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Abstract
A method of Sequential Log-Convex Programming (SLCP) is constructed that 
exploits the log-convex structure present in many engineering design problems. 
The mathematical structure of Geometric Programming (GP) is combined with 
the ability of Sequential Quadratic Program (SQP) to accommodate a wide range 
of objective and constraint functions, resulting in a practical algorithm that can be 
adopted with little to no modification of existing design practices. Three test prob-
lems are considered to demonstrate the SLCP algorithm, comparing it with SQP and 
the modified Logspace Sequential Quadratic Programming (LSQP). In these cases, 
SLCP shows up to a 77% reduction in number of iterations compared to SQP, and 
an 11% reduction compared to LSQP. The airfoil analysis code XFOIL is integrated 
into one of the case studies to show how SLCP can be used to evolve the fidelity of 
design problems that have initially been modeled as GP compatible. Finally, a meth-
odology for design based on GP and SLCP is briefly discussed.

Keywords  Geometric programming · Log-convexity · Non-linear programming · 
Sequential quadratic programming · Sequential convex programming

1 � Optimization for engineering design

Two of the defining tasks of the engineering profession are analysis and design. 
Analysis is a process by which engineers obtain data to quantify the behavior of 
a part, component, or system. A full scale build and test is always the preferred 
approach to obtaining the highest quality analysis data, but external factors like 
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cost and schedule make it impossible to utilize these methods every time an anal-
ysis must be performed.

As a result, analysis is often performed via simulation, where a set of simplified 
physics is modeled mathematically and then used to obtain the necessary analysis 
data. Given the abundance of computing resources in the modern era, simulation 
has become the standard method for performing engineering analysis. Thousands of 
analysis models (often distributed as software or code packages) have been released, 
including models for computational fluid dynamics (CFD), finite element analysis 
(FEA), electromagnetic simulation, and thermal analysis, just to name a few.

In general these analysis models are highly complex, requiring great expertise 
both to develop and to run as a user. Due to this complexity, analysis is often con-
ceptualized and implemented as a black box, where the user provides inputs and 
obtains outputs with no visibility into the actual simulation being run (Martins 
and Lambe 2013). In this way, analysis tools can be thought of as functions:

where � represents the inputs to the analysis and � represents the obtained outputs. 
In essence, the vector � is the mathematical abstraction of the design of a particular 
engineering system, and vector � is how that system performs.

If the goal of analysis is to determine the performance � of some given system 
design � , the design process seeks to determine some vector � that satisfies perfor-
mance criteria � . The first step in design is often to simplify the vector � to include 
only the most critical parameters that define the system. Once complete, the vector 
� exists in a vector space ℝN (called the design space) where N is the number of 
design decisions that have been retained in � , typically referred to as the design vari-
ables. Determining the appropriate values for these design variables is a challenging 
task because while analysis can be performed with a single “function call” to the 
black box method in Eq. 1, determining an appropriate design requires that many 
candidate designs be evaluated in order to determine the best one, �∗.

Thus, design does not take the simple functional form of Eq. 1. Instead, engineer-
ing design problems cast in the language of mathematics are optimization problems:

But engineering design problems rarely take the form of Eq. 2. Instead, constraints 
are often imposed on the problem:

Constraints typically serve one of two purposes. First is to impose an artificial limit 
on the system, such as a minimum dimension or a maximum cost. Second is to rep-
resent a limit imposed by a fundamental law of physics, such as the maximum stress 
that can be carried in a material or the dynamics of Newton’s Second Law.

(1)� = f (�)

(2)minimize
�

f (�)

(3)
minimize

�
f (�)

subject to �i(�) ≤ 0, i = 1,… ,N

�j(�) = 0, j = 1,… ,M
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These physics based constraints are another way in which analysis models are 
often included in engineering design problems, and so functions f (�) , �i(�) , and 
�j(�) must all be assumed in the general case to be highly complicated black box 
functions that are expensive to evaluate. The optimization methods used most com-
monly in engineering design are therefore tailored to minimize the number of times 
the objective and constraint functions must be evaluated. Of these methods, Sequen-
tial Quadratic Programming (SQP), Geometric Programming (GP), and Logspace 
Sequential Quadratic Programming (LSQP) are most relevant to this work.

2 � Foundations in existing optimization algorithms

2.1 � Sequential quadratic programming

In general, the problem posed in Eq. 3 is referred to as a Non-Linear Program (NLP) 
and is difficult to solve. Many algorithms exist for solving NLPs, but the Sequential 
Quadratic Programming (SQP) algorithm is highly effective and has been utilized 
across a wide range of scientific and engineering fields. The SQP algorithm begins 
with an initial guess �k and formulates a Quadratic Programming (QP) approxima-
tion of the NLP that is valid in the local region near �k . The QP sub-problem takes 
the form (Boggs and Tolle 1996; Nocedal and Wright 2006; Kraft 1988):

so named because of the quadratic objective function. Since QPs are known to be 
convex (Boyd and Vandenberghe 2009), the optimization problem in Eq. 4 can be 
used to reliably and efficiently produce a new guess �k+1 . The process can then be 
iterated until some convergence criteria is reached, returning the optimal solution to 
the original NLP, �∗.

Together with interior point methods, SQP represents the current state of the art 
for solving constrained continuous non-linear optimization problems (Martins and 
Ning 2021) despite being nearly 60 years old (Boggs and Tolle 1996). The wide-
spread success of SQP can be traced back to two key attributes. First, the QP sub-
problem is easy to construct since the sub-problem only requires the function evalu-
ations f (�k) , gi(�k) , and hj(�k) and the gradients ∇f (�k) , ∇gi(�k) , and ∇hj(�k) . These 
quantities are generally simple to obtain regardless of the complexity of the true 
functions, making SQP applicable to a incredibly large number of problem formula-
tions. Second, the QP sub-problem is easy to solve because it is convex, established 
in great detail by Boyd and Vandenberghe (2009). This convexity is key as con-
vex optimization problems can be solved reliably and efficiently, unlike most other 
NLPs.

(4)

minimize
�

f (�k) + ∇f (�k)
T� +

1

2
�T∇2L(�k)�

subject to gi(�k) + ∇gi(�k)
T� ≤ 0, i = 1,… ,N

hj(�k) + ∇hj(�k)
T� = 0, j = 1,… ,M

� = � − �k
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In fact, the QP sub-problem is the best possible convex approximation of the 
true NLP that can be derived from a Taylor series decomposition of functions 
f (�) , �i(�) , and �j(�) , since taking any more terms in either the objective or con-
straint approximations would result in a non-convex sub-problem. The desire for an 
accurate sub-problem should be relatively intuitive, since the number of iterations 
required to solve the NLP decreases as sub-problem accuracy increases.1 But many 
other forms of convex optimization problems exist, including Linear Programs (LP), 
Semi-Definite Programs (SDP), Second Order Cone Programs (SOCP), and some 
Quadratically Constrained Quadratic Programs (QCQP), among others. If the role 
of the sub-problem is only to efficiently produce a new guess xk+1 , any one of these 
convex forms could easily be used in place of the QP sub-problem. These theoretical 
approaches are generalized under the classification of Sequential Convex Program-
ming (SCP) (Boyd 2015; Duchi et al. 2018).

Of these SCP variations, only Sequential Quadratically Constrained Quadratic 
Programming (SQCQP) has received much attention in the literature (Anitescu 
2002; Tang and Jian 2008; Liu et al. 2020; Jian et al. 2021), but these methods strug-
gle with complications in computing constraint curvature and in handling non-con-
vex QCQP sub-problems.2 Why other forms of SCP have not been studied is not 
clear, but any method of SCP should abide by the following criteria: 

1.	 Ease of construction should be comparable to the QP sub-problem of SQP (ie, 
use only f (�k) , gi(�k) , and hj(�k) and the gradients ∇f (�k) , ∇gi(�k) , and ∇hj(�k) in 
sub-problem construction)

2.	 Exhibits a convex structure, and therefore easily solved
3.	 Captures the underlying NLP more accurately than the QP sub-problem of SQP

An LP based algorithm would rarely be superior to SQP, algorithms based on SDP 
or SOCP do not have an obvious construction method for the sub-problem, and the 
lack of convexity in some QCQPs has already been discussed. So, is it possible to 
develop a method of SCP that satisfies all three criteria? To answer this question one 
key building block remains, as recent literature has suggested a clear front runner for 
the type of convex optimization that should be used for engineering design: Geomet-
ric Programming.

2.2 � Geometric programming

A Geometric Program (GP) is a specific type of optimization formulation built from 
two classes of functions: monomials and posynomials. A monomial function is 
defined as the product of a leading constant with each variable raised to a real power 
(Boyd et al. 2007):

1  Consider as a thought experiment the extreme case where the sub-problem exactly represents the origi-
nal NLP. The solution would be obtained in only one iteration.
2  It is theoretically possible to model nearly any constrained continuous optimization as a QCQP regard-
less of whether convex structure exists or not, significantly limiting the general usefulness of the form.
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A posynomial is simply the sum of monomials (Boyd et  al. 2007), which can be 
defined in notation as:

From these two building blocks, it is possible to construct the definition of a GP in 
standard form (Boyd et al. 2007):

If the general NLP (Eq. 3) can be written in GP standard form (Eq. 7) then it can 
be solved with great efficiency, since upon log transformation3 geometric programs 
become convex (Boyd et al. 2007).

The advantage of the GP form is that it is far more representative of many engi-
neering design problems than the QP formulation. The benefits of GP for engineer-
ing design has been well established in the literature (Clasen 1984; Greenberg 1995; 
Boyd et  al. 2005; Boyd and Lee 2001; Li et  al 2004; Xu et  al. 2004; Jabr 2005; 
Chiang 2005; Chiang et al. 2007; Kandukuri and Boyd 2002; Marin-Sanguino et al. 
2007; Vera et al. 2010; Preciado et al. 2014; Misra et al. 2014; Sela Perelman and 
Amin 2015) [see the original compilation in Agrawal et  al. (2019)], and has seen 
specific benefit for aircraft design (Hoburg and Abbeel 2014; Torenbeek 2013; 
Hoburg and Abbeel 2013; Kirschen et al. 2016; Brown and Harris 2018; York et al. 
2018; Burton and Hoburg 2018; Lin et al. 2020; Kirschen et al. 2018; York et al. 
2018; Saab et al. 2018; Hall et al. 2018). Given that geometric programs are often 
more accurate at modeling engineering design problems, and that they can be solved 
just as efficiently as the quadratic programs that form the core of the SQP algorithm, 
GPs are a strong candidate for use in Sequential Convex Programming.

2.3 � Logspace sequential quadratic programming

The first attempts to leverage geometric programming in a sequential optimiza-
tion algorithm were simply applications of SQP under the log transformation that 
makes GPs convex (Kirschen et al. 2018; Karcher 2021). Consider a slight modi-
fication of the general NLP (Karcher 2021):

(5)m(x) = cx1
a1x2

a2 ... xn
an = c

N
∏

i=1

x
ai
i

(6)p(x) = m1(x) + m2(x) + ... + mn(x) =

K
∑

k=1

ck

N
∏

i=1

x
aik
i

(7)
minimize

�
p0(x)

subject to mi(x) = 1, i = 1,… ,N

pj(x) ≤ 1, j = 1,… ,M

3  In some of the literature, the transformation considered in this work is referred to as a log-log trans-
formation since both dependent and independent variables are transformed. In all cases here, logspace, 
log-convexity, log transformation etcetera could equivalently be called log-log space, log-log convexity, 
log-log transformation and similar.



1724	 C. Karcher, R. Haimes 

1 3

Under the GP transformation yi = log xi , or equivalently xi = eyi , the problem 
becomes:

which makes the new QP sub-problem (Karcher 2021):

The use of log-transformations with traditional SQP is a well known method of 
improving the scaling of the original non-linear program, and is therefore not a sig-
nificant advance forward in the state of the art. However, LSQP is a general and sys-
tematic approach to non-linear optimization, based on an improved understanding 
of the underlying GP-compatible mathematics present in many engineering design 
problems (Karcher 2021).

But LSQP can be taken one step further. The sub-problem defined by Eq. 10 
represents monomial constraints exactly, but gives no consideration to posyno-
mial functions. Under transformation, a posynomial constraint becomes:

which if inserted into Eq. 10 leaves the sub-problem convex. Since convex problems 
can be readily solved (Boyd and Vandenberghe 2009) it is possible to model these 
posynomial constraints directly, without resorting to the linearized form.

3 � The mathematics of SLCP

3.1 � Mathematical definition of the SLCP method

Consider that rather than representing the general non-linear program with Eq. 8, 
the constraints that are GP compatible (posynomials and monomials) are given 
special treatment:

(8)
minimize

�
f (�)

subject to �i(�) ≤ 1, i = 1,… ,N

�j(�) = 1, j = 1,… ,M

(9)

minimize
�

log f (ey)

subject to log �i(e
y) ≤ 0, i = 1,… ,N

log�j(e
y) = 0, j = 1,… ,M

(10)

minimize
�

log f (�k) +
1

f (�k)

(

�k ⊙ ∇f (�k)
)T
� +

1

2
�T∇2L(�k)�

subject to log gi(�k) +
1

gi(�k)

(

�k ⊙ ∇gi(�k)
)T
� ≤ 0, i = 1,… ,N

log hj(�k) +
1

hj(�k)

(

�k ⊙ ∇hj(�k)
)T
� = 0, j = 1,… ,M

� = � − log �k
� = log �

(11)log

(

∑

j

exp
(

Pj(� + log �k) + qj
)

)

≤ 0
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The constraints �(�) ≤ 1 and �(�) = 1 will be linearized in the sub-problem just as 
in LSQP (Karcher 2021), but posynomials and monomials can be transformed and 
imposed directly in the sub-problem. Following this procedure yields the following 
sub-problem form:

Solving the general non-linear program in Eq.  12 via a series of sub-problems 
defined by Eq. 13 is proposed here as a method of of Sequential Log-Convex Pro-
gramming (SLCP), since the quadratic programing sub-problem of SQP has now 
been replaced with a log-convex programming (LCP) sub-problem.

3.2 � The reduced Lagrangian

Though the primary distinction between the SLCP method proposed here and the 
LSQP algorithm in the literature (Karcher 2021) is in the handling of posynomial 
constraints, the objective function also requires a minor update. The LSQP sub-
problem inherits its quadratic objective function directly from SQP, which uti-
lizes the Hessian of the Lagrangian function, defined as:

The primary purpose of using the ∇2L(�k) rather than ∇2f (�k) is to include some 
second order information from the constraints in the sub-problem (Boggs and Tolle 
1996; Nocedal and Wright 2006). In the case of SLCP, some of the constraints with 
higher order curvature are now being represented directly, and so attempting to 
approximate the second order information of these constraints in the objective func-
tion causes a conflict between the approximated curvature and the true curvature 
that is now being fully captured. Thus, those constraints must be left out of the sec-
ond order Hessian approximation.

The SLCP algorithm therefore utilizes a Reduced Lagrangian, which does not 
include the constraints which are exactly represented:

(12)

minimize
�

f (�)

subject to �(�) ≤ 1

�(�) = 1

�(�) ≤ 1

�(�) = 1

(13)

minimize
�

log f (�k) +
1

f (�k)

�

�k ⊙ ∇f (�k)
�T
� +

1

2
�T∇2LR(�k)�

subject to log
�

∑

j exp
�

Pj(� + log �k) + qj
�

�

≤ 0

Am(� + log �k) + bm ≤ 0

log g(�k) +
1

g(�k)

�

�k ⊙ ∇g(�k)
�T
� ≤ 0

log h(�k) +
1

h(�k)

�

�k ⊙ ∇h(�k)
�T
� = 0

� = � − log �k
� = log �

(14)L(�, �) = log f (�) + � log �(�k) + � log�(�k) + � log �(�k) + � log �(�k)
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The use of this Reduced Lagrangian is critical to the success of the algorithm. 
Imposing exact constraints without this modification performs worse than strict 
LSQP.

3.3 � Limitations and potential improvements

This proposed method of SLCP shares many of the same drawbacks as LSQP 
(Karcher 2021). Due to the log transformation, variables must be strictly positive, 
and remain strictly positive during the solve. Since it is not possible to have a 
negative mass, length, volume, or similar, this limitation proves remarkably non-
intrusive for many engineering design problems.

Likewise, functions f (�) , �i(�) , and �j(�) must be positive at the initial guess 
and stay positive throughout the solution. This concern is addressed in more 
depth in previous work (Karcher 2021), but essentially, it is possible to miti-
gate this concern through intelligent function construction, and the step size can 
always be constrained to ensure these functions remain positive.

One possible area for future improvement is the use of the quadratic objective 
function. Some effort here was given to replacing the quadratic objective with a 
GP compatible posynomial function, but utilizing the quadratic objective with the 
BFGS approximation provided the best result and so was carried over from LSQP 
(with the Reduced Lagrangian modification). A deep dive into modifying BFGS 
to accommodate a non-quadratic objective was viewed as being beyond scope.

Another compelling reason for keeping the quadratic objective in this work 
was that the sub-problem proposed in Eq.  13 reverts to the LSQP sub-problem 
in the absence of posynomial constraints, which provides a cornerstone for com-
parison and debugging. And since LSQP is simply an application of SQP in log 
transformed space (Karcher 2021), the body of literature surrounding SQP could 
still be utilized with only minimal modification.

A second potential improvement stems from the realization that the SLCP sub-
problem defined by Eq. 13 is not the only possible SLCP sub-problem. Indeed, work 
by Agrawal et al. (2019) on Disciplined Geometric Programming suggests that there 
are families of functions beyond posynomials that are log-convex and could there-
fore receive similar treatment in Eq. 13. Developing a more general SLCP method 
that accounts for these functions will be the subject of future work, but was deter-
mined to be out of scope for this paper, especially given the success of GP form in 
engineering design without these additional functions.

(15)LR(�, �) = log f (�) + � log �(�k) + � log �(�k)
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4 � An algorithm for the proposed SLCP method

Algorithm 1 outlines a method for implementing the proposed SLCP method pro-
grammatically. Though Algorithm 1 is very similar to the well known SQP algo-
rithm and the LSQP algorithm outlined in the literature (Karcher 2021), a few minor 
changes should be noted.

Similar to LSQP, Algorithm 1 utilizes the gradients � log f (e
y)

�yi
 , which can be directly 

computed from the original gradients �f
�xi

 for minimal computational expense (Boyd 
et al. 2007; Karcher 2021):

The use of the Reduced Lagrangian also necessitates modification to the damped 
BFGS method (Nocedal and Wright 2006):

Finally, the sub-problem is relaxed here to handle the problem of inconsistent con-
straints frequently faced by SQP (Nocedal and Wright 2006):

(16)
� log f (ey)

�yi
=

xi

f (�)

�f

�xi

(17)

�k+1 = �k −
�ksks

T
k
�k

sT
k
�ksk

+
rkr

T
k

sT
k
rk

sk = 𝛼k�x

zk = ∇LRk+1
(f , g, h, �k+1,𝜇k+1) − ∇LRk

(f , g, h, �k,𝜇k+1)

rk = 𝜃kzk + (1 − 𝜃k)�ksk

𝜃k =

{

1 if sT
k
zk ≥ 0.2sT

k
�ksk

(0.8sT
k
�ksk)∕(s

T
k
�ksk − sT

k
zk) if s

T
k
zk < 0.2sT

k
�ksk

(18)

minimize
�

log f (�k) +
1

f (�k)

�

�k ⊙ ∇f (�k)
�T
� +

1

2
�T∇2LR(�k)� + K

∑Ncon

i=1
𝜎2
i

subject to log
�

∑

j exp
�

Pj(� + log �k) + qj
�

�

≤ 𝜎i

Am(� + log �k) + bm ≤ 𝜎i

log g(�k) +
1

g(�k)

�

�k ⊙ ∇g(�k)
�T
� ≤ 𝜎i

log h(�k) +
1

h(�k)

�

�k ⊙ ∇h(�k)
�T
� = 𝜎i

� = � − log �k
� = log �
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Algorithm 1 Sequential Log-Convex Programming (SLCP)
1: Given x0
2: Construct standard form
3: Compute y0 = log(x0)
4: Initialize logspace Lagrange multipliers, µ0 ← 1
5: Initialize the matrix B ← I the approximation of ∇2LR(y, µ) [40]
6: Compute f(x0), g(x0), h(x0), p(x0), and m(x0)
7: Compute log f(x0), log g(x0), logh(x0), logp(x0), and logm(x0)
8: Compute ∇f(x0), ∇g(x0), ∇h(x0), ∇p(x0), and ∇m(x0)
9: Compute ∇ log f(ey0 ), ∇ log g(ey0 ), ∇ logh(ey0 ), ∇ logp(ey0 ), and ∇ logm(ey0 ) via

Equation 16
10: for k = 0 to maxIter do
11: Solve the convex sub-problem (Equation 18) to obtain dy and dµ [40]
12: Compute the step size αk via inexact line search [40,1]
13: yk+1 ← yk + αkdy

14: xk+1 ← exp(yk+1)
15: µk+1 ← µk + αkdµ

16: Compute f(xk+1), g(xk+1), h(xk+1), p(xk+1), and m(xk+1)
17: Compute log f(xk+1), log g(xk+1), logh(xk+1), logp(xk+1), and logm(xk+1)
18: Compute ∇f(xk+1), ∇g(xk+1), ∇h(xk+1), ∇p(xk+1), and ∇m(xk+1)
19: Compute ∇ log f(eyk+1 ), ∇ log g(eyk+1 ), ∇ logh(eyk+1 ), ∇ logp(eyk+1 ), and

∇ logm(eyk+1 ) via Equation 16
20: Compute ∇Lk(yk, µk+1) [40]
21: Compute ∇Lk+1(yk+1, µk+1) [40]
22: Compute ∇LRk

(yk, µk+1) [40]
23: Compute ∇LRk+1 (yk+1, µk+1) [40]
24: if ∇Lk+1(yk+1, µk+1) < εGL [40] then
25: return xk+1
26: else if ||dx|| < εdx [1] then
27: return xk+1
28: else
29: Perform a modified damped BFGS update on matrix B (Equation 17) [40]
30: k ← k + 1
31: end if
32: end for
33: return xk, maximum iteration count reached

One important note is that unlike LSQP, this SLCP algorithm cannot utilize 
existing SQP solvers due to the fundamentally different nature of the sub-problem 
construction. In the work presented here, Algorithm 1 is implemented in a custom 
python suite, but the sub-problems are solved using the appropriate CVXOPT 
(Andersen et al. 2013) solver.

5 � A simple test case

Before launching into complex design examples, it is valuable to gain intuition 
through the use of a simple example. Consider the following geometric program:
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where � is some small positive value, in this case 10−9 . Under the log transformation 
utilized by GP, LSQP, and SLCP, this problem becomes:

The problem can be directly visualized, both in the original space and in the log 
transformed space, as seen in Fig. 1.

Figure  1 highlights the clear advantage of the log transformation. Figure  1a 
is characterized by long, skinny, irregular objective contours and a non-convex 
constraint, both of which make it poorly conditioned for solution with gradient 
based methods. In contrast, Fig. 1b has objective contours that are nearly circular 
in shape, and a constraint that carves out a convex set4 with no cusps or drastic 
changes of curvature, making it highly conducive to gradient based optimization. 
While it is true that not all optimization formulations will benefit from this trans-
formation [see discussion of the Rosenbrock problem in Karcher (Karcher 2021)], 
the abundance of literature showing the applicability of geometric programming 
to engineering design problems, along with the success of the LSQP algorithm, 
indicates this transformation is a useful tool in many cases of interest.

(19)

minimize
�,�

1

x0.1
+ 15x0.01 +

1

y0.1
+ 15y0.01

subject to 0.01x−1.1 + x0.1 + y ≤ 1

x ≥ �

y ≥ �

(20)
minimize

u,v
log

(

e−0.1u + 15e0.01u + e−0.1v + 15e0.01v
)

subject to log
(

ev + 0.01e−1.1u + e0.1u
)

≤ 0

(a) As written (Equation 19) (b) Under log transformation (Equation 20)

Fig. 1   Visualizing the simple example problem in both the untransformed (a) and log transformed (b) 
spaces

4  The reader should not be confused by the use of the term ‘convex set’ here because the constraint func-
tion is in fact a concave function. A convex optimization problem is by definition the minimization of a 
convex objective function over a convex set generated by the constraint set, which is the case here.
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Now consider the difference between LSQP and SLCP. Starting from 
(x0, y0) = (0.3, 0.05) , Fig. 2 shows the two solution paths taken to reach the opti-
mal solution (zoomed in to highlight the intermediate steps).

Clearly, the LSQP algorithm overshoots the constraint at some point during 
the solution, and must work back into the feasible region before finally reaching 
convergence (Fig. 2a). It is the 6th iteration of both algorithms that distinguishes 
the performance, shown in Fig. 3.

The linear approximation in Fig. 3a does not bound the QP sub-problem appro-
priately, resulting in an overshoot of the true constraint. In contrast, Fig. 3b shows 

(a) With LSQP (b) With SLCP

Fig. 2   Plotting the solution paths taken when solving the simple example problem with the LSQP (a) and 
SLCP (b) algorithms

(a) The 6th iteration of LSQP (b) The 6th iteration of SLCP

Fig. 3   Comparing the critical 6th iteration of the LSQP and SLCP algorithms when solving the simple 
example problem
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the enforced posynomial bounding the step as desired, preventing overshoot. In 
total, this enforcement saves the SLCP algorithm 4 iterations compared to LSQP.

The affect of the Reduced Lagrangian (Eq. 15) can also be visualized at the ter-
mination step of both algorithms, seen in Fig. 4.

The approximated objective function in Fig.  4b is a superior approximation of 
the true underlying objective function due to the absence of the constraint curvature 
terms that must be present in LSQP.

From this simple example, it is possible to draw the two conclusions that will be 
seen in the more extensive trials that follow. First, SLCP will have its widest per-
formance gap with LSQP when more posynomial constraints are present in the for-
mulation. Perhaps phrased more accurately, SLCP will outperform LSQP whenever 
it arises during the solution process that the linear approximation of a posynomial 
substantially deviates from the posynomial itself along the search direction. Sec-
ond, SLCP will outperform LSQP by a wider margin when the initial guess is far-
ther from the true optimal solution, as it is expected that the deviation between the 
posynomials and their linear approximations will grow wider over larger distances. 
These two trends will both be observed in the results below.

6 � Evaluating algorithm performance

6.1 � Methodology

To systematically test the effectiveness of the proposed SLCP method, three engi-
neering design test problems were selected from the literature Floudas (Floudas 
et  al. 2013), Kirschen-Ozturk (Kirschen et  al. 2018), and Hoburg (Hoburg and 
Abbeel 2014) and solved using one of three methods: 

(a) The final iteration of LSQP (b) The final iteration of SLCP

Fig. 4   Comparing the second-order approximation of the objective function at the final iteration of the 
LSQP and SLCP algorithms
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1.	 A python implementation of SQP (Floudas and Kirschen-Ozturk only)
2.	 A python implementation of LSQP as described in Karcher (2021)
3.	 A python implementation of SLCP as described in Sect. 4

Note that three variations of the Hoburg problem were considered, as will be 
discussed below (see Sects. 6.5, 6.6, and 6.7). All three test problems (Floudas, 
Kirschen-Ozturk, and Hoburg) are relatively simple, but were selected to be rep-
resentative of more complex cases like those published by Kirschen (Kirschen 
et al. 2016) and York (York et al. 2018).

This methodology is similar to the one used to demonstrate the effectiveness 
of the LSQP algorithm (Karcher 2021). This previous work (Karcher 2021) also 
validated the SQP implementation against the Matlab implementation of SQP and 
showed comparable performance.

For each of the 12 problem/algorithm combinations, 3000 trials were run start-
ing from a random initial starting point. In 1000 of these cases, the initial guess 
was bounded to be within ± 10% of the known optimum, another 1000 were 
bound within ± 50% of the known optimum, and the final 1000 were bounded to 
be within ±80% of the known optimum.

For each set of 1000 trials, a curve was constructed showing the fraction of 
cases that had converged within a certain number of iterations (Figs. 5, 6, 7, 8, 
and 9). In these plots the ideal algorithm would have a “ Γ-like” shape, converging 
all cases in only one iteration, and so curves closest to the upper left of the graph 
represent the superior algorithms.

Due to the computational expense of 36000 trials, the computational 
resources of the MIT SuperCloud were utilized (Reuther et al. 2018), and a limit 
of 500 iterations was placed on all 3 algorithms.

Fig. 5   Probability of convergence vs. iteration count for the floudas problem
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6.2 � Floudas problem

Floudas et  al. (2013) offers the following optimization for the design of a heat 
exchanger:

Fig. 6   Probability of convergence versus iteration count for the Kirschen-Ozturk Problem

Fig. 7   Probability of convergence versus iteration count for the Hoburg problem with no black boxed 
constraints
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Fig. 8   Probability of convergence versus iteration count for the Hoburg problem with one black boxed 
constraint

Fig. 9   Probability of convergence versus iteration count for the Hoburg problem with three black boxed 
constraints
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The problem has 8 variables and 6 constraints, none of which are mononomials and 
only one of which is a posynomial. The optimal solution is reported by Floudas et al. 
(2013) for comparison. Results for this test problem are presented in Fig. 5, and in 
Tables 2, 3, and 4.

Though this was one of the more interesting case studies for LSQP due to some 
unexpected tradeoffs with SQP (Karcher 2021), the results here paint a clear picture 
that SLCP strictly outperforms SQP and LSQP for this problem.

6.3 � Kirschen‑Ozturk problem

Kirschen et al. (2018) problem for aircraft sizing using low fidelity analysis models5:

(21)

minimize
x1,...,x8

x1 + x2 + x3

subject to
833.33252x4

x2x6
+

100

x6
−

83333.333

x1x6
≤ 1

1250x5

x2x7
+

x4

x7
−

1250x4

x2x7
≤ 1

1250000

x3x8
+

x5

x8
−

2500x5

x3x8
≤ 1

0.0025x4 + 0.0025x6 ≤ 1

−0.0025x4 + 0.0025x5 + 0.0025x7 ≤ 1

−0.01x5 + 0.01x8 ≤ 1

(22)

minimize Wf

subject to Wf ≥ cTtD

t ≥
R

V

D ≥
1

2
�V2SCD

CD ≥
ACD0

S
+ kCf

Swet

S
+

C2
L

�Ae
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�V

√

S∕A

�
1

2
�V2SCL ≥ W0 +Ww +

1

2
Wf

1

2
�V2
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SCLmax

≥ W

W ≥ W0 +Ww +Wf

Ww ≥ Wwsurf
+Wwstrc
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≥ CWw,1

S
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≥ CWw,2

NultA
3
2

√
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g�f )WS

�
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Vf =
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S3

A
�2
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10[m]

5  Attribution of this problem in the Kirschen paper is given to the uncredited Berk Ozturk (Kirschen 
et al. 2018), though much of the problem originates in the work of Hoburg and Abbeel (2014).
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Variables were also constrained to be greater than a small positive constant in order 
to assist in the construction of sub-problems.

The problem is a signomial program, and is solved by Kirschen using the Dif-
ference of Convex Algorithm (DCA) (Kirschen et al. 2016; Burnell et al. 2020; 
Karcher 2021). That solution is used as the reference solution for this work, but it 
is important to note that solutions obtained using DCA do not hold any optimality 
guarantees as the convergence criteria for DCA is based on a relative change in 
the objective function and not on first order optimality conditions.

Results for this test problem are presented in Fig. 6, and in Tables 2, 3, and 4.
Again, the SLCP algorithm outperforms LSQP, both of which significantly 

outperform SQP.

6.4 � Defining the hoburg problem

The final test problem comes from Hoburg and Abbeel (2014), and is rather 
extensive, consisting of 82 variables and 119 constraints. The problem defines the 
conceptual design and sizing of a UAV, which flies an outbound leg, a return leg, 
and has a separate set of sprint constraints that are used to size the powerplant. 
The problem seeks to minimize the objective:

Subject to the following constraints, which are classified for readability.
Steady level flight relations:

Landing flight condition:

Sprint flight condition:

Drag model:

(23)Wfuel,out +Wfuel,ret

(24)

W =
1

2
�V2CLS

T ≥
1

2
�V2CDS

Re =
�VS1∕2

A1∕2�

(25)
WMTO ≤

1

2
�slV

2
stall

CL,maxS

Vstall ≤ 38

(26)
Pmax ≥

TsprintVsprint

�0,sprint

Vsprint ≥ 150
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Propulsive efficiency:

Range constraints:

Weight relations:

Wing structural model:

(27)

CD ≥
0.5

S
+ CDp

+
C2
L

�eA

1 ≥2.56
C5.88
L

�3.32Re1.54C2.26
Dp

+ 3.80 × 10−9
�6.23

C0.92
L

Re1.38C9.57
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+
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�0.03Re0.14
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L

C0.73
Dp
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L

�1.76
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Dp

+
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C6.53
L

�0.52Re0.99C5.19
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4�i +
T�2

i

1

2
�V2Aprop

≤ 4

(29)
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gRT
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W
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z2
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2
+

z3
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6
+
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(30)

Wpay ≥ 500g

W̃ ≥ Wfixed +Wpay +Weng

Wzfw ≥ W̃ +Wwing

Weng ≥ 0.0372P0.803
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Wwing

fwadd
≥ Wweb +Wcap

Wout ≥ Wzfw +Wfuel,ret

WMTO ≥ Wout +Wfuel,out

Wsprint = Wout
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Additional information is available in the Hoburg paper Hoburg and Abbeel (2014). 
This formulation is GP compatible, and therefore has a known global optimum.

Three versions of this problem were considered in an effort to demonstrate the 
ability of SLCP to systematically evolve model fidelity. Note that many constraints 
in the Hoburg formulation are exact, and introduce no uncertainty to the final result 
(see Eqs.  24, 25, 26 in particular, though many of the other constraints are also 
exact). However, consider the constraint in Eq. 27:

which is a posynomial fit to a set of XFOIL (Drela 1989) data for the NACA 24xx 
family of airfoils acting as a surrogate model for profile drag coefficient, CDp

 . This 
constraint is enforced for the outbound, return, and sprint segments, and so the form 
shown in Eq. 32 actually represents three separate constraints.

This model introduces uncertainty in two forms. First is the uncertainty of the fit-
ted model itself. For points that were in the original fitting set, the model will not 
capture the exact CDp

 reported by XFOIL because the model fitting process is mini-
mizing some RMS error. For points not in the original fitting set, interpolation 
uncertainty is also introduced (ie, features smaller than the sampling interval have 
been ignored). This model uncertainty can only be removed by tying XFOIL directly 
into the optimization problem, which though not possible in Hoburg’s original GP 
formulation can be done with SLCP. Second is the epistemic uncertainty between 
the physics modeled in XFOIL and the true underlying physics. This epistemic 
uncertainty can only be reduced by using a higher fidelity analysis tool, and so the 

(31)
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ability to swap out an integrated XFOIL model with one of higher fidelity would be 
desirable. The following case studies will establish a path towards achieving this 
result.

6.5 � Hoburg problem as formulated

First consider solving the Hoburg problem exactly as formulated. Figure 7 reports 
the results of the trial runs, with the averages reported in Tables 2, 3, and 4. Note 
that the SQP algorithm was not able to solve this problem as formulated from any 
initial guess, and so no results are reported for this or any of the subsequent cases.

There is little difference between the two algorithms when the initial guess is in a 
region close to the true optimum, since the initialization of the curvature matrix (in 
this case the identity matrix, see Algorithm 1) dominates the overall performance. 
But significant gains are seen as the initial guess decreased in quality, topping out at 
an average of 11.4% improvement, or about two iterations. The significant improve-
ment is due to the posynomial constraints, particularly those characterized by Eq. 32, 
being exactly represented in the SLCP sub-problem. The next two cases serve to iso-
late the amount of computational savings that comes from directly implementing the 
posynomials of Eq. 32, while also evolving the problem towards something that can 
be used to integrate higher fidelity models.

6.6 � Hoburg problem with one black boxed constraint

Consider that Eq.  32 is essentially a representation of the black boxed analysis 
function:

imposed in constraint form as:

Many analysis models can be represented by Eq. 33, including low fidelity methods 
like XFOIL, high fidelity CFD methods, and even data from wind tunnel tests. So if 
the constraint posed in Eq. 34 can be included in the Hoburg formulation, then any 
analysis model which captures f (CL, �,Re) can be similarly used.

The goal of this test case is to introduce a single black boxed analysis model for 
f (CL, �,Re) while minimizing the impact on the rest of the GP compatible prob-
lem. Thus a single constraint, in this case the sprint segment instance of Eq. 32, was 
replaced by Eq. 34, where f (CL, �,Re) was determined by implicitly solving Eq. 32. 
In effect this keeps the function f (CL, �,Re) the same, but hides the true posyno-
mial from the SLCP algorithm and should therefore reduce computational efficiency 
when compared to the previous case while maintaining the same solution. Results 
are reported in Fig. 8 and Tables 2, 3, and 4.

(33)CDp
= f (CL, �,Re)

(34)1 ≥
f (CL, �,Re)

CDp
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As expected, the loss of a posynomial constraint reduces the efficiency of SLCP 
and moves these curves in Fig.  8 closer to the LSQP curves, however SLCP still 
demonstrates a performance gain between 6–8% as the initial guesses get worse.

6.7 � Hoburg problem with three black boxed constraints

For the final test problem, all three constraints represented by Eq.  32 (outbound, 
return, and sprint) were replaced with black boxed models for f (CL, �,Re) . As with 
the previous case, the black boxes were implicit implementations of Eq. 32, leav-
ing the problem identical to the original Hoburg problem but with these three posy-
nomials hidden to the SLCP algorithm. The results are reported in Fig.  9 and in 
Tables 2, 3, and 4

As expected, the elimination of two more posynomial constraints further shrinks 
the gap between the SLCP and LSQP curves in Fig. 9. But critically, the fact that all 
three constraints have been black boxed means that the posynomial surrogate from 
Eq. 32 has been entirely eliminated, and a higher fidelity analysis model can simply 
be swapped in as a new black box that represents f (CL, �,Re).

To demonstrate this procedure, XFOIL was directly tied in to the optimization 
formulation, with gradients being computed using a finite difference scheme. Note 
that unlike the previous three problem formulations, the inclusion of XFOIL directly 
has fundamentally altered the structure of the problem and will affect the result (see 
Table  1 for a summary of the changes to the optimal solution). The GP optimal 
solution was used as the initial guess, and SLCP reached the optimal soluiton in 32 
iterations.

Since XFOIL has been entirely contained in a black box of f (CL, �,Re) , higher 
fidelity tools like MSES (Drela 2007), 2D Euler methods, or 2D Navier–Stokes sim-
ulations can readily integrated in exactly the same fashion. Furthermore, the design 
variables available in these higher fidelity analysis models can be optimized as a 
part of the SLCP run. For example, a NACA 4-series airfoil could be parameterized 
as f (CL, �,Re, cmax, lcmax ) where cmax is the maximum camber in fraction of chord 
and lcmax is the location of that maximum camber, again as a fraction of chord. In 
this way, geometry fidelity can also evolve with the evolutions in analysis fidelity, 
all while anchored in a strong initial guess migrated from the previous fidelity level.

Together, Geometric Programming and Sequential Log-Convex Programming 
offer a potential approach to engineering design when multiple levels of analysis 
fidelity must be considered: 

1.	 Develop low-fidelity conceptual models in a GP compatible form
2.	 Solve the GP to obtain a low fidelity candidate design to be used as an initial guess 

for higher levels of fidelity
3.	 Evolve analysis models to higher fidelity as desired and implement them in the 

optimization formulation as black box functions
4.	 Add any new design variables made available by the higer fidelity analysis models 

to the optimization formulation
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Table 1   Comparison of variables with a greater than 1% variation when XFOIL is tied directly into the 
optimization formulation

Design variable GP Optimal value SLCP+XFOIL optimal 
value

Percent change

CDp ,sprint
0.005732 0.005455 −4.82

CD,sprint 0.007760 0.007477 −3.65
Pmax [kW] 1186.1 1143.2 −3.61
Tsprint [N] 2209.6 2133.9 −3.42
CDp ,out

0.005455 0.005615 2.93
Weng [N] 2805.8 2724.1 −2.91
CDp ,ret

0.005470 0.005627 2.87
CD,ret 0.012682 0.012894 1.67
CD,out 0.012668 0.012876 1.64
t̄cap 0.004544 0.004611 1.47
Īcap 2.021e−5 2.555e−5 1.37
Wcap [N] 4103.8 4158.4 1.33
Wwing [N] 8613.4 8723.7 1.28
CDi,sprint 0.000232 0.000230 −1.12
CDi,ret 0.005416 0.005475 1.08
CL,ret 0.574 0.580 1.03
Wfuel, out [N] 3082.6 3114.1 1.02

Table 2   Average over 1000 
trials of the number of iterations 
required to obtain an optimal 
solution starting from a guess 
within ± 10% of the known 
optimum

SQP LSQP SLCP

Floudas 25.87 11.70 ( −54.77%) 10.74 ( −58.48%)
Kirschen-Ozturk 33.93 15.36 ( −54.73%) 13.34 ( −60.68%)
Hoburg-0 – 13.70 13.65 ( −0.32%)
Hoburg-1 – 14.06 14.17 (+0.78%)
Hoburg-3 – 14.65 14.32 ( −2.27%)

Table 3   Average over 1000 
trials of the number of iterations 
required to obtain an optimal 
solution starting from a guess 
within ± 50% of the known 
optimum

SQP LSQP SLCP

Floudas 30.17 14.30 ( −52.60%) 12.92 ( −57.18%)
Kirschen-Ozturk 72.55 18.89 ( −73.96%) 16.38 ( −77.42%)
Hoburg-0 – 17.79 16.29 ( −8.44%)
Hoburg-1 – 17.82 16.66 ( −6.47%)
Hoburg-3 – 17.66 16.87 ( −4.49%)
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5.	 Solve the new optimization problem with SLCP, using the GP solution as an 
initial guess

Future work will dive into this methodology in great depth, particularly in develop-
ing a systematic process for evolving analysis models and the integration of new 
design variables into the outer optimization loop.

6.8 � Further evolution of design problems

As additional constraints were black boxed in the Hoburg problem, the computa-
tional benefit of the SLCP algorithm was reduced compared to LSQP. It is further 
expected that as design problems evolve beyond the early phases of development, 
analysis models of increasing complexity will have to be implemented as black 
boxed constraints like the XFOIL constraint described in the final test case. When 
known structure is removed from the problem with increased fidelity and black box-
ing, it is expected that the gap between SLCP and LSQP will continue to shrink 
until the SLCP algorithm becomes exactly the LSQP algorithm when all constraints 
are black boxed. Though LSQP does still show some benefit over traditional SQP, 
the increased performance benefits of SLCP show that there can be significant ben-
efits to preserving known log-log convex structure whenever possible and practical.

7 � Conclusions

The method of Sequential Log-Convex Programming proposed in this work brings 
together the efficiency of Geometric Programming and the flexibility of Sequential 
Quadratic Programming in a practical algorithm for engineering design. An engineer 
who begins the design process using simple GP compatible models can utilize SLCP 
to evolve analysis fidelity and reduce uncertainty, while an engineer who begins the 
design process with higher fidelity models can utilize SLCP to exploit underlying 
mathematical structure inherent in many design problems and reduce overall com-
putational expense with little to no modification of existing design practices.
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Table 4   Average over 1000 
trials of the number of iterations 
required to obtain an optimal 
solution starting from a guess 
within ± 80% of the known 
optimum

SQP LSQP SLCP

Floudas 32.79 16.29 ( −50.32%) 14.92 ( −54.50%)
Kirschen-Ozturk 91.18 21.06 ( −76.90%) 17.66 ( −80.63%)
Hoburg-0 – 19.33 17.13 ( −11.40%)
Hoburg-1 – 19.30 17.70 ( −8.30%)
Hoburg-3 – 19.33 18.02 ( −6.77%)
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