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Abstract
Traditionally, optimization of radiation therapy (RT) treatment plans has been done 
before the initiation of RT course, using population-wide estimates for patients’ 
response to therapy. However, recent technological advancements have enabled 
monitoring individual patient response during the RT course, in the form of bio-
markers. Although biomarker data remains subject to substantial uncertainties, 
information extracted from this data may allow the RT plan to be adapted in a bio-
logically informative way. We present a mathematical framework that optimally 
adapts the treatment-length of an RT plan based on the acquired mid-treatment bio-
marker information, while accounting for the inexact nature of this information. We 
formulate the adaptive treatment-length optimization problem as a 2-stage problem, 
wherein the information about the model parameters gathered during the first stage 
influences the decisions in the second stage. Using Adjustable Robust Optimization 
(ARO) techniques we derive explicit optimal decision rules for the stage-2 deci-
sions and solve the optimization problem. The problem allows for multiple worst-
case optimal solutions. To discriminate between these, we introduce the concept of 
Pareto Adjustable Robustly Optimal solutions. In numerical experiments using lung 
cancer patient data, the ARO method is benchmarked against several other static 
and adaptive methods. In the case of exact biomarker information, there is sufficient 
space to adapt, and numerical results show that taking into account both robust-
ness and adaptability is not necessary. In the case of inexact biomarker information, 
accounting for adaptability and inexactness of biomarker information is particularly 
beneficial when robustness (w.r.t. organ-at-risk (OAR) constraint violations) is of 
high importance. If minor OAR violations are allowed, a nominal folding horizon 
approach (NOM-FH) is a good performing alternative, which can outperform ARO. 
Both the difference in performance and the magnitude of OAR violations of NOM-
FH are highly influenced by the biomarker information quality.
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1 Introduction

In radiation therapy (RT), the goal is to deliver a curative amount of radiation dose 
to the target volume(s), while keeping the dose to all organs-at-risk (OARs) within 
tolerable limits. As the radiation beam delivers energy to all tissues that are on its 
path, the OARs will (often) inevitably receive some dose as well. Treatment plan-
ning has a spatial component, where the optimal dose distribution is determined, 
and a temporal component, where the optimal number of treatment sessions, or frac-
tions, is determined. Whereas the former is predominantly a geometric problem, the 
latter involves radiobiological effects.

Technological advances in treatment monitoring through imaging and other 
forms of data acquisition allow for a more accurate assessment of an individual’s 
radiation response (Baumann et  al. 2016). Biologically-based adaptive treatments 
aim to monitor the treatment, acquire mid-treatment biomarker information, and 
adapt the remainder of the treatment course accordingly. Many approaches to adap-
tive treatment planning have been studied in the literature. To the best of our knowl-
edge, all existing approaches assume that all information acquired mid-treatment is 
exact, i.e., gives a perfect representation of the current state of treatment response. 
Unfortunately, the limited availability and accuracy of required biomarkers pose a 
primary challenge for adaptive treatments (Baumann et al. 2016). Any information 
from biomarker data acquired during treatment remains subject to uncertainties, 
stemming from both measurement errors and the inexactness in the translation of 
measured data to usable model parameters. Therefore, it is crucial that any adaptive 
treatment planning approach takes this into account. Ajdari et al. (2019) provide an 
overview of relevant mathematical (optimization) tools. We present an approach to 
optimally adapt the treatment length of RT using inexact mid-treatment biomarker 
information.

Specifically, we take an adjustable robust optimization (ARO, Ben-Tal et  al. 
2004; Yanıkoğlu et  al. 2019) approach that accounts for the inexactness of bio-
marker information. ARO is an extension of robust optimization (RO) that takes into 
account the flow of information over time and exploits the fact that some decisions 
need to be taken only after the data has (partially) revealed itself. By using ARO, 
we ensure that the treatment plan delivered in the initial treatment stage (prior to 
obtaining biomarker information) is ‘adaptation aware’. That is, it is designed with 
adaptation in mind, which may yield more flexibility at the time of treatment adapta-
tion. In the standard paradigm, ARO assumes that the revealed information is exact; 
we employ the ARO methodology developed in De Ruiter et al. (2017) for the case 
when revealed information is not exact, but provides only an estimate of the true 
parameters.

1.1  Contributions

We consider a stylized two-stage ARO model to optimally adapt the treatment-
length based on inexact biomarker information acquired mid-treatment. Although 
the stylized model makes several simplifying assumptions to aid the analysis, we 
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believe it captures several important characteristics of realistic adaptive treatment 
planning, and it enables a precise analysis of the influence of uncertainty in bio-
marker information. Our main contributions are:

– We develop mathematical tools based on ARO that enable us to (i) optimally 
adapt the dose per fraction and treatment length after acquiring mid-treatment 
biomarker information, (ii) analyze the influence of biomarker information 
uncertainty.

– We present explicit optimal decision rules for a difficult (nonconvex, mixed-inte-
ger) yet practically relevant ARO problem.

– We show that there are multiple optimal solutions for the worst-case scenario, 
and that these differ in performance in non-worst-case scenarios. To handle this, 
we introduce the concept of Pareto Adjustable Robustly Optimal ( PARO ) solu-
tions, a generalization of Pareto Robustly Optimal ( PRO ) solutions (Iancu and 
Trichakis 2014) to two-stage robust optimization problems. In case the acquired 
biomarker information is exact, PARO solutions are obtained.

– We perform a computational study using real lung cancer patient data to deter-
mine the optimal timing of acquiring biomarker information in case biomarker 
quality improves over time. Later biomarker acquisition also limits adaptation 
possibilities, and the optimal balance depends on the improvement rate.

1.2  Literature review

There is a large body of adaptive treatment planning research in RT, the majority of 
which focuses not on biologically-based uncertainties but on geometric uncertainties 
and anatomical changes. Chan and Mišić (2013), Mar and Chan (2015), Böck et al. 
(2017), Böck et  al. (2019) and Lim et  al. (2020) present adaptive treatment plan-
ning approaches that start with delivery of the original treatment plan, often derived 
using RO methods. At given adaptation moments, the ‘state’ of the patient (e.g., 
anatomical changes, tumor shrinkage, breathing motion pattern) is observed, and the 
treatment is re-optimized for the remainder of the treatment plan. In RO terminol-
ogy, these approaches are known as folding horizon (FH) methods. They disregard 
adaptation possibilities initially, and re-optimize the updated model once mid-treat-
ment information is acquired.

Several treatment plan adaptation approaches have been proposed for adapting to 
biological information, differing in considered biomarker information, adapted treat-
ment plan decisions and used methodology. Kim et al. (2012) and Ghate (2014) pro-
pose a theoretical stochastic control framework to optimally adapt the dose distribu-
tion over a fixed number of fractions, based on hypothetically-observed tumor states. 
Saberian et al. (2016b) concretize this theoretical framework, using simulated hypoxia 
(insufficient oxygen supply at cellular level) status as biomarker. Long (2015) consider 
a model with a constraint on the probability of radiation-induced lung toxicity, which 
depends on an a priori unknown model parameter. The problem is formulated as a two-
stage model (before and after parameter observation), and the optimal dose distribution 
is determined for each stage. They consider a finite scenario set for the parameter, and 
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the lung toxicity constraint either has to hold in expectation or has to hold for all con-
sidered scenarios.

Nohadani and Roy (2017) consider a two-stage model to adapt to hypoxia informa-
tion, where the uncertainty is time-dependent. As the hypoxia information ages the 
uncertainty grows, until it resets at the observation moment. In each stage the dose dis-
tribution is optimized; for the second stage a finite adaptability approach is taken. It is 
shown that total information degradation is minimized if the observation moment is set 
mid-treatment. Dabadghao and Roy (2020) consider a similar time-dependent uncer-
tainty set, for adapting to hypoxia information in a multi-stage setting. In each stage the 
mean tumor dose per fraction is optimized using an FH approach. It is shown that total 
information degradation is minimized if the observation moments are set equidistant. 
They introduce a cost of observation (additional dose due to mid-treatment positron 
emission tomography (PET) scans), and determine the optimal number of observations. 
Both papers assume that the hypoxia state varies over time, and is exactly observed at 
the observation moment(s). In contrast, we assume that uncertain parameters are con-
stant in time, and consider inexact biomarker information. Moreover, they solely adapt 
the dose, whereas we also adapt the total number of treatment fractions itself.

Adapting the treatment length (i.e., the fractionation schedule) based on observed 
radiation response has been studied before in the literature. Saka et al. (2014) consider 
a two-stage model where after a fixed number of treatment fractions hypoxia informa-
tion is acquired. Based on this information both the remaining number of treatment 
fractions and the dose distribution are re-optimized, in order to maximize average 
hypoxia-corrected tumor dose. They focus on maintaining hypoxia-corrected fraction 
size requirements. A similar approach is taken by Ajdari et al. (2018), where after each 
treatment fraction the tumor cell density in each voxel is observed, and adaptations 
are made after each treatment fractions instead of only once. The objective is to mini-
mize the total number of tumor cells remaining (TNTCR) at the end of the treatment 
course. Both approaches can be considered FH methods. In contrast to our approach, it 
is assumed that any information acquired mid-treatment is exact.

Iancu et  al. (2021) propose a conceptual robust monitoring and stopping model. 
They consider a system with a state x(t), and after each observation moment the uncer-
tainty in the system state x(t) grows as t increases. At a new observation moment, the 
uncertainty reduces to zero, i.e., an exact observation is made. They consider multi-
ple observation moments, and the goal is to time these optimally. At each observation 
moment, the (state-dependent) direct stopping reward is compared to the worst-case 
continuation reward, and the according action is taken. Their model does not allow for 
controls that influence state variables, i.e., applying their model to RT optimization 
problems would not allow to adjust the dose distribution or the mean dose per fraction.

1.3  Notation and organization

All variables and constants are 1-dimensional (belong to ℝ or ℕ ) unless indicated 
otherwise. In functions, a semicolon (;) is used to separate variables and constant 
arguments from uncertain parameters. Optimal solutions to optimization problems 
are indicated with an asterisk ( ∗ ). Properties of optimal solutions to optimization 
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problems have calligraphic font (e.g., ARO ) to distinguish them from methods with 
the same or similar abbreviations.

The remainder of this paper is organized as follows. Section  2 introduces the 
used biological models, background information on biomarkers and states modeling 
choices. Section 3 introduces the adjustable treatment-length optimization problem 
under the assumption of exact biomarker information and solves this using ARO 
techniques. Section 4 generalizes this to inexact biomarker information. Section 5 
presents and discusses results of numerical experiments on a lung cancer data set. 
Finally, Sect.  6 concludes the paper.

2  Adaptive fractionation

2.1  The fractionation problem

Spatial optimization exploits the fact that, by mounting the beam head on a gantry, 
the tumor can be targeted from various angles. It aims to find the combination of 
beam angles and weights that gives the best trade-off between tumor dose conform-
ity and healthy tissue sparing. There is a large body of literature on this topic, see 
for example Shepard et al. (1999) and Ehrgott et al. (2008) for reviews. The result-
ing dose distribution gives the dose (in Gray (Gy)) to each voxel (3-dimensional 
subvolume) of the tumor and OARs. Figure 1 gives an example of a slice of a dose 
distribution. The beam angles and weights are chosen such that the target (contoured 
in black) receives a high dose and a nearby organ-at-risk (OAR, contoured in red) 
receives a low dose.

Typically, this dose is not delivered in a single treatment session, but spread out 
over multiple treatment fractions (fx). The underlying idea is that compared to tumor 
cells, healthy tissues often have better repair capabilities between fractions (Fowler 
1989; Withers 1985). On the other hand, a treatment spread out over a large num-
ber of treatment fractions may not deliver sufficient damage to the target volume, 
and increases the risk of tumor proliferation. The effect of fractionation differs per 
healthy tissue type and per tumor site, see, e.g., Hall and Giaccia (2012) for further 
details. Determining the optimal number of treatment fractions is known as the frac-
tionation problem. Treatments with a higher number of fractions and a lower dose 
per fraction than the conventional regimen are known as hyperfractionated treat-
ments. Treatments with a lower number of fractions and a higher dose per fraction 
than conventional are known as hypofractionated treatments.

In each treatment fraction, a scaled version of the dose distribution is adminis-
tered. Scaling the dose distribution influences the absolute dose delivered to each 
voxel, but the relative dose remains unchanged. That is, for each voxel we can define 
a dose sparing factor: the dose of this voxel as a fraction of the mean target dose. In 
Fig. 1, the target volume receives a uniform dose of 45 Gy over the entire treatment 
course. The indicated OAR voxel receives 18 Gy and thus has a dose sparing factor 
of 0.4. Consequently, if in an individual treatment fraction we administer a mean 
target dose of 3 Gy, the OAR voxel receives 1.2 Gy. Thus, with a fixed dose distri-
bution, the sole decision in treatment fraction t is dt , the mean tumor dose in that 
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fraction. The corresponding dose to any voxel i with dose sparing factor si is sidt . 
Altogether, with a fixed dose distribution fractionation problems can be described 
using a low number of decision variables. Typically, the target dose is homogene-
ous, so for simplicity we assume that each target voxel receives dose dt (i.e., has 
dose sparing factor 1). Nevertheless, we emphasize that this modeling approach 
allows for both heterogeneous dose distributions in target and OAR volumes.

The Biologically Effective Dose (BED) model (Fowler 1989, 2010) states that 
the biological effect of an N-fraction dose sequence d = (d1,… , dN) delivered to a 
tumor volume is given by

which is a model governed by a single parameter, the �∕� ratio, which signifies the 
fractionation sensitivity of the tumor tissue. The BED to the OAR can be described 
by

where � is the generalized dose-sparing factor. For the maximum BED in the OAR 
volume, � is the maximum of the individual dose sparing factors si . In order to 
describe a mean BED constraint or dose-volume BED constraint other choices for � 
can be used (Saberian et al. 2016a; Perkó et al. 2018).

(1)BEDT =

N∑
t=1

dt +
1

�∕�

N∑
t=1

d2
t
,

(2)BEDOAR =

N∑
t=1

�dt +
1

�∕�

N∑
t=1

�2d2
t
,

Fig. 1  Slice of a 3D dose distribution (illustration). Target is contoured in black, OAR is contoured in 
red. The target volume has a mean dose of 45 Gy. The indicated OAR voxel with dose 18 Gy has a dose 
sparing factor of 0.4.
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For notational convenience, let � (for tumor) and � (for risk) denote the inverse 
�∕� ratio of the tumor and OAR volume, respectively. Mizuta et al. (2012) consider 
the problem of minimizing OAR BED subject to a lower bound BEDpres

T
 on tumor 

BED. The number of fractions N is restricted to be at most Nmax . The problem reads 

Let (d∗,N∗) denote the optimal solution to (3). A simple analysis in Mizuta et al. 
(2012) reveals the following important result:

In both cases the optimal dose d∗ is such that (3b) is active. The same result holds if 
we maximize tumor BED subject to an upper bound on OAR BED (Bortfeld et al. 
2015), and a similar result has been derived for the case with multiple OARs (Sabe-
rian et al. 2016a). There is a large body of research that optimizes the number of 
treatment fractions for different model formulations (see Saberian et al. (2017) and 
references therein).

In the current paper, we restrict to one dose-limiting OAR. For many tumor sites, 
there is a single OAR that restricts the doses that can be delivered, and other OARs 
are much less restrictive. For example, for lung cancer the mean lung dose is an 
important indicator of toxicity. On the other hand, for head and neck cancer many 
OARs must be accounted for. We emphasize that other OARs are not completely 
disregarded. They are taken into account implicitly, because the original dose dis-
tribution was planned with all relevant OARs taken into consideration. Moreover, 
by restricting the minimum and maximum (mean target) dose per fraction, extreme 
deviations from the standard fractionation schedule are avoided, which is also 
designed whilst taking multiple OARs into account.

2.2  Adaptive fractionation using biomarkers

Most fractionation optimization methods assume the tumor and OAR fractionation 
sensitivity parameters � and � are known exactly. There is much research on the �∕� 
ratios for different tumor sites (Van Leeuwen et al. 2018) and OAR sites (Kehwar 
2005), but they remain subject to considerable uncertainties. We assume box uncer-
tainty of the form:

(3a)min
d,N

�

N∑
t=1

dt + ��2

N∑
t=1

d2
t

(3b)s.t.

N∑
t=1

dt + �

N∑
t=1

d2
t
≥ BED

pres

T

(3c)d1,… , dN ≥ 0, N ∈ {1,… ,Nmax}.

(4)N∗ =

{
1 if � ≥ ��

Nmax and d∗
1
= … = d∗

Nmax otherwise.
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with 0 < 𝜌L < 𝜌U and 0 < 𝜏L < 𝜏U . It is assumed that there is a nominal scenario, 
e.g., parameter values 𝜏 and �̄� derived from literature. There are two reasons for 
assuming a box uncertainty set. First, to the best of our knowledge there is little 
evidence for any correlation between the �∕� ratios of target volumes and normal 
tissues. Second, box uncertainty leads to simpler models, which allow for a more 
detailed analysis of optimal fractionation decisions.

Ajdari and Ghate (2016) also consider a box uncertainty set, and determine a 
robustly optimal fractionation scheme, i.e., one that is that is feasible for all possible 
realizations and that is optimal for the worst-case realization. If biomarker informa-
tion acquired during treatment provides more accurate information on fractionation 
sensitivity than what was available at the start of the treatment, such a static RO 
approach may be overly conservative.

Somaiah et al. (2015) give an overview of various mechanisms for determining 
fractionation sensitivity. Using blood samples, one can quantify the involvement of 
non-homologous end-joining (NHEJ) and homologous recombination (HR) in cells. 
For details on how to measure these, we refer to Bindra et  al. (2013) and Barker 
and Powell (2010), respectively. Change in the expression of epidermal growth fac-
tor receptor (EGFR) genes can also give some hints regarding the fractionation sen-
sitivity (Somaiah et  al. 2015), which can also be measured mid-treatment. Lastly, 
Somaiah et al. (2015) mention that there is a close link between proliferation index 
and hypoxia, both of which can be measured during RT using different PET trac-
ers. We note that there is evidence that some of these mechanisms could be subject 
to change during RT, depending on, amongst others, the delivered dose, hypoxia, 
and immune system interaction. However, as a first study to adapting to inexact bio-
marker information, we make the assumption that fractionation sensitivity is static 
throughout treatment, i.e., there is a static ‘true’ (�, �) . In Section 3 we assume to 
observe (measure) the true (�, �) exactly, and in Sect. 4 we assume to observe only 
an estimation/approximation (�̂�, 𝜏).

The quality of the observed parameter estimates depends amongst others on 
the suitability of the biomarker itself, the measurement accuracy and when the 
biomarker measurement is taken during the treatment course. The relationship 
between the data quality and the moment of biomarker observation is complex, 
and it is impossible to exactly quantify this. For some biomarkers the data quality 
may greatly improve in the first few fractions, with a diminishing improvement in 
later fractions1. For others (e.g., functional imaging such as PET and magnetic reso-
nance imaging (MRI)), the data quality is poor at the first couple of fractions and 

(5)Z =
{
(�, �) ∶ �L ≤ � ≤ �U , �L ≤ � ≤ �U

}
,

1 This is especially true in the case of certain blood biomarkers of innate immune status (such as inter-
leukin (IL)-6 or tumor necrosis factor (TNF)-� ) which are also the markers of inflammation. In these bio-
markers, as the biomarker acquisition is shifted towards later in the RT course, the information regard-
ing the immune status gets mixed with the RT-induced inflammation and loses its specificity to immune 
system condition.
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only increases substantially in later fractions2. In practice, some biomarkers, e.g., 
radiographic information, may also exhibit a decreasing data quality for very late 
observation moments (due to, for instance, interference from acute inflammation 
in the lung). Such behavior is rare, and as such not considered here. We impose a 
minimum dose per fraction, and make the assumption that biomarker data quality 
increases in the number of treatment fractions. In this way, the change in biomarker 
quality is influenced by both the dose delivered and the time passed. We will investi-
gate several functional forms for this relationship in the numerical experiments.

2.3  Modeling choices

In order to establish a meaningful model for the adjustable robust optimization 
approach, we restrict the dose sequence d = (d1,… , dNmax ) in several ways. In addi-
tion to a maximum number of fractions, we also set a minimum Nmin . Furthermore, 
we assume there is a single moment N1 where we can adapt the treatment. Under the 
assumption that the uncertain parameters remain constant over time, more than one 
observation moment is not useful if the parameter is observed exactly. With inexact 
observations, there can be value in multiple observations, but given the patient bur-
den3 and financial cost this is not considered here.

The dose per fraction in the first N1 fractions is assumed to be the same, denote 
this by d1 . Variable N2 denotes the number of fractions after adaptation; also these 
fractions have equal dose, denoted by d2 . In current clinical practice, uniform frac-
tionated treatments are the standard. By restricting to only two different dose levels, 
extreme deviations from standard protocols are prevented. The above implies

with Nmin
2

= max{1,Nmin − N1} and Nmax
2

= Nmax − N1 . We additionally set the con-
straint that d1, d2 ≥ dmin , for some predetermined value dmin . Aside of preventing an 
unrealistically low dose per fraction, the minimum dose serves a modeling purpose 
for stage 1. As noted in Sect. 2.2, the biomarker quality can depend on both dose and 
time. The current model implicitly makes the assumption that an early response can 
only be observed via biomarkers once N1 fractions of dose at least dmin have been 
delivered. Thus, in our models, this can be interpreted as a threshold. In the numeri-
cal experiments we investigate several temporal relationships between N1 and bio-
marker quality. Lastly, we set a maximum dose per fraction dmax

1
 in stage 1, to avoid 

delivering dose levels in stage 1 that severely restrict adaptation possibilities in stage 
2. We will later impose some restrictions on the allowed combinations of dmin , dmax

1
 

and Nmax
2

.
Figure 2 provides a schematic overview of the situation.

(6)N2 ∈
{
Nmin
2

,… ,Nmax
2

}
,

2 This is because the effect of RT on tissue is cumulative and is morphologically manifested only after a 
certain amount of dose (which depends on the underlying tissue threshold) is delivered.
3 Next to additional logistical hurdles for patients, imaging biomarkers such as PET/computed tomogra-
phy (CT) scans also deliver small amounts of dose to the patient.
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We wish to maximize the tumor BED, subject to the constraint that the BED to the 
OAR is below the generalized tolerance level BEDtol , given by

i.e., the OAR is known to tolerate a total dose of D Gy if delivered in T frac-
tions under dose shape factor � . The dose shape factor is a parameter character-
izing the spatial heterogeneity of a dose distribution, for more details see Saberian 
et al. (2016a) and Perkó et al. (2018). Note that BEDtol(�) is a function of uncertain 
parameter � , the inverse �∕� ratio of the OAR.

We emphasize that the model resulting from our modeling choices and assump-
tions does not directly represent a realistic decision-making problem in radiation 
therapy treatment planning. Nevertheless, it captures several important aspects of 
fractionation optimization. Moreover, using ARO on this stylized model, we gain 
insight into optimal decision rules and the role of uncertainty in adaptive fractiona-
tion optimization.

3  ARO: biomarkers provide exact information

We present an adjustable robust optimization approach that optimally adjusts the 
remainder of the treatment once biomarker information has provided the true value 
of parameters � and � . This serves as a stepping stone to the inexact data model.

3.1  Problem formulation

The Exact Data Problem EDP reads: 

(7)BEDtol(�) = �D

(
1 +

�D

T
�

)
,

(8a)

max
d1,d2(�,�),N2(�,�)

min
(�,�)∈Z

N1d1 + N2(�, �)d2(�, �) + �(N1d
2
1
+ N2(�, �)d2(�, �)

2)

(8b)
s.t. �(N1d1 + N2(�, �)d2(�, �)) + ��2(N1d

2
1
+ N2(�, �)d2(�, �)

2)

≤ BEDtol(�), ∀(�, �) ∈ Z

(8c)N2(�, �) ∈ {Nmin
2

,… ,Nmax
2

}, ∀(�, �) ∈ Z

Fig. 2  Schematic overview of the considered model. There are 3 variables: d1 , d2 and N2 . First, we 
deliver N1 fractions of dose d1 per fraction. After this, we observe (�, �) or (�̂�, 𝜏) . Subsequently, we 
deliver N2 fractions of dose d2 per fraction
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 The value for the stage-1 dose d1 has to be decided before the value of (�, �) is 
revealed; in ARO this is also commonly referred to as a here-and-now variable or 
decision. The values for the stage-2 dose d2 and stage-2 number of fractions N2 need 
to be decided only after (�, �) is revealed, as they may depend on the values of these 
parameters. Hence, they are written as functions d2(�, �) and N2(�, �) of the uncer-
tain parameters (�, �) . In ARO such variables are also called wait-and-see variables 
or decisions. In this paper, we will adhere to the terms stage 1 and stage 2, however.

Before we solve (8), we need some definitions and assumptions. The remaining 
BED tolerance level of the OAR, if N′ fractions with dose d′ have been adminis-
tered, is given by

Subsequently, define the function

The value of g can be interpreted as the maximum dose that can be delivered in 
N′′ fractions if already N′ fractions of dose d′ are (scheduled to be) delivered. It is 
obtained by solving the equality version of (8b) for d1 or d2 . Functions of this form 
will be used frequently throughout the remainder of this paper.

The following assumption on the relation between dmin , dmax
1

 and the bounds 
on N2 makes sure that for a given optimal number of fractions, it is feasible to 
deliver that number of fractions with minimum dose.

Assumption 1 It holds that

The particular form of the upper bound on dmax
1

 will become clear later. 
Numerical experiments indicate that results are not very sensitive to the choices 
of dmin and dmax

1
.

We continue by formally defining several properties of solutions. Let X(�, �) 
denote the feasible region defined by constraints (8b)–(8e) for fixed (�, �).

Definition 1 (Adjustable robustly feasible)  A tuple (d1, d2(⋅),N2(⋅)) is adjustable 
robustly feasible ( ARF  ) to (8) if (d1, d2(�, �),N2(�, �)) ∈ X(�, �) for all (�, �) ∈ Z.

(8d)d2(�, �) ≥ dmin, ∀(�, �) ∈ Z

(8e)dmin
≤ d1 ≤ dmax

1
.

(9)B(d�,N�;�) = BEDtol(�) − �d�N� − ��2(d�)2N�.

(10)g(d�,N�,N��;�) =
−1 +

√
1 +

4�

N��
B(d�,N�;�)

2��
.

(11)
dmin

≤ dmax
1

≤ min
{
g(dmin,Nmin

2
,N1;�L), g(d

min,Nmax
2

,N1;
�L

�
), g(dmin,Nmax

2
,N1;�U)

}
.
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Definition 2 (Adjustable robustly optimal) A tuple (d1, d2(⋅),N2(⋅)) is adjustable 
robustly optimal ( ARO ) to (8) if it is ARF  and there does not exist an ARF  tuple 
(d̄1, d̄2(⋅), N̄2) such that

We also define the ARO property for the stage-1 decisions d1 individually.

Definition 3 (Adjustable robustly optimal d1 ) A stage-1 decision d1 is ARO to (8) 
if there exist decision rules d2(⋅) and N2(⋅) such that (d1, d2(⋅),N2(⋅)) is ARO to (8).

Lastly, we define optimality of a decision rule.

Definition 4 (Optimal decision rule)  For a given d1 , a decision rule pair (d2(⋅),N2(⋅)) 
is optimal to (8) if (d1, d2(⋅),N2(⋅)) is ARF  and for any (�, �) ∈ Z it holds that

for every (d̄2(⋅), N̄2(⋅)) such that (d1, d̄2(⋅), N̄2(⋅)) is ARF .

The first observation we make in (8) is that if 𝜖 > 0 , any fixed solution 
(d1, d2,N2) feasible for scenario (�, �) ∈ Z is also feasible for (�, � + �) with a 
higher objective value. Therefore, in any worst-case realization it will hold that 
� = �L (see (5)). This observation has consequences for what uncertainty sets Z 
need to be considered. Due to the result (4), one can in general distinguish three 
cases for uncertainty set Z and parameter � : 

Case (1)  ��U ≤ �L : According to (4), for any realization (with � = �L ) it is opti-
mal to deliver the minimum number of fractions in stage 2.
Case (2)  ��L ≥ �L : According to (4), for any realization (with � = �L ) it is opti-
mal to deliver the maximum number of fractions in stage 2.
Case (3)   𝜎𝜌L < 𝜏L < 𝜎𝜌U : In the scenario (�L, �L) , it is optimal to deliver the 
maximum number of fractions in stage 2 according to (4). In the scenario (�U , �L) , 
it is optimal to deliver the minimum number of fractions in stage 2 according to 
(4).

In Cases 1 and 2, (8) is easily solved by plugging in the (worst-case) optimal 
value for N2 , and solving the resulting 2-variable optimization problem. There-
fore, only Case 3 is of interest and in the remainder of this paper we make the 
following assumption.

Assumption 2 It holds that 𝜎𝜌L < 𝜏L < 𝜎𝜌U.

(12)
min

(𝜌,𝜏)∈Z
N1d1 + N2(𝜌, 𝜏)d2(𝜌, 𝜏) + 𝜏(N1d

2
1
+ N2(𝜌, 𝜏)d2(𝜌, 𝜏)

2)

< min
(𝜌,𝜏)∈Z

N1d̄1 + N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏) + 𝜏(N1d̄1
2
+ N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏)

2).

(13)
N1d1 + N2(𝜌, 𝜏)d2(𝜌, 𝜏) + 𝜏(N1d

2
1
+ N2(𝜌, 𝜏)d2(𝜌, 𝜏)

2)

≥ N1d1 + N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏) + 𝜏(N1d
2
1
+ N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏)

2),



1961

1 3

Adjustable robust treatment‑length optimization in radiation…

In our numerical experiments, we use a lung cancer data set. Recent evidence 
suggests that for lung cancer Assumption 2 can indeed hold, i.e., the optimal number 
of treatment fractions is not always known prior to treatment. Further details are 
provided in Sect. 5.2. For other tumor sites, such as liver cancer, the tumor �∕� is 
generally assumed to be 10 or higher, whereas the �∕� of normal liver tissue is typi-
cally assumed to be 3 or 4. Thus, for such tumor sites Assumption 2 generally does 
not hold, and hyperfractionation is optimal.

3.2  Optimal decision rules and worst‑case solution

Problem (8) is a 2-stage non-convex mixed-integer ARO problem, which are gener-
ally hard to solve. Nevertheless, due to the small number of variables the problem 
can be solved to optimality. In order to solve (8), we take two steps: 

Step (1)  Determine optimal decision rules d2(⋅) and N2(⋅) for fixed d1.
Step (2) Plug in optimal decision rules and solve for d1.

In what follows, we give a detailed explanation of both steps. Let 
(d∗

1
, d∗

2
(�, �),N∗

2
(�, �)) denote an ARO solution to (8).

Step 1: Determine optimal decision rules d2(⋅) and N2(⋅) for fixed d1
Fix stage-1 variable d1 . Similar to the result (4), we will show that it is optimal to 

deliver either the minimum or the maximum number of fractions in stage-2. Moreo-
ver, (8b) is the only OAR dose-limiting constraint, so it will hold with equality if 
this does not violate variable bounds (8d) and (8e). We will show that the latter is 
not the case. The theorem below summarizes the result.

Theorem 1 Let d1 be the stage-1 decision of (8). The decision rules

and

are optimal to (8) for the given d1 . These provide the unique optimal decisions unless 
� = ��.

Proof See Supplementary Material B.1.   ◻

Clearly, these decision rules are nonlinear, and in fact split the uncertainty region 
in two parts: one where it is optimal to deliver the minimum number of fractions 
Nmin
2

 in stage 2, and one where it is optimal to deliver the maximum number of frac-
tions Nmax

2
 in stage 2. This suggests splitting the uncertainty set as follows: 

(14)N∗
2
(�, �) =

{
Nmin
2

if � ≥ ��

Nmax
2

otherwise,

(15)d∗
2
(d1;�, �) =

{
g(d1,N1,N

min
2

;�) if � ≥ ��

g(d1,N1,N
max
2

;�) otherwise
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 An illustration is provided in Fig. 3.

Step 2: Plug in optimal decision rules and solve for  d1
In order to find an ARO d1 , we introduce the following objective function for 

given (�, �):

where, for given � , the value g(0, 0,N1;�) is the maximum dose that can be delivered 
in stage 1 due to the nonnegativity restriction on the stage-2 dose. From Assump-
tion 1 it follows that g(0, 0,N1;�) ≥ dmax

1
 for all (�, �) ∈ Z , so f is finite for all fea-

sible d1 . According to Lemma 1 in Supplementary Material C, function f is either 
convex, concave or constant in d1.

Plugging in (14) and (15) and using definition (17) allows us to rewrite (8) to a 
problem of only variable d1 : 

 As noted in Sect. 3.1, in any worst-case realization it will hold that � = �L , so it is 
sufficient to consider only those observations with � = �L.

In order to reformulate (18), we make use of the properties of g and f in 
Lemma  3 in Supplementary Material C. In particular, Lemma  3b states that 

(16a)Zmin = Z ∩ {� ≥ ��}

(16b)Zmax = Z ∩ {𝜏 < 𝜎𝜌}.

(17)f (d1,N2;�, �) =

⎧
⎪⎨⎪⎩

N1d1 + N2g(d1,N1,N2;�)

+�
�
N1d

2
1
+ N2g(d1,N1,N2;�)

2
� if d1 ∈ [0, g(0, 0,N1;�)]

−∞ otherwise,

(18a)max
d1

min
(�,�)∈Z

f (d1,N
∗
2
(�, �);�, �)

(18b)s.t. dmin
≤ d1 ≤ dmax

1
.

Fig. 3  Split of uncertainty set 
Z according to (16). The circles 
indicate the locations of the 
candidate worst-case scenarios 
for (18)
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function f is either increasing or decreasing in � for fixed d1 . Hence, if we move 
(18a) to a constraint and split according to (16), for both Zmin and Zmax it is suf-
ficient to consider the constraint for the highest and lowest value of � in the 
uncertainty set. With � = �L , this results in the scenarios (�L, �L) and ( �L

�
, �L) for 

Zmin and ( �L
�
, �L) and (�U , �L) for Zmax.

Therefore, the three candidate worst-case scenarios are (�L, �L) , (�U , �L) and 
(
�L

�
, �L) ; their locations are indicated in Fig. 3. By Lemma 1, the objective value 

in the third scenario is equal to

This is the maximum target BED that can be attained if radiation sensitivity param-
eters are exactly such that fractionation has no influence on the optimal objective 
value. It is equal to the maximum tolerable OAR BED for these radiation sensitivity 
parameters, divided by the generalized OAR dose sparing factor �.

Putting everything together, we conclude that if (d∗
1
, d∗

2
(⋅),N∗

2
(⋅)) is ARO to 

the EDP (8) then there exists a q∗ ∈ ℝ+ such that (d∗
1
, q∗) is an optimal solution 

to 

 Conversely, if (d∗
1
, q∗) is an optimal solution to (20) and N∗

2
(⋅) and d∗

2
(⋅) are given 

by (14) and (15), respectively, then (d∗
1
, d∗

2
(⋅),N∗

2
(⋅)) is ARO to (8). Hence, (20) and 

EDP (8) are equivalent.
According to Lemma 1, the RHS of (20b) and (20c) is convex and concave in 

d1 , respectively. Hence, (20) asks to find the value of d1 that maximizes the mini-
mum of a univariate convex (20b), concave (20c) and constant (20d) function on 
a closed interval (20e). Lemma 2 in Supplementary Material C provides infor-
mation on the intersection points of the functions (20b)-(20d). Consequently, the 
optimal solution(s) to (20) is/are easily found.

Figure 4 illustrates a possible instance of (20), displaying constraints (20b)-
(20d). In this case, the set of optimal solutions is the union of the two intervals 
for d1 where constraint (20d) is active. This is indicated in red. Dose constraints 
(20e) may cut off part of these intervals. If due to constraint (20e) both these 
intervals are infeasible, the optimum is at one of the boundaries for d1.

(19)K =
1

�
B
(
0, 0,

�L

�

)
.

(20a)max
d1,q

q

(20b)s.t. q ≤ f (d1,N
min
2

;�L, �L)

(20c)q ≤ f (d1,N
max
2

;�U , �L)

(20d)q ≤ K

(20e)dmin
≤ d1 ≤ dmax

1
.
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3.3  Pareto adjustable robustly optimal solutions

Figure 4 illustrates that it is possible that there are multiple optimal solutions to (20). 
These solutions are ARO stage-1 solutions to the EDP (8). In general, in case there 
are multiple ARO solutions these may perform vastly different if a non-worst-case 
scenario realizes (De  Ruiter et  al. 2016). Iancu and Trichakis (2014) study static 
robust optimization problems with multiple robustly optimal solutions, and intro-
duce the concept of Pareto robustly optimal ( PRO ) solutions. A robustly optimal 
solution is called PRO if there is no other robustly feasible solution that has equal 
or better objective value for all scenarios in the uncertainty set, while being strictly 
better for at least one scenario. Non-PRO solutions are dominated by at least one 
PRO solution and are therefore not desired4. The concept has previously been 
applied to RT planning for breast cancer by Mahmoudzadeh (2015).

Iancu and Trichakis (2014) study PRO solutions solely for static RO problems; 
we generalize the concept to 2-stage adjustable robust optimization problems.

Definition 5 (Pareto adjustable robustly optimal)  An ARO tuple (d1, d2(⋅),N2(⋅)) 
is Pareto adjustable robustly optimal ( PARO ) to (8) if there is no tuple 
(d̄1, d̄2(⋅), N̄2(⋅)) that is ARO to (8) and satisfies 

Fig. 4  Schematic illustration of (20). The solid and dashed curves represent constraints (20b) and (20c), 
respectively, and the dotted line represent constraint (20d). The optimal intervals are indicated in red

4 The concept of Pareto robust optimality closely resembles the concept of Pareto efficiency in multi-cri-
teria optimization (MCO). In MCO, Pareto efficient solutions can only be improved in one criteria at the 
cost of a deterioration in another criteria. Only Pareto efficient solutions are of interest, and the overall 
goal in MCO is to compute this set of solutions (known as the Pareto surface).
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We also define the concept PARO for the stage-1 decision d1 individually.

Definition 6 (Pareto adjustable robustly optimal d1 ) A stage-1 decision d1 is PARO 
to (8) if there exist decision rules N2(⋅) and d2(⋅) such that (d1, d2(⋅),N2(⋅)) is PARO 
to (8).

If there are multiple ARO solutions, we wish to pick one that is PARO . In 
general, finding PARO solutions is hard, because it requires comparing the per-
formance of both stage-1 decisions and stage-2 decision rules on multiple scenar-
ios simultaneously. However, for the current problem (14) and (15) are optimal 
decision rules. Plugging these in conditions (21) reduces the problem of finding 
a PARO solution to solely comparing the performance of ARO stage-1 decisions 
d1 in non-worst-case scenarios.

In Iancu and Trichakis (2014) it is shown for linear optimization that, if we 
optimize over the robustly optimal solutions for a second criterion (scenario) that 
is in the relative interior of the uncertainty set, the resulting solution(s) are PRO . 
In a similar fashion PARO solutions to the current problem can be found. Let 
XARO denote the set of ARO stage-1 solutions to (8). It turns out that consec-
utively optimizing over an auxiliary scenario where hyperfractionation is opti-
mal and an auxiliary scenario where hypofractionation is optimal yields a set of 
PARO solutions. Let (�aux-min, �aux-min) ∈ int(Zmin) , where int(⋅) is the interior 
operator. Define the auxiliary optimization problem for the hypofractionation 
scenario:

Denote the set of optimal solutions to (22) by Xaux-min . Similarly, let 
(�aux-max, �aux-max) ∈ int(Zmax) . Define the auxiliary optimization problem for the 
hyperfractionation scenario:

Note that it uses Xaux-min as input, i.e., we solve the auxiliary problems consecu-
tively. Denote the set of optimal solutions to (23) by XPARO.

Theorem 2 All solutions in XPARO are PARO to (8).

Proof See Supplementary Material B.2.   ◻

(21a)
N1d1 + N2(𝜌, 𝜏)d2(𝜌, 𝜏) + 𝜏(N1d

2
1
+ N2(𝜌, 𝜏)d2(𝜌, 𝜏)

2)

≤ N1d̄1 + N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏) + 𝜏(N1d̄1
2
+ N̄2(𝜌, 𝜏)d̄2(𝜌, 𝜏)

2) ∀(𝜌, 𝜏) ∈ Z

(21b)

N1d1 + N2(�̄�, 𝜏)d2(�̄�, 𝜏) + 𝜏(N1d
2
1
+ N2(�̄�, 𝜏)d2(�̄�, 𝜏)

2)

< N1d̄1 + N̄2(�̄�, 𝜏)d̄2(�̄�, 𝜏) + 𝜏(N1d̄1
2
+ N̄2(�̄�, 𝜏)d̄2(�̄�, 𝜏)

2) for some (�̄�, 𝜏) ∈ Z.

(22)max
d1∈X

ARO
f
(
d1,N

min
2

;�aux-min, �aux-min
)
.

(23)max
d1∈X

aux-min
f
(
d1,N

max
2

;�aux-max, �aux-max
)
.
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Solving (22) or (23) entails maximizing a strictly convex or strictly concave func-
tion over a feasible set consisting of a small number of intervals or points. Hence, these 
auxiliary problems are easily solved. Note that the second auxiliary problem is only 
relevant if the first auxiliary problem has multiple optimal solutions. The two-step 
approach is necessary; numerical results show that optimizing over only one auxiliary 
scenario may indeed result in non-PARO solutions.

Switching their order, and optimizing (22) over the set Xaux-max may lead to differ-
ent solutions, and these are also PARO . Thus, in general XPARO does not contain all 
PARO solutions. Thus, the used auxiliary scenarios, and the order in which they are 
optimized for, determine which PARO solution is obtained. By optimizing for likely 
or relevant scenarios auxiliary scenarios, a PARO solution is obtained with the best 
possible performance in those scenarios.

4  ARO: biomarkers provide inexact information

In this section we present an adjustable robust optimization approach to solve a more 
realistic version of the adaptive treatment-length problem. Because in practice it is 
impossible to exactly determine the �∕� parameters from biomarker data, any values 
for the �∕� parameters obtained during treatment are inexact. This section presents a 
model that accounts for uncertainty in biomarker information.

4.1  Problem formulation

The setup for the ARO problem with inexact data is based on De Ruiter et al. (2017). 
After N1 fractions we obtain an estimate (�̂�, 𝜏) for (�, �) , the inverse �∕� parameters 
for the OAR and the tumor. It is still assumed that Assumption 2 holds for uncertainty 
set Z. Furthermore, we assume that (𝜌, 𝜏), (�̂�, 𝜏) ∈ Z (as defined in (5)), i.e., both the 
observation and the true realization are in Z. For the accuracy of the observation, we 
assume that (�̂�, 𝜏) − (𝜌, 𝜏) ∈ Ẑ , with

In practice, parameters � and � would be estimated using different biomarkers, with 
potentially different accuracies. Parameters r� and r� define the accuracy of the 
observations �̂� and 𝜏 . Set Ẑ is the uncertainty set around the inexact observation. 
This can also be written as (𝜌, 𝜏) ∈ {(�̂�, 𝜏)} + Ẑ , which is the Minkowski sum of a 
singleton and a set. Of this new set, we will only use the part that is contained in the 
original uncertainty set Z, i.e., the observation cannot cause the true realization to be 
outside of Z. Define

and

(24)Ẑ = {(𝜀𝜌, 𝜀𝜏) ∈ ℝ
2 ∶ |𝜀𝜌| ≤ r𝜌, |𝜀𝜏 | ≤ r𝜏}.

(25)U = {(𝜌, 𝜏, �̂�, 𝜏) ∶ (𝜌, 𝜏), (�̂�, 𝜏) ∈ Z, (�̂�, 𝜏) − (𝜌, 𝜏) ∈ Ẑ},

(26)Z(�̂�,𝜏) =
(
{(�̂�, 𝜏)} + Ẑ

)
∩ Z.
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The set U contains all possible observation-realization pairs and Z(�̂�,𝜏) contains all 
possible realizations after observation of (�̂�, 𝜏) . For given observation (�̂�, 𝜏) , the new 
upper and lower bounds for (�, �) are given by 

 Compared to Sect.  3, we remove Assumption  1 and impose a different (slightly 
stricter) assumption on the relation between dmin , dmax

1
 and the bounds on N2.

Assumption 3 It holds that dmin ≤ dmax
1

 and

The inexact data problem (IDP) analogous to (8) is given by 

For stage-2 variables d2(�̂�, 𝜏) and N2(�̂�, 𝜏) it is indicated that they are a func-
tion of the observations (�̂�, 𝜏) instead of the uncertain parameters (�, �) . Similar to 
Sect. 3, we formally define several properties of solutions. Let X(𝜌, 𝜏, �̂�, 𝜏) denote 
the feasible region defined by constraints (29b)–(29e) for fixed (𝜌, 𝜏, �̂�, 𝜏).

Definition 7 (Adjustable robust feasibility)  A tuple (d1, d2(⋅),N2(⋅)) is adjusta-
ble robustly feasible ( ARF  ) to (29) if (d1, d2(�̂�, 𝜏),N2(�̂�, 𝜏)) ∈ X(𝜌, 𝜏, �̂�, 𝜏) for all 
(𝜌, 𝜏, �̂�, 𝜏) ∈ U.

Optimality of a decision rule is defined as follows.

Definition 8 (Optimal decision rule) 
For a given d1 , a decision rule pair (d2(⋅),N2(⋅)) is optimal to (29) if 

(d1, d2(⋅),N2(⋅)) is ARF  and for any (�̂�, 𝜏) ∈ Z it holds that

(27a)𝜏L = max{𝜏L, 𝜏 − r𝜏}, 𝜏U = min{𝜏U , 𝜏 + r𝜏}

(27b)�̂�L = max{𝜌L, �̂� − r𝜌}, �̂�U = min{𝜌U , �̂� + r𝜌}.

(28)
dmax

1
≤ min

{
g(dmin

1
,Nmin

2
,N1;�L), g(d

min

1
,Nmax

2
,N1; max{�L,

�L

�
− 2r�}), g(dmin

1
,Nmax

2
,N1;�U)

}
.

(29a)

max
d1,d2(�̂�,𝜏),N2(�̂�,𝜏)

min
(𝜌,𝜏,�̂�,𝜏)∈U

N1d1 + N2(�̂�, 𝜏)d2(�̂�, 𝜏) + 𝜏(N1d
2
1
+ N2(�̂�, 𝜏)d2(�̂�, 𝜏)

2),

(29b)
s.t. 𝜎(N1d1 + N2(�̂�, 𝜏)d2(�̂�, 𝜏)) + 𝜌𝜎2(N1d

2
1
+ N2(�̂�, 𝜏)d2(�̂�, 𝜏)

2)

≤ BEDtol(𝜌), ∀(𝜌, 𝜏, �̂�, 𝜏) ∈ U

(29c)N2(�̂�, 𝜏) ∈ {Nmin
2

,… ,Nmax
2

}, ∀(𝜌, 𝜏, �̂�, 𝜏) ∈ U

(29d)d2(�̂�, 𝜏) ≥ dmin, ∀(𝜌, 𝜏, �̂�, 𝜏) ∈ U

(29e)dmin
≤ d1 ≤ dmax

1
.
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for every (d̄2(⋅), N̄2(⋅)) such that (d1, d̄2(⋅), N̄2(⋅)) is ARF .

Note that for exact data, an optimal decision rule gives the optimal decision 
for any realization in the uncertainty set Z (given d1 ). For inexact data, we call a 
decision rule optimal if it yields the maximum worst-case (guaranteed) objective 
value for any observation in the uncertainty set Z.

4.2  Optimal decision rules and conservative approximation

Depending on both the observed (�̂�, 𝜏) and the quality of the biomarker informa-
tion (i.e., r� and r�) , we may be able to immediately determine the optimal value 
for N2 . Therefore, we split the uncertainty set for the observations (�̂�, 𝜏) . Define 

 so that Z = Zmin
ID

∪ Zint
ID

∪ Zmax
ID

 . Figure 5 provides an illustration. For an observation 
(�̂�, 𝜏) there are two candidate worst-case scenarios: (�̂�L, 𝜏L) and (�̂�U , 𝜏L) . If both are 
on one side of the line � = �� , the optimal fractionation decision is known. For an 
observation (�̂�, 𝜏) near the lower boundary of Z it holds that 𝜏L = 𝜏L , so a further 
decrease in 𝜏 has no influence on (�̂�L, 𝜏L) and (�̂�U , 𝜏L) (see (27)), similar for the other 
boundaries. This leads to the nonlinearity in the subset boundaries of Fig. 5.

The split is such that if (�̂�, 𝜏) ∈ Zmin
ID

 or (�̂�, 𝜏) ∈ Zmax
ID

 only Nmin
2

 resp. Nmax
2

 frac-
tions can be optimal in stage 2. Subset Zint

ID
 is the area between the dash-dotted 

lines. If (�̂�, 𝜏) ∈ Zint
ID

 both Nmin
2

 and Nmax
2

 fractions in stage 2 may be optimal for 
the true (�, �) . The following theorem states the optimal stage-2 decision rules for 
a given value of d1.

Theorem 3 Let d1 be the stage-1 decision of (29). The decision rules

and

(30)
min

(𝜌,𝜏)∈Z(�̂�,𝜏)
N1d1 + N2(�̂�, 𝜏)d2(�̂�, 𝜏) + 𝜏(N1d

2
1
+ N2(�̂�, 𝜏)d2(�̂�, 𝜏)

2)

≥ min
(𝜌,𝜏)∈Z(�̂�,𝜏)

N1d1 + N̄2(�̂�, 𝜏)d̄2(�̂�, 𝜏) + 𝜏(N1d
2
1
+ N̄2(�̂�, 𝜏)d̄2(�̂�, 𝜏)

2),

(31a)Zmin
ID

= {(�̂�, 𝜏) ∈ Z ∶ 𝜏L ≥ 𝜎�̂�U}

(31b)Zint
ID

= {(�̂�, 𝜏) ∈ Z ∶ 𝜎�̂�L < 𝜏L < 𝜎�̂�U}

(31c)Zmax
ID

= {(�̂�, 𝜏) ∈ Z ∶ 𝜏L ≤ 𝜎�̂�L},

(32)

N∗
2
(d1;�̂�, 𝜏) =

⎧
⎪⎨⎪⎩

Nmin
2

if (�̂�, 𝜏) ∈ Zmin
ID

argmax
N2∈{N

min
2

,…,Nmax
2

}

min{f (d1,N2;�̂�L, 𝜏L), f (d1,N2;�̂�L, 𝜏L)} if (�̂�, 𝜏) ∈ Zint
ID

Nmax
2

if (�̂�, 𝜏) ∈ Zmax
ID

,



1969

1 3

Adjustable robust treatment‑length optimization in radiation…

are optimal to (29) for the given d1.

Proof See e Supplementary Material B.3.   ◻

The worst-case optimal decision rule (32) may give a value unequal to Nmin
2

 and 
Nmax
2

 if (�̂�, 𝜏) ∈ Zint
ID

.
If r� and r� are zero, i.e., we have exact data, then it holds that 𝜏L = 𝜏 and 

�̂�L = �̂�U = 𝜌 . Hence, the two functions f in the RHS of (32) are equal, and the opti-
mal N∗

2
 is the one that maximizes the resulting function. One can verify that this does 

not depend on d1 . Hence, in case of exact data Theorem 3 reduces to Theorem 1.
It turns out that, after plugging in (32) and (33), and splitting the uncertainty set 

according to (31), it is not apparent how to determine the optimal stage-1 decision d∗
1
 

for (29). In Supplementary Material B.4 the following lower bound problem to (29) 
is derived, named the Approximate Inexact Data Problem (AIDP): 

(33)d∗
2
(d1;�̂�, 𝜏) = min{g(d1,N1,N

∗
2
(d1;�̂�, 𝜏);�̂�L), g(d1,N1,N

∗
2
(d1;�̂�, 𝜏);�̂�U)},

(34a)max
d1,q

q

(34b)s.t. q ≤ f (d1,N
min
2

;�L, �L)

(34c)q ≤ f (d1,N
max
2

;�U , �L)

Fig. 5  The uncertainty set Z (solid lines) for (�̂�, 𝜏) is split into Zmin
ID

 , Zint
ID

 , Zmax
ID

 , according to (31). Subset 
Zint is the area between the dotted and dash-dotted curves. If (�̂�, 𝜏) ∈ Zint

ID
 both Nmin

2
 and Nmax

2
 fractions in 

stage 2 may be optimal for the true (�, �) . If (�̂�, 𝜏) ∈ Zmin
ID

 or (�̂�, 𝜏) ∈ Zmax
ID

 only Nmin
2

 resp. Nmax
2

 fractions 
can be optimal in stage 2
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The AIDP is best explained using an example. Figure 6 illustrates a possible 
instance of (34), displaying constraints (34b)–(34e). Compared to (20) for exact 
biomarker information (see Fig. 4), problem (34) has the added constraint (34e); 
a piecewise convex-concave function p(d1) defined by (C.32) in Lemma 5 (Sup-
plementary Material C). It can be interpreted as follows. If (�̂�, 𝜏) ∈ Zint

ID
 , the opti-

mal number of stage-2 fractions can be in between Nmin
2

 and Nmax
2

 , as shown in 
Theorem 3. In those cases, the optimal number of fractions also depends on the 
already delivered stage-1 dose d1 . The upper kinks (red circles) in the piecewise 
convex-concave function p(d1) in Fig.  6 indicate values of d1 where the worst-
case scenario changes. The lower kinks indicate values where the optimal num-
ber of stage-2 fractions changes. The exact expression for p(d1) does not provide 
additional insight and is therefore omitted here.

In Figure  6, optimal solutions are locations where (34d) and (34e) are both 
binding, indicated by red circles. Dose constraints (34f) may cut off (some of) 
these points. If due to constraint (34f) none of the circles are feasible, the opti-
mum is at one of the boundaries for d1 . Constraint (34e) is the only conservative 
constraint in (34). Hence, only if the feasible values for d1 are such that none of 

(34d)q ≤ K

(34e)q ≤ p(d1)

(34f)dmin
≤ d1 ≤ dmax

1
.

Fig. 6  Schematic illustration of (34). Compared to the case with exact data (Fig.   4), the thick black 
curve (constraint (34e)) is extra. The solid, dashed and dotted lines/curves represent constraints (34b), 
(34c) and (34d), respectively. Optimal solutions are indicated by red circles



1971

1 3

Adjustable robust treatment‑length optimization in radiation…

the circles in Fig. 6 are feasible and constraint (34e) is binding, it is possible that 
the optimal objective value of (34) is strictly worse than that of (29).

Lemmas  1, 2 and 5 in Supplementary Material C provide information on the 
shape and intersection points of constraint functions (34b)–(34e). Consequently, the 
optimal solution(s) of (29) is/are easily obtained. If (d∗

1
, q∗) is optimal to AIDP (34), 

and N∗
2
(⋅) and d∗

2
(⋅) are given by (32) and (33) then (d∗

1
, d∗

2
(⋅),N∗

2
(⋅)) is ARF  to the 

original IDP (29). It is ARF  because AIDP is a conservative approximation of IDP.

4.3  Pareto robustly optimal solutions to conservative approximation

Figure 6 also illustrates that it is possible that there are multiple optimal solutions 
to the AIDP (34). Because the AIDP provides a conservative approximation to IDP 
(29), optimizing over auxiliary scenario(s) as in Sect. 3 does not necessarily produce 
a stage-1 decision d1 that is PARO to the original IDP. It turns out that a PRO 
solution to AIDP is obtained from the set of robustly optimal solutions to AIDP if 
we consecutively optimize for two auxiliary observations such that any worst-case 
realization is in the interior of set Zmin resp. Zmax . Two important remarks are in 
place here. First, a PRO solution to AIDP need not be a PARO solution to IDP, 
even if it is ARO to IDP. Second, the required auxiliary scenarios need not exist; 
their existence depends on the values of r� and r� . Hence, further details are omitted.

5  Numerical results

This section presents numerical results of the methods presented in Sects. 3 and 4. 
First, Sect.  5.1 describes the benchmark methods against which we compare the 
ARO method for EDP and IDP, and Sect. 5.2 describes the setup of the numerical 
experiments.

5.1  Benchmark static and folding horizon methods

We analyze the performance of the static and folding horizon nominal method 
(NOM and NOM-FH), the static and folding horizon robust optimization method 
(RO and RO-FH) and the adjustable robust optimization method (ARO). In the fold-
ing horizon approaches only the stage-1 decisions are implemented, and the model 
is re-optimized for the second stage once the biomarker information is revealed.

The static method NOM optimizes for the nominal parameter values (�̄�, 𝜏) and 
disregards any uncertainty and adaptability. This method is the same for both EDP 
and IDP. In stage 2, NOM-FH solves the nominal problem under the assumption that 
the obtained biomarker estimate is exact (which is an invalid assumption for IDP). 
This method does not guarantee robustly feasible solution (feasible for all (�, �) ∈ Z ) 
nor a robustly optimal solution ( RO ; (static) optimal for the worst-case realization 
(�, �) ∈ Z ). The static method RO optimizes for the worst-case realization of (�, �) 
in the uncertainty set Z, and disregards adaptability. For EDP the method RO-FH 
solves the same nominal problem as NOM-FH in stage 2; for IDP it solves a static 
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robust optimization problem in stage 2, for which the uncertainty set is determined 
by the accuracy of the biomarker information. RO and RO-FH both guarantee an 
RO solution.

One may add a folding horizon component to ARO (for either EDP or AIDP). 
This may improve the results in case a suboptimal stage-2 decision rule is used. 
However, as shown in Sects. 3.2 and 4.2, the used stage-2 decision rules are optimal 
for any realized scenario (and for given stage-1 decision d1 in case of inexact infor-
mation). Hence, adding a folding horizon component will not change results.

Table 1 provides an overview of the guaranteed solution properties of the meth-
ods. It is important to note that in case of inexact biomarker information (IDP) 
the methods RO and RO-FH guarantee an RO solution, whereas ARO guarantees 
only an ARF  solution via solving the approximate problem AIDP. Depending on 
the approximation quality, the ARF  solution may be close or equal to an ARO 
solution.

Next to these five methods, we also report the results for the perfect information 
optimum (PI). This is the attainable optimum if from the start of the first fraction the 
true (�, �) is exactly known. It can be formulated by taking the nominal problem and 
replacing the nominal parameter values by their true values. While in practice not 
a viable strategy, PI provides information on the value of perfect information, and 
allows us to put the performance of and differences between the other methods in 
perspective.

We note that all instances (both EDP and AIDP) are low dimensional, so the 
computation time is negligible for any of the six solution methods; in the numerical 
experiments all computation times are within 10 ms.

5.2  Study setup

We use a data set of 30 non-small cell lung cancer (NSCLC) patients, treated with 
either photon or proton therapy. The mathematical models in Sects. 3 and 4 are 
based on the assumption that there is a single dose restricting OAR. We assume that 
the single dose restricting OAR is the normal lung itself5. For the models in Sects. 3 
and 4, an instance is defined by a tuple (�,�,D,T ,N1,N

min,Nmax, dmin, dmax
1

) and the 
relevant uncertainty sets.

Table 1  Guaranteed solution 
properties of the five methods

Method

Problem NOM NOM-FH RO RO-FH ARO

EDP – – RO RO PARO

IDP – – RO RO ARF

5 This is in line with clinical practice wherein normal lung is treated as the most important normal tissue 
and the treatment is designed as to minimize the radiation exposure to normal lung.
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Clinically, the number of treatment fractions varied between 33 and 37 frac-
tions, with the majority of patients receiving 37 fractions. We set Nmin = 30 and 
Nmax = 40 , to allow for slight deviations from the clinical standard. We assume the 
biomarker acquisition is made once N1 = 10 fractions have been administered. This 
implies Nmin

2
= 20 and Nmax

2
= 30 . Mean lung dose tolerance is D = 20 Gy, and we 

set T = 37 as that is the clinically standard regimen. The patients differ in (�,�) , 
which characterize the spatial dose distribution. Using the clinically delivered dose 
distribution, we derive for each normal lung voxel its dose sparing factor si (see 
Sect.  2.1). The dose shape factor � and the generalized dose sparing factor � for 
mean OAR BED are given by 

 see Perkó et al. (2018) for details.
Cox (1986) estimate normal lung tissue �∕� to be between 2.4 and 6.3. We set 

the nominal value at the midpoint 4.35. The �∕� of NSCLC lung tumors has tradi-
tionally been assumed to be above 10 Gy. However, recent NSCLC hypofractiona-
tion trials show promising results, indicating that NSCLC cells are more sensitive to 
fraction size than previously assumed, i.e., have a lower �∕� than 10. Santiago et al. 
(2016) find values between 2.2 and 9.0. We set the nominal value at the midpoint 
5.6. Put together, we get the following uncertainty set for the inverse �∕� ratios:

and the nominal scenario is (�̄�, 𝜏) = (1∕4.35, 1∕5.6) . With this uncertainty set, 20 
out of 30 patient cases satisfy Assumption 2: these are used in the numerical exper-
iments. For the remaining ten patients the optimal number of treatment fractions 
can be determined prior to treatment, so these are removed. Preliminary numerical 
experiments indicate that results are not sensitive to variations in the bounds of the 
uncertainty set.

To discriminate between multiple ARO solutions, we follow the procedure 
detailed in Sect.  3.3 in the case of exact biomarker information. The auxiliary 
scenarios are sampled uniformly from int(Zmin) and int(Zmax) . In the case of inex-
act biomarker information, the procedure discussed in Sect.  4.3 is followed if 
the required auxiliary observations exist. If such observations exist, we sample 
uniformly from Z until we have found two auxiliary observations for which any 
worst-case realization is in int(Zmin) resp. int(Zmax) . If such observations do not 
exist, the robustly optimal solution to AIDP with lowest stage-1 dose is selected. 
The method RO (and therefore also RO-FH) may also find multiple robustly 
optimal solutions. For the obtained set of robustly optimal solutions we again 
follow the procedure detailed in Sect. 3.3. It turns out that for RO, the robustly 

(35a)� =
n
∑n

i=1
s2
i�∑n

i=1
si
�2 ,

(35b)� =

∑n

i=1
s2
i∑n

i=1
si
,

(36)Z = {(�, �) ∶ 1∕6.3 ≤ � ≤ 1∕2.4, 1∕9.0 ≤ � ≤ 1∕2.2},
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optimal solutions often perform identical in non-worst-case scenarios. We opti-
mize over the auxiliary scenarios consecutively; the first auxiliary scenario is 
the scenario corresponding to int(Zmin).

The minimum dose per fraction is dmin = 1.5 Gy and the maximum stage-1 
dose per fraction is dmax

1
= 3 Gy. This satisfies Assumption  1 (for EDP) and 3 

(for IDP). Using these parameter values, it is feasible to deliver Nmax
2

 fractions 
with dose dmin in all scenarios in Z. This means that stage-1 decisions can-
not render stage 2 infeasible for RO, NOM (and their FH counterparts) or PI. 
Numerical results indicate that results are not sensitive to the choice of dmin and 
dmax
1

.
We consider a sample of 200 scenarios for (�, �) from Z. For each scenario, 

the average tumor BED over 20 patients is computed, thus creating a tumor 
BED distribution for the ‘average’ patient. For this tumor BED distribution we 
report the mean, 5% quantile and worst-case value. Next to this, we report the 
true worst-case tumor BED over Z (averaged over 20 patients). Note that the 
true worst-case scenario can differ per patient, so the true worst-case BED is is 
typically not attained in the sample. For OAR violations, we report the percent-
age by which the OAR BED tolerance is exceeded (i.e., percentage overdose). 
The maximum violation is the maximum value found over all patients and sce-
narios. All reported decision variable statistics are averaged over all patients and 
scenarios.

First, Sect.  5.3 presents and discusses the results for the problem with exact 
biomarker information (EDP) of Sect.  3. After that, Sect.  5.4 presents and dis-
cusses the results for the problem with inexact biomarker information (IDP) of 
Sect. 4. Lastly, Sect. 5.5 again considers the inexact biomarker information case, 
and varies parameter N1 in order to determine the optimal moment of biomarker 
acquisition.

Table 2  Results for experiments with exact biomarker information and uniform sampling of (�, �) over Z 
(200 scenarios)

For each scenario, results are averaged over 20 patients∗ . All methods optimize for worst-case tumor 
BED in Z, which is displayed in bold.
∗ : the maximum OAR violation is computed over all patients and scenarios

Method

NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 162.75 161.44 156.57 160.14 161.40 161.49
Tumor BED - sample 5% quantile (Gy) 151.98 150.94 147.57 150.04 150.90 151.04
Tumor BED - sample wc (Gy) 145.98 146.33 142.53 145.58 146.32 146.39
Tumor BED - wc over Z (Gy) 114.72 116.19 116.19 116.19 116.19 116.19
OAR violation - mean ( %) 1.25 0 0 0 0 0
OAR violation - max ( %) 4.22 0 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.51 1.66
Stage-2 dose d2 (Gy) 3.45 3.24 2.48 2.95 3.24 3.19
Stage-2 fractions N2 20.0 22.2 27.2 22.2 22.2 22.2



1975

1 3

Adjustable robust treatment‑length optimization in radiation…

5.3  Results exact biomarker information

Table 2 presents the results. Altogether, the results indicate that the value of exact 
information is high. NOM-FH performs very similar to ARO. This illustrates that 
ignoring uncertainty and adaptability in stage 1 neither compromises worst-case or 
mean performance, nor does it lead to OAR constraint violations if treatment can 
be adapted based on exact biomarker information. In fact, NOM-FH outperforms 
RO-FH, indicating that accounting for uncertainty in stage-1 is overly conservative.

NOM is the only method that is not worst-case optimal, but yields the highest 
mean tumor BED across the sample. However, it is the only method that results in 
OAR constraint violations. In the nominal scenario (�̄�, 𝜏) it is optimal to hypofrac-
tionate for all patients, so the mean N2 equals 20 for NOM. The other static method, 
RO, is worst-case optimal, but yields lower tumor BED across the entire sample. 
The other static method, RO, is worst-case optimal, but yields low tumor BED 
across the sample. This is not due to one poor (patient, scenario) pair, but consistent 
throughout the entire sample. It delivers significantly more fractions on average, i.e., 
it decides to hyperfractionate more often.

NOM-FH adds a folding horizon component to NOM, and this results in zero 
violations and worst-case optimality. It does have slightly lower sample mean tumor 
BED. RO-FH adds a folding horizon component to RO, and this results in improved 
performance across the entire sample. It chooses to hypofractionate more often than 
RO. ARO is worst-case optimal and performs very similar to NOM-FH. Excluding 
NOM (for OAR constraint violations) and PI (not implementable), NOM-FH, ARO, 
RO-FH and RO yield the (possibly joint) highest objective value in 83.4% , 76.4% , 
22.1% and 0.6% of all (scenario, patient) instances, respectively.

The results of Table  2 show that the methods have different stage-1 decisions 
d1 ; this indicates the existence of multiple worst-case optimal stage-1 solutions. As 
indicated in Sect. 5.2, RO, RO-FH and ARO optimize over auxiliary scenarios in 
this case. According to Theorem 2, ARO finds a PARO solution this way. Overall, 
methods that deliver a relatively low dose in stage-1 perform better than the methods 
that deliver a higher dose. This may be data set-specific. From PI we see that for the 
majority of patients and scenarios hypofractionation is optimal (average N2 = 22.2 ), 
whereas the RO results indicate that for the majority of patients it is worst-case opti-
mal to hyperfractionate (average N2 = 27.2 ). We emphasize that for different data 
sets, where for the majority of scenarios and patients hyperfractionation is optimal, 
a higher stage-1 dose (which allows for Nmax constant-dose fractions) may perform 
better, such as the result of RO and RO-FH.

Figure  7 shows the complete cumulative scenario-tumor BED graph. A point 
(x, y) in Fig. 7 can be interpreted as follows: for the average patient, in y% of sce-
narios the tumor BED is at least x Gy. The results clearly demonstrate that RO and 
RO-FH are outperformed by the other methods. Both NOM-FH and ARO are visu-
ally almost indistinguishable from PI. NOM performs even better across the entire 
sample (except the first percent of the sample), at the cost of OAR BED violations.

To see the difference in mean performance between the multiple worst-case 
optimal solutions, we compare PARO solution found by the ARO method to the 
ARO solution that performs worst in the two auxiliary scenarios. Table 3 shows the 
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results, OAR constraint violations are zero in all cases. The worst-performing ARO 
solution has a considerably higher stage-1 dose. This implies that (for the current 
parameter settings) delivering a high stage-1 dose does not allow as much adjust-
ment possibilities in stage 2 as a low stage-1 dose, but it does allow for adjustments 
to reach the worst-case optimum. Relative to the results of Table 2, the difference 
between the best and worst ARO solution is considerable: the worst-performing 
ARO solution performs worse than the RO-FH solution.

Supplementary Material A reports the results of an auxiliary experiment where 
the (�, �) samples is drawn from a superset of Z, to compare the out-of-sample 

Fig. 7  Cumulative scenario-tumor BED graph for experiments with exact biomarker information and 
uniform sampling of (�, �) over Z (200 scenarios). A point (x, y) indicates that in y% of scenarios the 
tumor BED (averaged over 20 patients) is at least x Gy. ARO and NOM-FH are very close to PI

Table 3  Comparison between 
the best ( PARO ) and worst 
performing ARO solutions, for 
uniform sampling of (�, �) over 
Z (200 scenarios)

For each scenario, results are averaged over 20 patients. All methods 
optimize for worst-case tumor BED in Z, which is displayed in bold. 
OAR constraint violations are zero in all cases

Method

AROworst ARObest

Tumor BED - sample mean (Gy) 159.87 161.40
Tumor BED - sample 5% quantile (Gy) 149.86 150.90
Tumor BED - sample worst-case (Gy) 145.34 146.32
Tumor BED - wc over Z (Gy) 116.19 116.19
Stage-1 dose d1 (Gy) 2.67 1.51
Stage-2 dose d2 (Gy) 2.79 3.24
Stage-2 fractions N2 22.2 22.2
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performance of the methods. NOM remains the only method with OAR con-
straint violations. Compared to Table  2, static methods NOM and RO have poor 
performance. The relative performance of the adaptive methods remains mostly 
unchanged.

Altogether, the results of Sect. 5.3 demonstrate that if exact biomarker informa-
tion is available mid-treatment, most stage-1 decisions allow for sufficient adapta-
tion space in stage 2, also with realizations outside of Z. Different stage-1 decisions 
yield the worst-case optimum, have good performance on the scenario sample and 
have no OAR BED violations. We note that all presented differences in tumor BED 
are of relatively small magnitude. One reason for this is that the number of stage-2 
fractions is restricted to [Nmin

2
,Nmax

2
] = [20, 30] . If the minimum number of fractions 

represents a ‘true’ hypofractionation case, the dose per fraction can vary more, and 
the difference in performance between hypo- and hyperfractionation strategies is 
amplified.

5.4  Results inexact biomarker information

In case of in inexact biomarker information (IDP), we do not obtain the true param-
eter values (�, �) after N1 = 10 fractions, but only an estimate (�̂�, 𝜏) . As discussed 
in Sect.  4, we specify a new uncertainty set Ẑ such that (�̂�, 𝜏) − (𝜌, 𝜏) ∈ Ẑ . Let 
DQ ∈ [0, 1] indicate the data quality. Then we set Ẑ such that the width of the new 
uncertainty intervals for � and � is (1 − DQ) times the width of the original inter-
vals [�L, �U] and [�L, �U] . That is, DQ ⋅ 100% can be interpreted as the percentage by 
which the uncertainty intervals can be reduced due to the observation. The relation 
with the accuracy parameter r� (or similarly r� ) is given by

Note that even DQ = 0 has some value as the new interval is centered around the 
observation, which already cuts off part of the original uncertainty set Z. We pick 
DQ = 2∕3 , so the obtained information after fraction N1 reduces the size of the 
interval by 66.7% around the new observation. Variations for DQ are considered 
in Sect. 5.5. For all 20 patients the required auxiliary scenarios for the method of 
Sect. 4.3 can be found.

Table  4 shows the results. The robust methods RO, RO-FH and ARO are all 
worst-case optimal. This indicates that, although not theoretically guaranteed, ARO 
finds an ARO solution in all considered scenarios. The mean performance of RO-FH 
and ARO is further away from PI than in the case with exact biomarker information 
(Table 2). This is as expected, as due to inexact observations the possibility for ARO 
and RO-FH to make adjustments is less valuable, whereas PI is not in influenced by 
this. On the other hand, NOM and NOM-FH are not worst-case optimal, but have 
better performance on the sample of scenarios, at the cost of OAR violations.

ARO is the only method (together with PI) that has a different stage-1 decision 
than in the case with exact biomarker information. This is because it is the only 
method that takes inexactness of biomarker information into account at the start of 

(37)r� =
1

2
(�U − �L)(1 − DQ).
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stage 1. The average stage-1 dose d1 differs considerably between ARO and RO-FH, 
whereas their worst-case performance is equal on average (and equal to PI). This 
demonstrates the existence of multiple worst-case optimal solutions. Whereas opti-
mizing worst-case optimal solutions for ARO over two auxiliary scenarios does not 
guarantee a PARO solution (Sect. 4.3), results in Table 4 indicate that it does pro-
duce solutions that perform slightly better on average than RO-FH.

For ARO, it is noteworthy that the average number of stage-2 fractions (24.3 fx) 
differs from that of PI (22.1 fx). Although ARO uses optimal decision rules for stage 
2, these are optimal for the worst-case scenario in the new uncertainty set Z(�̂�,𝜏) , and 
need not be optimal for the ‘true’ realization in this set. In fact, NOM-FH treats 
the inexact biomarker information as the ‘true’ parameter values, and administers 
22.0 fractions, on average, which is closer than that of PI. Although the fractionation 
decision of NOM-FH is not worst-case optimal, Table 4 shows that it performs bet-
ter on the sample of scenarios.

Figure 8 shows the complete cumulative scenario-tumor BED graph for the ‘aver-
age patient’. Whereas in case of exact biomarker information (Fig. 7), the ARO line 
was very close to PI, here a clear difference can be observed. NOM and NOM-FH 
outperform ARO (and RO and RO-FH) over the entire distribution.

The good performance of NOM and NOM-FH in terms of sample mean tumor BED 
does come at the cost of OAR violations. However, these are relatively minor. The 
reason for this is that the number of stage-2 fractions is relatively high (between 20 
and 30fx), so any method delivers reasonably low dose per fraction in stage 2. Conse-
quently, the quadratic term in the BED model is smaller, and so is the influence of the 
�∕� parameters. With higher dose per fraction, the use of incorrect (e.g., nominal) �∕� 
parameter values may result in higher OAR constraint violations. Preliminary experi-
ments for stereotactic body radiation therapy (SBRT, an RT modality that uses around 
five high dose fractions) indeed result in slightly higher OAR constraint violations for 

Table 4  Results for experiments with inexact biomarker information (data quality DQ = 2∕3 ) and uni-
form sampling of (�, �) over Z (200 scenarios)

All results are averages over a sample of 20 patients. For each scenario, results are averaged over 20 
patients∗ . All methods optimize for worst-case tumor BED in Z, which is displayed in bold.
 ∗ : the maximum OAR violation is computed over all patients and scenarios

Method

NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 162.52 161.03 156.38 158.76 159.46 161.16
Tumor BED - sample 5% quantile (Gy) 151.36 150.12 147.04 148.51 148.94 150.21
Tumor BED - sample wc (Gy) 147.79 146.04 144.01 145.02 145.33 146.18
Tumor BED - wc over Z (Gy) 114.72 115.96 116.19 116.19 116.19 116.19
OAR violation - mean ( %) 1.25 0.16 0 0 0 0
OAR violation - max ( %) 4.23 1.49 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.79 1.65
Stage-2 dose d2 (Gy) 3.45 3.25 2.48 2.78 2.92 3.20
Stage-2 fractions N2 20.0 22.0 27.2 24 24.3 22.1
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NOM and NOM-FH. In any case, a trade-off can be observed between higher tumor 
BED attained by NOM and NOM-FH and associated OAR constraint violations.

5.5  Optimal moment of biomarker acquisition

The moment of biomarker observation need not be fixed. Part of the decision-mak-
ing process then involves choosing this observation moment such that it maximally 
improves treatment quality. Late observation may result in limited possibilities for treat-
ment adaptation, whereas with too early observation one cannot yet reliably observe 
the true individual patient response. Although one can incorporate N1 as a decision 
variable in the mathematical model, the small decision space allows to simply vary its 
value in numerical experiments. We assume a (hypothetical) mathematical relationship 
between information point N1 and the data quality parameter DQ. With Nmax the maxi-
mum number of fractions, we consider the following three data quality functions: 

(38a)DQ1(N1) =

(
N1

Nmax

)4

(38b)DQ2(N1) =
N1

Nmax

Fig. 8  Cumulative scenario-tumor BED graph for experiments with inexact biomarker information (data 
quality DQ = 2∕3 ) and uniform sampling of (�, �) over Z (200 scenarios). A point (x, y) indicates that in 
y% of scenarios the tumor BED (averaged over 20 patients) is at least x Gy. NOM-FH is very close to PI
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 Hence, DQ1 , DQ2 and DQ3 decalibe a convex, linear and concave relationship 
between observation moment and data quality, respectively. Figure  9 shows the 
graphs of the three functions. Whether DQ1 , DQ2 or DQ3 is most realistic depends 
on the specific biomarker(s) that is/are used, see Sect. 2.2 for details.

We vary the information point N1 from 0 to Nmax − 1 . Figure 10 shows the change 
in stage-1 dose d1 (averaged over all patients and scenarios) for linear data quality 
function DQ2 , for methods PI, ARO, RO/RO-FH and NOM/NOM-FH. Results are 

(38c)DQ3(N1) =

(
N1

Nmax

)1∕4

.

Fig. 9  The biomarker data qual-
ity is a function of the number 
of treatment fractions N1 after 
which it is acquired. We con-
sider three functions DQi(N1) , 
i = 1, 2, 3.

Fig. 10  Change in stage-1 dose d1 (averaged over all patients and scenarios) when varying the informa-
tion point N1 from 1 to Nmax − 1 , for the linear data quality function DQ2(N1).
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very similar for DQ1 and DQ3 . Recall from Sect. 5.3 that for the majority of (patient, 
scenario) pairs hypofractionation is optimal. For those cases, if N1 is very low PI 
sometimes delivers a high dose boost in stage 1, and a low dose/fx in stage 2. For 
higher values of N1 this is not possible anymore, leading to a lower average dose in 
stage 1 (and a dose boost in stage 2). For NOM/NOM-FH the same holds, because 
the nominal scenario is a hypofractionation scenario.

Also for ARO it is optimal to start with a higher dose per fraction in stage-1 if N1 
is very low. For slightly higher N1 , starting with a dose boost is no longer possible. 
For most patients it is worst-case optimal to hyperfractionate, i.e., deliver an equal 
dose per fraction for Nmax fractions. For N1 around 10 − 20 , worst-case optimality 
can be attained also with lower dose per fraction in stage 1. This tends to be the 
PARO solution, because it enables a higher dose boost in stage 2 for hypofractiona-
tion scenarios. For higher N1 , it is often not possible to achieve worst-case optimal-
ity (in hyperfractionation scenarios) if we deliver a low dose per fraction in stage 1. 
This leads to a gradual shift from low dose to medium dose per fraction in stage 1 as 
N1 increases.

Figure 11 shows the mean tumor BED values and OAR constraint violations for 
varying N1 , for data quality functions DQi(N1) , i = 1, 2, 3 . The left vertical axis indi-
cates the mean tumor BED (averaged over all patients and scenarios), the right verti-
cal axis indicates the maximum OAR tolerance violation for NOM and NOM-FH. 
It is important to note that as N1 increases past Nmin = 30 , this also increases the 
minimum number of fractions correspondingly. Moreover, the dose per fraction is 
constant per treatment stage, so the choice of N1 also influences the types of treat-
ments that can be delivered.

For these reasons the curve for PI is not constant, even though it does not actually 
use biomarker information. The optimal moment of biomarker acquisition for PI is 
N1 = 29 . This is because the minimum number of fractions is Nmin = 30 . Hence, 
if hypofractionation is optimal we can deliver one more fraction with high dose, 
and deliver a low dose in stage 1. If hyperfractionation is optimal we can deliver 11 
more fractions (and get the total maximum of 40) with low dose. Having N1 > 29 
forces the use of more than Nmin

2
= 30 fractions, which is disadvantageous for those 

(patient, scenario) cases where hypofractionation is optimal.
For the latter reason the NOM curve is also not constant. It results in a higher 

tumor BED than PI for any value of N1 , at the cost of OAR violations of up to 
20% . NOM-FH yields a sample mean tumor BED close to PI for all three DQ func-
tions, and the OAR violations depend on the DQ function. With poor data qual-
ity (Fig.  11a) and an observation moment close to N1 = 29 , OAR violations over 
10% are possible, despite the fact that NOM-FH is an adaptive method. On the other 
hand, with good data quality (Fig. 11c), the violations remain below 2% . The OAR 
tolerance violations are highest near N1 = 29 . This is because in case of hypofrac-
tionation in stage 2 the influence of the uncertain �∕� parameters is highest, as was 
noted in Sect. 5.4.

The robust methods RO, RO-FH and ARO do not result in any OAR violations, 
by construction. The better the data quality, the larger the differences between RO, 
RO-FH and ARO. This implies that, if robustness is required, there is value in (i) 
adapting based on inexact information, (ii) taking adaptability into account when 
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2

3

Fig. 11  Change in mean tumor BED and OAR constraint violation when varying the information point 
N1 from 1 to Nmax − 1 , for data quality functions DQi(N1) , i = 1, 2, 3 . The maximum OAR BED con-
straint violation ( % ) of NOM (dash-dotted) and NOM-FH (dotted, circle marker) is measured against the 
right vertical axis. Note that the left vertical axis measures displays the mean tumor BED (averaged over 
all patients and scenarios), while the methods maximize the worst-case tumor BED per patient
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planning the stage-1 dose. The good performance of NOM-FH shows that this value 
diminishes if OAR violations are allowed. NOM-FH does not account for adaptability, 
and does not take inexactness of biomarker information into account. Nevertheless, it 
results in higher sample mean tumor BED than the robust methods for any N1 , and the 
difference increases from good (concave) to poor (convex) data quality. Thus, Fig. 11 
illustrates the trade-off between higher sample mean tumor BED and possible OAR 
violations that was also observed in Sect. 5.4 (for the entire sample distribution).

The shape of the data quality function influences the optimal moment of bio-
marker observation only slightly. For all adaptive methods, we find that the peak is 
more pronounced for high data quality (concave) than low data quality (convex), but 
it is centered around N1 = 29 . In case of convex data quality the peak is relatively 
flat, indicating a trade-off between observing at N1 = 29 (giving maximum adapta-
tion flexibility) and postponing (waiting for higher data accuracy).

6  Concluding remarks

In this paper we have presented an ARO approach to optimally adapt the treatment 
length of radiation therapy treatments, using mid-treatment biomarker information. 
Using an ARO approach, adaptability is taken into account prior to treatment and it 
provides insight into the optimal stage-2 decisions.

In the case of exact biomarker information, there is sufficient space to adapt, and 
numerical results show that taking into account both robustness and adaptability is 
not necessary. In the case of inexact biomarker information, adaptive strategies can 
use only parameter estimates instead of true parameter values, and may still result 
in violations if this uncertainty is not accounted for. Accounting for adaptability 
and inexactness of biomarker information is particularly beneficial when robustness 
(w.r.t. OAR violations) is of high importance. If minor OAR violations are allowed, 
NOM-FH is a good performing alternative, which can outperform ARO. NOM-FH 
and ARO thus yield a trade-off between higher performance and OAR violations. 
Both the difference in performance and the magnitude of OAR violations of NOM-
FH are highly influenced by the data quality (i.e., accuracy of parameter estimates).

The current setting can be extended in several ways. In practice the tumor and 
OAR �∕� values would have to be estimated from actual biomarkers (e.g., imag-
ing, blood-based biomarkers, genotyping), which can be incorporated in the model. 
Furthermore, the approach can be extended to heterogeneous tumor response (differ-
ent �∕� ratios for different tumor subvolumes), or time-dependent response param-
eters. Other RT applications may also benefit from ARO, such as re-optimization to 
account for organ motion or setup errors, optimization using the MR-linac or com-
bining RT with chemotherapy.
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