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Abstract
We derive a generic system that constructs an optimization model for an emergency
stop scenario on the highway, based on map data from high definition maps that are
used in Advanced Driver Assistance Systems (ADAS) and in Highly Automated Driv-
ing (HAD). New additional situative and scenario-based information is computed by
applying a global maximization approach to the model. For this purpose, we develop
two new rigorous and deterministic branch-and-bound algorithms that both determine
the certified global optimal value up to a predefined tolerance. The underlying inter-
val optimization algorithm, which uses first-order techniques, is enhanced by one
of two second-order methods that are applied for specifically selected intervals. We
investigate two approaches that either compute a concave overestimator for the objec-
tive function or approximate the function with a quadratic polynomial using Taylor
expansion. We show the limits of interval arithmetic in our problem, especially for
the interval versions of the derivatives, and present a local linearization of the curve
data that improves the results significantly. The presented novel method for deriving
secondary information is compared to state of the art methods on two exemplary and
for the automotive context representative scenarios to show the advantages of our
approach.
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1 Introduction

Digital maps provide a range of important information for many applications in Highly
Automated Driving (HAD). Since, nevertheless, the information in these maps is often
not sufficient for some applications, we will present a method to compute additional
locally and temporarily valid map data that hold for a specific vehicle in that situation.
We will create a model based on the digital map data and on some vehicle information,
and we develop a global optimization approach that derives those additional data from
that model.

1.1 Technical background

Driver assistance functions and HAD are closely linked to future mobility. The result-
ing challenges in perception and recognition make large demands on connectivity and
data management, and they open a broad field of research. It is important to provide
high definition maps (Seif and Hu 2016; Liu et al. 2020; Schwab and Kolbe 2019)
that consist of large amounts of street topology data, not only containing all lanes and
boundaries, but also logical information about their connections. In addition, land-
marks, e.g., street lamps and traffic signs, or other objects of interest, are included for
further information. Apart from the given fixed map data, in the following referred
to as primary information, we intend to derive additional scenario-based information,
which we refer to as secondary information.

In this paper, we compute optimal emergency stops for next-generation driver assis-
tance functions and automated driving functions. The suggested, novel approach for
deriving secondary information from high definition maps is, however, designed to be
generic so that it can be as well applied and adapted to many other use cases. We formu-
late a maximization problem with a nonlinear, nonconcave objective function that is
explicitly defined by the emergency stop scenario. The global solutions to this problem
describe new stopping points that are added to an additional secondary information
layer of the digital map. We present two deterministic global optimization strategies,
whereby one of the approaches is faster than all other deterministic algorithms that
we have encountered.

The small highway section1 in Fig. 1 indicates the large amount of map data that
is handled by the optimization algorithm for a larger, more realistic map excerpt. The
curves of different types in Fig. 1B are depicted in various colors. The visualized map
data contribute to the objective function shown in Fig. 1A. Just the map elements that
belong to a certain surrounding of the own vehicle’s position, in the following referred
to as ego position X0, are taken into account. The structure of the digital maps helps
to filter for the relevant data, since they are usually divided into separate tiles, where
only the closest tiles to X0 are used. The geometric parametrization of the curves is

1 We use MATLAB for the plotting and QGIS 3 for the digital orthophotos.
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Fig. 1 A The objective function is based on the digital map data below. The Cartesian Coordinates are given
in meters. B The landmarks (two types, represented by red and green cylinders) and curves of different
types in the digital orthophoto (©BKG 2021) define the above objective function

different for the existing map formats. However, it is very beneficial for the derivation
of secondary information to define the lanes by means of cubic B-spline curves (Piegl
and Tiller 1997, chs. 2,3).

The following requirements on the solution method are relevant from the perspective
of a car manufacturer or developer of automated driving functions:

R.1 Three-dimensionality: Digital maps have evolved from two to three dimensions
because of the importance of the height information for certain use cases. There-
fore, the problem specifications explicitly require an optimization model that is
not only defined along the map elements, but in the full three-dimensional space,
to maintain the possibility of solutions that are off the available map elements.

R.2 Genericity: Although we focus on a highway emergency stop here, the valuation
of the map data and the developed algorithm must be able to cover general
scenarios, e.g., urban scenarios. This allows to exploit synergy effects, as multiple
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functions can be built upon the same algorithmic foundation. As a further reason,
the development of this kind of functionally safe optimization algorithm is very
costly. Therefore, development costs can be shared across multiple modules.

R.3 Determinism: The derivation of secondary information belongs to the category
of applications for automated driving functions with high expectations to system
safety. Thus, the optimization algorithm must be deterministic, according to the
demanded Automotive Safety Integrity Level (ASIL) (International Organization
for Standardization 2018). This functionally safe algorithm can also be used for
assistant functions with less safety requirements.

R.4 Real time: The real-time performance is essential, since decisions in a driving
vehicle often must be made in a fraction of a second. The solutions are only
temporarily valid, because a driving car changes its position continuously.

Although there exist practically efficient heuristic approaches to compute global
optima (Hedar and Fukushima 2004; Hansen and Ostermeier 2001; Csendes et al.
2008), those algorithms neglect the required reproducibility of the solution stated in
R.3. As a consequence, we develop a new hybrid optimization method that combines
a deterministic global optimization method with local higher-order approaches. This
requires enhancements in a number of aspects that use the structure of the considered
class of optimization models to improve the results of the existing algorithms. The
main focus lies on a fast algorithm (cf. R.4).

1.2 State of the art

Rigorous optimization algorithms (Floudas 2005, chs. 3–5, 11–13, Kearfott 1996, chs.
1, 5, Pintér 2002; Rios and Sahinidis 2009; Neumaier 2004) identify global solutions
with absolute certainty up to a predefined tolerance. They often are based on branch-
and-bound type methods (Mitten 1970) that divide the initial search space into smaller
subsets (usually boxes) step-by-step (branching) and discard the irrelevant ones that
do not contain a global optimum (bounding). Branch-and-bound methods often use
convex underestimators or concave overestimators, such as those obtained by the αBB
technique (Adjiman et al. 1998; Adjiman and Floudas 1996) or by bounding schemes
for multilinear and other functions (Bao et al. 2015; Rikun 1997; Ryoo and Sahinidis
2001). They can be further enhanced, e.g., by range reduction techniques that generate
tightened valid inequalities (Ryoo and Sahinidis 1996; Zhang et al. 2020). One of the
most popular methods is the DIRECT (DIviding RECtangles) algorithm by Jones
et al. (1993) which has been developed to overcome convergence speed problems
of Shubert’s algorithm (Shubert 1972), a sequential method using a global Lipschitz
constant. Instead of applying this Lipschitz constant globally to estimate upper bounds
for the function value on each box (in the maximization case), a locally valid positive
constant is used to find potentially optimal boxes. Since then, there have been various
attempts to improve or modify the DIRECT algorithm for specific types of objective
functions (for instance, Gablonsky and Kelley 2001; Chiter 2006; Liu et al. 2015; di
Serafino et al. 2011). Other rigorous methods are the Multilevel Coordinate Search
(MCS) (Huyer and Neumaier 1999), which is regarded as a branch-without-bound
type method that, such as DIRECT, evaluates a single point per box. Besides the box
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size and the subdivision level, the branching rules of MCS include the computation
of an expected gain by a quadratic model that is based on a few point evaluations.
Furthermore, the MULTK algorithm (Sergeyev and Kvasov 2017, ch. 4) uses locally
approximated Lipschitz gradients for differentiable objective functions.

Moreover, global interval optimization algorithms introduced by Hansen (1980)
and further investigated in Gau and Schrage (2004), (Hansen and Walster 2004, chs.
7–8, 12–13), Neumaier (2015) use interval arithmetic (Hickey et al. 2001; Hansen
1975), (Moore et al. 2009, chs. 2, 4, 5), so that the bounds on the function value ranges
are used to make optimality statements for whole boxes at once. Based on the interval
values, one can discard those subsets that cannot contain a global optimum. There
are various refinements and extensions of the original interval algorithm with new
bounding strategies, e.g., the Krawczyk Newton approach (Krawczyk and Neumaier
1986), interval constraint propagation (Kjøller et al. 2007), McCormick-based relax-
ation (Mitsos et al. 2009), and relatively recent implementations such as GOP (Pál
and Csendes 2009).

Apart from these deterministic and rigorous approaches, we want to mention two
stochastic algorithms. GLOBAL (Csendes et al. 2008) is a multistart clustering algo-
rithm that uses the best locally minimizing samples to gain information about the
regions of attraction, whereas CMA-ES (Hansen and Ostermeier 2001) is an evolution
strategy that adapts the covariance matrix for the sampling of new points iteratively.
We apply these methods later on to compare them to some deterministic algorithms and
to get an impression of how good our solutions compete with stochastic approaches.

1.3 Key contributions of the paper

In this paper, we construct a system to derive secondary information for the given map
data, i.e., we design a new type of model that values the various map elements and
we develop optimization approaches that exploit the structure of this model as much
as possible. Thereby, we build two hybrid branch-and-bound optimization algorithms
that use interval arithmetic in the first place, based on Hansen’s considerations (Hansen
1980). We illustrate and also verify the advantages of the interval-valued evaluation in
comparison to simple point evaluations of other global methods. Then, second-order
bounding methods that are only applied to certain boxes in the interval algorithm
extend both algorithms to generate better function value bounds. Several modifications
in both algorithms are needed due to the fact that the objective function is just piecewise
differentiable.

The αBB approach locally overestimates the objective function by a concave func-
tion whose maximum can easily be computed. The techniques by Gerschgorin (1931)
or Hertz (2009) require good estimates for the corresponding interval Hessian matri-
ces to compute concave overestimators. The interval Hessian and the overestimation
term have been modified by Meyer and Floudas (2005), Skjäl et al. (2012), Skjäl
and Westerlund (2014) to construct tighter overestimators. In our concrete problem,
the interval-valued outcome for the function evaluation and its derivatives are signifi-
cantly overestimated, and, therefore, these interval matrix approaches do not provide
meaningful overestimators. It is a key point of this paper to obtain sufficiently tight
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Fig. 2 The pipeline presents the various steps to derive secondary information from primary map data. We
also refer to the corresponding sections that cover the details

estimates for the parameter α, which defines the concave overestimator, without the
need of computing interval matrices as in the mentioned approaches. To reach this
goal, we exploit the form of the model and estimate the α-values for all map element
functions separately. For the curves, in particular, we present a novel method that
locally linearizes the curves in the digital map and computes the maximum curva-
ture of this locally very accurate approximation of the part of the objective function
corresponding to this curve (which, for short, we call the curve function).

In the second approach, we build local quadratic Taylor models of the objective
function to benefit from existing theories about quadratic programming with box
constraints (Burer and Letchford 2009; De Angelis et al. 1997). It is essential to
bound the Taylor approximation error for a proper interval bound, e.g., presented
by Bompadre et al. (2013). We again apply interval arithmetic to the map element
functions individually, including the local curve linearizations for the curve functions,
to calculate a tighter bound for the overall Taylor error than, e.g., in (Mitsos et al.
2009). Thereby, the distances between geometric primitives, e.g., the branch-and-
bound boxes and the lines as approximations of the curves, are used to speed up
the function evaluation and to improve the result significantly for an interval-valued
evaluation.

1.4 Structure of the paper

The proposed pipeline for deriving secondary information by means of a mathematical
optimization is shown in Fig. 2. It depicts the particular subtasks with references to
the corresponding sections. This paper is structured as follows:

In Sect. 2, we derive the underlying optimization problem for the derivation of
secondary information from digital map data and show how to adapt the generic for-
mulation to the specific use case of deriving suitable emergency stops. Section 3 deals
with suitable approaches for solving the optimization problem derived in Sect. 2. We
introduce an interval algorithm as well as the computation of locally valid concave
overestimators and quadratic approximations, that are combined and extended to con-
struct a suitable algorithm. Additionally, we describe a one-dimensional optimization
method that provides good initial values to reduce the computational effort of the
interval algorithm significantly. In Sect. 4, we focus on aspects that are relevant for an
efficient function evaluation, in particular exploiting the B-spline form of the curves.
In Sect. 5, we evaluate our prototypical implementation for a highly relevant practical
scenario of deriving emergency stops for advanced driver assistance and automated
driving functions. Furthermore, we point out how the alterations of the optimization
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algorithms significantly improve the suitability and performance, and give guidance
for further optimizations. In the last section, we summarize our results, discuss them,
and give an outlook.

2 Mathematical problem formulation

The input data must be converted into a three-dimensional mathematical model in order
to compute the optimal emergency stops. We define a suitable objective function that
is based upon the map elements, the scenario, and the ego position. For every type of
map element, we construct a generic function model into which we insert the elements
of the specific data type. Then, the position, the scenario-dependent weight of each
specific map element and the ego position define the map element functions that are
all summed up to define the objective function of the corresponding maximization
problem.

2.1 Representation of the input data

Let the disjoint union X = XM ∪̇ XC denote the set containing all map elements,
where XM is the set of all sorts of landmarks, and XC is the set of all lanes in the
digital map, i.e.,

XM ={y ∈ R
3 ; y is a landmark},

XC ={γ ∈ C2([0, 1],R3) ; � = γ ([0, 1]) is a lane}. (2.1)

We assume that the cardinality of X is finite and write X = {χi ; i ∈ I }, where
|I | = |X | < ∞ and (χi )i∈I enumerates the elements of X . In our setting, landmarks
inXM are points, whereas lanes areC2-curves, indicated by the subscriptC . We would
like to stress that our model and our optimization method can be extended to the case
where also curves are allowed as landmarks, but for the remainder of the paper, we
only consider the case of points as landmarks.

As part of the scenario S, which means performing an emergency stop on the
highway in our case, each element χi is assigned a constant weight w(χi ,S) ∈ R

which models the strength of the contribution of the particular map element to the
objective function, i.e., χi ∈ X �→ w(χi ,S) ∈ R. In practice, this choice is made
based on the categories of the map elements which arise from the element properties in
the digital map. They are exemplarily shown in Table 1. According to those categories,
XC is partitioned into L ∈ N disjoint subsets, each containing lanes of equal weight
analogous to the weighting on the basis of the map data properties, i.e.,

XC =
⋃̇

l=1,...,L

Cl with w(χi ,S) = wl for all χi ∈ Cl , l = 1, . . . , L. (2.2)
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Furthermore, the function wX0,S : R3 → R weights the distance to the ego position
X0 by wX0,S(x) = ωS(‖x − X0‖2) with a function ωS : R≥0 → R.

With regard to the evaluation techniques in Sect. 4, we choose cubic B-spline
curves (Torrente et al. 2015; Chen et al. 2010; Min et al. 2019) of the form
γ (t) = ∑n−4

j=1 Pj N j,4(t), t ∈ [0, 1], for the representation of the curves in XC .

They are defined by the control points P1, . . . , Pn−4 ∈ R
3 and the cubic B-spline

functions N j,4 : R → R≥0, j = 1, . . . , n − 4, which are piecewise cubic polynomi-
als that are explicitly defined by a unique knot vector τγ := [τ1, . . . , τn] ∈ R

n≥0 with
τ1 = · · · = τ4 = 0, τn−3 = · · · = τn = 1, τ j ≤ τk for j < k. Since γ lies in the
convex hull that is spanned by the control points, the set Pγ := {Pj ; j = 1, . . . , n−4}
provides an approximation of the shape of γ without evaluating theC2-functions N j,4.
Because supp N j,4 ⊂ [τ j , τ j+4), we need to evaluate at most four spline functions to
compute γ (t) for some t ∈ [0, 1], independent of the length of τγ .

2.2 Formulation of the objective function

We are targeting an objective function that models only the interaction between the
lanes and the landmarks, i.e., curves of different categories should not influence each
other. Accordingly, every function evaluation can be assigned to a specific category
Cl , l = 1, . . . , L from Equation (2.2). Since a category weight represents the max-
imum contribution of that category to the objective function, the objective function
obtained by aggregating all curve evaluations of the same category shall not exceed
this weight. Therefore, we define the objective function FS : R3 → R by

FS(x) = max
l=1,...,L

fl(x) + fM (x), (2.3)

with the category functions fl : R3 → R and the landmark function fM : R3 → R

that are given by

fl(x) = min
{
wl , fCl (x)

}
with fCl (x) =

∑

χi∈Cl

fχi (x) and

fM (x) =
∑

χi∈XM

fχi (x). (2.4)

The cut-off wl > 0 bounds the function value of fCl , which sums up all curve functions
of category l. We point out that fCl (x) > wl only occurs near points where different
curves are very close to each other. FS is composed of the leading curve category
value by fl and the values for the landmarks by fM . Every function fχi : R3 → R

models the contribution of a map element χi ∈ X to FS . Since the fχi are at least C2,
the objective function is piecewise continuously differentiable depending on the active
category and whether the cut-off wl in fl is active. In that case, the local derivative
of fl vanishes, and the derivative of FS equals the derivative of fM . This piecewise
differentiability is exploited in Sect. 3.2.3 for the optimization algorithm.
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Since we perform the maximization in three dimensions to generate solutions that
do not coincide with the given map data, it is required to develop a generic function
model that extends weightings w(χi ,S) from map elements χi to the map element
functions fχi . Even in the case where an optimization would be performed only along
the curves contained in XC , such an extension would be required to obtain a global
interplay between the different map elements in forming a global objective function.
One idea could be to extend w(χi ,S) to any point x ∈ R

3 based on the distance
between x and χi . However, computing this distance for a fixed point x requires a
global optimization along χi , and, if χi is a curve that is not a line segment, the
distance function would in general be nonsmooth with respect to x . Due to these
drawbacks, a radial function φ(χi ,S) : R3 → R is introduced to extend w(χi ,S) to
R

3.
We convolve the resulting weighted kernel function wX0,Sw(χi ,S)φ(χi ,S) with

a Dirac-type measure (Brokate and Kersting 2015, chs. 3–5), (Kanwal 1998, ch. 1)
supported on χi to obtain the desired extension to the three-dimensional space. For
general d ∈ N and p ∈ R

d , the Dirac δ-function over C∞(Rd) for p is defined
as

〈
δp, ξ

〉 := ∫
Rd ξ(x)dδp(x) = ∫

Rd δ(x − p)ξ(x)dx = ξ(p) with a C∞-function
ξ : R

d → R. A well-defined generalization from p to χi is presented in Onural
(2006):

〈
δχi , ξ

〉 =
∫

R3
δχi (y)ξ(y)dy :=

∫

χi

ξ(y)dχi . (2.5)

Note, that χi is an abbreviation for χi ([0, 1]) if χi ∈ XC in this formula. We define
the test function ξx : χi → R as the weighted kernel centered at a point x ∈ R

3,
i.e., ξx (y) = wX0,S(x)w(χi ,S)φ(χi ,S)(y − x). Therefore, the corresponding map
element function looks as follows in the case of a landmark χi = y ∈ XM :

fy(x) = 〈
δy, wX0,S(x)w(y,S)φ(y,S)(· − x)

〉 = wX0,S(x)w(y,S)φ(y,S)(y − x).

(2.6)

The · -placeholder marks the variable on which the function in the second entry of
〈·, ·〉 depends. Analogously, Equation (2.5) yields the following function for curves
χi = γ ∈ XC :

fγ (x) = 〈
δγ , wX0,S(x)w(γ,S)φ(γ,S)(· − x)

〉 = wX0,S(x)w(γ,S)

∫

γ

φ(γ,S)(· − x)ds

= wX0,S(x)w(γ,S)

∫ 1

0
φ(γ,S)(γ (t) − x) · ‖γ ′(t)‖ dt . (2.7)

The kernel function φ(χi ,S) must be monotonically decreasing to model dimin-
ishing influence of χi with growing distance between x and χi . The norm ‖ · ‖ in
the integral expression depends on the structure of the kernel function and will be
discussed later. Due to the convolution, the curve function fγ fails to equal its tar-
get value w(γ,S) near the ends of γ . Fortunately, this behavior cancels out when
two curves with coinciding weights, or rather of the same category, are connected
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via a C2-transition. From the mathematical point of view, the sum of such two curve
functions and a curve function of a longer merged curve are equal.

The construction of the map functions fχi requires that each kernel function takes its
maximum at the origin and vanishes with increasing distance. The probability density
function of the multivariate Gaussian distribution (Vinga 2004), also referred to as the
Gaussian function, of the form �μ,�(x) = 1/

√
(2π)3|�| · exp(−(x − μ)T�−1(x −

μ)/2), x, μ ∈ R
3, � ∈ R

3×3, fulfills these requirements under the assumption that
tiny function values numerically equal zero. We set μ = 0 and choose the covariance
matrix � = �(χi ,S) to be diagonal with values (σ 2

S,1, σ
2
S,2, σ

2
S,3). The standard

deviation σS,k indicates the size of the support in xk-direction, k = 1, 2, 3, depending
on χi . In the following, we will abbreviate σS,k by σk . The global coordinate system
and the ellipsoidal shape of the support of the Gaussian function are depicted in Fig. 5
in Sect. 4. φ(χi ,S) is supposed to be invariant under rotations of the coordinate system
in the x1-x2-plane with equal values for σ1 and σ2, so that the objective function does
not depend on the orientation of the map. σ3 is small, since the vehicle motion in
x3-direction is restricted by the elevation profile of the street.

With a normalization factor cχi ensuring that fχi restricted on χi approximately
equals w(χi ,S) (disregarding the factor wX0,S for the ego position X0), the kernel
functions are defined in the following way with ϕ(r) = exp(−r2/2) for each x ∈ R

3:

φ(χi ,S)(x) = cχi ·
√

(2π)3|�| · �0,�(χi ,S)(x) = cχi · ϕ(‖x‖�−1). (2.8)

We use
√

(2π)3|�| to compensate the factor of the Gaussian function. The norm‖·‖�−1

is induced by the scalar product 〈x, y〉�−1 := xT�−1y. For a landmark y ∈ XM , this
constant simply equals 1, because of fy(y) = cywX0,S(y)w(γ,S). In the case of a
curve γ ∈ XC , we choose cγ = 1/

√
2π based on the following considerations: We

specify the norm ‖ · ‖ in Equation (2.7) with ‖ · ‖�−1 to remove the dependencies from
the curve direction in such a way that the actual function value does not depend on the
orientation of the curve, but mainly on the distance to the curve. If we approximate
the curve γ locally with a straight line γ̄ = vt + y, t ∈ (−∞,∞), y ∈ �, cγ̄ = cγ ,
then

fγ̄ (y) = wX0,S(y)w(γ̄ ,S)

∫ ∞

−∞
cγ̄ ϕ(‖y − γ̄ (t)‖�−1)‖γ̄ ′(t)‖�−1dt

= wX0,S(y)w(γ,S)cγ̄

∫ ∞

−∞
exp

( − ‖v‖2
�−1 t

2/2
)‖v‖�−1dt

= wX0,S(y)w(γ,S).

(2.9)

Hence, we are able to state the contribution of the landmarks and the curves to the
objective function.
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3 Optimization approaches for solving for the problem formulation

The maxima of the derived objective function FS in Equations (2.3) and (2.4) represent
points of interest for the given scenario S, i.e., the optimal locations for an emergency
stop in our example. We determine them by solving the maximization problem

max
x∈X FS(x) = max

x∈X
(

max
l=1,...,L

min
{
wl ,

∑

χi∈Cl

fχi (x)
} +

∑

χi∈XM

fχi (x)
)
, (3.1)

where X ⊂ R
3 is a closed box (Cartesian product of closed intervals) that contains

all relevant points. We target at methods that provide certificates of global optimality
within a specifiable tolerance, as already mentioned in Sect. 1. Since this problem
is nonsmooth, we will reformulate it to be able to compute higher-order derivatives.
We need those derivatives to formulate optimality criteria and to apply higher-order
optimization methods, which reduce the number of function evaluations significantly.

The maximization problem is decomposed into L subproblems of the form:

max
x∈Xl

Fl(x), with Fl(x) = fl(x) + fM (x), for all l = 1, . . . , L. (3.2)

Here, Xl ⊂ X is a large enough closed box containing all relevant map elements that
are necessary for the definition of Fl and in particular all maximizers of Fl . We resolve
the nonsmoothness of min{wl , ·} in Problem (3.2) by reformulating it as an equivalent
constrained optimization problem with an auxiliary variable ul . For l = 1, . . . , L , we
obtain

max
x∈Xl ,ul∈R

ul + fM (x) s.t. ul ≤ wl , ul ≤ fCl (x). (3.3)

Hence, the global solution set X∗ of Problem (3.1) is a subset of
⋃

l=1,...,L X∗
l , where

X∗
l ⊂ R

3 is the solution set of the l-th subproblem (3.3). X∗ consists of all x that fulfill
FS(x) ≤ FS(y) for all y ∈ ⋃

l=1,...,L X∗
l . The subproblems are independent of each

other, i.e., they can be solved in parallel to reduce the total run time. The number of
subproblems is induced by the number of categories Cl , i.e., based on the road model
complexity.

As we have seen in Sect. 2.2, Problem (3.3) is nonlinear and nonconvex, but suf-
ficiently smooth to apply second-order optimization methods (Bertsekas 1999, chs.
1, 4), since we use smooth kernel functions and C2-curves. Due to the nonconvexity
of these L subproblems, ascent methods (Boyd and Vandenberghe 2004, ch. 9) are in
general not able to determine the global optima, rather they provide only local solu-
tions that depend on the initial point. In fact, we need a measure for approximate global
optimality to obtain certified solutions that contribute to the rigorous algorithm. We
develop a hybrid optimization method specially tailored to the modeled problem that
combines a rigorous deterministic branch-and-bound global maximization method
with local approaches for selected boxes. For each of the L categories, we globally
solve Problem (3.2), or Problem (3.3), to a prescribed accuracy. The following theory
is used to achieve a rigorous branch-and-bound algorithm.
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3.1 Interval arithmetic

Standard interval arithmetic (Hickey et al. 2001; Hansen 1975), (Moore et al. 2009,
chs. 2, 4, 5), (Neumaier 1991, ch. 1) is used to obtain a box y that is an enclosure,
i.e., y ⊃ g(x), for the image of a box x under a map g. A box x as a subset of Rd

is a d-dimensional interval of the form x = [x L , xU ] = [x L1 , xU1 ] × · · · × [x Ld , xUd ]
with lower bound inf(x) = x L ∈ R

d and upper bound sup(x) = xU ∈ R
d . The

principal goal of interval arithmetic is to evaluate a function on a whole interval x
at once without having to evaluate the function at every single point x ∈ x. This is
done by computing an interval (the tighter the better) that contains the image of x
under this function. Hence, we build an interval extension of our objective function
and, where required, of its derivatives. However, it must be noted that this approach in
general leads to an overestimation of the interval-based function value since possible
dependencies between intervals are usually lost.

Given a function g : R
d → R, d ∈ N, and some interval x ⊂ R

d , it holds
g(x) ⊂ [g](x), but in general not “=”, where g(x) := {g(x); x ∈ x} and [g](x)
refers to the output of interval arithmetic when we evaluate g for the box x, i.e., [g]
is an interval extension for g. For instance, interval extensions of + and · yield for
x = [−1, 1]:

[g](x) = [x + x · x] = [[−1, 1] + [[−1, 1] · [−1, 1]]]
= [[−1, 1] + [−1, 1]] = [−2, 2]. (3.4)

In comparison, the optimal enclosure (or interval hull, i.e., the smallest containing
interval) for g(x) = ( · +(·)2

)
(x) would be [−1/4, 2]. If instead of multiplication we

use (·)2 then [x2] = [0, 1] (this is tight) and [x + x2] = [[−1, 1] + [0, 1]] = [−1, 2],
which is better but still not tight. A tight result can be achieved by the alternative
formula [(x + 1/2)2 − 1/4] = [([−1/2, 3/2])2 − 1/4] = [−1/4, 2]. We see that, in
general, we can only expect promising results from interval arithmetic if the sequence
of interval calculations is arranged and processed in an attentive way.

Due to the form of the objective function, we compute several interval exten-
sions of all map element functions fχi in order to derive an expression for [Fl ].
In particular, defining suitable inclusion functions is a non-trivial task because of the
convolution of the map elements with the Gaussian kernel function, and, therefore,
we need an interval extension [φ(χi ,S)] to define [ fχi ]. This results in a one-
dimensional problem, since φ(χi ,S)(x) = cχi

∏3
k=1 ϕ0,σk (xk) with ϕμ,σ 2 : R →

R, z �→ 1/
√

2πσ 2 exp(−(z − μ)2/(2σ 2)), and μ ∈ R, σ ∈ R>0. The mono-
tonicity of ϕμ,σ and ϕ′

μ,σ , which help to derive tight bounds for the interval-based
evaluation, are deduced from ϕ′

μ,σ 2(z) = −(z − μ)/σ 2 · ϕμ,σ 2(z) and ϕ′′
μ,σ 2(z) =

((z − μ)2/σ 4 − 1/σ 2) · ϕμ,σ 2(z).
Therefore, we are able to calculate optimal enclosures forφ(χi ,S), i.e., [φ(χi ,S)](x) =
φ(χi ,S)(x), and for the interval evaluation of ∇φ(χi ,S). With the constant η1 :=
exp(−1/2)/(

√
2πσ 2), the one-dimensional interval-valued Gaussian function and its

derivative have the following form for z = [zL , zU ]:
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ϕμ,σ 2 (z) =

⎧
⎪⎪⎨

⎪⎪⎩

[ϕμ,σ 2 (zL ), ϕμ,σ 2 (zU )], if zU ≤ μ,

[ϕμ,σ 2 (zU ), ϕμ,σ 2 (zL )], if zL ≥ μ,

[min{ϕμ,σ 2 (zL ), ϕμ,σ 2 (zU )}, 1/(
√

2πσ 2)], else,

ϕ′
μ,σ 2 (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ϕ′
μ,σ 2 (z

L ), ϕ′
μ,σ 2 (z

U )], if (zL ≥ μ + σ) ∨ (zU ≤ μ − σ),

[ϕ′
μ,σ 2 (z

U ), ϕ′
μ,σ 2 (z

L )], if z ⊂ [μ − σ,μ + σ ],
[−η1, η1], if [μ − σ,μ + σ ] ⊂ z,

[min{ϕ′
μ,σ 2 (z

L ), ϕ′
μ,σ 2 (z

U )}, η1], if (zL ≤ μ − σ) ∧ (zU∈[μ − σ,μ + σ ]),
[−η1, max{ϕ′

μ,σ 2 (z
L ), ϕ′

μ,σ 2 (z
U )}], else.

(3.5)

The exact evaluation of the interval Gaussian function also provides optimal enclosures
for the interval extensions of the landmark functions fy, y ∈ XM .

Unfortunately, we encounter widely overestimating interval extensions [ fγ ] for
curves γ ∈ XC due to the following reason: The integration along a curve γ in
Equation (2.7) is performed with a quadrature formula. We apply the trapezoidal rule,
because higher-order Newton-Cotes formulas (Davis and Rabinowitz 1984) do not
provide better results for our purposes. Hence, we define a set Q := {(t j , λ j ) | t j ∈
[0, 1], λ j ≥ 0, j = 0, . . . , NQ, NQ ∈ N} to provide a numerical approximation of
fγ by

f Qγ (x) = wX0,S(x)w(γ,S)

NQ∑

j=0

λ j φ(γ,S)(γ (t j ) − x) ‖γ ′(t j )‖�−1 . (3.6)

For an interval x ⊂ R
3, the summation of weighted enclosures [φ(γ,S)](γ (t j ) − x)

results in some significant overestimation for [ f Qγ ](x) compared to f Qγ (x), although
[φ(γ,S)](γ (t j ) − x) = φ(γ,S)(γ (t j )−x) for all j = 1, . . . , NQ. The x-dependence
between the summands gets lost, and the interval sum is expansive. In general, the
larger NQ, i.e., the more quadrature points are used to cover γ , the larger is the size
of the output interval. Upper-bounding [ fCl ](x) by wl avoids inaccurate upper limits
for the interval enclosure, since for [ fCl ](x) = [a, b] ⊂ R and w ∈ R it holds
min{w, [ fCl ](x)} = [min{w, a}, min{w, b}]. The cut-off with wl also removes small
oscillations of fCl along its ridges (cf. Fig. 1A) and at the same time greatly improves
the quality of interval extension of min{ fCl , wl} compared to the extension of fCl .

3.2 INT: Interval optimization approach

With this interval arithmetic knowledge, we will specify our rigorous branch-and-
bound maximization algorithm based on the considerations for interval optimization
(Hansen 1980), (Hansen and Walster 2004, chs. 7–8, 12–13), convex overestimation
(Adjiman et al. 1998; Adjiman and Floudas 1996), and quadratic approximation (Burer
and Letchford 2009; De Angelis et al. 1997). The basic methodology of the branch-and-
bound algorithm and the advanced bounding methods will be adapted to the emergency
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stop scenario by using the Problem (3.2) as well as the smoother reformulation in
Problem (3.3).

After an initialization step, the branching and bounding strategies are repeatedly
applied until a stopping criterion is fulfilled. The general pattern for the interval algo-
rithm INT, with various refinements that are described later, has the following form:

3.2.1 Initialization

Let xinit = Xl be the initial interval box containing the feasible set of Problem (3.2) for
the l-th category, thus X∗

l ⊂ xinit, with interval enclosure [Fl ](xinit) = [ f Lxinit
, f Uxinit

].
Instead of computing a reference value assumed by Fl on xinit, we perform a simplified
search restricted to X in Sect. 3.4 that approximates the maximum of FS on X before
investigating Problem (3.2) for all categories. Let f̄best,l denote the current best value
for category l that is initialized with the result of this lower-dimensional maximization
on X . We define B := {xinit} to be the set of active interval boxes which remain to be
investigated.

3.2.2 Branching

In every iteration, we select a box xcurrent ∈ B with f Uxcurrent
= maxx∈B f Ux if B �= ∅.

Then, xcurrent is subdivided by multisection (Csallner et al. 2000) into four subboxes
{x j

sub} j=1,...,4 through its midpoint along the two directions with the longest side

lengths so that xcurrent = ⋃
j=1,...,4 x

j
sub.B is updated by (B\{xcurrent})∪{x j

sub} j=1,...,4.

We compute the interval enclosures [Fl ](x j
sub) = [ f L

x j
sub

, f U
x j

sub

] and reference values

f̄x j
sub

= Fl(x) with midpoint x ∈ x j
sub for all j = 1, . . . , 4, and update the current best

function value f̄best,l if f̄x j
sub

> f̄best,l for some j . For efficiency reasons, we compute

the reference value only when the box is used for further considerations, i.e., it holds
xcurrent = x j

sub.

3.2.3 Bounding

Every interval x ∈ B with f Ux < f̄best,l is removed from B. Since Fl(x) is smaller
than f̄best,l for every point x ∈ x, the box x clearly cannot contain a global optimum.
Apart from this derivative-free bounding, we also apply a gradient check (Hansen
and Walster 2004, sec. 12.4). The interval gradient is used to identify whether Fl is
monotone along at least one coordinate direction in x, so that there is no local solution
in the interior of the box and we can remove it from B. Since Fl is not differentiable
everywhere in xinit due to the upper cut-off, special attention must be paid to the
construction of the interval gradient [∇Fl ](xcurrent).

For x ∈ xcurrent either Fl(x) = fCl (x) + fM (x) or Fl(x) = wl + fM (x) holds.
Therefore, the gradient of Fl has the following form for all x not lying on the boundary
of xinit or on the boundary of the cutting area Rl(xcurrent) := {x ∈ xcurrent; fl(x) =
wl}:
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∇Fl(x) =
{

∇ fCl (x) + ∇ fM (x), if fl(x) = fCl (x),

∇ fM (x), if fl(x) = wl .
(3.7)

For x ∈ ∂Rl(xcurrent), Fl is in general only directionally differentiable. In order to
combine the gradient criterion with the different expressions for ∇Fl , the interval
gradient check proceeds with

[∇Fl ](x) =
∑

γ∈Cl

[∇ fγ ](x) +
∑

y∈XM

[∇ fy](x) and [∇Fl ](x) =
∑

y∈XM

[∇ fy](x).

(3.8)

The gradient criterion must be fulfilled for both interval extensions [∇Fl ] to be appli-
cable without explicit knowledge of Rl(xcurrent). We compute those gradient interval
enclosures in the branching step for every new box resulting from the subdivision.

Since the boxes in B always cover the set of global optima X∗
l , the union of the

boxes in B converges monotonically decreasing (in terms of set inclusion) to X∗
l when

it is ensured that the maximum size of the boxes, i.e., the length of the longest edge of
all boxes, tends to zero. The gap between the best function value f̄best,l and the upper
bound of its interval function value defines a certificate for global optimality for a
box. In the algorithm, we determine the global optimal value only up to a guaranteed
accuracy ε f , i.e., we stop to branch if this gap is smaller than ε f . Furthermore, we
also stop branching if the box size is smaller than a predefined minimum box size
εx ∈ R

3
>0, because the limited accuracies for the vehicle localization and the map

data make further box examinations needless. Finally, the category l∗ with f̄best :=
f̄best,l∗ ≥ f̄best,l for all l = 1, . . . , L , provides the global optimal value f̄best and the
global solution box set.

3.3 Two local second-order methods

We consider the set of active boxes B after several steps of the interval optimization
algorithm. Since the interval extensions [ fγ ] of the curve functions fγ significantly
overestimate the interval enclosure for large boxes x, the upper limit of [ fl ](x) often
matches wl , i.e., the upper bounds do not improve by further branching, and the number
of removed boxes decreases. Therefore, we will investigate two different second-order
methods, αBB and a quadratic approximation approach which we apply for boxes that
fulfill specific subsequently introduced criteria. Hence, we derive the algorithms INT-
αBB (INTerval αBB) and INT-QUAP (INTerval QUadratic APproximation).

3.3.1 INT-˛BB: An˛−based Branch-and-BoundMethod

The idea of αBB (Adjiman et al. 1998; Adjiman and Floudas 1996; Meyer and Floudas
2005) is to compute locally valid concave overestimators of Fl using second-order
curvature information to generate better upper bounds than the interval extension [Fl ]
that we use in Sect. 3.2. The αBB algorithm is summarized in Algorithm 3.1. Fl is
regularized by a nonnegative quadratic term, weighted by α ≥ 0, to construct a local
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overestimator Lx : x → R, Lx(x) = Fl(x) + α/2 · ∑3
k=1(xk − x Lk )(xUk − xk) on

the interval x = [x L , xU ] ∈ B. If α is large enough, then the Hessian HLx(x) =
HFl(x) − α I is negative semi-definite and, therefore, Lx is concave. The maximum
value maxx∈x Lx can be exactly computed by local searches for the concave function,
e.g., with SQP methods (Boggs and Tolle 1995). This maximum value, just as f Ux , is
an upper bound for Fl(x). In our case, Fl is not smooth enough to compute such an
α. For this purpose, we present a method that combines αBB with the cut-off for fCl

to derive a concave overestimator of Fl in x.
Instead of a single α-value, we compute a vector (α1, . . . , αp) ∈ R

p
≥0 of α-values

with p = |XM ∪ Cl | to obtain individual concave overestimators Lx
χi

for the func-
tions fχi in order to define a concave overestimator Lx

l of Fl and to compute the
corresponding maximum value. We define

Lx
l (x) = min

{
wl ,

∑

χi∈Cl

Lx
χi

(x)
}

+
∑

χi∈XM

Lx
χi

(x) with

Lx
χi

(x) = fχi (x) + αi

2

3∑

k=1

(xk − x Lk )(xUk − xk), αi ≥ max
{
0, max

x∈x λmax(H fχi (x))
}
,

(3.9)

(cf. Maranas and Floudas 1994), where λmax(H fχi (x)) is the maximum eigenvalue
of H fχi (x).

An example of αBB is visualized in Fig. 3. The function fχi is overestimated by
the concave function Lx

χi
in the box x = [−2, 2]2. Their maximum distance dxχi

=
(Lx

χi
− fχi )(x0) is attained at the center x0 of the box x. Similar to Problem (3.3), the

maximum value L̄l := maxx∈x Lx
l (x) results from the concave maximization problem

max
x∈R3,ul∈R

ul +
∑

χi∈XM

Lx
χi

(x) s.t. x L ≤ x ≤ xU , ul ≤ wl , ul ≤
∑

χi∈Cl

Lx
χi

(x).

(3.10)

We use the maximum difference Lx
l − Fl to decide whether it is promising to

solve this problem. Since
∑

χi∈Cl
Lx

χi
(x) ≥ fCl (x) for every x ∈ x, it holds that

min{wl ,
∑

χi∈Cl
Lx

χi
(x)} − min{wl , fCl (x)} ≤ ∑

χi∈Cl
Lx

χi
(x) − fCl (x), and, there-

fore, with Equation (3.9) the maximum gap between Fl and Lx
l in x is bounded by

max
x∈x Lx

l (x) − Fl(x) ≤ max
x∈x

p∑

i=1

αi
2

3∑

k=1

(xk − x Lk )(xUk − xk))

= 1
8‖xU − x L‖2

2

p∑

i=1

αi =: dαBB
ı x. (3.11)

For large dαBB
ı (x), it is unlikely that L̄l yields a tighter overestimator than f Ux , and,

thus, L̄l is only computed if dαBB
ı (x) < εd holds for some predefined threshold

εd > 0. Nevertheless, this still requires to calculate (α1, . . . , αp) for each interval x.
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Fig. 3 The function Lxχi is a concave overestimator of fχi in x provided by the αBB method. dxχi pictures
the maximum distance between fχi and Lxχi that is used to measure the quality of this overestimation

These αi can be computed as follows: We have to determine the maximum eigen-
values of the interval Hessians [H fχi ](x), i ∈ I (cf. Equation (3.9)), which are
symmetric matrices with interval enclosures in the entries. However, the interval Hes-
sians [H fγ ](x) for the curves γ ∈ XC are usually widely overestimated for the same
reasons as explained for the interval-valued function evaluation in Sect. 3.1. As a rem-
edy, we replace wX0,S by its maximum value wmax

X0,S(x) := maxx∈x wX0,S(x) on x to
reduce the complexity of the function. This modified curve function overestimates fγ
slightly by the function

f̄γ (x) := wmax
X0,S(x)w(γ,S)

∫ 1

0
φ(γ,S)(γ (t) − x) · ‖γ ′(t)‖�−1 dt, (3.12)

since the slope of wX0,S in x is negligible in small boxes that qualify for αBB.
Furthermore, we can expect the size of those boxes to be smaller than the size of

the kernel function support, which is roughly comparable to the width of a lane. In
combination with our highway scenario, we assume that, in this case, the curve γ is
approximately a straight line γ̄ . We derive the curvature of the corresponding function
f̄γ̄ in Appendix A. It depends only on the distance to γ̄ , and, therefore, it is sufficient
to determine [·−proj‖·‖

�−1
(·, γ̄ )‖�−1 ](x), which contains all �−1-distances between

the points in x and their projections onto the line γ̄ . If we insert this enclosure into the
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Algorithm 3.1 αBB: Local concave overestimation of the objective function

Input: box x ∈ B, function Fl : R3 → R

1 determine the values (α1, . . . , αp) for all map elements and define the concave overestimator Lxl : x → R

using Equations (3.9), (3.12) and Appendix A
2 compute a global maximum x∗ = arg maxx∈x Lxl (x) with the SQP method

3 Check box status with possible optimal value update for f̄best,l (Section 3.2.1):
4 if Lxl (x

∗) < f̄best,l then
5 remove x from B
6 else
7 if Fl (x∗) > f̄best,l then
8 f̄best,l := Fl (x

∗), xbest,l := x∗
9 end

10 end

result of Appendix A, we get an interval extension for the maximum eigenvalue of H f̄γ̄
in x, i.e., an upper bound for the eigenvalues of H f̄γ̄ (x). In fact, an optimal interval
enclosure for the second derivative of the Gaussian function, analogous to Equation
(3.5), in Equation (A.7) provides a tight bound for αγ̄ = max‖u‖2=1, x∈x uT H f̄γ̄ (x)u.
However, this is only a tight bound for an overestimator f̄γ̄ while, strictly speaking,
we are looking for a bound αγ for fγ .

3.3.2 INT-QUAP: local quadratic approximation approach

In the following, we will describe an alternative method beside the αBB theory to
extend the interval algorithm. The local linearization of a curve γ is used again, but
the objective function is locally approximated instead overestimated. We approximate
the objective function Fl locally in a box x by a quadratic function Qx

l : x → R.
The maximum value of Qx

l is used to improve the upper bound provided by [Fl ](x),
although we have to add the approximation error Rx

l to this value. In the following, we
will construct the quadratic approximation, determine the remainder term and present
the computation of their upper bounds.

The Taylor expansion at a point x0 = (x0,1, x0,2, x0,3)
T ∈ x provides quadratic

approximations Qx
χi

: x → R,

Qx
χi

(x) = fχi (x0) + ∇ f Tχi
(x0)(x − x0) + 1

2 (x − x0)
T H fχi (x0)(x − x0) (3.13)

of fχi for every χi ∈ X , so that fχi (x) = Qx
χi

(x)+Rx
χi

(x; x0) with Taylor remainders

Rx
χi

(x; x0) =
∑

|ν|=3

( 1
ν!∂

ν fχi (x0 + θ(x − x0))
∏

k=1,2,3

(xk − x0,k)
νk

)
(3.14)

for some θ = θ(x, x0) ∈ [0, 1] and a multi-index ν = (ν1, ν2, ν3), |ν| = ν1 + ν2 +
ν3, ν! = ν1!ν2!ν3!. Then, we can write Fl(x) = min{Qx

l,1(x)+ Rx
l,1(x; x0), Qx

l,2(x)+
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Rx
l,2(x; x0)} with

Qx
l,1(x) = wl +

∑

χi∈XM

Qx
χi

(x), Rx
l,1(x; x0) =

∑

χi∈XM

Rx
χi

(x; x0),

Qx
l,2(x) =

∑

χi∈(Cl∪XM )

Qx
χi

(x), Rx
l,2(x; x0) =

∑

χi∈(Cl∪XM )

Rx
χi

(x; x0).
(3.15)

Each argument in this min-representation of Fl contains a quadratic function and a
remainder term, and, therefore, an upper-bounding approach for each of these two
arguments provides an upper bound for Fl in x by

Fl(x) ≤ max
x∈x Qx

l,m(x) + max
x∈x Rx

l,m(x; x0), for m = 1, 2. (3.16)

In practice, we compute the exact maximum value of the quadratic function Qx
l,m in

this formula, but we determine only interval enclosures of all the remainders Rx
χi

(x; x0)

to get an upper bound for the remainder Rx
l,m .

However, we can use the cut-off min{wl , [ fCl ](x)} =: [a, b] to reduce the compu-
tational effort. If the upper bound wl for fCl is not active anywhere in x, i.e., b < wl ,
then Fl(x) = Qx

l,2(x) + Rx
l,2(x; x0) for all x ∈ x. On the other hand, if the upper

bound wl is active for every x ∈ x, i.e., a = b = wl , then fl = wl in x, and
Fl(x) = Qx

l,1(x)+ Rx
l,1(x; x0). If only b equals wl , then we cannot determine whether

or where the cut-off is active in x. Therefore, we compute the right-hand side of Equa-
tion (3.16) for both m = 1 and m = 2, and we choose the smaller value as an upper
bound for Fl(x). An example for this case is visualized in Fig. 4, which shows the
partial cut-off in x and the resulting versions of the Taylor approximation. It should
be noted that this figure gives just a qualitative description, since the approximation
error here is too large for real application.

This quadratic approximation approach is also only performed on sufficiently small
boxes (cf. Sect. 3.3.1), i.e., if the approximation error in Equation (3.16) is sufficiently
small. Analogously to the αBB method, we simplify our problem by using the locally
valid function f̄γ̄ (cf. Equation (A.3)) with the linearized curve γ̄ , since widely overes-
timates the true enclosure in general. If we apply ∂xm ( 1

2‖x− p‖2
�−1) = (xm − pm)/σ 2

m
from the first line of Equation (A.4) and we recap ‖v‖�−1 = 1, then the third direc-
tional derivatives ∂ν f̄γ̄ = ∂

ν1
x1 ∂

ν2
x2 ∂

ν3
x3 f̄γ̄ with |ν| = 3, m, q, z = 1, 2, 3, m �= q,m �=

z, q �= z are

∂3
xm f̄γ̄ (x) = f̄γ̄ (x)

σ 6
m

[ − (xm − pm)3 + 3(xm − pm)(σ 2
m − vm

2)
]
,

∂2
xm∂xq f̄γ̄ (x) = f̄γ̄ (x)

σ 4
mσ 2

q

[ − (xm − pm)2(xq − pq) + (xq − pq)(σ
2
m − vm

2)

−2(xm − pm)vmvq
]
, ∂xm∂xq ∂xz f̄γ̄ (x) = − f̄γ̄ (x)

σ 2
mσ 2

q σ 2
z

[( ∏

k=m,q,z

(xk − pk)
)

+(xm − pm)vqvz + (xq − pq)vmvz + (xz − pz)vmvq
]
.

(3.17)
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Fig. 4 A The function Fl is bounded above by fCl + fM . They only differ inside the red surrounded area,
where the cut-off with wl is active. B The functions wl + fM and fCl + fM are locally approximated
by the quadratic Taylor expansions Qx

l,1 and Qx
l,2 We maximize these quadratic functions and add the

approximation error to get an upper bound for Fl in x

Inserting these formulas into Equation (3.14) provides an integral-free interval exten-
sion [Rx

γ̄ ](x, x0) with θ = [0, 1] and an estimate for [‖ · −proj‖·‖
�−1

(·, γ̄ )‖�−1 ](x).
Then, the second term in the objective function of Problem (3.16) is bounded by

sup([Rx
l ](x)) =: dQUAP

l (x) with [Rx
l ](x) = [Rx

l,1](x) or [Rx
l,2](x),

[Rx
l,1](x) =

∑

y∈XM

[Rx
y](x; x0), [Rx

l,2](x) =
∑

y∈XM

[Rx
y](x; x0) +

∑

γ̄∈Cl

[Rx
γ̄ ](x; x0),

(3.18)

where this choice of the interval extension [Rx
l ](x) for the Taylor remainder depends

on the explicit form of the approximation that we discussed in Equation (3.15). It
remains to show how to maximize the quadratic function Qx

l .
In general, the quadratic optimization problems with box constraints of the form

max
y∈y Q(x) = max

y∈y
1
2 y

T Ay + bT y + c, box y ⊂ R
d , A ∈ R

d×d , b ∈ R
d , c ∈ R,

(3.19)

with are NP-hard (Burer and Letchford 2009) for d ∈ N. Instead of approaching the
solution iteratively (De Angelis et al. 1997), we solve Problem (3.19) analytically
by subdividing it into subproblems of dimension 0 to d. The decomposition of a d-
dimensional box creates 3d lower-dimensional components in total (Banchoff 1990,
ch. 4). For a box x = [x L , xU ] ⊂ R

3, this subdivision is given by

x = int(x) ∪̇ (⋃̇
j f =1,...,6

int(Fj f )
) ∪̇ (⋃̇

je=1,...,12
int(E je)

) ∪̇ (⋃̇
jv=1,...,8

Vjv

)
,

(3.20)
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Algorithm 3.2 Local quadratic approximation of the objective function

Input: box x ∈ B, function Fl : R3 → R

1 examine Fl at the midpoint x0 ∈ x, define quadratic function Qx
l with Equations (3.13) and (3.15)

2 compute global maximum x∗ = arg maxx∈x Qx
l (x) with Equation (3.20)

3 compute an enclosure [Rx
l ](x) of the approximation error by Equation (3.18)

4 Check box status with possible optimal value update for f̄best,l (Section 3.2.1):
5 if Qx

l (x
∗) + sup([Rx

l ](x)) < f̄best,l then
6 remove x from B; break
7 else
8 if Fl (x∗) > f̄best,l then
9 f̄best,l := Fl (x

∗), xbest,l := x∗
10 end
11 end

where int(x) is the interior of x, Fj f , j f = 1, . . . , 6, are the two-dimensional faces
of x, E je , je = 1, . . . , 12, are the one-dimensional edges and Vjv , jv = 1, . . . , 8, are
the vertices of x. Except for the vertices, the decomposition provides 33 − 23 = 19
quadratic maximization problems on open sets. Since all solutions are either a vertex
of x or a stationary point in the relative interior of either x or one of the 1- or 2-
dimensional faces, we can compute all candidates for global solutions by solving
linear equations up to the third dimension and comparing them to all the vertices Vjv .
Even though this approach is inefficient for higher dimensions, it is computationally
feasible for d = 3. This completes our description of an upper-bounding approach
for the objective function Fl on x based on maximizing quadratic Taylor polynomials
and bounding the remainder terms. The resulting method is summarized in Algorithm
3.2. In the worst case, we must apply this optimization method two times per box to
maximize the quadratic functions Qx

l,1 and Qx
l,2.

Analogous to the concave overestimator in αBB, we could merge these quadratic
problems and obtain a quadratically constrained quadratic program of the form

max
x∈R3,ul∈R

ul +
∑

χi∈XM

Qx
χi

(x) s.t. x ≥ x L , x ≤ xU , ul ≤ wl , ul ≤
∑

χi∈Cl

Qx
χi

(x).

(3.21)

However, this problem cannot be solved with the previous box-constrained approach.
Polynomial optimization (Lasserre 2001) was also considered, but it was significantly
slower than our approach for this application.

3.4 1D optimization along themap data

Large values for the current best function value f̄best are essential for the bounding
step in the interval algorithm. Therefore, we perform a one-dimensional maximization
along all curves γ ∈ XC to obtain an initial a priori reference value (i.e., a lower bound)
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Algorithm 3.3 One-dimensional maximization along the curves in XC to determine
an initial value for the interval algorithm.
Input : map data X , scenario S
Output: optimal point xbest ∈ XC with function value f̄best

1 foreach γ ∈ XC do
2 define function f 1D

γ and the Problem (3.22)

3 apply extended TGO with optimal solution xbest
γ and value f̄best,γ = f 1D

γ (xbest
γ )

4 end
5 determine γ ∗ = arg maxγ∈XC

f̄best,γ and set xbest = xbest
γ ∗ , f̄best = FS (xbest)

for the interval algorithm. For every curve γ ∈ XC , we solve the one-dimensional
problem

max
t∈[0,1] f 1D

γ (t), with f 1D
γ : [0, 1] → R, f 1D

γ (t) = wX0,S(γ (t))w(γ,S) + fM (γ (t)),

(3.22)

where f 1D
γ approximates the function values along γ . Since the solutions of these

problems are only initial values for the interval algorithm, they do not need to
be solved rigorously. We use the idea of topographical global optimization (TGO)
(Endres et al. 2018) with equidistant sampling, which compares the function values
of neighboring samples to identify subintervals in [0, 1] where local optima must
occur. We will extend this procedure by also computing the derivative d/dt f 1D

γ (t) =
w(γ,S)∇wX0,S(γ (t))T γ ′(t) + ∇ fM (γ (t))T γ ′(t) at the samples.

Let {t1, . . . , tN ; t1 = 0, tN = 1, ti < t j for i < j} be a set of N ∈ N sampling
points. We choose a subset of the quadrature knots that are used for the evaluation of
the curve functions. We define the set Sγ = {(t j , f j , d f j ); f j = f 1D

γ (t j ), d f j =
d/dt f 1D

γ (t j ), j = 1, . . . , N } for every γ ∈ XC . Note, that d f1 and d fN are only
one-sided derivatives. Our goal is to determine for every interval [t j , t j+1], j =
1, . . . , N − 1, whether it contains a local maximum. Therefore, we will state three
criteria that prove the existence of local optima due to the differentiability (and the
continuity) of f 1D

γ :

1. The value at the right bound is at least as large as the value at the left bound and
the function is non-increasing at the right bound, thus ( f j ≤ f j+1)∧ (d f j+1 ≤ 0).

2. The value at the right bound is not larger than the value at the left bound and the
function is non-decreasing at the left bound, thus ( f j ≥ f j+1) ∧ (d f j ≥ 0).

3. The function is non-decreasing at the left bound and non-increasing at the right
bound, thus

(
d f j ≥ 0

) ∧ (d f j+1 ≤ 0).

On the boundary intervals [t1, t2] and [tN−1, tN ], we check the derivative-free criteria
f1 ≥ f2 or fN−1 ≤ fN , respectively, to ensure the existence of local optima. For the
intervals that demonstrably contain local solutions, we apply the algorithm by (Brent
1973, chs. 3–5). It performs a combination of the golden-section search (Kiefer 1953)
and parabolic interpolation near the interval bounds.
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However, it is necessary to compare f 1D
γ (t) with FS(γ (t)) for all local solutions

to overcome discrepancies between fγ and its approximation f 1D
γ . The maximum of

these optimal values and the values FS(y) for all landmarks y ∈ XM is chosen as an
initial reference value for the full-dimensional interval approach.

3.5 Overall algorithms INT-˛BB and INT-QUAP

The steps of our global optimization algorithm are shown in Algorithm 3.4. We perform
the one-dimensional maximization along the curve data XC in Line 5 before starting
the interval algorithm according to Sect. 3.2. We either apply INT-αBB that utilizes
concave overestimation, or INT-QUAP that incorporates the computation of quadratic
approximations to extend the interval algorithm INT with second-order methods. Note,
that we use two different rules with dαBB

l (x) or dQUAP
l (x) in Line 17 to decide whether

we apply INT-αBB or INT-QUAP in x at all.
The design of the algorithm enables the solution to be computed by independent

optimization problems for the different categories. Here, we do not exploit this paral-
lelism, since this requires further effort for the synchronization to keep determinism.
We use the optimal value f̄best,l of category l as an initial value for the category l + 1
problem in Line 13, even though this creates dependencies between the categories.
The solutions xbest,l are compared in Line 34 to obtain the global optimal solution
xbest.

Interval Newton (Krawczyk and Neumaier 1986), interval constraint propagation
(Kjøller et al. 2007), and non-diagonal shift matrices for αBB (Skjäl and Westerlund
2014; Skjäl et al. 2012) were also considered for the sake of completeness, but these
approaches did not improve the performance of the overall algorithm for our problem.

4 Function evaluation improvement by curve linearization

An efficient evaluation of the objective function is decisive for a fast execution of
the optimization. It strongly depends on the number of point and curve functions
(cf. Eqs. (2.6) and (2.7)) that are derived for each map element. We use geometrical
observations for the evaluation of these map element functions to decide in advance
whether we can set the function value validly without an explicit evaluation. These
geometrical checks reduce the computation time significantly for the curve evaluations
in particular

4.1 Underestimating the distance to a curve

The functions fχi in Equation (2.4) become infinitesimally small with increasing
distance to the map elements χi ∈ X due to the convolution with the Gaussian kernel
function φ(χi ,S). With Equation (2.8), it can be shown that φ(χi ,S)(y − x) <

εφ if ‖x − y‖2
�−1 > 2 ln(cχi /εφ) =: r2

φ,χi
for some small εφ > 0. In other words, if

the distance between x ∈ R and y is larger than rφ,χi for all y ∈ χi , then fχi (x) has no

123



1248 M. Eder et al.

Algorithm 3.4 The extended interval algorithm. The αBB method for INT-αBB and
the quadratic approximation for INT-QUAP are shown in Algorithms 3.1 and 3.2.
Input : map data X , scenario S (Section 2.1)
Output: xbest ∈ X∗ ⊂ R

3 global optimal point for scenario S
1 Modeling of Problem (3.3) for all categories based on scenario S (Section 2):
2 build Cl with weights wl for all categories l = 1, . . . , L according to Equation (2.2)
3 determine the initial boxes Xl containing the feasible sets of the subproblems in Equation (3.2)

4 define thresholds εd , ε f > 0, εx ∈ R
3
>0 (Sections 3.3.1 and 3.2.3)

5 call Algorithm 3.3: 1D optimization along all curves in XC (Section 3.4)

6 return reference point xbest ∈ XC with function value f̄best = FS (xbest)

7 if there exists a landmark y ∈ XM with FS (y) > f̄best then
8 determine y∗ = arg maxy∈XM

FS (y)

9 set xbest = y∗, f̄best = FS (y∗)

10 end

11 Apply interval algorithm for every category:
12 for l = 1 to L do
13 set initial box set B = {xinit} with Xl ⊂ xinit, xbest,l = xbest, f̄best,l = f̄best and compute upper

bound f Uxinit
of [Fl ](xinit) (Sections 3.2.1 and 3.2.2)

14 compute dαBB
l (xinit) (Equation (3.11)) or dQUAP

l (xinit) (Equation (3.18))
15 while B �= ∅ do
16 choose x ∈ B with maximum upper interval function value bound f Ux = maxy∈B f Uy

17 if dαBB
l (x) < εd (INT-αBB) or dQUAP

l (x) < εd (INT-QUAP) then
18 call Algorithm 3.1: αBB (Section 3.3.1) for INT-αBB or

call Algorithm 3.2: Quadratic approximation (Section 3.3.2) for INT-QUAP
19 else
20 set x̄ ∈ x midpoint of the current box

if Fl (x̄) > f̄best,l then
21 set f̄best,l = Fl (x̄), x

best,l = x̄
22 end

23 subdivide x into boxes {x jsub} j=1,...,J and remove x from B (Section 3.2.2)

compute [Fl ](x jsub) ⊂ R, [∇Fl ](x jsub) ⊂ R
3 for every box x jsub, j = 1, . . . , J

24 foreach y = [yL , yU ] ∈ {x jsub} j=1,...,J do
25 if ( f Uy < f̄best,l + ε f ) or (yU − yL < εx ) or the gradient criterion holds (Section 3.2.3)

then
26 remove y
27 else
28 add y to B and compute dαBB

l (y) (cf. (3.11)) or dQUAP
l (y) (cf. (3.18))

29 end
30 end
31 end
32 remove all boxes y ∈ B with f Uy < f̄best,l + ε f

33 end
34 set f̄best = f̄best,l , x

best = xbest,l

35 end
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impact on the objective function and we can set the value to zero. It is straightforward
to verify this condition for the map points. In the following, we present a method
how to perform this relevance check for the map curves γ by using their B-spline
representation.

We want to provide a simple lower bound for mint∈[τ j ,τ j+1]‖x−γ (t)‖�−1 for every
B-spline knot interval [τ j , τ j+1], j = 4, . . . , n − 3, to compare it with rφ,γ in order
to decide whether or not to compute fγ (x) explicitly. Therefore, we approximate γ

with a polygonal chain (or polyline) sγ using a set of vertices by

sγ : [0, 1] → R
3, sγ (t) = τ j+1−t

τ j+1−τ j
S j + t−τ j

τ j+1−τ j
S j+1 for t ∈ [τ j , τ j+1], j = 4, . . . , n − 3.

(4.1)

sγ interpolates γ and, hence, provides a better approximation than the polyline induced
by the B-spline control points Pγ of γ . Since ‖x − γ (t)‖�−1 ≥ ‖x − sγ (t)‖�−1 −
‖γ (t) − sγ (t)‖�−1 for all t ∈ [0, 1], the minimum distance between x and the curve
segment γ |[τ j ,τ j+1]:= {γ (t); t ∈ [τ j , τ j+1]} is bounded below by

min
t∈[τ j ,τ j+1]

‖x − γ (t)‖�−1 ≥ min
t∈[τ j ,τ j+1]

‖x − sγ (t)‖�−1 − max
t∈[τ j ,τ j+1]

‖γ (t) − sγ (t)‖�−1 .

(4.2)

This lower-bounding property is visualized in Fig. 5.
Here, the minimum distance d j

sγ (x) between x and the line segment [S j , S j+1] :=
{sγ (t); t ∈ [τ j , τ j+1]} equals ‖x − proj‖·‖

�−1
(x, [S j , S j+1])‖�−1 , given that the

projection onto the line segment [S j , S j+1] has the form

proj‖·‖
�−1

(x, [S j , S j+1]) =

⎧
⎪⎨

⎪⎩

S j , μ j < 0,

S j + μ j (S j+1 − S j ), μ j ∈ [0, 1],
S j+1, μ j > 1,

(4.3)

with μ j = 〈x − S j , S j+1 − S j 〉�−1/‖S j+1 − S j‖2
�−1 . The second term on the right-

hand side of Equation (4.2) is bounded above by d j
max, which is given in Equation (B.3)

in Appendix B. In total, we decide to set fγ (x) = 0 if d j
sγ (x) − d j

max > rφ,γ , because

d j
sγ (x) − d j

max is a lower bound for mint∈[τ j ,τ j+1]‖x − γ (t)‖�−1 . The values for d j
max

and rφ,γ are independent of x and can be computed a priori.

Analogously, we need a lower bound for d j
sγ (x) to apply that rule for a box x. An

efficient computation of the exact minimum distance inf(d j
sγ (x)) between a box and a

line segment is demonstrated in (Schneider and Eberly 2002, sec. 10.9.4). Then, we set
[ fγ ](x) = 0 if inf(d j

sγ (x))−d j
max > rφ,γ . In particular, this result transmits to subsets

of x, i.e., we can set fγ also zero for points in x and subboxes of x, which is a huge
advantage in the branch-and-bound algorithm to reduce the computational effort. For
every box, we store the active curve segments that contribute to the objective function.
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Fig. 5 We depict some distances between the point x , the curve segment γ |[τ j ,τ j+1] and the line segment

[S j , S j+1]. They are used to derive a lower bound for d1. The angles with an -sign indicate perpendic-
ularity with respect to 〈·, ·〉�−1 . The ellipsoid around x symbolizes the support of the Gaussian function.
fγ (x) is infinitesimally small if the ellipsoid does not intersect γ

4.2 Intersection between a box and a curve

Analogously, we can use geometrical tools to identify whether fγ takes its maximum
value inside x. If the curve γ intersects the box x, then we set [ fγ ](x) = [0, uxγ ] with
uxγ := wmax

X0,S(x)w(γ,S) according to the line approximation in Equation (2.9). uxγ
is an upper bound for maxx∈x fγ̄ (x), where γ̄ is a line approximation of γ in x. The
difference between maxx∈x fγ (x) and uxγ depends on the slope of wX0,S , the curvature
of γ in x, and to a largest extent on the fact whether the intersection of γ and x is
only close to one of the ends of the curve, because fγ fails to approximate w(γ,S)

there as discussed below Equation (2.7). We want to stress that we use this curve
intersection approach especially for large boxes to avoid the numerical integration,
whose computational effort is high due to the number of required quadrature points.

Since we determine only the intersection of the polyline sγ and x in practice (this is
much easier than for B-spline curves), we define a subbox xsub ⊂ x so that γ intersects
x if sγ intersectsxsub. Consider again the line segment [S j , S j+1] and the curve segment
γ |[τ j ,τ j+1] and assume that x̄ ∈ [S j , S j+1]∩xsub. For ȳ = proj‖·‖

�−1
(x̄, γ |[τ j ,τ j+1]), it

holds that |x̄k − ȳk | ≤ maxtk∈[τ j ,τ j+1]|q jk(tk)| =: ek for every component k = 1, 2, 3
according to the considerations for Equation (B.3). Therefore, we define xsub = [x L +
e, xU − e] with e = (e1, e2, e3)

T and x = [x L , xU ]. The side lengths of x must be
larger than 2e so that xsub is well-defined and this box intersection criterion can be
applied. This distance computation of the previous section with zero distance detects
these intersections.
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Fig. 6 All the 76 lanes and 21 landmarks, emergency call boxes and kilometer signs of the emergency stop
example (cf. Sect. 5) are highlighted in the above map, as well as the vehicle’s positions for the examples
Ego 1 and Ego 2

5 Prototypical implementation and evaluation

The optimization program has been implemented in MATLAB R2018b that is running
on an Ubuntu 16.04 virtual machine with a four core processor and 16 GB RAM.
The underlying hardware specifications are an Intel(R) Core(TM) i7-8850 H 2.60GHz
processor with six cores and 32 GB RAM in total. Apart from MATLAB built-in
functionalities, we use the CORA software package (Althoff and Grebenyuk 2017)
that provides an implementation of interval arithmetic in MATLAB. In practice, basic
arithmetic operations (addition, subtraction, multiplication, division) and elementary
functions (cos, sin, exp,...) are overloaded such that they take intervals as inputs and
map them to the smallest interval that contains the image of the input set (or, if this is
too costly, to a reasonably tight upper estimate). Furthermore, we include C++ libraries
to MATLAB by using MEX files. The Geometric Tools Engine (Eberly 2014, chs.
5–7) helps to compute the distances between the boxes and the polyline segments.
We also use the interval arithmetic functionality of the C-XSC library (Hofschuster
and Krämer 2004) to accelerate the expensive interval Gaussian described in Sect. 3.2
by means of C++ code. A single implementation of interval arithmetic is advised for
production-ready code.

The fminbnd function of the MATLAB Optimization Toolbox performs the one-
dimensional maximization described in Sect. 3.4. Furthermore, we use the fmincon
function to apply the SQP-algorithm for the concave overestimator. We limit the
maximum number of steps to 20 due to the fast convergence. We choose the knot
parameters in τγ (cf. Sect. 2.1) for the quadrature to be piecewise equidistant in
such a way that ‖ym − ym+1‖�−1 ≈ 10−1 for two neighboring quadrature points
ym = γ (tm), ym+1 = γ (tm+1) (cf. Sect. 3.1). Those parameters must be determined
a priori for the continuity of fγ .

5.1 Framework for the emergency stop example

We define two examples for an emergency stop while driving on the highway to
evaluate the developed algorithm and compare the results. For this scenario, we observe
a short highway section of around five kilometers length on the Autobahn A9 near
Ingolstadt, Bavaria, Germany. This highway section reflects the usual complexity of
a german highway, since there are long monotonous passages, but it also contains
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complex areas, e.g., highway entries and exits, as well as a service station1. The map
excerpt and the map elements are visualized in Fig. 6. The evaluation is applied for
two distinct ego vehicle positions X1

0 in northern direction, this example is referred to
as Ego 1, and X2

0 in southern direction of the highway2, this example is referred to as
Ego 2. Apart from the lanes along the route of the vehicle, we also reward emergency
call boxes and kilometer posts since they help to call for the breakdown service or to
localize the emergency stop. In total, there are 76 lane objects, which are split into
11 categories and 21 landmarks for our example. We perform a further selection of
the relevant map data based on the ego position, since, e.g., opposite lanes or road
sections behind the vehicle are not considered. Therefore, we reduce the map data to
12 lanes (8 categories) and six landmarks corresponding for Ego 1 and 23 lane objects
(10 categories) and six landmarks for Ego 2.

For an explicit formulation of the objective function, we need to define a weight-
ing for the curve categories and the landmark types, as well as for the variances
(σ 2

1 , σ 2
2 , σ 2

3 ) of the Gaussian functions φ(χi ,S). Here, we have tried to find a plau-
sible weighting visualized in Table 1, but explicit rules for this weighting need to be
established for a real application.

We determine the ego position factor wX0,S(x) = wδ(‖x−X0‖2) by the decreasing
radial function wδ : R≥0 → R that is defined by the positive, scenario-dependent
constant δ = δ(S) > 0:

wδ(r) = 1/
(
1 + r/δ

)
, w′

δ(r) = −1/
(
δ(1 + r/δ)2), w′′

δ (r) = 2/
(
δ2(1 + r/δ)3).

(5.1)

The smaller δ is, the faster the contribution of the map data to the objective function
decays with increasing distance from the ego position. We set δX1

0
= 5000 for a

larger relevant area around X1
0 and δX2

0
= 1000 for a smaller surrounding of X2

0.

Furthermore, we choose ε f = 10−3 for the maximum error of the guaranteed optimal
function value, εx = 0.05 for the minimum box side length and εd = 10−1 (αBB),
respectively εd = 5 · 10−1 (quadratic approximation) for the threshold that activates
the second-order method.

5.2 Example Ego 1

Table 2 show the results of INT-αBB and INT-QUAP for the first example Ego 1. For
every category, the weight wl and the number of active curves |Cl | are shown, as well
as the number of iterations and boxes. The tables A and B also depict the number of
boxes that fulfill the box intersection criterion of Sect. 4.2, the gradient monotonicity
criterion and the second-order method criterion to apply concave overestimation or
quadratic approximation in Algorithm 3.4. Furthermore, the number of real-valued and

1 The UTM 32U coordinates in meters (x1- and x2-component) and heights in meters
above mean sea level (x3-component) of the boundaries to the relevant box are
[(680848, 5408861, 424)T , (681505, 5413497, 506)T ]
2 X1

0 := (681498.49, 5411179.56, 474.78)T , X2
0 := (681343.99, 5411925.12, 494.72)T
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Fig. 7 The visualization of the results for the Example Ego 1. A The figure shows all boxes for INT-αBB of
the topmost category that provides the global optimal solution. Digital orthophoto: ©GeoBasis-DE/BKG
2020. B The zoom into the optimal solution near the emergency call box shows those green boxes that
qualify for applying αBB

interval-valued function evaluations of the landmark function fM and curve functions
fl are depicted, next to the number of evaluations of the concave overestimators Lx

l
(in the αBB case). The last columns show the run times for each single category and
the total algorithm run time.

We start the algorithm with the category of the highest weight wl , because this
category is most likely to provide the global optimal solution. Since the result for
the first category already returns the global optimum here, the interval algorithms for
the remaining categories stop after a few steps. INT-αBB performs better than INT-
QUAP, since a closer examination reveals that αBB always removes irrelevant boxes,
whereas there remain active boxes by quadratic approximation that do not contain a
global optimum. Since the higher-order approaches are expensive, those unsuccessful
quadratic approximations affect the run time negatively.

The maximization for the leading category is visualized in Fig. 7. We observe all
the boxes of the interval algorithm with αBB in Fig. 7A. The curves that belong to
the specific category are marked in pink. In Fig. 7B are all boxes colored in green for
which the αBB method is applied. In practice, these boxes must be sufficiently small.
The optimal solution is close to an emergency lane, with a slight offset towards the
emergency call box as the weighting of the map elements has already suggested. As
the reader can imagine, this is a valid emergency stop.

5.3 Example Ego 2

For the second example Ego 2 with the vehicle position X2
0, the computation of the

global maximum results in an emergency stop that is close to the next kilometer sign
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1256 M. Eder et al.

Fig. 8 We perform 100 runs of the example Ego 2 for each of the nine algorithms (only five runs of GOP)
to compare the total numbers of function evaluations and the resulting optimal values. Each dot represents
one algorithm run. The values are independent of the runs of the deterministic optimization methods. A
The total numbers of function evaluations. B The optimal values

in the driving direction. Note that δX2
0

has been reduced compared to the first example.
We use this example to compare the performance of our algorithm to existing global
optimization methods. The results are shown in Table 3.

Apart from our algorithms INT-αBB and INT-QUAP, we examine INT without
any second-order methods (third method) and the αBB algorithm which computes
concave estimators for every observed box (fourth method). We must only adjust the
parameter εd in our implementation to enforce these borderline cases. Furthermore, we
apply several global optimization algorithms implemented in MATLAB by handing
over the objective function as a black box. These include MCS (Huyer and Neumaier
1999) and DIRECT (Finkel 2003) (cf. Sect. 1.2), as well as the GOP algorithm (Pál and
Csendes 2009), which uses the INTLAB software package (Rump 1999). We apply this
advanced interval algorithm to get a comparison for the performance of a state of the
art implementation without handing over specific properties of our objective function.
Furthermore, we compare the deterministic algorithms to the stochastic algorithms
GLOBAL (Csendes et al. 2008) and CMA-ES (Hansen and Ostermeier 2001).

Table 3 presents the number of function evaluations (as detailed as in Table 2)
and the run time of the different methods, as well as the returned optimal value (the
average values as well as the appearing optimal value ranges). The plots in Fig. 8
depict the ranges for the number of total function evaluations and for the resulting
optimal values, which are especially interesting for the stochastic algorithms. Every
dot corresponds to one of the 100 runs that we perform for every of the compared
algorithms (only five runs of GOP). We can see that INT-αBB is the overall winner.
This hybrid algorithm is almost twice as fast as our interval algorithm INT without
αBB enhancement. The large number of pointwise function evaluations in pure αBB
results from the maximization of the overestimators. In this example, INT-QUAP is
even a bit worse than INT, which does not use second-order approaches. It creates less
boxes but takes quite some effort in the quadratic approximation part. However, we
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also have investigated this example with ε f = 10−2 (rather than ε f = 10−3). Then,
without reporting details here, INT-αBB and INT-QUAP process approximately the
same number of boxes and, in these cases, INT-QUAP is slightly faster, since solving
the quadratic problem with box constraints is cheaper than maximizing the concave
overestimator. Although computing more boxes, INT required roughly the same run
time as INT-αBB.

GOP fails here with regard to the run time, although we even provided two function
handles, one for the pointwise and one for the interval-based evaluation. Hence, we
see the benefit of our customized implementation for this problem. The runtime of
MCS is comparable to our quadratic approximation interval approach, but the optimal
value is a bit worse and achieving a better value would require a significantly higher
runtime of MCS. We used X2

0 as initial point. Applying MCS to various other examples
showed that in some situations MCS does not find a sufficiently good approximate
global solution within an acceptable run time. We made similar observations for the
DIRECT algorithm. Both methods can have difficulties to find the narrow ridges around
the map elements where good candidates for global solutions are located. Also, they do
not offer a certificate for approximate global optimality and thus the stopping criteria
are based on other conditions that do not guarantee that always a sufficiently good
solutions is returned.

The stochastic methods GLOBAL and CMA-ES are suitable alternatives to the
interval αBB method in terms of the computation time, but they are not deterministic
and, therefore, the range of the returned optimal values is significantly larger. The plots
in Fig. 8 show their ranges of the number of function evaluations and of the optimal
values. CMA-ES performs fastest and it is also able to return the global optimal value
to the predefined accuracy. However, this stochastic algorithm is not able to provide
the true optimal value in all of the test runs (cf. last row in Fig. 8). Furthermore, this
result has only been reached for an explicitly chosen covariance matrix �. When we
use this choice for Example Ego 1, then CMA-ES misses the global optimal value by
more than 0.5. In total, those algorithms that only use pointwise evaluations to find the
global optima have limited success here. The support of the objective function is small
compared to the search space and the solutions are close to the map elements. The large
gradients of the curve functions fγ impede the success of algorithms that principally
use single samples to infer the behavior of the function, e.g., MCS or DIRECT.

6 Conclusion and outlook

We developed a novel optimization-based approach for deriving secondary informa-
tion from high definition digital maps based on a given scenario S of lanes, landmarks
and weights. Thereby, new points of interest are generated by solving a global max-
imization problem derived from the scenario. A new rigorous deterministic global
maximization algorithm was developed. It combines and, in several aspects, extends
state-of-the-art approaches, enhancing them by exploiting specific properties of our
problem. The resulting algorithm achieves a performance that compares favorably
with other global optimization methods.
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We proposed two variants of our method that both build on an interval algorithm.
INT-αBB outperforms other deterministic algorithms and shows a performance that is
competitive with non-deterministic approaches (cf. Table 3). However, the latter do not
provide certificates of global optimality and they would not meet the safety require-
ments demanded for autonomous driving applications. Although INT-QUAP cannot
fully compete with INT-αBB here, we have observed scenarios with an increased tol-
erance ε f for the optimal function value, where both algorithms examine roughly the
same number of boxes. In that case, the advantages of INT-QUAP by solving box-
constrained quadratic problems result in less run times. For the future, higher-order
polynomials could reduce the approximation error, but need more elaborate methods
for the optimization with box constraints.

The local linearization of the curves has been fundamental to apply second-order
techniques. This approach is valid for the highway scenario, since sufficiently small
curvatures are guaranteed there. We plan to extend our results to urban scenarios, which
are expected to be more complex and challenging due to the increased information
density. On the other hand, this can be partly alleviated as the foresight could be
significantly reduced. Therefore, we aim for investigating the validity of the local
curve linearization for urban maps. As the suggested optimization approach can be
highly parallelized, we plan to exploit this in future work. We also will focus on
specifically tailored data structures for the management of the quadrature points.
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Appendix A: Local curvature of a curve linearization function

Let f̄γ be the curve function described in Equation (3.12) with the box x. We approx-
imate the curve γ by a straight line γ̄ in order to define the function f̄γ̄ . We will give
a formula to compute the local curvature of f̄γ̄ that we use in Sect. 3.3.1 to bound the
maximum curvature inside x.

The line is of the form γ̄ (t) = p + r(t)v with p, v ∈ R
3 and r : R → R, r ′ > 0.

If we choose ‖v‖�−1 = 1 and p = proj‖·‖
�−1

(x, γ̄ ) := arg minx̂∈γ̄ ‖x − x̂‖�−1 for
some point x ∈ x, then, with Equation (2.8) it follows
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φ(γ̄ ,S)(γ̄ (t) − x) = cγ̄ exp
(

− 1
2 (p + r(t)v − x)T�−1(p + r(t)v − x)

)

= cγ̄ exp
(

− 1
2‖x − p‖2

�−1

)
exp

(
− 1

2r(t)
2
)
,

(A.1)

where we used

(x − p)T�−1v = 0. (A.2)

If we insert this into Equation (2.7), then f̄γ̄ has the form

f̄γ̄ (x) =wmax
X0,S(x)w(γ̄ ,S) exp

(
− 1

2‖x − p‖2
�−1

)
cγ̄

∫ ∞

−∞
exp

(
− 1

2r(t)
2
)
r ′(t)dt

=wmax
X0,S(x)w(γ,S) exp

(
− 1

2‖x − p‖2
�−1

)
,

(A.3)

where w(γ̄ ,S) equals w(γ,S), and cγ̄ = cγ = 1/
√

2π offsets the integral value.
Now f̄γ̄ (x) depends only on the distance ‖x − p‖�−1 between x and the line γ̄ . Since
it holds Dp = vvT�−1 for the derivative Dp of the projection onto the line γ̄ , and,
therefore, (Dp)T�−1(x − p) = �−1vvT�−1(x − p) = 0 according to Equation
(A.2), we get

D( 1
2 ‖x − p‖2

�−1) = (x − p)T�−1(I − Dp) = (x − p)T�−1,

H( 1
2 ‖x − p‖2

�−1 ) = (I − (Dp)T )�−1(I − Dp) = �−1 − �−1vvT�−1,

and (I − (Dp)T )�−1(x − p)(x − p)T�−1(I − Dp) = �−1(x − p)(x − p)T�−1.

(A.4)

Then, the second derivative of f̄γ̄ (x) is given by

H f̄γ̄ (x)= f̄γ̄ (x)
[
�−1(x − p)(x − p)T�−1 − �−1 + (�−1vvT�−1)

]
. (A.5)

If x �= p, the vectors v, d := x − p and z := (�−1d) × (�−1v) define an �−1-
orthogonal basis of R3. Thus, for a vector u := β1d + β2v + β3z, β1, β2, β3 ∈ R, it
holds

uT H f̄γ̄ (x)u = f̄γ̄ (x)
(
β2

2‖v‖4
�−1 − uT�−1u + β2

1‖d‖4
�−1

)

= f̄γ̄ (x)
(
β2

1 (‖d‖4
�−1 − ‖d‖2

�−1) − β2
3‖z‖2

�−1

)
.

(A.6)

and the maximum eigenvalue of H f̄γ̄ (x) is given by

max‖u‖2=1
uT H f̄γ̄ (x)u = f̄γ̄ (x) max

β1,β3∈R
‖u‖2=1

(
β2

1 (‖d‖4
�−1 − ‖d‖2

�−1) − β2
3‖z‖2

�−1

) =

=
{

wmax
X0,S(x)w(γ,S)η(d) exp

( − 1
2 ‖d‖2

�−1

)(‖d‖2
�−1 − 1

)
, if ‖d‖2

�−1 ≥ 1,

0, else,
(A.7)
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with a scalar parameter η(d) ∈ [1/σ 2
max, 1/σ 2

min] that puts ‖d‖2
2 and ‖d‖2

�−1 in relation

by ‖d‖2
�−1 = η(d)‖d‖2

2. This right-hand side in (A.7) resembles the curvature of the
one-dimensional Gaussian function with respect to ‖d‖�−1 .

Whereas in the case of x = p, it holds

max‖u‖2=1
uT H f̄γ̄ (p)u = f̄γ̄ (p) max‖u‖2=1

uT (−�−1 + (�−1vvT�−1))u

= f̄γ̄ (p) max
β̄2

1 +β̄2
2 +β̄2

3 =1
− β̄2

1 − β̄2
2 − β̄2

3 + β̄2
2 = 0,

(A.8)

where v is completed to a �−1-orthonormal basis of R3. Hence, we derived an explicit
formula to compute the curvature of f̄γ̄ in x .

Appendix B: Upper bound for the distance between a b-spline curve
and an approximating polyline

Let γ be a B-spline curve such as explained in Sect. 2.1, and let sγ be an approxi-
mating polyline from Equation (4.1). Then, the pointwise difference γ (t) − sγ (t) =∑ j

m= j−3 PmC jm(t) for t ∈ [τ j , τ j+1] with the control points Pm is given by the cubic
polynomials

C jm : [τ j , τ j+1] → R, C jm(t) = Nm,4(t) − τ j+1−t
τ j+1−τ j

Nm,4(τ j ) − t−τ j
τ j+1−τ j

Nm,4(τ j+1).

(B.1)

Since we can write Nm,4(t) = a jmt3 +b jmt2 +c jmt+d jm in [τ j , τ j+1], the pointwise
difference between γ and sγ equals

q jk(t) = A jmkt
3 + Bjmkt

2 − [
A jmk(τ

2
j + τ jτ j+1 + τ 2

j+1) + Bjmk(τ j + τ j+1)
]
t

+ τ jτ j+1
[
A jmk(τ j + τ j+1) + Bjmk

]

(B.2)

in every component k = 1, 2, 3 with A jmk = ∑ j
m= j−3 Pk

ma jm , Bjmk =
∑ j

m= j−3 Pk
mb jm , and Pm = (P1

m, P2
m, P3

m)T , m = j − 3, . . . , j . The following
inequality holds for all j :

max
t∈[τ j ,τ j+1]‖γ (t) − sγ (t)‖�−1 ≤ max

t1,t2,t3∈
[τ j ,τ j+1]

∥∥(|q j1(t1)|, |q j2(t2)|, |q j3(t3)|
)T ∥∥

�−1 =: d j
max.

(B.3)

Therefore, the extreme values of the polynomials q jk, j = 4, . . . , n−4, k = 1, 2, 3,

provide an upper bound for the piecewise maximum distance d j
max between the B-

spline curve γ and its approximating polyline sγ .
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The derivatives of q jk are

q ′
jk(t) = 3A jmk t

2 + 2Bjmk t − A jmk(τ
2
j + τ j τ j+1 + τ 2

j+1) − Bjmk(τ j + τ j+1)

and q ′′
jk(t) = 6A jmk t + 2Bjmk .

(B.4)

There exist three different scenarios that can be observed:

1. If q jk ≡ 0, then sγ equals γ for the k-th component in the interval [τ j , τ j+1].
2. If A jmk = 0 (and q jk �≡ 0), then q jk is a quadratic polynomial. The interval bounds

τ j and τ j+1 are the roots of q jk , by the definition of sγ . The unique extremal
point t∗ of q jk equals the solution of the linear equation q ′

jk(t
∗) = 0, thus t∗ =

(τ j + τ j+1)/2, and the maximal distance is given by

max
tk∈[τ j ,τ j+1]

|q jk(tk)| = |q jk(t
∗)| = |Bjmk |(τ j+1 − τ j )

2/4. (B.5)

3. If A jmk �= 0 (and q jk �≡ 0), then q jk has a third, non-trivial root at t0 = −(τ j+1 +
τ j )−Bjmk/A jmk and two real-valued extremal points t∗+ = (−Bjmk+D)/(3A jmk)

and t∗− = (−Bjmk − D)/(3A jmk) with discriminant

D =
√

3A2
jmk(τ

2
j + τ jτ j+1 + τ 2

j+1) + 3A jmk B jmk(τ j + τ j+1) + B2
jmk .

If t0 ∈ [τ j , τ j+1], then both extrema are in [τ j , τ j+1]. If t0 /∈ [τ j , τ j+1], only one
extremum lies in [τ j , τ j+1], i.e.,

max
tk∈[τT ,τ j+1]|q jk(tk)| =

⎧
⎪⎨

⎪⎩

max{|q jk(t
∗+)|, |q jk(t

∗−)|}, if t0 ∈ [Tj , Tj+1],
|q jk(t

∗+)|, if t0 /∈ [Tj , Tj+1] ∧ t∗+ ∈ [Tj , Tj+1],
|q jk(t

∗−)|, if t0 /∈ [Tj , Tj+1] ∧ t∗− ∈ [Tj , Tj+1].
(B.6)
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