conditional settings ’avg’ and ’one’ are negligible.

To further analyze the impact of additional knowledge regarding solar radia-
tion forecast on size and location of uncertainty sets, we determined uncertainty 
sets for a rather sunny day at noon with a high average solar radiation forecast of 
0.76 kWh

m2
 and a less sunny day at noon with a low average solar radiation forecast 

of 0.18 kWh

m2
 . The results are shown in Fig. 7, where the uncertainty sets are plotted 

via their confidence intervals (in MW) for each solar feed-in point.
It turned out that the lengths of the confidence intervals significantly shrink 

by considering conditional distributions of the power forecasting error X, given a 
high average solar radiation forecast. More precisely, the lower endpoints of the 
confidence intervals are shifted upwards, i.e., negative power forecasting errors 
are less likely, whereas the upper endpoints remain almost unchanged, see Fig. 7 
(left). On the other hand, for low average radiation forecast, the confidence inter-
vals are shifted downwards by considering conditional distributions of the power 
forecasting error, but their lengths remain almost unchanged, see Fig. 7 (right).

Finally, we note that also the results of the numerical experiments presented 
in Aigner et  al. (2021) are based on (measured) power feed-in data from NNG 
and forecasted radiation data from DWD. However, the used database differs 
from that of the present paper, where, in addition, solar power forecast data are 
exploited provided by the forecasting model of Schinke-Nendza et al. (2021). In 
this way, by modeling the multivariate probability distribution of solar power 

Table 2   Average empirical coverage probability and average reduction of size/volume of uncertainty sets 
for the four (unconditional/conditional) settings ’no’, ’avg’, ’one’ and ’all’ of the distribution of the power 
forecasting error X, baesd on data for each day in the validation datset

Condition ∅ Emp. coverage probab ∅ Size reduction ∅ Volume reduction

No 0.89 − −
Avg 0.90 −7.12% −40.0%

One 0.90 −7.14% −40.6%

All 0.88 −8.53% −55.3%
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forecast data via R-vine copulas, it is possible to determine conditional uncer-
tainty sets, which meet the desired coverage probability of 0.9. They have signifi-
cantly smaller sizes than the corresponding unconditional uncertainty sets from 
Aigner et al. (2021) which led to an larger empirical coverage of 0.98 although 
1 − � = 0.9 was required.

4.4 � Robust curtailment

As important as the size of the computed uncertainty sets is the quality of solutions 
obtained by solving the robust approximation (8) of the chance constrained optimi-
zation problem described in (6). In order to solve (8), we use the network parameters 
given by the power network operator NNG. The curtailment options for the feed-
in nodes in the electrical power network of NNG are �k ∈ {0, 0.1, 0.2, … , 1.0} . 
Moreover, the participation factors of the generators are fixed values given by NNG 
( �31 = �34 = 0.05 , �32 = �33 = 0.45 ). There are no costs affiliated with the power 
transfer at the (slack-) generators on the boundary nodes. Hence, there are no gen-
erator production costs and the corresponding term in the objective function is given 
as 

∑
k∈NG

fk(P
G
k
) with fk(PG

k
) = 0 for each k ∈ NG . The curtailment costs are mod-

eled as 
∑

k∈N ck(�k) with ck(�k) = PI
k
(1 − �k) for each k ∈ N  . The minimization of 

this objective function leads to a minimum curtailment of solar feed-in.
Due to the balanced network situations in the historical data, there is no need to 

curtail the solar feed-in in the instances from the validation set. There is also no dan-
ger of overload and the optimization leads to trivial solutions with a curtailed solar 
power equal to 0. Thus, in order to generate test cases with critical network situa-
tions (and non-trivial solutions), we artificially increased the solar power feed-in, 
whereas the network topology, transmission line parameters and the power demand 
remained unchanged. More precisely, based on the data of the validation set, we 
increased the installed solar power and the feed-in up to the by NNG planned total 
solar power capacities of the year 2022 and the planned total solar power increase of 
year 2025. The corresponding scaling of power generation forecast and uncertainty 

Fig. 7   Uncertainty sets in MW ( � = 0.1, � = 0.01 ) for average solar radiation forecast of 0.76 kWh

m2
 (left) 

and 0.18 kWh

m2
 (right), using the unconditional distribution of X (no), and the conditional distribution given 

that S = s (all), S = s (avg) and S19 = s19 (one), respectively
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sets creates an oversupply of renewable energy, and therefore it is more likely in 
these instances that a curtailment will be required. Furthermore, in addition to the 
up-scaled solar power, we simulated the impact of transmission line failure on the 
solution of our optimization problem.

Thus, we now discuss further details for the following experimental setups: 

A:	 Installed solar power as planned in 2025,
B:	 Installed solar power as planned in 2022 with a failure of lines (6, 19) and (9, 30).

To obtain the results, a mixed-integer optimization problem was solved for each 
instance and each (unconditional and conditional) uncertainty set. The computing 
times are very low and, thus, solutions can be generated efficiently. Indeed, the aver-
age computing times for the two settings are 2.8s (setting A) and 1.1s (setting B), 
with a maximal run time of 8.2s (setting A) and 4.0s (setting B).

The robustness of a solution of (8) can be validated by checking if the computed 
network configuration leads to an overload after the realization of uncertainty. The 
corresponding entries in Table  3 show that nominal solutions generated without 
probabilistic constraints (or, in other words, for 1 − � = 0 ) lead to overload in a large 
amount of test instances. In contrast, only up to three robust solutions lead to con-
straint violation in each setting for the different probabilistic models. The relative 
frequencies for this is therefore below the given threshold of � = 0.1 . This indicates 
the feasibility of the robust solutions for the chance constraints. This shows that the 
robust protection against uncertainties is necessary and reasonable, since the num-
ber of technical constraint violation could be strongly reduced in the numerical 
experiments.

To further investigate the quality of solutions of (8), we computed the amount 
of curtailed solar power of the robust solution in comparison to the solution of the 
nominal problem (1) without a protection against uncertainty. The increase in cur-
tailed energy of the robust solutions in comparison to the nominal ones can be inter-
preted as the cost of robust protection. That means how much the curtailment costs 
increase due to the protection against uncertainties. Figure  8 shows box plots for 
the increase of relative curtailment costs using the four (unconditional/conditional) 
types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets. One can see that, again, the 

Table 3   Number of instances where a nominal solution of (1) without probabilistic constraints leads 
to overload in the network compared to robust solutions (with security of 1 − � = 0.9 ) using the four 
(unconditional/conditional) types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets

Condition Setting A Setting B
nominal 19 (20.7%) 38 (41.3%)

No 2 (2.2%) 3 (3.3%)
Avg 3 (3.3%) 2 (2.2%)
One 2 (2.2%) 2 (2.2%)
All 2 (2.2%) 2 (2.2%)



1979

1 3

Robust DC optimal power flow with modeling of solar power supply…

addition of further knowledge about the solar radiation improves the performance 
in both settings. This corresponds to the size reduction of the uncertainty sets recog-
nized in Sect. 4.3. Overall, the relative cost increase in all experiments is relatively 
small. However, using the samples drawn from the three conditional distributions 
of power forecasting errors enable us to further reduce the amount of wasted energy 
under the same solution guarantees, where, again, the conditional settings ’avg’ and 
’one’ have a similar impact. In comparison with the preliminary results obtained in 
Aigner et  al. (2021), the amount of curtailed energy could drastically reduced on 
average from about 13 to 5% under the same solution quality guarantees. This coin-
cides with the reduction of uncertainty set size discussed at the end of Sect. 3.6.

In summary, the obtained results show that the scenario approach for the consid-
ered instances in combination with the copula-based stochastic modeling of power 
forecasting errors leads to high-quality solutions. The addition of further knowledge 
about the current weather situation allows us to construct more precise uncertainty 
sets. We are able to produce robust solutions with a relative small increase of cur-
tailment costs, while maintaining the same level of protection.

5 � Conclusion

In this paper, we combine the robust approximation of chance constrained DC Opti-
mal Power Flow with a probabilistic uncertainty model based on R-vine copulas 
to reduce the curtailment of solar power while keeping the power grid stable. The 
chance constrained DC Optimal Power Flow determines appropriate levels of cur-
tailment based on a deterministic forecast for the expected solar power feed-in and 
uncertainty sets, i.e., multidimensional cuboids which contain the forecasting error 
with a given probability. These uncertainty sets are approximated with the help of 
the multivariate probability distribution of the forecasting error at all considered 
power grid nodes. This results in less curtailments and a more stable power grid 
compared to the results of a model without uncertainty sets.

Fig. 8   Box plots of relative cost increase by the robust protection using the four (unconditional/condi-
tional) types ’no’, ’avg’, ’one’ and ’all’ of uncertainty sets. The box extends from the lower to upper quar-
tile values with a line at the median and a marker at the arithmetic mean. The whiskers extending from 
the boxes show the maximum ranges of relative cost increase
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To further improve upon these results, we incorporate knowledge about solar 
radiation in the solution process by considering the conditional forecasting error dis-
tribution for a given solar radiation forecast. This leads to sharper distributions, i.e., 
the forecasting error can be predicted with higher accuracy, which results in smaller 
uncertainty sets. Compared to the unconditional case, this leads to even less curtail-
ments and improved stability of the power grid.

Our numerical results demonstrate the applicability of our procedure and the pos-
itive effects of incorporating a probabilistic model for the distribution of random 
solar radiation vectors. Future research can transfer our solution framework to differ-
ent applications under uncertainty like in energy network optimization.

Future research could add further features and investigate questions arising from 
the application, for example adding optimal transmission switching under uncer-
tainty or including storage elements and unit commitment constraints over time. 
From a mathematical point of view, it would be interesting to study different geome-
tries for uncertainty sets to further reduce the conservatism of the robust approxima-
tion. The major challenge is to find assumptions where an equivalent reformulation 
for the resulting problems is possible. In order to improve the copula-based sam-
pling from conditional probability distributions, it might be promising to add more 
information (e.g. temperature, solar altitude, time) to the model.
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