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1 Introduction

Each model in Science and Engineering can be studied from a direct or an inverse 
point-of-view. This distinction is not well-defined. In his classic paper, Keller 1976 
provides the following definition: “We call two problems inverse of one another if 
the formulation of each involves all or part of the solution of the other. Often, for 
historical reasons, one of the two problems has been studied extensively for some 
time, while the other one is newer and not so well understood. In such cases, the for-
mer is called the direct problem, while the latter is the inverse problem.”

However, in general, a direct problem involves the identification of effects from 
causes. This is often accomplished by making predictions based on models which, 
in turn, may be based on well-established physical laws. Usually a direct problem 
analysis involves the existence and uniqueness of the solution as well as the stability 
with respect to initial data.

An inverse problem, on the other hand, aims to identify causes from effects. In 
practice, this may be done by using observed data to estimate parameters in the 
functional form of a model. Very often an inverse problem appears in the form of a 
parameter estimation problem; it can be formulated as an optimization model, and 
then solved using different optimization algorithms and techniques. In general an 
inverse problem is ill-posed and several local minima might be present.

A class of problems that has attracted a lot of attention for the variety of dif-
ferent applications is the one based on fixed point equations. Within this family of 
problems, the direct approach might involve the use of the Contraction Mapping 
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Principle (Banach’s Fixed Point Theorem) while the inverse problem may be based 
on the Collage Theorem.

The next section is devoted to recalling the inverse problem methodology for 
fixed point equations and its different variants.

2  Inverse problem for fixed point equations

Let (X, d) denote a complete metric space and let T ∶ X → X be a mapping on a 
complete metric space (X, d). T is said to be contractive if there exists a constant 
c ∈ [0, 1) such that d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X . Generally, the smallest such 
c ∈ [0, 1) for which the above inequality holds true is known as the contraction fac-
tor of T. If we look for solutions of the fixed point equation Tx = x , one can rely on 
the famous Banach’s Fixed Point Theorem Banach 1922 which reads as follows:

If T ∶ X → X is a contraction mapping on X with contraction factor c ∈ [0, 1) 
then:

• There exists a unique element x̄ ∈ X , the fixed point of T, for which Tx̄ = x̄.
• Given any x0 ∈ X , if we form the iteration sequence xn+1 = Txn , then xn → x̄ , 

i.e., d(xn, x̄) → 0 as n → ∞.

In other words, the fixed point x̄ is globally attractive. Banach’s Theorem guarantees 
the existence of a unique fixed point. Stability with respect to perturbations can also 
be proved Kunze et al. 2013.

A quite general class of inverse problems for fixed point equations can be formu-
lated as follows:

Let (X, d) be a complete metric space and a “target” element x ∈ X that we 
wish to approximate. Given an 𝜖 > 0 , can we find a contraction mapping 
T ∶ X → X with fixed point x̄ ∈ X such that d(x̄, x) < 𝜖?

Very briefly, the original motivation for this formulation was fractal image coding 
Fisher 1996; Barnsley and Hurd 1995; Lu 1997. Given the complicated nature of 
this problem, however, the determination of optimal mappings T by minimizing the 
approximation error d(x̄, x) is intractable as x is, in general, unknown.

This problem can be solved by means of the following simple consequence of 
Banach’s Theorem, known in the literature as the Collage Theorem Barnsley 1989. 
If (X, d) is a complete metric space and T ∶ X → X is a contraction mapping with 
contraction factor c ∈ [0, 1) then, for any x ∈ X , we have

where x̄ is the fixed point of T. This permits a reformulation of our original inverse 
problem as follows:

Given an 𝜖 > 0 , can we find a contraction mapping T ∶ X → X with contrac-
tion factor c ∈ [0, 1) , ideally with c ≪ 1 , such that d(x, Tx) < 𝜀?

(1)d(x, x̄) ≤
1

1 − c
d(x, Tx),
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In an effort to minimize the approximation error d(x̄, x) , we now look for contrac-
tion maps T which minimize the so-called collage error d(x, Tx). In other words, 
we look for maps T which send the target x as close as possible to itself. We refer 
to this approach as collage coding Kunze et al. 2013.

Barnsley and co-workers Barnsley et al. 1985; Barnsley 1989 were the first to 
see the potential of using the Collage Theorem for the purpose of image approxi-
mation and compression. Most, if not all fractal image coding methods are based 
on some kind of block-based collage coding method which follows the strategy 
originally presented by Jacquin Jacquin., A. 1992. A collage coding approach, 
however, may be applied in other, “nonfractal,” situations where contractive map-
pings are encountered Kunze et al. 2013.

Practically speaking, we consider a family of appropriate contraction map-
pings T� , where � ∈ Λ and Λ is a compact subset of Rn . Then we search for �̄� 
which minimizes the approximation error

The feasible set F ⊂ Λ can be defined as

which guarantees the contractivity of T� for any � ∈ F . A relaxed version of this 
problem involves the minimization of the following function

over � ∈ Λ where � is a trade-off parameter. This formulation is quite similar to the 
classical Tikhonov regularization approach Tychonoff 1963; Tychonoff and Arsenin 
1977.

The Collage Theorem and its variants have been used in the literature to solve 
a variety of inverse problems for ordinary and partial differential equations. The 
use of the Collage Theorem to solve inverse problems for ODEs was originally 
proposed in Kunze and Vrscay 1999 and developed in many subsequent works.

Related work through to 2011 is collected and expanded upon in Kunze et al. 
2013. The collection includes, in particular, the introduction of a Generalized 
Collage Theorem for boundary value problems.

More recently, the Generalized Collage Theorem was extended to a wider class 
of elliptic equations problems by considering not only Hilbert spaces but also 
reflexive Banach spaces. Let us mention that this kind of formulation arises, for 
instance, when the boundary constraints are weakly imposed Berenguer et  al. 
2015, 2016; Kunze et al. 2015.

In Capasso et al. (2013, 2014); Kunze et al. (2013) the Collage Theorem was 
extended to the case of random integral and stochastic differential equations.

We included the notion of entropy and sparsity in solving inverse problems 
in Kunze et  al. (2012). In this extended formulation, the parameter estimation 
minimization problem can be understood as a multiple criteria problem, with 
three different and conflicting criteria: The generalized collage error, the entropy 

(2)d(x, x̄𝜆).

(3)F∶=
{
𝜆 ∈ ℝ

n ∶ 0 ≤ c𝜆 ≤ c < 1
}

(4)d(x, x̄𝜆) + 𝜉c𝜆
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associated with the unknown parameters, and the sparsity of the set of unknown 
parameters.

A further extension was proposed in Garralda-Guillem et al. (2020) to consider 
variational equations that included some kind of perturbation. One of the latest 
applications of the Collage Theorem is to the solution of inverse problems on perfo-
rated or porous media.

The results recalled in this section can be found with more details and applica-
tions in Kunze and La Torre (2015). Finally, the results presented in the papers 
Berenguer et  al. 2015, 2016; Garralda-Guillem et  al. 2020; Kunze and La Torre 
2015; Kunze et al. 2019 are the most recent ones and they are related to extensions 
of the collage approach to reflexive Banach spaces, mixed variational equations, and 
perforated domains.

3  Contributions

This special issue aims at bringing together 15 articles that discuss recent advances 
of optimization methods and algorithms in inverse problems and application to sci-
ence and engineering. A typical inverse problem seeks to find a mathematical model 
that admits given observational data as an approximate solution. This sort of ques-
tion is of great interest in many application areas, including biomedical engineer-
ing and imaging, remote sensing and seismic imaging, astronomy, oceanography, 
atmospheric sciences and meteorology, chemical engineering and material sciences, 
computer vision and image processing, ecology, economics, environmental systems, 
and physical systems.

All papers included in this special issue consider aspects of numerical analysis, 
mathematical modeling, and computational methods and include topics such as: 
Inverse Problems Algorithms, Inverse Problems for Ordinary and Differential Equa-
tions, Inverse Problems using Nonsmooth Optimization, Inverse Problems using 
Multiple Criteria Optimization, Fractal-based Inverse Problems, Shape Optimiza-
tion, Inverse Optimization, Inverse Problems in Image Analysis, and Regularization 
Techniques.

In Ramzani and Behroozifar (2020) the authors exhibit a method for numeri-
cally estimating two families of two-dimensional inverse problems. They consider 
inverse problems which include a time-dependent source control and their method 
is based on operational matrices of differential and integration and product of the 
shifted Legendre polynomials. They also provide illustrative examples to investigate 
the accuracy and applicability of the method.

In Riane and David (2021a) the authors provide a new Black-Scholes model, 
where the weak formulation at stake is done in the case of a general class of finite 
Radon measures. A numerical estimation of the parameters, by means of a gradient 
algorithm, shows that the estimated model is better as regards option pricing quality 
than the classical Black-Scholes one.

In Umer et  al. (2021) the authors consider the TOPSIS approach to multi-
ple criteria decision making and they present and extended version of it in the 
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framework of interval type-2 trapezoidal pythagorean fuzzy numbers. They also 
provide an application to solar tracking system.

Interval-valued fuzzy sets have widely been acknowledged as proficient in 
modeling suspicions and practical in assigning an interval of values where allot-
ting an accurate and precise number to an expert’s outlook is too restrictive. In 
Touqeer et al. (2021) the authors establish a technique to solve linear program-
ming network problems with constraints concerning interval-valued neutrosophic 
numbers. They also present an application to energy scheduling problem with 
constraints represented as interval-valued trapezoidal neutrosophic numbers.

In Riane and David (2021b) the authors explore how to control the solutions 
of PDEs on fractal sets. They discuss the extension of classical results of con-
trol theory to self-similar sets, and apply them to the benchmark case of the 
Sierpiński Gasket.

Phaseless inverse scattering problems appear often in practical applications since 
phaseless data are relatively easier to measure than the phased data, but they are 
also numerically more difficult to solve due to the translation invariance property. 
In Jiang and Liu (2021) the authors numerically compare several source localization 
algorithms based on different norm formulations in the context of inverse scatter-
ing. They propose an improved phase retrieval algorithm. They also discuss a simple 
criterion of minimizing the condition number of the underlying linear least square 
system for optimizing the choices of scattering strengths.

In Li et al. (2021) and Urbaniak et al. (2021) the authors consider the problem 
of modifying L2-based approximations so that they “conform” in a better way to 
Weber’s model of perception: Given a greyscale background intensity I > 0 , the 
minimum change in intensity ΔI perceived by the human visual system is ΔI

Ia
= C , 

where a > 0 and C > 0 are constants. In the first paper Li et al. 2021, the authors 
modify the usual integral formulas used to define L2 distances between functions. 
The pointwise differences |u(x) − v(x)| which comprise the L2 (or Lp ) integrands 
are replaced with measures of the appropriate greyscale intervals. These measures 
are defined in terms of density functions which decrease at rates that conform with 
Weber’s model of perception. The existence of such measures is proved in the paper. 
We also define the “best Weberized approximation” of a function in terms of these 
metrics and also prove the existence and uniqueness of such an approximation. In 
the second paper Urbaniak et  al. 2021 the authors “Weberize” the L2 metric by 
inserting an intensity-dependent weight function into its integral. The weight func-
tion will depend on the exponent a so that Weber’s model is accommodated for all 
a > 0 . They also define the “best Weberized approximation” of a function and also 
prove the existence and uniqueness of such an approximation.

In Otero et  al. (2020) the authors introduce a general framework that encom-
passes a wide range of imaging applications in which the Structural Similariy Index 
SSIM can be employed as a fidelity measure. Subsequently, the authors show how 
the framework can be used to cast some standard as well as original imaging tasks 
into optimization problems, followed by a discussion of a number of novel numeri-
cal strategies for their solution.

In Yan et  al. (2021) the authors transform the 2-dimension uncertain linguis-
tic variable into a cloud model which converses the qualitative information to the 
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quantitative information. The model is formulated and solved by means of multiple 
attribute group decision making techniques.

In Tadi and Radenkovic (2021) the authors are concerned with inverse wave scat-
tering in one and two dimensional domains, that is the problem of recovering an 
unknown function based on measurements collected at the boundary of the domain. 
They develop two numerical algorithms: For one-dimensional problem they assume 
only one point of the domain is accessible. For the two-dimensional domain, the 
outer boundary is assumed to be accessible. A number of numerical examples are 
used to show their applicability and robustness to noise.

In Atanasov et al. (2021) the authors analyze a new model constituted by a sys-
tem of three ordinary differential equations that account for the change in time of the 
population size of the hive bees, forage workers and infected foragers. It models the 
condition as a contagion, transmitted by both bee-to-bee and bee-to-plant interac-
tion. The authors solve a parameter identification inverse problem to reconstruct the 
values which are directly unobservable in honeybee management.

Computing sparse solutions to overdetermined linear systems is a ubiquitous 
problem in several fields such as regression analysis, signal and image processing, 
information theory and machine learning. In Aktas et al. (2021) the authors report 
on an efficient and modular implicit enumeration algorithm to find provably optimal 
solutions to the NP-hard problem of sparsity-constrained non-negative least squares. 
They also report numerical results with real test data as well as comparisons of com-
peting methods and an application to hyperspectral imaging.

In Garralda-Guillem and Lopez (2021) the authors use a minimax equality to 
prove the existence of a solution of certain system of variational equations and then 
they provide a numerical approximation of such a solution. They also propose a 
numerical method to solve a collage-type inverse problem associated with the cor-
responding system.

In Chaofan Huang et al. (2021) the authors, motivated by the parameter identifi-
cation problem of a reaction-diffusion transport model in a vapor phase infiltration 
processes, propose a Bayesian optimization procedure for solving the inverse prob-
lem that aims to find an input setting that achieves a desired functional output.
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