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Abstract
Reinforcement learning entails many intuitive and useful approaches to solving var-
ious problems. Its main premise is to learn how to complete tasks by interacting 
with the environment and observing which actions are more optimal with respect 
to a reward signal. Methods from reinforcement learning have long been applied in 
aerospace and have more recently seen renewed interest in space applications. Prob-
lems in spacecraft control can benefit from the use of intelligent techniques when 
faced with significant uncertainties—as is common for space environments. Solv-
ing these control problems using reinforcement learning remains a challenge partly 
due to long training times and sensitivity in performance to hyperparameters which 
require careful tuning. In this work we seek to address both issues for a sample 
spacecraft control problem. To reduce training times compared to other approaches, 
we simplify the problem by discretising the action space and use a data-efficient 
algorithm to train the agent. Furthermore, we employ an automated approach to 
hyperparameter selection which optimises for a specified performance metric. Our 
approach is tested on a 3-DOF powered descent problem with uncertainties in the 
initial conditions. We run experiments with two different problem formulations—
using a ‘shaped’ state representation to guide the agent and also a ‘raw’ state repre-
sentation with unprocessed values of position, velocity and mass. The results show 
that an agent can learn a near-optimal policy efficiently by appropriately defining 
the action-space and state-space. Using the raw state representation led to ‘reward-
hacking’ and poor performance, which highlights the importance of the problem and 
state-space formulation in successfully training reinforcement learning agents. In 
addition, we show that the optimal hyperparameters can vary significantly based on 
the choice of loss function. Using two sets of hyperparameters optimised for differ-
ent loss functions, we demonstrate that in both cases the agent can find near-optimal 
policies with comparable performance to previously applied methods.
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1 Introduction

Space missions are becoming more ambitious in scope and will require new tech-
nologies and methods to fulfil increasingly stringent demands. One important 
aspect of these missions is the Guidance, Navigation, and Control (GNC) subsys-
tem which must be able to safely transport payloads and possibly humans in very 
uncertain environments. This motivates the use of methods from Intelligent Con-
trol (IC) which can cope with these uncertainties while achieving near-optimal 
performance. Classical optimisation methods for control systems can fall apart 
when uncertainties in the environment are present (Gaudet et  al. 2020b). In the 
context of landing on extra-terrestrial bodies, these uncertainties include atmos-
pheric models, spacecraft aerodynamic coefficients, and initial conditions, among 
others (Quadrelli et al. 2015).

IC methods are designed to deal with substantial uncertainties where tradi-
tional methods cannot. Combining the fields of automatic control, artificial intel-
ligence, and operational research (Saridis 1979), these methods can adapt online 
using Artificial Intelligence (AI) techniques such as fuzzy logic, machine learn-
ing, and evolutionary computing (Wilson et al. 2019). There are also classes of 
control methods which use AI methods that learn how to control a system offline 
and do not update in deployment. While these cannot be considered “intelligent” 
in the same way online adaptive intelligent controllers are, they are still very use-
ful for uncertain environments. By incorporating uncertainties into the training 
process, a controller can learn how to handle uncertainties when deployed.

Neural Networks (NNs) are one of the most common AI architectures used in 
control and have been used for several decades (Hunt et al. 1992). This is largely 
due to their universal approximation capabilities and adaptability for online adap-
tive controllers. NNs are incorporated into classical control systems in a vari-
ety of ways such as to approximate system uncertainties, model the environment, 
or directly acting as a controller (Fazlyab et al. 2016; Ichikawa and Sawa 1992; 
Talebi et al. 2009). An alternative approach to using NNs which relates to optimal 
control theories is in the machine learning paradigm of Reinforcement Learning 
(RL) (Sutton and Barto 1998). In general, these methods use NNs to learn the 
optimality (specifically the expected return) of a control policy and improve this 
incrementally through interaction with the environment. This simple idea can be 
incredibly powerful; state-of-the-art methods now compete with the performance 
of humans in certain tasks which are considered to require human intelligence 
(Mnih et al. 2015; Silver et al. 2016).

As with many machine learning problems, one bottleneck to the use of RL in 
practice is training times (Duan et  al. 2016b). Especially in environments with 
high-dimensional state or action spaces, the ‘curse-of-dimensionality’ results in 
an exponential increase in the size of the problem for the agent with increases in 
dimensionality. While recent works have shown success in learning from pixel 
level observations (Lillicrap et al. 2015), these systems require notably long train-
ing times. In these cases, as with many state-of-the-art RL applications, the agent 
operates in a discrete action space. Other works have also extended RL methods 
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to continuous action spaces (Mnih et  al. 2016; Schulman et  al. 2015; Van  de 
Wiele et al. 2020). While this results in longer training times, many continuous 
action problems can instead be simplified by appropriately discretising the action 
space. Another limitation of certain RL algorithms is their sensitivity to hyper-
parameters (Henderson et al. 2018). Since some of the update rules used in RL 
are inherently unstable, this means their hyperparameters require careful selec-
tion to avoid converging on poor solutions. This is commonly done using rules of 
thumb or trial and error (Bergstra et al. 2011). Alternatively, optimising hyperpa-
rameters more methodically can improve the resulting performance. This is not a 
trivial task due to the high dimensionality of hyperparameter search spaces but is 
not intractable with current computational methods and capabilities.

The problem of learning speed in RL is well studied with various proposed 
improvements. Algorithms such as NFQ (Riedmiller 2005) and PILCO (Deisen-
roth and Rasmussen 2011) have been developed to improve the data efficiency of 
RL. More recently the concept of “meta-learning” has become more popular. This 
is where a learning algorithm is used to train a learning algorithm which then trains 
a policy. In doing this the higher-level learning algorithm trains over a long period 
such that the lower-level algorithm learns to be quick and responsive (Wang et al. 
2017; Duan et al. 2016a). This approach has also recently been applied to a space-
craft guidance problem (Gaudet et al. 2020a). Automated hyperparameter selection 
is a very similar problem to meta-learning since it often uses a higher level learning 
procedure to “train” the hyperparameters of the lower level algorithm. These auto-
mated methods use a variety of intelligent approaches such as evolutionary compu-
tation (Schweighofer and Doya 2003; Young et al. 2015) and Bayesian optimisation 
methods (Barsce et al. 2017; Bergstra et al. 2011).

This work aims to find ways of speeding up learning times in a sample spacecraft 
control problem. This builds on work previously carried out by Gaudet and Fur-
faro (2014), Gaudet et  al. (2020b) which considers the problem of a fuel-efficient 
pinpoint Mars landing. The nature of this problem lends itself well to the RL para-
digm of learning through interaction and observing rewards. As a result, there is 
also such an environment in the OpenAI Gym suite of RL benchmarks (Brockman 
et al. 2016). The size of the problem in this benchmark environment is not repre-
sentative of reality and so the authors in Gaudet et al. (2020b) propose a more real-
istic problem with substantial uncertainties in initial conditions. In their approach, 
they use Proximal Policy Optimisation (PPO)—a RL algorithm capable of operat-
ing in continuous action spaces (Schulman et al. 2017). This has good stability but 
requires optimisation online over trajectories which is not as data efficient as many 
alternative offline approaches. Here we aim to use the popular Q-learning algorithm 
(Watkins and Dayan 1992) to find near-optimal solutions to the problem in a dis-
crete-action form. Furthermore, we use an automated sequential method to select 
hyperparameters according to different criteria and observe the effect this has on 
learning performance.

This paper is structured as follows. Below we give an overview of related work 
for the problem of powered descent guidance. Section 2 presents some fundamen-
tal concepts relating to RL and introduces the Q-learning algorithm which will 
be used to solve the lander problem. The problem of a lander powered descent is 
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then described in Sect. 3. Here we also describe the approach used to transform the 
action space from continuous to discrete. In Sect.  4 we present the results of the 
hyperparameter tuning, action space tuning, and from training the agent in the envi-
ronment. This considers how efficiently the agent learns in comparison to previous 
approaches and looks at how well it achieves the goal in the presence of uncertain-
ties. Section 5 gives conclusions and future research directions.

1.1  Related work

Autonomous GNC for extra-terrestrial landing has been a well studied problem dat-
ing back to the Apollo lunar missions (Song et al. 2020). These missions had tight 
constraints on computing power which necessitated simple and robust control algo-
rithms to generate feasible trajectories online (Klumpp 1974). Following the success 
of the Apollo missions, there have been great advancements both in the computa-
tional capabilities onboard spacecraft and the methods for autonmous GNC. Most 
newer methods applied to this problem come under the field of Optimal Control, 
where a control system seeks to maximise or minimise a characteristic of a dynami-
cal system (Bellman 1966). More recently, Intelligent Control methods have also 
gained interest for aerospace applications (Riccardi et al. 2018).

With renewed interest in missions to Mars, and its potential for future manned 
space missions, there has been more research in the past twenty years focusing on 
entry, descent, and landing for Mars missions (Braun et  al. 2006). Limitations on 
spacecraft resources and increasingly stringent requirements on control system 
performance motivates the use of optimal control theories. These methods mostly 
minimise fuel consumption (or control effort), subject to constraints on the lander’s 
final position and other aspects of the trajectory and actions (Meditch 1964). Certain 
traditional optimisation approaches, such as general nonlinear programming meth-
ods, can generate offline trajectories, but are unsuitable for use online due to the 
lack of guarantees on computational time needed (Mao et al. 2016). Instead, various 
approaches exist to transform the optimisation problem such that it can be solved 
using convex programming methods (Acikmese et  al. 2013; Acikmese and Ploen 
2007; Blackmore et  al. 2010). This allows optimal trajectory generation online in 
bounded computational time.

Compared to optimal control, IC methods will make fewer assumptions on the 
system’s dynamics, which allows them to consider greater uncertainties. This comes 
at the expense of removing the analytical guarantees on performance in optimal 
control. Instead, control methods using AI will most often give statistical guaran-
tees on performance when subject to specified uncertainties. One example of RL 
applied to powered descent is shown in Jiang et al. (2019), which also incorporates 
pseudospectral optimal control methods. In this case, the RL controller is used to 
determine the ‘handover’ point at which the controller switches from entry-phase to 
powered descent-phase. Similarly, in Furfaro and Linares (2017) the authors com-
bine RL with a ZEM/ZEV controller, which is another analytical method for descent 
trajectory generation (Guo et al. 2013). Their approach uses an RL agent to select 
waypoints for the ZEM/ZEV guidance.
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Previous work has also investigated the possibility of using RL to fully derive the 
integrated GNC system for powered descent (Gaudet and Furfaro 2014; Gaudet et al. 
2020b). As stated previously, the RL method employed in these works is PPO which 
uses continuous action spaces. Q-Learning is another RL method which has gained 
more attention recently due to the Deep Q-Networks (DQN) algorithm, which dem-
onstrated human-level performance in the benchmark Atari game environments (Mnih 
et al. 2015). Here we investigate if the methods employed in DQN can also perform 
well in the powered descent task. To the authors’ knowledge, this paper is the first 
application of this algorithm to the powered descent problem on this scale. We use the 
same problem formulation as in Gaudet et al. (2020b), which has a ‘shaped’ reward 
function designed to guide the agent towards the goal state (Ng 2003). These reward 
functions are susceptible to ‘reward-hacking’ where an agent converges on undesir-
able behaviour by exploiting an aspect of the reward function (Ng et al. 2000). Here 
we further demonstrate that, without using an appropriate corresponding state repre-
sentation for the shaped reward, an agent can ‘hack’ the reward such that it seems to 
improve its reward, but does not learn a desirable policy. Unlike previous approaches to 
this problem, we also discretise the action domain to make it suitable for Q-Learning. 
Operating in discrete action spaces has its own set of challenges compared to continu-
ous domains, especially where the action space is high dimensional with many discrete 
actions (Dulac-Arnold et al. 2015). We aim to simplify the problem complexity using 
few discrete actions and examine whether this is able to accelerate learning time while 
maintaining near-optimal performance.

2  Reinforcement learning for optimal control

This section provides the relevant background to RL and the key concepts used in this 
work. For a more comprehensive introduction into RL, readers are directed to the work 
of Sutton and Barto (1998).

2.1  RL fundamentals

A RL process consists of an agent which senses an environment in a certain state and 
carries out actions to maximise future reward. The only feedback the agent receives 
from the environment is a state signal and reward signal and it can only affect the envi-
ronment by its actions as shown schematically in Fig. 1. The policy, � followed by the 
agent dictates the action that the agent will take given a certain state. This policy is 
updated as the process goes on with the goal of converging on the optimal policy, �∗ . 
Following taking an action, the agent observes a reward, r and the new state. The goal 
from the agent’s perspective is to maximise its return, or specifically its total (cumula-
tive) discounted reward Gt following time-step t, where
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The discount factor, � affects the extent to which long term rewards are considered 
by the agent and has a value 0 ≤ � ≤ 1 . As � → 1 longer term rewards are given 
more significance and for � = 0 the only reward considered is that immediately fol-
lowing the current state.

Tasks in RL can be considered episodic or continuing based on the nature of 
the problem. Episodic tasks have clearly defined stopping criteria usually defined 
by “terminal” states, which mark the end of an episode once the agent reaches this 
state. Typically, a terminal state indicates success or failure of a task with a cor-
responding reward. Continuing tasks cannot be divided into episodes and do not 
have a stopping criteria as in episodic tasks. These problems require 𝛾 < 1 such that 
Equation 1 has a finite solution. Here we focus on episodic tasks which are the type 
of problem to which we apply our agent.

2.1.1  Value functions

Using the definition of total discounted reward from Equation  1, the state-value 
function, which is the expected return following state s, can then be defined as 
shown:

Similarly, the action-value function, i.e. the value of taking action a in state s, can be 
defined as

(1)

Gt = rt+1 + �rt+2 + �2rt+3 +⋯

=

∞∑
k=0

�krt+k+1

(2)

v�(s) = ��

[
Gt|st = s

]

= ��

[
∞∑
k=0

�krt+k+1|st = s

]

(3)

q�(s, a) = ��

[
Gt|st = s, at = a

]

= ��

[
∞∑
k=0

�krt+k+1|st = s, at = a

]

Fig. 1  Agent-environment inter-
action in reinforcement learning, 
where the agent observes a 
state and reward signal from 
the environment and uses this 
information to select an action 
to take
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In both Eqs. 2 and 3, �� denotes the expected value when following policy �.
The policy which will maximise total discounted reward is called the optimal 

policy, �∗ . By definition this is the policy where for all states the value function is 
greater than or equal to that of any other policy. The state-value function for an opti-
mal policy is as shown:

This is called the optimal state-value function. Similarly, the action-value function 
for an optimal policy, called the optimal action-value function, is defined as:

2.1.2  Markov decision processes

An important concept for RL is that of the Markov property. A system possesses this 
property if the probability that the next state, st+1 after the current state, st is the state 
s and the next reward to be observed, rt+1 is r is only dependent on the action, at car-
ried out by the agent and the current state st . In symbolic form:

This property is crucial as it has significant implications for the value function. For 
a system with the Markov property, all future states and rewards under a control 
policy � can be known at any given state. It follows that, for a Markov Decision Pro-
cess (MDP) in which the Markov property applies, equations 2 and 3 can be solved 
for any state or state-action pair if the agent has sufficient experience of the envi-
ronment. For many real systems, the Markov property does not apply but can be 
assumed such that the agent can obtain a near-optimal solution.

2.1.3  Generalised policy iteration

Three main categories of methods exist for solving MDPs such as this type of con-
trol problem: dynamic programming, Monte-Carlo methods, and temporal-differ-
ence learning (Sutton and Barto 1998). The common feature underpinning the three 
types of approach is Generalised Policy Iteration (GPI), where the agent’s policy 
and value estimate for the policy are updated iteratively. This seeks to have the esti-
mated value function of the policy converge to the true value function while also 
making the policy converge to the optimal policy.

One class of methods for reaching the optimal policy with GPI seeks to find either 
the optimal value function shown in Eq. 4 or optimal action-value function as in Eq. 5. 
Once the optimal value function is known, an optimal policy is then to take actions such 
that, from a given state s, the following state s′ has the maximal value of all possible 
states following s. So to learn the optimal policy we can learn the optimal value func-
tion. In practise, this method is impractical due to the requirement of a perfect model 
which can estimate all possible state transitions. Instead, from the optimal action-value 

(4)v∗(s) = max
�

v�(s)

(5)q∗(s, a) = max
�

q�(s, a)

(6)Pr
(
st+1 = s, rt+1 = r|st, at

)
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function we can also derive an optimal policy which selects the action with maximal 
action-value in a given state. This is referred to as taking greedy actions—only choos-
ing actions with the highest expected value.

An alternative to learning value functions is to learn a policy which maps states to 
actions. Then instead of updating value estimates which affect the policy, the agent 
directly updates its policy during learning. This policy is generally stochastic and 
parameterised as a probability distribution over actions for a given state such that the 
agent optimises the parameters of this distribution. The result is the same as for the 
value function methods described previously—in both cases the agent tends towards 
taking actions which maximise expected return.

Methods based on value functions have seen widespread use in recent state-of-
the-art applications of RL. One issue with learning action-values is that this usually 
requires a discrete action space which limits the scope of problems they can solve. Con-
trol problems often involve continuous action spaces which can be discretised by speci-
fying discrete magnitudes for each action dimension. This not only allows a greater 
scope of methods which can be used, but also simplifies the problem by making the 
number of actions finite. While this is an advantage, in certain classes of problems the 
true optimal solution requires continuous actions and so discretising the action space 
causes a loss in optimality. Here we use a discrete action space with the aim of decreas-
ing learning time and observe the effect this has on the performance compared to con-
tinuous action algorithms.

2.2  Q‑learning

A popular method for finding the optimal action-value function known as one-step 
Q-learning was devised by Watkins (1989). It is still widely used today and is one of 
the most significant influences on RL to date.

The update rule for one-step Q-learning is as follows:

In practice, this rule is modified to include a step-size parameter � which controls 
the rate at which updates are made to action values. This is necessary to prevent 
action-values from increasing rapidly which would potentially result in over-estima-
tions of action-values. The modified update rule is as shown:

Compared to other methods for learning action-values, Q-learning is unique as its 
updates directly approximate the optimal action-value function through the ‘max’ 
operator. This differs from other methods such as SARSA (Sutton 1996) where 
updates depend on the policy being followed and hence future actions taken. To 
apply Q-learning in practise, the Q estimates are stored in a table with an entry for 
each state-action pair. By updating based on the maximum action-value function of 
st+1 this algorithm can be proven to converge to q∗ provided every state-action pair is 

(7)Q(st, at) ← rt+1 + � max
a

Q(st+1, a)

(8)Q(st, at) ← Q(st, at) + �

[
rt+1 + � max

a
Q(st+1, a) − Q(st, at)

]
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updated continuously (Watkins and Dayan 1992). This means any policy which can 
visit all states throughout its learning period is suitable for applying Q-learning.

2.2.1  Q‑networks

Tabular methods of Q-learning suffer from increasingly large tables for larger state 
spaces—known as the “curse of dimensionality”—and only work in discrete state 
spaces. These limitations are removed by instead using NNs as function approxima-
tors which are more memory efficient for large state spaces and can handle continu-
ous states. The fundamental disadvantage of using NNs within RL is that there is no 
proof of a guaranteed convergence as there is with tabular methods (Scherffig 2002). 
We refer to NNs used to approximate action-values as “Q-networks”.

NNs are a useful tool capable of approximating any non-linear function (Barto 
et  al. 1983). They have developed significantly over the past century and now 
employ many new and complex architectures such as the convolutional layers pre-
sent in deep q-networks (Mnih et al. 2015). When training, a network’s parameters, 
� are adjusted to minimise a certain loss. For Q-networks, this loss is related to the 
Temporal Difference (TD)-error shown in Eq. 9, which is equivalent to the brack-
eted term from Eq. 8. Q� denotes the estimated action-value for network parameters 
� . The loss is then most often the Mean Squared Error (MSE) across state-action 
pairs.

2.3  Applying Q‑learning

With the underlying theory established, here we describe how to apply Q-learning to 
control problems. First we describe the type of policy used to explore the environ-
ment while pursuing the optimal policy. Since its creation, Q-learning has also seen 
several developments and improvements to its data efficiency and stability, some of 
which we will introduce here.

2.3.1  �‑Greedy policies

As discussed in Sect. 2.2, to converge on the optimal policy an agent must visit all 
states and continuously update all state-action pairs while learning. At the same 
time, it must take actions already deemed optimal to maximise its return. This leads 
to an issue commonly referred to as “exploration-vs-exploitation”.

In �-greedy policies, the amount of exploration an agent does is controlled by the 
parameter � , where 0 ≤ � ≤ 1 . At each timestep the agent will take a random action 
with probability � , otherwise it takes a greedy action. Usually, random actions are 
sampled with equal probability from the action space, but this can be adjusted in 
cases where random actions could be detrimental to the agent. It is sensible for an 

(9)e =

{
Q�(st, at) − rt+1, if st+1 is terminal

Q�(st, at) −
(
rt+1 + � max

a
Q�(st+1, a)

)
otherwise
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agent to explore more at the start of its training and decrease the amount of explo-
ration as its Q estimates get closer to the optimal action-value function. There are 
several ways to do this in practise; here we use a simple method of linearly decreas-
ing � from and initial value of �i to a final value of �f  . Both of these values are hyper-
parameters which can be tuned to the problem being considered. Additionally, the 
rate at which exploration decreases is controlled by the value N� , i.e. the number of 
episodes over which � varies. The value of � after nep episodes is then determined as 
shown in Eq. 10.

2.3.2  Experience replay

Q-learning in its original form performs updates on the most recently observed state 
transition and updates at every timestep. However, since Q-learning is an off-policy 
update method it does not need to update over whole trajectories taken by the pol-
icy, just the individual state transitions. Furthermore, this can be done with multiple 
state transitions at each timestep. To do this, an agent saves its “experiences” of state 
transitions into a replay memory and performs updates on minibatches of experience 
sampled from this memory. This is the idea of experience replay, which has two 
main benefits. First, the agent’s data efficiency is improved by updating on multi-
ple transitions at every timestep. Second, “one-step” Q-learning immediately loses 
information about a state transition after updating which could be useful—especially 
for rarely visited states. With experience replay every state transition is likely to be 
used multiple times to update the network including seldom visited but potentially 
valuable states.

The agent’s memory is denoted D and contains for each timestep, t, tuples of the 
form 

(
s
t
, a

t
, r

t+1, st+1

)
 which make up an entire state transition. When updating the 

network, the agent samples a minibatch of k experiences from memory. In our case, 
experiences are sampled with equal probability. For each state transition in the mini-
batch, the TD-error is computed using Eq. 9 and the network is updated using the 
MSE. For problems with longer training periods it is necessary to limit the replay 
memory size. In this case we use a parameter Nmem which is the maximum number 
of transitions which can be stored. Old transitions are then removed on a first-in-
first-out basis.

2.3.3  Target network

It has been noted that Q-networks are inherently unstable and weight updates tend to 
diverge and cause an “explosion” in their values. This is due to the ‘max’ operator in 
Eq. 7 which as noted can result in over-estimations of the action value. One simple 
method for mitigating this issue is to use a separate network for approximating target 
action-values—referred to as a “target network”. The target network is initialised 
identical to the main Q-network but does not update its own weights. Instead, the 

(10)� = max

{
�i −

nep

N�

(
�i − �f

)
, �f

}
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weights of the main Q-network are periodically copied to the target network. This 
allows the targets to also converge on the optimal action-value function while decou-
pling the weight updates from this prediction.

The parameters of the target network are denoted �− . The TD-error used to update 
the Q-network from Eq. 9 can then be written as shown for non-terminal st+1:

2.3.4  Algorithm for Q‑learning

Algorithm 1 shows the procedure we use to apply Q-learning with the components 
described previously. This is the same as the DQN algorithm (Mnih et  al. 2015) 
with the only difference being the agent’s NN architecture. In the problem consid-
ered here, features are already extracted from the environment and so shallower NNs 
with only fully connected layers instead of convolutional layers suffice to solve the 
problem.

3  Powered descent problem

We use a 3-Degrees of Freedom (DOF) lander problem obtained from Gaudet et al. 
(2020b). This section gives an overview of the environment properties; for a full 
description we direct readers to the original paper.

(11)e = Q�(st, at) −
(
rt+1 + � max

a
Q�−(st+1, a)

)
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3.1  Environment description

In the powered descent problem, an agent—in this case the lander—starts from 
one of a range of possible initial conditions a certain altitude and lateral distance 
from a landing site. The goal of the agent is to make a soft pinpoint landing at the 
desired location while minimising fuel consumption. There are three dimensions in 
the action space which represent each of the lander’s body frame axes along which it 
may produce thrust. In this 3-DOF problem, the lander’s motion is only translational 
with no rotational components. The action space, here denoted � , is the commanded 
thrust for each thruster. The body frame force acting on the lander, �B is then given 
as shown:

In this 3-DOF case the inertial frame is equivalent to the body frame and so 
�B = �N . The equations of motion are shown below:

where m is the lander’s mass, � is the position, and � is the velocity. Constant val-
ues in these equations are � = [0 0 − 3.7114]TN∕kg (gravitational field strength on 
Mars), gref = 9.81 N/kg, and Isp = 210  s. The sampling time used for transmitting 
data to the agent is 0.2s which is the frequency at which the agent receives state 
observations.

One of the key problems with achieving a pinpoint landing is the large range 
of possible initial conditions in which the lander can be located. The implemented 
environment incorporates this uncertainty in the training process by sampling over 
a wide range of initial conditions in training episodes. The range of possible condi-
tions for each relevant state value are shown in Table 1.

3.2  Shaped reward function

This problem can be readily considered as a sparse reward problem. This is where 
all state transitions except to a terminal state yield zero reward and the terminal 
reward indicates either success or failure of the task. These problems are particularly 
challenging for RL agents since they have to explore the environment to ‘find’ the 
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correct terminal state which can take many trials. On the other hand, minimising 
fuel consumption can easily be defined as a reward at every step which is inversely 
proportional to the amount of fuel consumed. Combining these two aspects together 
yields a situation where the agent is effectively discouraged from exploring by the 
negative rewards received from consuming fuel. This obviously makes the agent less 
likely to reach the target terminal state.

One way of dealing with this problem as presented in Gaudet et al. (2020b) is to 
use a shaped reward function which guides the learning towards the goal. Although 
this can cause a loss in optimality with respect to fuel consumption, this vastly 
speeds up the learning by avoiding excessively long periods of exploration. The 
reward function used in this environment is a weighted sum of different terms which 
either penalise fuel consumption or constraint violations, or motivate the agent 
towards the target landing zone. The rationale behind each term is discussed in the 
original work and stated here:

where the following quantities are defined:

(16)
r = 𝛼

���� − �targ
��� + 𝛽

����
B��� + 𝜂

+ 𝜅
�
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�
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(19)tgo =
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(20)�̂ =

{
� − [0 0 15], if rz > 15[
0 0 rz

]
, otherwise

Table 1  Range of initial 
conditions in the lander 
environment

Position values in m and velocity values in m/s

Parameter Min. Value Max. Value

Downrange position 0 2000
Crossrange position − 1000 1000
Elevation position 2300 2400
Downrange velocity − 70 − 10
Crossrange velocity − 30 30
Elevation velocity − 90 − 70
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Equation 17 can be imagined as a velocity field pointing towards the target land-
ing location. The magnitude of this velocity decreases exponentially as the position 
becomes closer to the target and from 15m above the landing location the target 
velocity is straight downwards with the aim of creating a soft, vertical landing. Per 
the first term in Eq.  16, the agent is encouraged to follow this velocity. Then the 
second term motivates minimising the fuel consumption and the third term, � is a 
positive constant which motivates the agent to continue through the environment 
towards the goal. The final term rewards a soft landing within state limits of position 
rlim , velocity vlim , and glideslope gslim.

The constants � , � , � , and � are selected to weight each of the terms in the 
reward function. We use the same values as in Gaudet et al. (2020b) of � = −0.01 , 
� = −0.05 , � = 0.01 , and � = 10 . In addition, �1 and �2 can be selected to tune the 
magnitude of the velocity field. Again we use the same values from Gaudet et al. 
(2020b) of �1 = 20 s and �2 = 100 s. The final state limits are specified as rlim = 5 m, 
vlim = 2 m/s, and gslim = 79◦.

Like the reward function, careful selection of the state representation can assist 
the agent in learning an effective policy. For such classes of landing problems, com-
mon state representations for control include quaternion or cartesian position (and 
body-frame angles for 6-dof problems) (Battin 1999). In this case where the landing 
target has a fixed position, cartesian state representation is inefficient since it does 
not exploit the rotational symmetry of the problem.

The state representation used in this environment is closely related to the shaped 
reward function and is shown in Eq. 23. Its main component is the error between 
the spacecraft’s velocity and the target velocity for each component. It also includes 
the parameter tgo from Eq. 19 which gives a crude estimate of the remaining time 
before landing based on the position and target velocity. The final component of the 
state representation is the altitude, rz , which is the most useful distance measure for 
deciding actions.

In addition to this shaped state representation, we also compare the results when 
training an agent using a ‘raw’ state representation as shown in Eq. 24. Instead of 
using the velocity error, the agent uses as input the position, velocity, and mass of 
the spacecraft at the current timestep.
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3.3  Discretised action space

As discussed previously, while Q-learning can operate in continuous state spaces 
with more advanced implementations (Van  de Wiele et  al. 2020), in its most 
common form it requires a discrete action space for maximising across actions. 
The action space for the lander is the commanded thrust for each engine which 
can be continuous or discretised with respect to a maximum thrust magnitude. 
In Gaudet et al. (2020b) the agent uses a continuous action space with limits on 
the total thrust from all of the engines. Using a discrete action space requires 
sensible maximum values for each thruster to be defined as will be discussed in 
Sect. 4.

In this environment the thrusters are oriented along each axis of the lander’s 
body frame and each thruster can provide a force in the positive or negative 
direction of its axis. Since it is usually redundant to produce a force in the neg-
ative z-direction—a force already provided by gravity—here we constrain the 
agent to only choose positive thrusts for the z-thruster. The range of possible 
thrust commands the agent can give is then specified as shown:

where Ti
max

 is the maximum possible thrust in the i-direction. The simplest way to 
discretise this action space is to allow possible actions of {−1, 0, 1} ⋅ Ti

max
 in the x- 

and y-direction and {0, 1} ⋅ Tz
max

 in the z-direction. Initial experiments showed it was 
beneficial to include an intermediate action in the z-direction instead of this on/off 
action and so for the simplest case we use {0, 0.5, 1} ⋅ Tz

max
 as the possible actions 

for this. 3 dimensions with 3 possible actions gives an action space size of 33 = 27 , 
where we assume each engine is controlled independently of the others.

4  Results of Q‑learning applied to powered descent problem

Here we present the results obtained from applying the Q-Learning algorithm 
to the previously described lander problem. These are presented in four main 
parts. First, we show the procedure used for optimising hyperparameters with 
two different loss functions. We discuss the differences in the values obtained 
for each and will later compare their performance. Second, we look at the action 
size selection, i.e. selecting an appropriate value for Ti

max
 and observe the effect 

its value has on certain performance measures. Third, we compare our results 
to those obtained using PPO in a continuous action space. Finally, we show the 
results from applying the method with a raw state representation. Experiments 
were run on an Ubuntu 18.04 computer with a 3.6 GHz Intel i7-4790 CPU and 8 
GB RAM.
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4.1  Hyperparameter optimisation

The main problem when optimising hyperparameters is the search space, which can 
contain mixtures of real, integer, and possibly categorical values. In addition, the 
number of hyperparameters can be large resulting in a significantly high-dimen-
sional search space which is difficult to optimise. One approach to the problem of 
automatically selecting hyperparameters is to perform a random search and select 
the best configuration, which can be surprisingly effective (Bergstra and Bengio 
2012). Improvements to the random search include Hyperband, which uses a bandit 
based approach to speed up evaluation (Li et al. 2017). This method assumes that an 
algorithm’s performance in early training epochs can be used to indicate later train-
ing performance, which does not hold well when training RL agents. Other auto-
mated hyperparameter search methods incorporate Bayesian optimisation methods, 
such as Spearmint (Snoek et al. 2012), Tree of Parsen Estimators (TPE) (Bergstra 
et al. 2011), and Sequential Model-based Algorithm Configuration (SMAC) (Hutter 
et al. 2011). Here we use TPE since this method has been applied successfully in 
computer vision tasks which possess the problems previously described. The imple-
mentation used here is from the Python library “hyperopt”, which is designed for 
applying TPE to machine learning models (Bergstra et al. 2013).

We fix the number of hidden layers in the Q-network as 3 and optimise the num-
ber of hidden units in each layer, denoted Ñi for the ith hidden layer. The other 
hyperparameters related to the Q-network are the learning rate, � and target network 
update steps, C. In this case the Q-learning algorithm has 4 additional hyperparam-
eters: initial exploration probability, �i ; number of episodes to decrease � , N� ; dis-
count factor, � ; and minibatch size, k. The final exploration probability �f  is fixed as 
0. To select the number of episodes over which to train agents in all experiments, we 
first trained an agent for 10,000 episodes. This used an untuned, but stable, hyper-
parameter configuration as follows: Ñ1 = 100 , Ñ2 = 150 , Ñ3 = 100 , � = 2e − 5 , 
C = 65 , �i = 0.5 , N� = 2000 , � = 0.95 , k = 100 . The resulting learning curve is 
shown in Fig.  2. Over the first 1000 episodes the reward oscillates before rapidly 
increasing. After approximately 1500 episodes this rate of increase declines and 
remains very gradual for the rest of the episodes. To strike a balance between max-
imising performance and minimising training duration, we chose 4000 episodes as 
the duration for training—both for hyperparameter optimisation and training with 
the selected hyperparameters.

In the context of RL problems there are several ways to define optimisation crite-
ria for hyperparameters. Since the agent’s main goal is to maximise its total reward, 
one possible criterion is the total reward at the end of training. Here we also aim 
to learn a near-optimal policy in the shortest number of training episodes possible. 
This can effectively be achieved by minimising the area under the learning curve—
where the cumulative rewards are negative.

From here we present results from two separate hyperparameter optimisation 
studies: reward-optimised and area-optimised. Due to the stochastic nature of the 
environment and agent, each evaluation takes the average over 8 independent runs. 
The loss value is then the upper 95% confidence interval in the average across runs. 
This is to give an indication of worst case average performance such that evaluations 
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with low mean and high variance have a higher loss than those with lower variance. 
The maximum magnitudes of the x-, y-, and z-direction thrusters can also be treated 
as tunable hyperparameters. To minimise the dimensionality of the hyperparameter 
search space, we set Tx

max
= T

y
max . Furthermore, the intermediate action magnitude in 

the z-direction is always 0.5 ⋅ Tz
max

 during hyperparameter optimisation. The effect 
of changing this relative magnitude is discussed later.

Table  2 shows the selected hyperparameters based on the area-optimised and 
reward-optimised losses. Figures  3 and 4 show the results of the hyperparameter 
optimisation as parallel plots. Each line in the plot represents one evaluation in 
the optimisation and the magnitude on each axis shows the value for its respective 
hyperparameter. Considering first the NN structure, we see that in both cases the 
optimised networks take on an autoencoder structure (Hinton 1990) with a sparse 
layer of few hidden nodes located between two larger hidden layers. The parallel 
plots also clearly show this tendency towards such a structure, with many darker 

Fig. 2  Initial training with untuned hyperparameters to select number of training episodes. Uniformly 
filtered over 120 episodes for clarity

Table 2  Selected Q-Learning 
hyperparameters when 
optimising for area under 
learning curve and final reward

Parameter Area-optimised Reward-optimised

Ñ1
212 150

Ñ2
80 65

Ñ3
218 165

� 3.96 × 10−5 2.08 × 10−5

C 70 65
�
i

0.367 0.269
N� 300 2700
� 0.914 0.926
k 58 104
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lines in a ‘V’ shape for both optimisations. This was not biased by the initial limits 
selection which were over a wide range for each layer and gradually adjusted as the 
optimisation progressed, and so it is interesting to see this structure emerge purely 
from automated selection of the number of hidden nodes. The area-optimised net-
work is also larger with every layer containing more hidden nodes than the corre-
sponding reward-optimised layer.

When tuning learning rates, it is reasonable to assume that optimising for area 
yields a higher learning rate to converge more quickly on a solution. This is reflected 
in the optimised values for � which is nearly 2 times larger in the area-optimised 
case. Again there are more darker lines higher up this axis in the area-optimised 
parallel plot compared to that of the reward-optimised. Another key difference in 
the hyperparameters comes in those affecting exploration: the value of N� for area-
optimised is 9 times smaller than that of reward optimised. This is also reasonable 
since the area-optimised agent seeks to exploit actions as quickly as possible. While 

Fig. 3  Parallel plots showing hyperparameter optimisation evaluations for area. Colour indicates loss, 
normalised on a log scale for clarity

Fig. 4  Parallel plots showing hyperparameter optimisation for reward. Colour indicates loss, normalised 
on a log scale for clarity
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the initial exploration probability �i is slightly higher in the area-optimised case, 
its exploration probability will quickly decrease to less than the reward-optimised 
agent. Looking at the parallel plots, we can also see that the best performances in 
terms of reward had a wide range of values for �i , however the best for the area 
optimisation are clustered around lower values. This is also the case for N� , where 
the best values for the reward optimisation tend to occupy a higher range of values. 
The final notable difference is in the minibatch sizes: 58 and 104 for area-optimised 
and reward-optimised respectively. The reason for this is unclear but, as can be seen 
from the parallel plots, this behaviour was shown across all optimisation runs with 
final reward favouring larger minibatch sizes and area under learning curve show-
ing a peak in performance at and near k = 58 . In the remainder of this section we 
use both the area-optimised and reward-optimised hyperparameters to compare their 
results.

4.2  Action size selection

In addition to the agent’s hyperparameters, there are several environmental param-
eters which can be tuned. For most of these we use default values as presented in 
Gaudet et al. (2020b). The only parameters which we tune here are the action mag-
nitudes. As discussed previously, this was fixed in the z-direction as Tz

max
= 12 kN. 

Initial tests showed that this gave suitable performance and did not need further tun-
ing. On the other hand, the action magnitudes in the x- and y-direction were found 
to affect the performance both in terms of landing precision and fuel consumption. 
This motivates a methodical approach to their selection.

Given the rotational symmetry of the problem about the z-axis, we can simplify 
the selection of action magnitudes by letting Tx

max
= T

y
max such that we only need 

to find a single value. We explore the effect changing this magnitude has on per-
formance by testing a trained agent over 500 episodes. This is done for values of 
action magnitude in the range (5 kN,12 kN) in steps of 1 kN. As was done for the 
hyperparameter optimisation, agents are trained for 4000 episodes. In the testing 
episodes we examine the reward received by the agent and the fuel consumption. It 
is expected that the optimal hyperparameters vary for every action magnitude, how-
ever due to time constraints and the time required to optimise the hyperparameters it 
was not possible to do this for the full range of action magnitudes. Despite this, we 
can still use the optimised values to obtain favourable performance across the range 
as shown here.

The results of this study are shown in Fig. 5. One important observation is that 
the trend in fuel consumption does not track the total reward; contrary to what might 
be expected given fuel consumption is part of the reward function. This is because 
of the landing bonus and velocity tracking terms in the reward function which can 
be more fuel intensive to achieve but produce larger rewards. Both fuel consump-
tion and average total reward vary considerably across action magnitudes and occa-
sionally have large peaks and troughs, for example when the magnitude is 11 kN 
for the area-optimised agent. Considering first the reward-optimised agent, its best 
performance in terms of reward is at 9 kN, but this also has the third highest fuel 
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consumption across its range. Furthermore, the reward shows higher variance at 
9 kN relative to other values. We select the action magnitude for the reward opti-
mised agent as 11 kN which gives the second highest reward and median fuel con-
sumption. This differs significantly for the area-optimised agent for which 11 kN is 
notably the worst performing value. Peak reward for this agent is at 10 kN which 
does also show favourable fuel consumption. However, as before we consider the 
point which has lower variance in reward to be more beneficial and so the action 
magnitude for the area-optimised agent is selected as 12 kN.

Initially the midpoint thrust in the z-direction was fixed at half the maximum 
thrust, i.e. 6 kN. Here we also test the effect of varying this magnitude on the perfor-
mance of a trained agent. Using the x and y action magnitudes specified previously, 
we vary the midpoint of the z-direction action between 0.3 and 0.7 of the maximum 
thrust and observe the changes in fuel consumption and average total reward. The 
results of this are shown in Fig. 6. Both metrics occupy a much narrower range of 
values compared to those in Fig. 5. In particular, the average total reward for each 

(a) Fuel consumption (b) Average total reward

Fig. 5  Change in performance with varying values of action magnitude for the powered descent problem. 
The respective goals are to minimise the fuel consumption and maximise the reward. Error-bars denote 
one standard error

(a) Fuel consumption (b) Average total reward

Fig. 6  Change in performance with varying mid-points of z-direction action for the powered descent 
problem. Error-bars denote one standard error
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set of optimised hyperparameters remains nearly constant across the values of the 
midpoint thrust. As expected, the fuel consumption increases with the midpoint 
thrust, especially for the area-optimised agents. However, values below 0.5 again 
show very little improvement in the fuel consumption for both agents. As with the 
previous tests, these varying midpoint actions would likely have different associated 
hyperparameters. Furthermore, in this case all of these agents were trained using the 
same midpoint action of 0.5 which was only varied in testing. Despite these limita-
tions, the results shown here suggest tuning this action has little effect on the result-
ing performance, and so this midpoint action was kept fixed at half the maximum 
magnitude.

4.3  Training and testing agents

With the hyperparameters and action sizes defined, here we show the results 
obtained from applying these agents to the environment. As with the hyperparame-
ter optimisation, the stochastic nature of the environment and agents means it is nec-
essary to run them multiple times to determine their range of performance. We do 
50 training runs of 4000 episodes for each agent and observe their learning curves. 
The results of this are shown in Fig. 7—averaged across runs with standard devia-
tion shown.

Both sets of hyperparameters show very similar trends in the learning curves 
which show a sharp increase in average reward over the first  300 episodes before 
gradually plateauing at their maximum average reward. As would be expected, the 
area-optimised curves reach their maximum more quickly than the reward-opti-
mised. Considering the standard deviation, we see little variance in performance 
over most of the training period. In both cases the highest variance occurs in the 

Fig. 7  Learning curves averaged over 50 runs for each agent. Shaded area indicates +/- one standard 
deviation. Uniformly filtered (average) over 120 episodes for clarity
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initial episodes when more random actions are taken. This variance also increases 
slightly towards the end of training—notably in the reward-optimised curves. This is 
highlighted in Fig. 8 which shows the reward optimised run which performs poorly 
towards the end of training, causing the standard deviation of reward-optimised runs 
to increase. Up to the final 500 episodes, this curve tracks the mean very closely. 
In the final 300 episodes the average total reward decreases sharply—mirroring the 
rapid increase in early training. This behaviour can be due to the inherently unstable 
nature of Q-Learning (Van Hasselt et al. 2016). This instability is partly mitigated 
by the use of the target network, as discussed previously, and by careful tuning of 
hyperparameters. While we aimed to optimise the hyperparameters using a metric 
which encouraged robustness in the solution, achieving a more robust solution less 
susceptible to diverging performance would require more training runs per evalua-
tion. However, most of the trained agents display favourable learning performance 
and can be successfully applied to the problem.

The results which follow use the optimal trained agents from each of the hyper-
parameter runs; i.e. the area-optimised agent with smallest area under the learn-
ing curve and the reward-optimised agent with highest average reward at the end 
of training. These individual learning curves along with the number of steps per 
episode are shown in Fig. 10. For comparison, a learning curve obtained from train-
ing an agent using PPO is shown in Fig. 9. Note that the y-scales are identical in 
both Figures, however the x-scale shows the difference in training times between 
Q-learning and PPO. The number of training episodes used to train the agent with 
Q-learning is an order of magnitude less than that of PPO. The policy trained using 
PPO does converge on a higher average reward than either of the Q-learning agents, 
which could be a result of the discretised action space causing a loss in optimality. 
This suggests a necessary trade-off between performance and learning time when 
choosing a RL algorithm to train an agent. While the average total reward is different 

Fig. 8  Mean and worst performing learning curves for the reward-optimised agent
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at the end of training, the number of steps per episode of every trained agent is con-
sistently close to 300. This is likely a result of the shaped reward function which 
effectively specifies the velocity at all states and therefore will tend to cause similar 
durations across episodes (Fig. 10).

Figures 11 and 12 show an example trajectory of the reward-optimised and area-
optimised agents respectively. These figures show the position and velocity of a 
lander over the course of one episode starting from initial conditions close to the 
edge of its range experienced in training. In both cases the position and velocity 

Fig. 9  Average reward and steps per episode over a training run of the PPO agent. Data from Gaudet 
et al. (2020b)

Fig. 10  Average reward and steps per episode over a training run of Q-learning for two different sets of 
hyperparameters. Uniformly filtered (average) over 120 episodes for clarity
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show an expected tendency towards zero with a very low velocity in the z-direction 
over the final seconds of the episode. The reward-optimised agent appears to achieve 
a softer landing with lower vertical velocity than that of the area-optimised agent. 

(a) Position (b) Velocity

(c) Thrust

Fig. 11  Trajectory of the reward-optimised agent over a sample episode with commanded thrusts

(a) Position (b) Velocity

(c) Thrust

Fig. 12  Trajectory of the area-optimised agent over a sample episode with commanded thrusts
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As will be shown, this was common across testing episodes. The figures also show 
the commanded thrusts, i.e. the agent’s actions over the course of the trajectory. It 
is worth noting that although the thrust oscillates between magnitudes very often, if 
we assume a minimum duration of 0.01 s (Kienitz and Bals 2005), given the action 
sampling time used here of 0.2s, these control actions can provide a physical solu-
tion. For both agents the thrusts in the x- and y-directions show similar behaviour 
with a small difference in their magnitude as discussed previously. On the other 
hand, while the reward-optimised agent frequently selects the Tz = 0.5 ⋅ Tz

max
 action 

in the z-direction, the area-optimised agent resembles more a ‘bang-bang’ control-
ler which switches between zero and its maximum amplitude. It is possible that this 
represents a local minimum solution which the area-optimised agent quickly con-
verged on, but with worse performance than the policy found after more episodes by 
the reward-optimised agent.

Finally we test each agent’s ability to handle the varying initial conditions by run-
ning many Monte Carlo simulations of an episode for a trained agent. The distribu-
tions for these are the same as for training and are simulated 5000 times to test over 
a broad range of initial conditions. Figure 13 and Table 3 show the distributions of 

Fig. 13  Scatter and KDE plots showing distributions of terminal landing states for each agent
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terminal velocity and position for both the reward-optimised and area-optimised, as 
well as the fuel consumption. Both agents consistently achieve x- and y-velocities 
within the desired range, however the area-optimised agent has slightly higher vari-
ance in the x-velocity. The x- and y-positions show a greater spread than the respec-
tive velocities for both agents. While they mostly reach the desired landing region 
within a 5m radius, there are several points for both agents which do not satisfy 
this requirement. The most striking difference in performance between the agents 
is in the terminal z-velocity. The mean z-velocity of the reward-optimised agent is 
-1.827 m/s whereas for the area-optimised agent it is -3.927  m/s. This means the 
area-optimised agent is consistently unable to achieve the soft landing requirement, 
but the reward-optimised agent shows much better performance in achieving a soft 
pinpoint landing.

We compare the results from the Q-Learning agents to those obtained from the 
agent trained using PPO. The results from running the same 5000 test episodes for 
the PPO agent as for Q-Learning are shown in Table 4. From this, we see that the 
agent trained with PPO achieves a more precise landing with a maximum distance 
from the landing position of only 1.2 m, compared to 7.918 m for the reward-opti-
mised agent and 10.798 for the area optimised. Furthermore, the velocities are gen-
erally lower for the PPO agent. These differences can be attributed to the coarse dis-
cretisation for the Q-learning agents which limits their ability for finer control. This 
is particularly important for achieving the pinpoint landing over the final few metres 
of descent, and so training a separate controller for this final phase could improve 
the overall performance. In addition, increasing the action space size with more dis-
crete magnitudes could improve the agent’s landing precision, but at the expense 
of increased problem complexity. Finally comparing the fuel consumption, the 

Table 3  Comparison of test results from both agents trained with Q-Learning

Statistics shown for terminal state over 5000 test episodes

Area Reward

Mean Min. Max. STD Mean Min. Max. STD

xy-position (m) 2.501 0.032 10.798 1.228 3.09 0.082 7.918 1.422
xy-velocity (m/s) 0.709 0.007 1.958 0.373 0.591 0.011 1.393 0.267
z-velocity (m/s) − 3.927 − 6.029 − 1.865 0.659 − 1.827 − 2.647 − 0.714 0.361
Fuel (kg) 295.5 254.9 408.8 18.1 306.4 267.4 376.1 17.3

Table 4  Test results for agent 
trained with PPO. Statistics 
shown for terminal state over 
5000 test episodes

PPO

Mean Min. Max. STD

xy-position (m) 0.744 0.318 1.2 0.16
xy-velocity (m/s) 0.254 0.228 0.295 0.008
z-velocity (m/s) − 0.719 − 0.913 − 0.107 0.12
Fuel (kg) 291.1 262.1 353.6 14.4
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averages for each agent are very similar: 291.1 kg for PPO, 295.5 for area-optimised 
Q-Learning, and 306.4 for reward-optimised Q-Learning. The area-optimised agent 
has both the highest maximum fuel consumption at 408.8 kg and the lowest mini-
mum with 254.9, however this is lilkely due to this agent rarely achieving a ‘soft’ 
landing and therefore requiring less fuel to decelerate. Although the reward-opti-
mised agent consumes more fuel than the area-optimised, it clearly shows superior 
landing performance and achieves comparable fuel consumption to the PPO agent.

4.4  Training with raw state representation

Applying the same methodology as for the results above, we also train an agent 
using Q-Learning with a raw state representation, as given by Eq.  24. Again we 
tune hyperparameters for this problem formulation using the two area- and reward-
based optimisation criteria. These gave the optimised hyperparameters as shown in 
Table  5. The action magnitudes used were the same as for the shaped state, with 
Tx
max

= T
y
max = 11 kN for the reward-optimised agent and Tx

max
= T

y
max = 12  kN for 

the area-optimised agent. These hyperparameters appear different to those of the 
shaped state problem (Table 2). In particular the NN structures do not show the clear 
autoencoder structure. Furthermore, the parameters �i and N� show the opposite 
behaviour of what is expected, with reward optimised favouring lower values for 
both compared to the area optimised.

Figure  14 shows the learning curves for the agents trained using each set of 
hyperparameters with the raw state representation. We can clearly see that 
it does not converge on as high a reward as the previous agents, only achiev-
ing an average cumulative reward of around −40 per episode. Nevertheless, both 
agents appear to ‘learn’ as their learning curves increase sharply throughout the 
early episodes. Testing these agents as before reveals their performance in terms 
of achieving a pinpoint soft landing is, however, very poor. Figure 15 shows the 
final positions and velocities for these agents over 5000 test episodes, which 
show it has a much wider spread of horizontal positions and velocities in the x- 
and y-directions than the agents using the shaped state. More importantly, the 
z-direction velocity is always very high with both agents always having terminal 

Table 5  Selected Q-Learning 
hyperparameters when 
optimising for area under 
learning curve and final reward 
in the ‘raw state’ configuration

Parameter Area-optimised Reward-optimised

Ñ1
105 120

Ñ2
150 200

Ñ3
165 130

� 4.67 × 10−5 3.89 × 10−5

C 65 65
�
i

0.441 0.316
N� 1850 900
� 0.941 0.923
k 95 120
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Fig. 14  Learning curves for agents trained with a raw state representation

Fig. 15  Scatter and KDE plots showing distributions of terminal landing states for each agent trained 
with a raw state representation
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z-velocities of magnitude greater than 15  m/s. This is likely due to the nature 
of the reward function, which rewards the agent for following a target velocity. 
While the agent has learned to follow this velocity over the start of the trajectory, 
to avoid receiving the negative rewards over the final descent, where the target 
velocity decreases more sharply, it accelerates towards the end instead of deceler-
ating. This shows the importance of properly defining the RL problem, including 
the state representation, and suggests further research is needed into how to avoid 
such reward-hacking behaviour when using fixed state representations.

5  Conclusions

We have demonstrated that widely used RL techniques are applicable to the dif-
ficult control problem of powered descent. With respect to the goal of improv-
ing the learning time, it is clear that this has been achieved by simplifying the 
problem to a discrete action space and using a data-efficient algorithm. While 
this approach does not yield the same level of optimality as a continuous action 
agent, it is still capable of achieving near-optimal solutions which can cope with 
uncertainties. Using this approach required tuning of hyperparameters and careful 
selection of action space parameters. Both of these factors were shown to have a 
significant effect on the performance of an agent. In particular, hyperparameter 
tuning for different loss functions gave contrasting values for the hyperparameters 
with corresponding variations in performance of the trained agents. In this case, 
optimising for mean reward at the end of training produced a more successful 
agent than optimising for area under the learning curve.

One of the limitations of the methodology presented here is the separate tuning 
of hyperparameters and action space. Ideally these would either be optimised in 
parallel with the action space magnitude as a variable, or optimised over a range 
of action magnitudes to allow a trade-off between solutions which could also con-
sider hardware limitations. Other parameters relating to the reward function were 
also kept at their default values for the purpose of this study. Optimising these 
could also give improvements in performance.

The idea of creating simpler problems to improve the learning time has uses 
in many other environments. This could also be developed to incorporate trans-
fer learning (Taylor and Stone 2009), such that agents trained quickly on sim-
ple problems can be transferred to more complex environments using knowledge 
acquired from a simpler problem. Attempting to minimise training times eventu-
ally leads to the problem of “one-shot-learning”—having an agent learn to solve 
a problem online in a single episode. This will likely involve meta-learning pro-
cedures which can optimise various aspects of a learning agent beyond what we 
have considered here. Future work will look into exploiting environment models 
for faster training times in similar spacecraft control problems, with the long term 
goal of achieving online adaptive agents capable of one-shot-learning.
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