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Abstract
Superstructure optimization is a powerful but computationally demanding task that 
can be used to select the optimal structure among many alternatives within a sin-
gle optimization. In chemical engineering, such problems naturally arise in process 
design, where different process alternatives need to be considered simultaneously 
to minimize a specific objective function (e.g., production costs or global warming 
impact). Conventionally, superstructure optimization problems are either formulated 
with the Big-M or the Convex Hull reformulation approach. However, for problems 
containing nonconvex functions, it is not clear whether these yield the most com-
putationally efficient formulations. We therefore compare the conventional problem 
formulations with less common ones (using equilibrium constraints, step functions, 
or multiplications of binary and continuous variables to model disjunctions) using 
three case studies. First, a minimalist superstructure optimization problem is used 
to derive conjectures about their computational performance. These conjectures are 
then further investigated by two more complex literature benchmarks. Our analysis 
shows that the less common approaches tend to result in a smaller problem size, 
while keeping relaxations comparably tight—despite the introduction of additional 
nonconvexities. For the considered case studies, we demonstrate that all reformu-
lation approaches can further benefit from eliminating optimization variables by a 
reduced-space formulation. For superstructure optimization problems containing 
nonconvex functions, we therefore encourage to also consider problem formula-
tions that introduce additional nonconvexities but reduce the number of optimization 
variables.
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1  Introduction

A major problem arising in process synthesis is the simultaneous selection of pro-
cess equipment and their optimization regarding design and operation. Superstruc-
ture optimization represents a suitable but computationally demanding approach 
to solve such problems. Typical formulations include discrete variables. However, 
in some cases the formulations are purely continuous (e.g., blending problem for 
fuels  (Singh et  al. 2000), process water networks  (Ahmetović and Grossmann 
2011)). Superstructures can be represented in several ways resulting in different 
problem formulations for which different solution algorithms exist  (Grossmann 
2002; Mencarelli et al. 2020). A common and intuitive modeling approach is their 
formulation as generalized disjunctive programming (GDP) problems consist-
ing of algebraic constraints, disjunctions, Boolean variables, and logic proposi-
tions (Raman and Grossmann 1994). These GDP problems can be solved directly 
with dedicated solution algorithms (e.g., logic-based Outer Approximation  (Lee 
and Grossmann 2000) or GDP branch and bound (Türkay and Grossmann 1996b)) 
that aim to exploit the disjunctions effectively (e.g., by directly branching on them 
or reducing the problem size by considering only the active disjuncts). Alterna-
tively, they can be reformulated to mixed-integer nonlinear programming (MINLP) 
problems (Grossmann and Trespalacios 2013), in which integer variables replace 
Boolean variables and algebraic equations model the logic propositions.

Conventional reformulation approaches are the Big-M  (Nemhauser and Wolsey 
1988) and Convex Hull  (Lee and Grossmann 2000) method. The reformulation of 
GDP to MINLP problems enables the use of powerful commercial MINLP solvers 
and thus the possibility to solve GDP problems containing nonconvex functions (Lee 
and Grossmann 2003; Ruiz and Grossmann 2010). In contrast, existing solvers dedi-
cated to GDP problems are restricted to GDP problems containing only convex func-
tions. It is also possible to avoid introducing Boolean or binary variables for mode-
ling the disjunctions by using complementarity constraints resulting in mathematical 
programs with equilibrium constraints (MPEC) (Luo et al. 1996). This results in a 
special type of nonlinear programming (NLP) problem with only a few optimization 
variables. The NLP problem can be either solved directly or again reformulated (e.g., 
by using the Plus Function  (Chen and Mangasarian 1996)), which often involves 
smoothing techniques. In summary, a number of modeling approaches and solution 
algorithms has been developed over the past decades. Their comparison has mainly 
been limited to the conventional approaches and problems with only linear or con-
vex constraints representing the process models. For problems containing nonconvex 
functions, which require global optimization techniques, a comparative assessment 
of all approaches mentioned above is missing so far.
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For global optimization, several techniques for improving computational trac-
tability have been proposed. As superstructure optimization problems often have 
many variables and constraints, factorable reduced-space (RS) formulations can be 
beneficial (for an overview of these formulations, see Bongartz (2020), Chapter 3). 
In such RS formulations, equality constraints are used to eliminate optimization 
variables from the problem, while ensuring that the optimization problem remains 
factorable, i.e., all functions can still be expressed as compositions of simple so-
called intrinsic functions (i.e., functions for which convex and concave relaxations 
are known). Compared to the more conventional (equation-oriented) full-space 
(FS) formulations of the problem, the RS formulations have fewer optimization 
variables and constraints. In the branch-and-bound (BaB) algorithms that are 
used for global optimization of nonconvex problems, RS formulations reduce the 
dimensionality of the space that needs to be partitioned via branching, and they 
reduce the size of the subproblems for computing lower and upper bounds on the 
optimal objective value. Depending on the method used for constructing relaxa-
tions, they may however result in weaker relaxations (see Bongartz (2020), p. 64). 
Factorable RS formulations have been used successfully for flowsheet optimiza-
tion problems (Byrne and Bogle 2000; Bongartz and Mitsos 2017, 2019), param-
eter estimation problems involving ordinary differential equations  (Mitsos et  al. 
2009), and problems with machine learning models embedded (Schweidtmann and 
Mitsos 2018; Schweidtmann et al. 2021). Its application to superstructure optimi-
zation problems has not been investigated yet. Even more variables and constraints 
can be eliminated from the problem by dropping the requirement that the functions 
remain factorable, and instead allowing the use of implicit functions defined by 
the constraints. Barton and co-workers have presented methods for handling such 
implicit functions in BaB algorithms (Scott et al. 2011; Stuber et al. 2014; Wech-
sung et al. 2015). However, these are beyond the scope of this work as correspond-
ing implementations are not readily available yet.

In the present work, we compare different problem formulations for superstruc-
ture optimization problems comprising nonconvex functions. Within this compar-
ison, we investigate whether the optimization can benefit from a RS formulation.

In Sect. 2, we introduce a simple and a more complex illustrative example prob-
lem. For the simple example problem, the conventional and unconventional prob-
lem formulations are developed in Sect. 3. The comparison of all problem formu-
lations for the two example problems are presented in Sect. 4. In Sect. 5, the key 
results are confirmed by an optimization problem with a different structure (i.e., 
piecewise-defined cost function instead of unit selection), which can be modeled 
using the same reformulation approaches. Sect. 6 concludes our findings.
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2 � Problem definition

To introduce the different problem formulations in Sect. 3, we use a simple illus-
trative example problem (Sect. 2.1). This example problem and a more complex 
one with multiple disjunctions (Sect. 2.2) are then used to analyze each problem 
formulation in greater detail in Sect. 4.

2.1 � Simple illustrative example problem

In this simple example problem, we consider only two mutually exclusive options 
(either Unit P or Unit S) to produce a desired amount of a product, ṅout = 1 (con-
sidered as a parameter). This illustrative example problem is motivated by our 
work on power-to-X (Burre et al. 2020, 2021; Roh et al. 2020), in which decisions 
need to be taken on how to provide raw materials (e.g., hydrogen and carbon diox-
ide) and process them toward the final product (e.g., electricity-based fuels).

Each option comes with operating and investment costs, both of which are 
dependent on molar flow rates and unit-specific cost parameters (Table 1). Oper-
ating costs Cop are quadratically dependent on the molar flow rate passing through 
the chosen unit ( Cj

op = (ṅ
j

in
)2ej ). Investment costs Cinv are dependent on the maxi-

mal rating given as the global feed flow rate into the superstructure, ṅin , and a 
constant cost parameter ( Cj

inv
= Cj + ṅ0.6

in
 ). The dependency on ṅin (in addition to 

ṅ
j

in
 for operating costs) puts more emphasis on the nonconvexity regarding mul-

tiple variables in typical process synthesis problems. This concave term can also 
be moved out of the disjunction directly into the objective function. Our simple 
numerical experimentation showed that this does not have any effect on the opti-
mization. Also the consideration of a constant conversion parameter for each pro-
cess unit does not have an influence on the overall results. To keep the illustrative 
example problem simple, we do not consider such a parameter.

The objective is to find the process with the lowest total cost C by solving the 
following optimization problem formulated as a GDP problem:

Fig. 1   Schematic of the simple 
example problem with the 
choice of producing a desired 
amount of a product, ṅ

out
= 1 , 

either via Unit P ( Y
P
= True , 

Y
S
= False ) or Unit S 

( Y
P
= False , Y

S
= True)

Table 1   Cost parameters for the simple (GDP1) and the multiple-disjunction (GDP2) example problem. 
C
j
 are fixed investment costs and e

j
 are specific operating costs

Parameter Unit P Unit S Unit F1 Unit F2

e
j

7 3 0.1 0.3
C
j

4 7 0.5 0.4
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There are alternative ways for modeling the system, e.g., by eliminating the global 
(i.e., independent from disjunctions) equality constraints and modifying the disjunc-
tive constraints correspondingly. As Problem (GDP1) is the most direct represen-
tation of the superstructure shown in Fig. 1, the use of these global constraints is 
considered throughout this work. Additionally, we explicitly restrict all illustrative 
example problems to the exclusive choice between units (denoted by the logic exclu-
sive “or"-operator ∨ ) to keep it as simple as possible.

2.2 � Multiple‑disjunction example problem

As the flowsheet structure of Problem (GDP1) is minimalist, we analyze a more 
complex example problem with two disjunctions taken from (Grossmann and Tres-
palacios 2013), where the outlet of Unit S needs to be further processed by either 
Unit F1 or F2 (Fig.2). To make the choice for one of these units economically viable 
and the case study interesting, we introduce a cost factor of 0.1 for Unit F1 and F2.

(GDP1)

min C = Cop + Cinv

s.t. ṅin = ṅ
P
in
+ ṅ

S
in

ṅout = ṅ
P
out

+ ṅ
S
out

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

YP

ṅ
S
in
= ṅ

S
out

= 0

ṅ
P
out

= ṅ
P
in

Cop = (ṅP
in
)2eP

Cinv = CP + ṅ
0.6
in

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∨

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

YS

ṅ
P
in
= ṅ

P
out

= 0

ṅ
S
out

= ṅ
S
in

Cop = (ṅS
in
)2eS

Cinv = CS + ṅ
0.6
in

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

YP∨YS

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
≥ 0

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
∈ ℝ

YP,YS ∈ {True, False}

Fig. 2   Schematic of the flowsheet structure with two disjunctions and the choice of producing a desired 
amount of a product, ṅ

out
= 1 , either via Unit P ( Y

P
= 1 , Y

S
= 0 ) or Unit S ( Y

P
= 0 , Y

S
= 1 ). If Unit S is 

chosen, the product needs to be further processed by either Unit F1 ( Y
F1

= 1 , Y
F2

= 0 ) or F2 ( Y
F1

= 0 , 
Y
F2

= 1)
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The more complex flowsheet structure results in Problem (P2) (ESI Sect.  3), 
which is further reformulated to Problem (GDP2) to remove the nested structure 
within the disjunction and derive corresponding problem formulations as described 
in Sect. 3. These are summarized in ESI Sect. 3.

3 � Problem formulations

In this section, the most common problem formulations for superstructure opti-
mization and less common ones are presented and applied to the simple illustra-
tive example problem (GDP1). One of the most conventional methods to reformu-
late GDP into MINLP problems are the Big-M (Sect. 3.1, (Nemhauser and Wolsey 
1988)) and the Convex Hull method (Sect. 3.2, (Lee and Grossmann 2000)). Big-M 

(GDP2)

min C = Cop + Cinv

s.t. ṅin = ṅP
in
+ ṅS

in

ṅS
out

= ṅF1
in

+ ṅF2
in

ṅF
out

= ṅF1
out

+ ṅF2
out

ṅout = ṅP
out

+ ṅF
out

⎡
⎢
⎢
⎢
⎢
⎢
⎣

YP
ṅS
in
= ṅS

out
= 0

ṅP
out

= ṅP
in

Cop = (ṅP
in
)2eP

Cinv = CP + ṅ0.6
in

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∨

⎡
⎢
⎢
⎢
⎢
⎢
⎣

YS
ṅP
in
= ṅP

out
= 0

ṅS
out

= ṅS
in

Cop = (ṅS
in
)2eS + CF

op

Cinv = CS + ṅ0.6
in

+ CF
inv

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

YF1
ṅF2
in

= ṅF2
out

= 0

ṅF1
out

= ṅF1
in

CF
op

= (ṅF1
in
)2eF1

CF
inv

= CF1 + 0.1ṅ0.6
in

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∨

⎡
⎢
⎢
⎢
⎢
⎢
⎣

YF2
ṅF1
in

= ṅF1
out

= 0

ṅF2
out

= ṅF2
in

CF
op

= (ṅF2
in
)2eF2

CF
inv

= CF2 + 0.1ṅ0.6
in

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∨

⎡
⎢
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⎣

YnotF
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⎤
⎥
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⎥
⎦
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YF1∨YF2∨YnotF

YS ⇔ YF1∨YF2

Cop,Cinv,C
F
op
,CF

inv
, ṅin, ṅ

P
in
, ṅS

in
, ṅF1

in
, ṅF2

in
, ṅP

out
, ṅS

out
, ṅF1

out
, ṅF2

out
, ṅF

out
≥ 0

Cop,Cinv,C
F
op
,CF

inv
, ṅin, ṅ

P
in
, ṅS

in
, ṅF1

in
, ṅF2

in
, ṅP

out
, ṅS

out
, ṅF1

out
, ṅF2

out
, ṅF

out
∈ ℝ

YP,YS,YF1,YF2,YnotF ∈ {True, False}
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and Convex Hull transform Boolean variables Yj into binary variables yj to express 
the relationship between and within disjunctions. In contrast, a nonsmooth refor-
mulation approach can be used to prevent the use of any additional variables com-
pletely by introducing complementarity constraints. The resulting MPECs can be 
either solved directly (Sect.  3.3,  (Baumrucker et  al. 2008)) or again reformulated 
using the Plus Function (Sect. 3.4, (Chen and Mangasarian 1996)). Another alterna-
tive problem formulation, hereafter called Direct MINLP, utilizes binary variables 
directly within the equality constraints of the process model to capture the existence 
or nonexistence of a unit or process stream within a disjunction (Sect. 3.5). As we 
also consider RS formulations for all reformulation approaches, Sect. 3.6 illustrates 
such a RS formulation exemplarily for the Direct MINLP reformulation approach. In 
addition to the aforementioned reformulation approaches, superstructures represent-
ing problems with piecewise-defined functions can also be handled by using step 
functions (cf. Sect. 5, (Wechsung and Barton 2013)).

3.1 � Big‑M

The Big-M method introduces the parameter M (a big number potentially individual 
for each constraint of disjunct j), which is used to make the constraints of unchosen 
choices ( yj = 0 ) redundant. Several methods exist in literature that determine the 
optimal value for M and thus tighten relaxations (e.g., (Trespalacios and Grossmann 
2015)). To maintain a manageable complexity, we do not consider such improved 
Big-M methods. Instead, we choose M to be equal to the global upper bound of 
the variable that is bounded by the corresponding constraint. Besides binary vari-
ables for each disjunct (the transformed Boolean variables), no additional variables 
need to be introduced. However, a poor choice for M can result in weak relaxations. 
Applied to Problem (GDP1), the Big-M method results in Problem (BM1):

(BM1)

min C = Cop + Cinv

s.t. ṅin = ṅP
in
+ ṅS

in

ṅout = ṅP
out

+ ṅS
out

0 −M(1 − yP) ≤ ṅS
k
≤ 0 +M(1 − yP) k ∈ {in, out}

0 −M(1 − yS) ≤ ṅP
k
≤ 0 +M(1 − yS) k ∈ {in, out}

ṅ
j

in
−M(1 − yj) ≤ ṅ

j

out
≤ ṅ

j

in
+M(1 − yj) j ∈ {P, S}

(ṅ
j

in
)2ej −M(1 − yj) ≤ Cop ≤ (ṅ

j

in
)2ej +M(1 − yj) j ∈ {P, S}

Cj + ṅ0.6
in

−M(1 − yj) ≤ Cinv ≤ Cj + ṅ0.6
in

+M(1 − yj) j ∈ {P, S}

yP + yS = 1

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
≥ 0

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
∈ ℝ

yP, yS ∈ {0, 1}
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3.2 � Convex Hull

For the Convex Hull method, a new (disaggregated) variable, �j , needs to be intro-
duced for each variable that is affected by a disjunction and for each choice within 
the respective disjunction. The bounds on these disaggregated variables can be 
either chosen to be the global variable bounds or tightened based on the disjunct. 
In our illustrative example problems, we use global variable bounds (i.e., 0 ≤ ṅ ≤ 1 , 
0 ≤ C ≤ 20 ). Each constraint rj(�j) ≤ 0 of disjunct j is expressed by the closure of 
the perspective function (Ceria and Soares 1999):

To avoid singularities for yj = 0 , Lee and Grossmann (2000) proposed a modifi-
cation of the original perspective function, which was again modified by Sawaya 
(2006) to improve numerical performance and accuracy:

For the illustrative example problems, parameter � only needs to be nonzero as the 
disaggregated variables of unchosen units ( �j = 0 ) make Constraint (2) being ful-
filled independently from the value of � . In general, � needs to be chosen sufficiently 
small to maintain a high accuracy. As Constraints (2) represents the commonly used 
type of perspective function for global optimization, we use it for all Convex Hull 
formulations within this study where necessary. Other modifications exist and are 
summarized in Furman et al. (2020). In this study, they are not considered.

The introduction of disaggregated variables increases problem size but gener-
ally yields tighter relaxations compared to the Big-M formulation, even if the most 
suitable Big-M parameter is utilized (Grossmann and Lee 2003). The conversion of 
Problem (GDP1) with the Convex Hull method results in Problem (CH1):

(1)yjrj

(
�j

yj

)
≤ 0

(2)((1 − �)yj + �)rj

(
�j

(1 − �)yj + �

)
≤ 0
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3.3 � MPEC

In order to prevent the use of discrete variables and thus prevent solving a MINLP 
problem, superstructure optimization problems can be formulated as MPECs. This 
type of problem formulation introduces complementarity constraints to model the 
discrete choices in a process superstructure.

The MPEC problem formulation can be derived from Problem (GDP1) by con-
sidering all global constraints (to represent the part of the flowsheet that is not 
affected by disjunctions) and a subset of disjunctive constraints (to represent the part 
of the flowsheet that is affected by disjunctions). The subset of disjunctive con-
straints is chosen in such a way that (a) only those model equations of a disjunction 
are considered that correspond to the part of the flowsheet where Yj = True 
( ṅP

out
= ṅP

in
 , CP

op
= (ṅP

in
)2eP , and CP

inv
= CP + ṅ0.6

in
 for the choice YP = True ; ṅS

out
= ṅS

in
 , 

(CH1)

min C = Cop + Cinv

s.t. ṅin = ṅP
in
+ ṅS

in

ṅout = ṅP
out

+ ṅS
out

ṅ
j

in
= ṅ

j

in,P
+ ṅ

j

in,S
j ∈ {P, S}

ṅ
j

out
= ṅ

j

out,P
+ ṅ

j

out,S
j ∈ {P, S}

Cop = CP
op
+ CS

op

Cinv = CP
inv

+ CS
inv

ṅS
k,P
, ṅP

k,S
≤ 0 k ∈ {in, out}

Cj
op

≥

⎛
⎜
⎜
⎝

ṅ
j

in,j

(1 − 𝜖)yj + 𝜖

⎞
⎟
⎟
⎠

2

ej((1 − 𝜖)yj + 𝜖) j ∈ {P, S}

C
j

inv
≥ (Cj + ṅ0.6

in
)yj j ∈ {P, S}

yP + yS = 1

0 ≤ ṅS
k,P

≤ 1yP k ∈ {in, out}

0 ≤ ṅP
k,S

≤ 1yS k ∈ {in, out}

0 ≤ ṅ
j

k,j
≤ 1yj k ∈ {in, out} j ∈ {P, S}

0 ≤ Cj
m
≤ 20yj m ∈ {op, inv} j ∈ {P, S}

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
≥ 0

Cop,Cinv,C
P
op
,CS

op
,CP

inv
,CS

inv
∈ ℝ

ṅin, ṅ
P
in
, ṅS

in
, ṅP

in,P
, ṅS

in,P
, ṅP

in,S
, ṅS

in,S
∈ ℝ

ṅP
out,P

, ṅS
out,P

, ṅP
out,S

, ṅS
out,S

, ṅP
out
, ṅS

out
∈ ℝ

yP, yS ∈ {0, 1}
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CS
op

= (ṅS
in
)2eS , and CS

inv
= CS + ṅ0.6

in
 for the choice YS = True ) and (b) zero values 

can be realized if the choice j within the disjunction is not active. However, this is 
not given for all types of disjunctive problems: In the simple illustrative example 
problem (GDP1), Cj

inv
 contains constant investment costs Cj for unit j and therefore 

need to be modified by a step function that is dependent on the material stream ṅj
in

 
passing through unit j. Such a step function introduces nonconvexities additionally 
to those that are inherently part of the modeled system into the problem. If tailored 
relaxations are implemented for such a step function (Wechsung and Barton 2013), 
the optimization may however not be necessarily affected negatively. For all prob-
lem formulations in this work, the tanh-function is used as a smoothed step function 
resulting in an error below the feasibility tolerance. By adding up the cost terms Cj

op 
and Cj

inv
 for each unit j, operating costs Cop and investment costs Cinv are then 

retrieved, respectively. The relationship between disjunctions and choices within 
each disjunction is represented by complementarity constraints instead of binary 
variables. For Problem (MPEC1), the molar flows passing each unit are multiplied 
by each other and set to zero. Therefore, either ṅP

in
 or ṅS

in
 need to become zero if the 

other one is nonzero. Due to the absence of any discrete variables, global NLP solv-
ers can be used to find the global optimum. This can however be challenging. 
Although a considerably smaller problem size can be achieved in comparison to the 
other approaches, the introduced complementarity constraints can result in the prob-
lem violating constraint qualifications and hence cause problems for the local solv-
ers used for upper bounding. Often, a regularization parameter (a small number � ) 
need to be added to make the constraint qualifications hold again. The solution of 
the original problem is then obtained by sequentially reducing � to zero (Scholtes 
2001). Such a regularization is however not required for the problems analyzed in 
this work, as the global solvers used herein do in practice not depend heavily on the 
performance of the NLP solver for upper bounding, for which the constraint qualifi-
cations need to hold. To improve performance, BARON detects complementary 
constraints automatically and treats them accordingly. In MAiNGO, there is no spe-
cial algorithm to detect and treat complementarity constraints implemented yet.

The MPEC formulation of Problem (GDP1) using complementarity constraints 
results in Problem (MPEC1), in which parameter P (a big number) is used to 
approximate the step function more accurately.
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3.4 � Plus Function

An alternative representation of the complementarity constraint ( 0 = ṅP
in
ṅS
in

 ) in Prob-
lem (MPEC1) can be achieved by using the Plus Function (Chen and Mangasarian 
1996):

This function is commonly used for modeling the nonsmooth behavior of flash units 
for vapor-liquid(-liquid) equilibrium calculations with vanishing phases (Gopal and 
Biegler 1999; Sahlodin et  al. 2016), for which it has shown a promising compu-
tational performance. We refer to the resulting problem formulation as Problem 
(PLUS1) (ESI Section 2).

3.5 � Direct MINLP

A problem formulation for superstructure optimization that is only barely used is 
the direct multiplication of binary variables with the continuous variables being 
present in the disjunctions. Similarly to the aforementioned problem formulations, 
it can be derived from GDP problem (GDP1). Boolean variables Yj of the GDP 
problem transform to binary variables yj and are (in contrast to the Big-M and 
Convex Hull method) multiplied with the continuous model variables ( ṅj

in
= yjṅin 

and Cinv =
∑

j∈J yj(Cj + ṅ0.6
in
) ) to represent the existence or nonexistence of option j 

within the process flowsheet. Instead of introducing additional inequality constraints 
modeling the disjunctions, the Direct MINLP formulation incorporates the disjunc-
tions directly into the algebraic equality constraints of the model. Doing this, poten-
tial redundant global constraints may need to be disregarded ( ṅin = ṅP

in
+ ṅS

in
 ) and 

the variables in the objective function for each choice in the disjunction added up 
( Cop =

∑
j∈J(ṅ

j

in
)2ej and Cinv =

∑
j∈J yj(Cj + ṅ0.6

in
) ). The model formulation results in 

Problem (MINLP1):

(MPEC1)

min C = Cop + Cinv

s.t. ṅin = ṅP
in
+ ṅS

in

ṅ
j

out
= ṅ

j

in
j ∈ {P, S}

ṅout = ṅP
out

+ ṅS
out

Cop =
∑

j∈J

(ṅ
j

in
)2ej

Cinv =
∑

j∈J

[
tanh(Pṅ

j

in
)(Cj + ṅ0.6

in
)

]

0 = ṅP
in
ṅS
in

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
≥ 0

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
∈ ℝ

(3)0 = ṅP
in
−max(0, ṅP

in
− ṅS

in
).
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In contrast to the conventional problem formulations, the Direct MINLP formulation 
introduces nonlinearities by the multiplication of the binary variables yj with expres-
sions of the continuous variable ṅin as part of the algebraic equality constraints in 
the model. If the remaining model is linear or convex, the reformulation using the 
Big-M (cf. Sect. 3.1) or Convex Hull (cf. Sect. 3.2) method results in a mixed-inte-
ger linear programming (MILP) or convex MINLP problem, respectively, which 
can be efficiently solved with general-purpose solvers. Thus, for MILP and convex 
MINLP problems, the conventional reformulation approaches are typically supe-
rior to alternative approaches. If the remaining model is nonconvex anyway, e.g., in 
more detailed process engineering, where nonconvexities are usually inherently part 
of the (mechanistic) process model, it is not clear whether it is beneficial to reformu-
late it with the conventional approaches, as it does not result in a MILP or convex 
MINLP problem (Huster et al. 2020). Keeping bilinear terms according to the Direct 
MINLP formulation can result in smaller subproblems, which can be directly given 
to MINLP solvers.

From a modeling perspective, we may also view Problem (MINLP1) instead of 
Problem (GDP1) as a starting formulation, which may again be reformulated using 
the Big-M or Convex Hull approach. This results in slightly larger problems com-
pared to Problem (BM1) and (CH1) and was therefore found to be less computation-
ally efficient than the direct reformulation of Problem (GDP1).

3.6 � Reduced‑space formulation

The problem formulations stated in the preceding sections are given in their conven-
tional FS formulation. As we also consider RS formulations (i.e., eliminating opti-
mization variables and constraints), we exemplarily introduce the RS formulation of 
Problem (MINLP1) in such a way that variables y that depend on other model vari-
ables x are written as factorable functions ỹ(x) . By doing so, the objective function 

(MINLP1)

min C = Cop + Cinv

s.t. Cop =
∑

j∈J

(ṅ
j

in
)2ej

Cinv =
∑

j∈J

yj(Cj + ṅ0.6
in
)

ṅ
j

in
= yjṅin j ∈ {P, S}

ṅ
j

out
= ṅ

j

in
j ∈ {P, S}

ṅout = ṅP
out

+ ṅS
out

yP + yS = 1

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
≥ 0

Cop,Cinv, ṅin, ṅ
P
in
, ṅS

in
, ṅP

out
, ṅS

out
∈ ℝ

yj ∈ {0, 1} j ∈ {P, S}
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becomes an explicit function of the degrees of freedom x only. This can be done for 
all problem formulations. The RS formulation for Problem (MINLP1) is

which has only two variables ( yP, ṅin ) and contains the following functions:

Such a RS formulation with intermediate variables computed as a function of other 
variables can easily be implemented in procedural modeling environments, e.g., via 
the C++ or Python APIs of MAiNGO, which then uses the MC++ library  (Cha-
chuat et al. 2015) to obtain relaxations of these functions. The elimination of vari-
ables in such procedural modeling environments corresponds to the construction of 
a sequence of mathematical operations, for which a relaxation and their subgradients 
are constructed. This procedure can be considered as propagating the relaxations 
through the algorithm (Mitsos et al. 2009).

4 � Results for the illustrative example problems

As we focus on superstructure optimization problems containing nonconvex func-
tions, we do not consider dedicated solvers for GDP problems but rather reformulate 
the optimization problem either into a MINLP or a (nonsmooth) NLP problem (cf. 
Sect. 3). The resulting nonconvex optimization problems generally exhibit multiple 
suboptimal minima, such that a global solver needs to be used. We use our open-
source deterministic global solver MAiNGO v0.5.0.2 (Bongartz et al. 2018), which 
employs a standard BaB algorithm with several bound tightening techniques and the 
multivariate McCormick method  (McCormick 1976; Tsoukalas and Mitsos 2014) 
implemented in MC++ (Chachuat et al. 2015) to obtain relaxations. For a compari-
son with state-of-the-art deterministic global solvers, we perform each optimization 
also with the commercial solver BARON v19.3.24  (Kılınç and Sahinidis 2017) in 

(MINLP1 RS)

min
yP,ṅin

C̃(yP, ṅin)

s.t. ṅout − ̇̃nP
out
(yP, ṅin) − ̇̃nS

out
(yP, ṅin) = 0,

ṅin ≥ 0

ṅin ∈ ℝ

yP ∈ {0, 1},

C̃(yP, ṅin) ∶= C̃op(yP, ṅin) + C̃inv(yP, ṅin)

C̃op(yP, ṅin) ∶= ( ̇̃nP
in
(yP, ṅin))

2
⋅ eP + ( ̇̃nS

in
(yP, ṅin))

2
⋅ eS

C̃inv(yP, ṅin) ∶= yP ⋅ (CP + ṅ0.6
in
) + ỹS(yP) ⋅ (CS + ṅ0.6

in
)

̇̃nP
in
(yP, ṅin) ∶= yP ⋅ ṅin

̇̃nS
in
(yP, ṅin) ∶= ỹS(yP) ⋅ ṅin

ỹS(yP) ∶= 1 − yP

̇̃nP
out
(yP, ṅin) ∶= ̇̃nP

in
(yP, ṅin)

̇̃nS
out
(yP, ṅin) ∶= ̇̃nS

in
(yP, ṅin).
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the modeling system GAMS 27.0.0 using the automated generation of GAMS files 
by MAiNGO. In contrast to MAiNGO, BARON uses the auxiliary variable method 
(AVM)  (Smith and Pantelides 1997; Tawarmalani and Sahinidis 2002), which 
replaces each nonlinear term by an auxiliary variable (AV) and a constraint. For such 
constraints, known relaxations are constructed. This method is also used by other 
state-of-the-art deterministic global solvers such as ANTIGONE (Misener and Flou-
das 2014) and SCIP  (Achterberg 2009), the analysis of which is however beyond 
the scope of this work. All calculations are conducted on an Intel® Core™i3-6100 
CPU with 3.7 GHz running Windows 10 and no other applications. For both global 
solvers, default settings are selected. The optimality and feasibility tolerance is 10−3 
and 10−6 , respectively. Each optimization has been performed 100 times to reduce 
the variations in solution time for small problems caused by system background pro-
cesses. For all problems, the arithmetic mean solution time is reported in this study.

4.1 � Simple illustrative example problem

For the simple illustrative example problem (GDP1), the problem size and numeri-
cal results of each problem formulation are summarized in Table 2. FS formulations 
treat all model variables as optimization variables, whereas RS formulations use model 
equality constraints to eliminate as many optimization variables as possible. One of 
the remaining equality constraints in the RS formulations makes sure that the sum of 
streams ṅP

out
 and ṅS

out
 (i.e., the exiting stream ṅout ) equals 1. The second remaining equal-

ity constraint in Problem (MPEC1) and (PLUS1) is the complementarity constraint 
modeling the logic proposition of Problem (GDP1). As the complementarity equality 
constraint does not eliminate a degree of freedom, the problem still has one degree of 
freedom despite having the same number of variables and equality constraints. The 
remaining inequality constraints in the RS formulations for Problem (BM1) and (CH1) 

Table 2   Problem size and numerical results for the problem formulations of Problem (GDP1) presented 
in Sect. 3. The optimization has been executed 100 times, of which the arithmetic mean value is shown. 
The optimal value is 11

Big-M  Convex Hull  MPEC  Plus Func-
tion

 Direct 
MINLP

(BM1)  (CH1)  (MPEC1) (PLUS1 )  (MINLP1)

FS RS FS RS FS RS FS RS FS RS

Number of
   Continuous variables 7 2 19 2 7 2 7 2 7 1
   Discrete variables 2 1 2 1 0 0 0 0 2 1
   Equality constraints 3 1 9 1 7 2 7 2 8 1
   Inequality constraints 20 4 34 4 0 0 0 0 0 0
   BaB nodes 3 3 3 3 1 5 1 5 1 3
   Lower bound of root node 0 5.75 5 4.5 11 2.12 11 2.12 11 8. 5

CPU time per BaB node / s 0.058 0.053 0.094 0.068 0.094 0.005 0.04 0.005 0.097 0.022
Solution time / s 0.174 0.16 0.282 0.204 0.094 0.027 0.04 0.026 0.097 0.066
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result from the remaining disjunctive optimization variables. In the FS formulation, the 
Convex Hull formulation leads to much larger problems than its alternatives, whereas 
in the RS formulation, the corresponding problem is the same size as that resulting 
from the Big-M formulation. The unconventional reformulation approaches however 
still lead to smaller problem sizes, which gets more pronounced for more complex 
problems (cf. Sect. 4.2 and 5 ).

In overall, the RS formulations in MAiNGO yield significantly lower overall solu-
tion times than corresponding FS formulations and are the lowest for the unconven-
tional reformulation approaches. The higher number of BaB nodes and the lower 
lower bound (LB) in the root node for Problem (BM1) compared to those of Problem 
(MPEC1), (PLUS1), and (MINLP1) in the FS formulation indicate weaker relaxations 
despite the additional nonconvexities introduced by the unconventional approaches. For 
Problem (CH1), the optimization in FS suffers from the high number of optimization 
variables (21, cf. Table 2). The RS formulation accelerates the optimization by about 
one third of the solution time in the FS formulation (0.20 s vs. 0.28 s) given its smaller 
problem size. Compared to the alternative problem formulations, the optimization still 
takes longer.

The solution time for Problem (MPEC1) in FS is similar to that of Problem 
(MINLP1) in FS. In RS, solution time reductions are again possible despite weaker 
relaxations. The same findings also apply to Problem (MINLP1). The Plus Function 
formulation of the complementarity constraints in Problem (PLUS1) seems to reduce 
computational effort even further.

Compared to the commercial global solver BARON, optimization with MAiNGO 
for the unconventional problem formulations (MPEC1) and (MINLP1) is comparably 
fast for the FS formulations and even faster for the RS formulations, whereas BARON 
can handle the conventional problem formulations (BM1) and (CH1) better (especially 
for the FS formulations). This tendency was expected, as MAiNGO explicitly exploits 
the benefits of a smaller problem size in the lower bounding problem by using McCor-
mick relaxations (Tsoukalas and Mitsos 2014) opposed to the AVM used in BARON.

If linear instead of the nonlinear cost functions are considered, the Big-M and 
Convex Hull method results in MILP problems (cf. Problem (BM1lin) and (CHlin), 
respectively, ESI Sect. 1), which can be solved using CPLEX for both the FS and RS 
formulation. In contrast, the alternative reformulation approaches (yielding Problem 
(MPEC1lin), (PLUS1lin), and (MINLP1lin), ESI Section 1) still result in MINLP prob-
lems with nonconvex functions, which need to be solved using a global solver. How-
ever, the overall results for these three problems considering linear cost functions (cf. 
ESI Table S1 and ESI Fig. S1) do not differ from those with nonconvex cost functions. 
This indicates that the nonconvexity of model equations seem to have only minor influ-
ence on the optimization of this simple illustrative example problem.

4.2 � Multiple‑disjunction example problem

Table 3 summarizes the problem size and numerical results of each problem formu-
lation for Problem (GDP2) (each problem formulation is given in ESI Section 3). 
The newly introduced inequality constraint in the RS formulation of Problem 
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(MINLP2) makes sure that the binary variable yF2 can not become negative. Beyond 
the equality constraint for the leaving stream ṅout , Problem (BM2) and (CH2) require 
an additional equality constraint for the RS formulation to ensure that exactly one 
choice is being made for the second disjunction (choice for either F1, F2, or none). 
Problem (MINLP2) does not need a binary for this third choice (neither F1 nor F2) 
as the algebraic equations for representing the disjunctions differ from those that 
result directly from reformulating Problem (GDP2) using the Big-M and Convex 
Hull approach (cf. ESI Problem (BM2) and (CH2)). As a result, no additional equal-
ity constraint is required. Similarly to the simple illustrative example problem (cf. 
Sect. 4.1), the RS formulations of Problem (MPEC2), (PLUS2), and (MINLP2) lead 
to the smallest problems.

As for the simple illustrative example problem (cf. Sect. 4.1), the RS formulations 
in MAiNGO always yield lower overall solution times than corresponding FS for-
mulations. However, the differences between the conventional and unconventional 
reformulation approaches are for the RS formulations not as pronounced as in the 
previous example problem. In contrast, they are still well-marked for the FS formu-
lations. In the FS formulation, Problem (MPEC2) and (PLUS2) perform similarly 
due to their same size and similar relaxation tightness (cf. Table 3). Despite Prob-
lem (MINLP2) having four additional binary variables, its solution time is similar 
to that of the aforementioned problem formulations. Problem (BM2) and (MINLP2) 
benefit from a significantly smaller problem size compared to Problem (CH2), such 
that their time consumed per BaB node is also significantly smaller. The comple-
mentarity-constrainted problems (MPEC2) and (PLUS2) do not exploit their small 
problem size so effectively. The prominent advantage of the Convex Hull method—
achieving tight relaxations—does not seem to be significant here: The relaxations of 
the complementarity-constrained problem formulations (MPEC2) and (PLUS2) in 
FS seem to be even tighter (higher LB in root node) and the optimization requires 
fewer BaB nodes than Problem (CH2) (cf. Table 3). For Problem (BM2), MAiNGO 
seems to have considerable problems in the FS formulation. The solution time 
exceeds 30 minutes, which is most likely caused by the simplistic handling of inte-
ger variables in MAiNGO. There are no sophisticated heuristics for generating inte-
ger-feasible points implemented yet, which can result in poor performance. In RS 
formulations, this becomes less likely because of the much lower number of possible 
branches. However, relaxations generally tend to become weaker in the RS formu-
lation, which is confirmed by the lower LB in the root node for RS compared to 
the FS formulations. The effect of the reduction in problem size on overall solution 
time is however bigger than that of the relaxation tightness, which is impressively 
demonstrated for Problem (CH2). All in all, the much simpler and potentially more 
intuitive problem formulations (MPEC2), (PLUS2), and (MINLP2) seem to benefit 
from their comparably small problem sizes both in the FS and RS formulation while 
maintaining comparatively tight relaxations. They always yield solution times as 
low as or lower than that of the more complex formulations (BM2) and (CH2).

The comparison of the results obtained by MAiNGO with those obtained by 
BARON confirms the findings from the simple illustrative example problem (cf. 
Sect. 4.1), yet to a smaller extent: BARON performs better than MAiNGO for FS 
formulations with only few nonconvex terms (Problem (BM2) and (CH2)), whereas 
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it performs slightly worse for problems in the RS formulation with a higher number 
of nonconvex terms (Problem (MPEC2) and (MINLP2)).

4.3 � Selective branching for FS formulations

As an alternative to reducing the problem size on the modeling level (cf. Sect. 1), 
the problem size can also be reduced on the algorithm level in the means of selec-
tive branching (Epperly and Pistikopoulos 1997; Dür and Horst 1997; Ben-Tal et al. 
1994). The crucial difference between operating in a reduced space on the modeling 
level (RS formulation in MAiNGO) and on the algorithm level (selective branching) 
is that selective branching only reduces the dimensionality of the space that needs 
to be partitioned via branching, whereas the RS formulation in MAiNGO addition-
ally reduces the dimension of subproblems to be solved in both the lower and upper 
bounding problem. In selective branching, the same (significant) reductions in the 
number of BaB nodes required to solve the optimization problem and the overall 
solution time have been reported (Epperly and Pistikopoulos 1997). This does how-
ever apply only to problems with a specific structure and if constraint propagation is 
used to remain a high convergence order (Kannan and Barton 2017).

Irrespective of the approach for reformulating the GDP, the RS formulation in 
MAiNGO always results in lower solution times than the corresponding FS formula-
tion for both the simple and more complex flowsheet structure (Fig. 3 and 4 , respec-
tively). In contrast, the LB in the root node is always lower and the number of BaB 
nodes required for global optimality is always larger for the RS formulation than for 
the FS formulation or they are equal, which indicates weaker relaxations for the RS 
formulations caused by the propagation of relaxations through the algorithm.

For comparison and to isolate the effect of a smaller problem size from that of the 
branching behavior, we perform selective branching on the RS optimization vari-
ables in the FS formulations. This selective branching should result in similar BaB 
trees between the FS and RS formulations in terms of selection of branching vari-
ables and points, while it still exploits the potentially tighter relaxations of the FS 

Fig. 3   Solution time for 
Problem (GDP1) using the 
problem formulations presented 
in Sect. 3. As BARON can not 
handle max-functions, there are 
no results for the Plus Function 
formulation. The error bars 
represent the standard devia-
tion from the arithmetic mean 
value of the solution time from 
100 optimization runs using 
MAiNGO



818	 J. Burre et al.

1 3

Ta
bl

e 
3  

P
ro

bl
em

 si
ze

 a
nd

 n
um

er
ic

al
 re

su
lts

 fo
r t

he
 p

ro
bl

em
 fo

rm
ul

at
io

ns
 o

f P
ro

bl
em

 (G
D

P2
) p

re
se

nt
ed

 in
 S

ec
t. 

3.
 T

he
 o

pt
im

iz
at

io
n 

ha
s b

ee
n 

ex
ec

ut
ed

 1
00

 ti
m

es
, o

f w
hi

ch
 

th
e 

ar
ith

m
et

ic
 m

ea
n 

va
lu

e 
is

 sh
ow

n 
Th

e 
op

tim
al

 v
al

ue
 is

 1
1.

7

B
ig

-M
C

on
ve

x 
H

ul
l

M
PE

C
Pl

us
 F

un
ct

io
n

D
ire

ct
 M

IN
LP

(B
M

2)
(C

H
2)

(M
PE

C
2)

(P
LU

S2
)

(M
IN

LP
2)

FS
R

S
FS

R
S

FS
R

S
FS

R
S

FS
R

S

N
um

be
r o

f
   

C
on

tin
uo

us
 v

ar
ia

bl
es

14
3

44
3

12
3

12
3

12
1

   
D

is
cr

et
e 

va
ria

bl
es

5
2

5
2

0
0

0
0

4
2

   
Eq

ua
lit

y 
co

ns
tra

in
ts

8
2

20
2

11
2

11
2

14
1

   
In

eq
ua

lit
y 

co
ns

tra
in

ts
54

12
86

29
0

0
0

0
0

1
   

B
aB

 n
od

es
70

6,
79

8
13

3
7

1
25

1
7

7
7

   
Lo

w
er

 b
ou

nd
 o

f r
oo

t n
od

e
0

5.
8

11
.3

6
5.

75
11

.7
1.

52
11

.7
1.

52
6.

19
3.

65
C

PU
 ti

m
e 

pe
r B

aB
 n

od
e 

/ s
0.

00
3

0.
00

9
0.

23
8

0.
01

7
0.

19
5

0.
00

3
0.

13
5

0.
 0

09
0.

03
5

0.
01

2
So

lu
tio

n 
tim

e 
/ s

2,
19

3
0.

11
2

0.
71

4
0.

11
9

0.
19

5
0.

07
9

0.
13

5
0.

 0
64

0.
24

8
0.

08
7



819

1 3

Comparison of MINLP formulations for global superstructure…

formulations. This investigation is performed for the more complex flowsheet struc-
ture (Problem (GDP2)) as the differences in solution times for the FS and RS for-
mulations are most pronounced for this problem and their branching variables differ 
from each other.

Except for Problem (BM2), which seems to have an anomaly in the FS formulation, 
the results in Table 4 and Fig. 5 show that the solution time remains about the same if 
selective branching is applied to the FS formulations. This shows that the reduction in 
solution time is exclusively due to the smaller size of the subproblems. For Problem 
(MINLP2), the selective branching results in a lower number of BaB nodes compared 
to its FS formulation without selective branching. This has however only a negligible 
effect on the overall solution time compared to the solution times for RS formulations 
as the time consumed per BaB node for the RS formulation is considerably smaller. 

Fig. 4   Solution time for 
Problem (GDP2) using the 
problem formulations presented 
in Sect. 3. As BARON can not 
handle max-functions, there are 
no results for the Plus Function 
formulation. The error bars 
represent the standard devia-
tion from the arithmetic mean 
value of the solution time from 
100 optimization runs using 
MAiNGO

Table 4   Problem size and numerical results for the FS formulation of Problem (GDP2) if selective 
branching is applied. The optimization has been executed 100 times, of which the arithmetic mean value 
is shown. The optimal value is 11.7. For the FS formulation of Problem (BM2), the maximum solution 
time of 86,400 s has been reached

Big-M Convex Hull MPEC Plus Function Direct MINLP
(BM2) (CH2) (MPEC2) (PLUS2) (MINLP2)

Number of
   Continuous variables 14 44 12 12 12
   Discrete variables 5 5 0 0 4
   Equality constraints 8 20 11 11 14
   Inequality constraints 54 86 0 0 0
   BaB nodes 8,138,810 3 1 1 5
   Lower bound of root node 0 11.36 11.7 11.7 6.19

CPU time per BaB node / s 0.011 0.241 0.197 0.136 0.048
Solution time / s 86,400 0.723 0.197 0.136 0.24
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Selective branching in BARON via the specification of branching priorities has also 
only negligible influence on the solution time and the number of BaB nodes.

5 � Application to problems with piecewise‑defined functions

A commonly used case study for testing problem formulations with piecewise-defined 
functions is the solution of a heat exchanger network design problem, which can be 
formulated as a superstructure optimization problem. This is a special case of super-
structure optimization problems as the alternative units can be described as one sin-
gle unit with a piecewise-defined function, in this case, of the heat exchanger area Ai . 
Thus, the disjuncts do not represent different units but rather different regions within 
the piecewise-defined cost function of each unit (heat exchanger). The case study is 
taken from Türkay and Grossmann (1996a) and is depicted in Fig. 6 with parameters 
given in Table 5. The corresponding formulation of Problem (HEXGDP) can be found 
in ESI Sect. 4.1.

For the RS formulations, model equations had to be rearranged (e.g., for the elimi-
nation of T1 , by a partial fraction decomposition) in order to tighten relaxations and 
prevent singularities. Since in this example the alternative units can also be described 
as a single unit containing a piecewise-defined (potentially discontinuous) function, we 
introduce a new problem formulation (Problem (HEXStepF), ESI Sect.  4), hereafter 
called Step Formulation. This formulation involves step functions, for which McCor-
mick relaxations can be constructed  (Wechsung and Barton 2013). The piecewise-
defined function

is reformulated as follows:

(4)�(x) =

{
�1(x) if x ≤ x1
�2(x) otherwise

(5)�(x) = �(x − x1)�2(x) + [1 − �(x − x1)]�1(x),

Fig. 5   Solution time for the 
FS formulation of Problem 
(GDP2) if selective branching 
is applied compared to both 
the FS formulation without 
selective branching and the RS 
formulation. As BARON can 
not handle max-functions, there 
are no results for the Plus Func-
tion formulation. The error bars 
represent the standard deviation 
from the arithmetic mean 
value of the solution time from 
100 optimization runs using 
MAiNGO
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where

The problem size and numerical results for each problem formulation (see ESI 
Sect.  4 for each formulation) are summarized in Table 6. For both global solvers, 
default settings are used.

The key findings from the previous case studies are confirmed by this discontinu-
ous optimization problem. The RS formulations always result in shorter overall opti-
mization times mainly resulting from the reduced problem size. The negative effect 
of the elimination of optimization variables on the tightness of the root node relaxa-
tion is particularly pronounced for this case study. However, for Problem (HEXBM), 
(HEXCH), and (HEXMINLP), this has only a minor negative influence on the num-
ber of BaB nodes required. For the other problems, the number of BaB nodes does 
even decrease much likely due to a more directed branching. Despite the lowest LB 
in the root node of Problem (HEXMINLP), it requires the fewest BaB nodes and 
thus outperforms the Big-M and Convex Hull formulation for the RS formulation in 
this case study.

Reformulation approaches avoiding the introduction of binary variables 
and thus leading to NLP problems (Problem (HEXMPEC), (HEXPLUSF, and 
(HEXStepF)) do not benefit in the FS formulation from their smaller problem 
size. Their subproblems are solved quickly, but a high number of BaB nodes is 
required despite yielding the tightest relaxations in the root node among all for-
mulations. Moving to RS formulations reduces solution time considerably as sig-
nificantly fewer BaB nodes are required. Since relaxations can never be tighter in 
RS than corresponding FS formulations, the reduced number of BaB nodes can 
mainly be attributed to a more directed branching. The combination of a more 
directed branching with a small problem size resulting from RS formulations for 
the reformulation approaches introducing additional nonconvexities yield the 

(6)�(x) =

{
0 if x ≤ 0

1 otherwise.

Fig. 6   Heat exchanger network 
based on the work of Türkay 
and Grossmann (1996a) with the 
choice between three different 
sizes for each heat exchanger 
1–3
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lowest computational effort. Also the overall trend, BARON performing better 
than MAiNGO for the conventional reformulations approaches and MAiNGO 
generally performing better than BARON for the unconventional approaches in 
the RS formulations (except for the MINLP formulation), is confirmed by this 
heat exchanger network design problem.

We have demonstrated that RS formulations have the big advantage of 
a smaller problem size and a more directed branching, while they suffer from 
weaker relaxations than FS formulations. To combine the advantage of a small 
problem size from the RS formulations with the relaxation tightness of the FS 
formulations, we can selectively consider AVs for repeated nonlinear terms, thus 
achieving a hybrid (Najman et al. 2021) between McCormick relaxations and the 
AVM. Such a hybrid can be easily considered by MAiNGO using its automated 
identification and replacement of repeated nonlinear terms with AVs. In general, 
it is much more likely for RS than FS formulations to contain these repeated non-
linear terms (see Bongartz (2020), p.64ff.). In fact, for the heat exchanger network 
design problem, only the RS formulations contain repeated nonlinear terms. As 
illustrated in Table 6 and Fig. 7, the selected addition of AVs is beneficial espe-
cially for the complementarity-constrained problems (HEXMPEC) and (HEX-
PLUSF) despite an unchanged LB in the root node. However, the number of BaB 
nodes reduces considerably while the CPU time per BaB node remains about the 
same. In contrast, for the other problem formulations (except Problem (HEXBM)) 
the subproblems seem to become more difficult to solve, such that the benefit of 
the tighter relaxations resulting from adding selected AVs is almost outweighed. 
Problem (HEXStepF) does not exhibit repeated nonlinear terms in both the FS 
and RS formulations. The analysis shows: The consideration of selected AVs 
within the RS formulations has the potential to improve computational effort even 
further.

Fig. 7   Solution time for Problem (HEXGDP) using the problem formulations presented in Sect. 3 and 
the Step Formulation. As BARON can not handle max-functions, there are no results for the Plus Func-
tion formulation. The solution times of the optimization with BARON and the MPEC and Step Formula-
tion exceed the maximum solution time of 86400 s. No results are given for the RS (AVM/McCormick 
hybrid) Step Formulation, as it does not contain repeated nonlinear terms that could be replaced by AVs. 
The error bars represent the standard deviation from the arithmetic mean value of the solution time from 
100 optimization runs using MAiNGO
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6 � Conclusion

Superstructure optimization problems for process synthesis often contain noncon-
vex functions resulting in nonconvex MINLP problems, for which global solvers 
need to be used. Although the same problem formulations as those developed for 
superstructure optimization problems with only convex functions can be used, it 
remains unclear whether these are always the most computationally efficient ones 
for problems with nonconvex functions. In particular, for problems with only con-
vex functions, preference is usually given to formulations such as Big-M or Con-
vex Hull that avoid introducing nonconvexities, thus resulting in a convex MINLP 
or even MILP. We conjectured that for problems that contain nonconvex functions 
anyway, alternative formulations that do introduce additional nonconvexities but 
may result in smaller problems or allow tighter relaxations could be promising.

Our analysis shows that for problems containing nonconvex functions anyway, 
these additional nonconvexities do not necessarily have a considerable negative 
influence on the optimization. The resulting relaxations often seem to remain 
comparably tight despite these additional nonconvexities and the corresponding 
problem formulations contain fewer variables than the conventional formulations. 
Accordingly, the alternative formulations result in similar or even lower com-
putational time than the conventional ones for most considered examples. As an 
additional approach to reduce problem size, we exploited reduced-space (RS) for-
mulations, where we eliminate as many optimization variables as possible using 
the model equations. Despite weaker relaxations, the smaller problem size of RS 
formulations is beneficial for all problem formulations for the considered case 
studies.

The comparison of the results obtained with our open-source solver MAiNGO 
with those obtained with the state-of-the-art commercial solver BARON shows 
that neither the auxiliary variable method (AVM) employed in BARON, nor the 
propagation of McCormick relaxations employed in MAiNGO suffers signifi-
cantly from the additional nonconvex terms resulting from the unconventional 
problem reformulation approaches. Yet, the reduction of the problem size in the 
RS formulations can be exploited more effectively by MAiNGO, resulting in 
the lowest overall solution times observed for the illustrative example problems. 
For the conventional reformulation approaches, BARON generally outperforms 
MAiNGO.

We have extended the comparison of model formulations by also considering 
a problem with piecewise-defined functions instead of unit selections, which can 
be formulated as a superstructure optimization problem. For this problem, the RS 
formulation for all reformulation approaches was again computationally more 
efficient than the FS formulation. A formulation that directly treated the discon-
tinuous function with the help of step functions was particularly advantageous.

In summary, the unconventional reformulation approaches, which introduce 
nonconvex terms, are promising for nonconvex superstructure optimization prob-
lems, especially when combined with RS formulations. Bearing in mind that 
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modeling using these approaches is rather intuitive and the resulting models 
simple, they represent an interesting alternative to established approaches such 
as the Big-M and Convex Hull method. To further validate this claim, a bench-
mark library with more complex superstructure optimization problems is required 
for such comparative analyses in future studies. In this work, only a few simple 
flowsheet optimization problems have been considered, as each problem formu-
lation needed to be implemented manually for all reformulation approaches and 
for both the FS and RS formulation individually. To overcome the considerable 
manual effort and benefit from a flexible application of different reformulation 
approaches given specific problem characteristics, the automated generation of 
problem formulations (in the vein of, e.g., the open-source Python package for 
component-oriented modeling and optimization for nonlinear design and opera-
tion of integrated energy systems COMANDO (Langiu et al. 2021), the Pyomo.
GDP package  (Chen et al. 2018) that allows automated reformulation and solu-
tion of GDPs, or the Pyosyn framework  (Chen et  al. 2021) for superstructure 
modeling) based on a GDP problem would be beneficial.
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