
Vol.:(0123456789)

Optimization and Engineering (2023) 24:223–255
https://doi.org/10.1007/s11081-021-09687-z

1 3

RESEARCH ARTICLE

Improving the efficiency of reinforcement learning
for a spacecraft powered descent with Q‑learning

Callum Wilson1 · Annalisa Riccardi1

Received: 31 July 2020 / Revised: 18 June 2021 / Accepted: 1 September 2021 /
Published online: 4 October 2021
© The Author(s) 2021

Abstract
Reinforcement learning entails many intuitive and useful approaches to solving var-
ious problems. Its main premise is to learn how to complete tasks by interacting
with the environment and observing which actions are more optimal with respect
to a reward signal. Methods from reinforcement learning have long been applied in
aerospace and have more recently seen renewed interest in space applications. Prob-
lems in spacecraft control can benefit from the use of intelligent techniques when
faced with significant uncertainties—as is common for space environments. Solv-
ing these control problems using reinforcement learning remains a challenge partly
due to long training times and sensitivity in performance to hyperparameters which
require careful tuning. In this work we seek to address both issues for a sample
spacecraft control problem. To reduce training times compared to other approaches,
we simplify the problem by discretising the action space and use a data-efficient
algorithm to train the agent. Furthermore, we employ an automated approach to
hyperparameter selection which optimises for a specified performance metric. Our
approach is tested on a 3-DOF powered descent problem with uncertainties in the
initial conditions. We run experiments with two different problem formulations—
using a ‘shaped’ state representation to guide the agent and also a ‘raw’ state repre-
sentation with unprocessed values of position, velocity and mass. The results show
that an agent can learn a near-optimal policy efficiently by appropriately defining
the action-space and state-space. Using the raw state representation led to ‘reward-
hacking’ and poor performance, which highlights the importance of the problem and
state-space formulation in successfully training reinforcement learning agents. In
addition, we show that the optimal hyperparameters can vary significantly based on
the choice of loss function. Using two sets of hyperparameters optimised for differ-
ent loss functions, we demonstrate that in both cases the agent can find near-optimal
policies with comparable performance to previously applied methods.

Keywords Intelligent Control · Reinforcement Learning · Spacecraft Powered
Descent

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3736-1355
http://orcid.org/0000-0001-5305-9450
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09687-z&domain=pdf

224 C. Wilson, A. Riccardi

1 3

1 Introduction

Space missions are becoming more ambitious in scope and will require new tech-
nologies and methods to fulfil increasingly stringent demands. One important
aspect of these missions is the Guidance, Navigation, and Control (GNC) subsys-
tem which must be able to safely transport payloads and possibly humans in very
uncertain environments. This motivates the use of methods from Intelligent Con-
trol (IC) which can cope with these uncertainties while achieving near-optimal
performance. Classical optimisation methods for control systems can fall apart
when uncertainties in the environment are present (Gaudet et al. 2020b). In the
context of landing on extra-terrestrial bodies, these uncertainties include atmos-
pheric models, spacecraft aerodynamic coefficients, and initial conditions, among
others (Quadrelli et al. 2015).

IC methods are designed to deal with substantial uncertainties where tradi-
tional methods cannot. Combining the fields of automatic control, artificial intel-
ligence, and operational research (Saridis 1979), these methods can adapt online
using Artificial Intelligence (AI) techniques such as fuzzy logic, machine learn-
ing, and evolutionary computing (Wilson et al. 2019). There are also classes of
control methods which use AI methods that learn how to control a system offline
and do not update in deployment. While these cannot be considered “intelligent”
in the same way online adaptive intelligent controllers are, they are still very use-
ful for uncertain environments. By incorporating uncertainties into the training
process, a controller can learn how to handle uncertainties when deployed.

Neural Networks (NNs) are one of the most common AI architectures used in
control and have been used for several decades (Hunt et al. 1992). This is largely
due to their universal approximation capabilities and adaptability for online adap-
tive controllers. NNs are incorporated into classical control systems in a vari-
ety of ways such as to approximate system uncertainties, model the environment,
or directly acting as a controller (Fazlyab et al. 2016; Ichikawa and Sawa 1992;
Talebi et al. 2009). An alternative approach to using NNs which relates to optimal
control theories is in the machine learning paradigm of Reinforcement Learning
(RL) (Sutton and Barto 1998). In general, these methods use NNs to learn the
optimality (specifically the expected return) of a control policy and improve this
incrementally through interaction with the environment. This simple idea can be
incredibly powerful; state-of-the-art methods now compete with the performance
of humans in certain tasks which are considered to require human intelligence
(Mnih et al. 2015; Silver et al. 2016).

As with many machine learning problems, one bottleneck to the use of RL in
practice is training times (Duan et al. 2016b). Especially in environments with
high-dimensional state or action spaces, the ‘curse-of-dimensionality’ results in
an exponential increase in the size of the problem for the agent with increases in
dimensionality. While recent works have shown success in learning from pixel
level observations (Lillicrap et al. 2015), these systems require notably long train-
ing times. In these cases, as with many state-of-the-art RL applications, the agent
operates in a discrete action space. Other works have also extended RL methods

225

1 3

Improving the efficiency of reinforcement learning for a…

to continuous action spaces (Mnih et al. 2016; Schulman et al. 2015; Van de
Wiele et al. 2020). While this results in longer training times, many continuous
action problems can instead be simplified by appropriately discretising the action
space. Another limitation of certain RL algorithms is their sensitivity to hyper-
parameters (Henderson et al. 2018). Since some of the update rules used in RL
are inherently unstable, this means their hyperparameters require careful selec-
tion to avoid converging on poor solutions. This is commonly done using rules of
thumb or trial and error (Bergstra et al. 2011). Alternatively, optimising hyperpa-
rameters more methodically can improve the resulting performance. This is not a
trivial task due to the high dimensionality of hyperparameter search spaces but is
not intractable with current computational methods and capabilities.

The problem of learning speed in RL is well studied with various proposed
improvements. Algorithms such as NFQ (Riedmiller 2005) and PILCO (Deisen-
roth and Rasmussen 2011) have been developed to improve the data efficiency of
RL. More recently the concept of “meta-learning” has become more popular. This
is where a learning algorithm is used to train a learning algorithm which then trains
a policy. In doing this the higher-level learning algorithm trains over a long period
such that the lower-level algorithm learns to be quick and responsive (Wang et al.
2017; Duan et al. 2016a). This approach has also recently been applied to a space-
craft guidance problem (Gaudet et al. 2020a). Automated hyperparameter selection
is a very similar problem to meta-learning since it often uses a higher level learning
procedure to “train” the hyperparameters of the lower level algorithm. These auto-
mated methods use a variety of intelligent approaches such as evolutionary compu-
tation (Schweighofer and Doya 2003; Young et al. 2015) and Bayesian optimisation
methods (Barsce et al. 2017; Bergstra et al. 2011).

This work aims to find ways of speeding up learning times in a sample spacecraft
control problem. This builds on work previously carried out by Gaudet and Fur-
faro (2014), Gaudet et al. (2020b) which considers the problem of a fuel-efficient
pinpoint Mars landing. The nature of this problem lends itself well to the RL para-
digm of learning through interaction and observing rewards. As a result, there is
also such an environment in the OpenAI Gym suite of RL benchmarks (Brockman
et al. 2016). The size of the problem in this benchmark environment is not repre-
sentative of reality and so the authors in Gaudet et al. (2020b) propose a more real-
istic problem with substantial uncertainties in initial conditions. In their approach,
they use Proximal Policy Optimisation (PPO)—a RL algorithm capable of operat-
ing in continuous action spaces (Schulman et al. 2017). This has good stability but
requires optimisation online over trajectories which is not as data efficient as many
alternative offline approaches. Here we aim to use the popular Q-learning algorithm
(Watkins and Dayan 1992) to find near-optimal solutions to the problem in a dis-
crete-action form. Furthermore, we use an automated sequential method to select
hyperparameters according to different criteria and observe the effect this has on
learning performance.

This paper is structured as follows. Below we give an overview of related work
for the problem of powered descent guidance. Section 2 presents some fundamen-
tal concepts relating to RL and introduces the Q-learning algorithm which will
be used to solve the lander problem. The problem of a lander powered descent is

226 C. Wilson, A. Riccardi

1 3

then described in Sect. 3. Here we also describe the approach used to transform the
action space from continuous to discrete. In Sect. 4 we present the results of the
hyperparameter tuning, action space tuning, and from training the agent in the envi-
ronment. This considers how efficiently the agent learns in comparison to previous
approaches and looks at how well it achieves the goal in the presence of uncertain-
ties. Section 5 gives conclusions and future research directions.

1.1 Related work

Autonomous GNC for extra-terrestrial landing has been a well studied problem dat-
ing back to the Apollo lunar missions (Song et al. 2020). These missions had tight
constraints on computing power which necessitated simple and robust control algo-
rithms to generate feasible trajectories online (Klumpp 1974). Following the success
of the Apollo missions, there have been great advancements both in the computa-
tional capabilities onboard spacecraft and the methods for autonmous GNC. Most
newer methods applied to this problem come under the field of Optimal Control,
where a control system seeks to maximise or minimise a characteristic of a dynami-
cal system (Bellman 1966). More recently, Intelligent Control methods have also
gained interest for aerospace applications (Riccardi et al. 2018).

With renewed interest in missions to Mars, and its potential for future manned
space missions, there has been more research in the past twenty years focusing on
entry, descent, and landing for Mars missions (Braun et al. 2006). Limitations on
spacecraft resources and increasingly stringent requirements on control system
performance motivates the use of optimal control theories. These methods mostly
minimise fuel consumption (or control effort), subject to constraints on the lander’s
final position and other aspects of the trajectory and actions (Meditch 1964). Certain
traditional optimisation approaches, such as general nonlinear programming meth-
ods, can generate offline trajectories, but are unsuitable for use online due to the
lack of guarantees on computational time needed (Mao et al. 2016). Instead, various
approaches exist to transform the optimisation problem such that it can be solved
using convex programming methods (Acikmese et al. 2013; Acikmese and Ploen
2007; Blackmore et al. 2010). This allows optimal trajectory generation online in
bounded computational time.

Compared to optimal control, IC methods will make fewer assumptions on the
system’s dynamics, which allows them to consider greater uncertainties. This comes
at the expense of removing the analytical guarantees on performance in optimal
control. Instead, control methods using AI will most often give statistical guaran-
tees on performance when subject to specified uncertainties. One example of RL
applied to powered descent is shown in Jiang et al. (2019), which also incorporates
pseudospectral optimal control methods. In this case, the RL controller is used to
determine the ‘handover’ point at which the controller switches from entry-phase to
powered descent-phase. Similarly, in Furfaro and Linares (2017) the authors com-
bine RL with a ZEM/ZEV controller, which is another analytical method for descent
trajectory generation (Guo et al. 2013). Their approach uses an RL agent to select
waypoints for the ZEM/ZEV guidance.

227

1 3

Improving the efficiency of reinforcement learning for a…

Previous work has also investigated the possibility of using RL to fully derive the
integrated GNC system for powered descent (Gaudet and Furfaro 2014; Gaudet et al.
2020b). As stated previously, the RL method employed in these works is PPO which
uses continuous action spaces. Q-Learning is another RL method which has gained
more attention recently due to the Deep Q-Networks (DQN) algorithm, which dem-
onstrated human-level performance in the benchmark Atari game environments (Mnih
et al. 2015). Here we investigate if the methods employed in DQN can also perform
well in the powered descent task. To the authors’ knowledge, this paper is the first
application of this algorithm to the powered descent problem on this scale. We use the
same problem formulation as in Gaudet et al. (2020b), which has a ‘shaped’ reward
function designed to guide the agent towards the goal state (Ng 2003). These reward
functions are susceptible to ‘reward-hacking’ where an agent converges on undesir-
able behaviour by exploiting an aspect of the reward function (Ng et al. 2000). Here
we further demonstrate that, without using an appropriate corresponding state repre-
sentation for the shaped reward, an agent can ‘hack’ the reward such that it seems to
improve its reward, but does not learn a desirable policy. Unlike previous approaches to
this problem, we also discretise the action domain to make it suitable for Q-Learning.
Operating in discrete action spaces has its own set of challenges compared to continu-
ous domains, especially where the action space is high dimensional with many discrete
actions (Dulac-Arnold et al. 2015). We aim to simplify the problem complexity using
few discrete actions and examine whether this is able to accelerate learning time while
maintaining near-optimal performance.

2 Reinforcement learning for optimal control

This section provides the relevant background to RL and the key concepts used in this
work. For a more comprehensive introduction into RL, readers are directed to the work
of Sutton and Barto (1998).

2.1 RL fundamentals

A RL process consists of an agent which senses an environment in a certain state and
carries out actions to maximise future reward. The only feedback the agent receives
from the environment is a state signal and reward signal and it can only affect the envi-
ronment by its actions as shown schematically in Fig. 1. The policy, � followed by the
agent dictates the action that the agent will take given a certain state. This policy is
updated as the process goes on with the goal of converging on the optimal policy, �∗ .
Following taking an action, the agent observes a reward, r and the new state. The goal
from the agent’s perspective is to maximise its return, or specifically its total (cumula-
tive) discounted reward Gt following time-step t, where

228 C. Wilson, A. Riccardi

1 3

The discount factor, � affects the extent to which long term rewards are considered
by the agent and has a value 0 ≤ � ≤ 1 . As � → 1 longer term rewards are given
more significance and for � = 0 the only reward considered is that immediately fol-
lowing the current state.

Tasks in RL can be considered episodic or continuing based on the nature of
the problem. Episodic tasks have clearly defined stopping criteria usually defined
by “terminal” states, which mark the end of an episode once the agent reaches this
state. Typically, a terminal state indicates success or failure of a task with a cor-
responding reward. Continuing tasks cannot be divided into episodes and do not
have a stopping criteria as in episodic tasks. These problems require 𝛾 < 1 such that
Equation 1 has a finite solution. Here we focus on episodic tasks which are the type
of problem to which we apply our agent.

2.1.1 Value functions

Using the definition of total discounted reward from Equation 1, the state-value
function, which is the expected return following state s, can then be defined as
shown:

Similarly, the action-value function, i.e. the value of taking action a in state s, can be
defined as

(1)

Gt = rt+1 + �rt+2 + �2rt+3 +⋯

=

∞∑
k=0

�krt+k+1

(2)

v�(s) = ��

[
Gt|st = s

]

= ��

[
∞∑
k=0

�krt+k+1|st = s

]

(3)

q�(s, a) = ��

[
Gt|st = s, at = a

]

= ��

[
∞∑
k=0

�krt+k+1|st = s, at = a

]

Fig. 1 Agent-environment inter-
action in reinforcement learning,
where the agent observes a
state and reward signal from
the environment and uses this
information to select an action
to take

229

1 3

Improving the efficiency of reinforcement learning for a…

In both Eqs. 2 and 3, �� denotes the expected value when following policy �.
The policy which will maximise total discounted reward is called the optimal

policy, �∗ . By definition this is the policy where for all states the value function is
greater than or equal to that of any other policy. The state-value function for an opti-
mal policy is as shown:

This is called the optimal state-value function. Similarly, the action-value function
for an optimal policy, called the optimal action-value function, is defined as:

2.1.2 Markov decision processes

An important concept for RL is that of the Markov property. A system possesses this
property if the probability that the next state, st+1 after the current state, st is the state
s and the next reward to be observed, rt+1 is r is only dependent on the action, at car-
ried out by the agent and the current state st . In symbolic form:

This property is crucial as it has significant implications for the value function. For
a system with the Markov property, all future states and rewards under a control
policy � can be known at any given state. It follows that, for a Markov Decision Pro-
cess (MDP) in which the Markov property applies, equations 2 and 3 can be solved
for any state or state-action pair if the agent has sufficient experience of the envi-
ronment. For many real systems, the Markov property does not apply but can be
assumed such that the agent can obtain a near-optimal solution.

2.1.3 Generalised policy iteration

Three main categories of methods exist for solving MDPs such as this type of con-
trol problem: dynamic programming, Monte-Carlo methods, and temporal-differ-
ence learning (Sutton and Barto 1998). The common feature underpinning the three
types of approach is Generalised Policy Iteration (GPI), where the agent’s policy
and value estimate for the policy are updated iteratively. This seeks to have the esti-
mated value function of the policy converge to the true value function while also
making the policy converge to the optimal policy.

One class of methods for reaching the optimal policy with GPI seeks to find either
the optimal value function shown in Eq. 4 or optimal action-value function as in Eq. 5.
Once the optimal value function is known, an optimal policy is then to take actions such
that, from a given state s, the following state s′ has the maximal value of all possible
states following s. So to learn the optimal policy we can learn the optimal value func-
tion. In practise, this method is impractical due to the requirement of a perfect model
which can estimate all possible state transitions. Instead, from the optimal action-value

(4)v∗(s) = max
�

v�(s)

(5)q∗(s, a) = max
�

q�(s, a)

(6)Pr
(
st+1 = s, rt+1 = r|st, at

)

230 C. Wilson, A. Riccardi

1 3

function we can also derive an optimal policy which selects the action with maximal
action-value in a given state. This is referred to as taking greedy actions—only choos-
ing actions with the highest expected value.

An alternative to learning value functions is to learn a policy which maps states to
actions. Then instead of updating value estimates which affect the policy, the agent
directly updates its policy during learning. This policy is generally stochastic and
parameterised as a probability distribution over actions for a given state such that the
agent optimises the parameters of this distribution. The result is the same as for the
value function methods described previously—in both cases the agent tends towards
taking actions which maximise expected return.

Methods based on value functions have seen widespread use in recent state-of-
the-art applications of RL. One issue with learning action-values is that this usually
requires a discrete action space which limits the scope of problems they can solve. Con-
trol problems often involve continuous action spaces which can be discretised by speci-
fying discrete magnitudes for each action dimension. This not only allows a greater
scope of methods which can be used, but also simplifies the problem by making the
number of actions finite. While this is an advantage, in certain classes of problems the
true optimal solution requires continuous actions and so discretising the action space
causes a loss in optimality. Here we use a discrete action space with the aim of decreas-
ing learning time and observe the effect this has on the performance compared to con-
tinuous action algorithms.

2.2 Q‑learning

A popular method for finding the optimal action-value function known as one-step
Q-learning was devised by Watkins (1989). It is still widely used today and is one of
the most significant influences on RL to date.

The update rule for one-step Q-learning is as follows:

In practice, this rule is modified to include a step-size parameter � which controls
the rate at which updates are made to action values. This is necessary to prevent
action-values from increasing rapidly which would potentially result in over-estima-
tions of action-values. The modified update rule is as shown:

Compared to other methods for learning action-values, Q-learning is unique as its
updates directly approximate the optimal action-value function through the ‘max’
operator. This differs from other methods such as SARSA (Sutton 1996) where
updates depend on the policy being followed and hence future actions taken. To
apply Q-learning in practise, the Q estimates are stored in a table with an entry for
each state-action pair. By updating based on the maximum action-value function of
st+1 this algorithm can be proven to converge to q∗ provided every state-action pair is

(7)Q(st, at) ← rt+1 + � max
a

Q(st+1, a)

(8)Q(st, at) ← Q(st, at) + �

[
rt+1 + � max

a
Q(st+1, a) − Q(st, at)

]

231

1 3

Improving the efficiency of reinforcement learning for a…

updated continuously (Watkins and Dayan 1992). This means any policy which can
visit all states throughout its learning period is suitable for applying Q-learning.

2.2.1 Q‑networks

Tabular methods of Q-learning suffer from increasingly large tables for larger state
spaces—known as the “curse of dimensionality”—and only work in discrete state
spaces. These limitations are removed by instead using NNs as function approxima-
tors which are more memory efficient for large state spaces and can handle continu-
ous states. The fundamental disadvantage of using NNs within RL is that there is no
proof of a guaranteed convergence as there is with tabular methods (Scherffig 2002).
We refer to NNs used to approximate action-values as “Q-networks”.

NNs are a useful tool capable of approximating any non-linear function (Barto
et al. 1983). They have developed significantly over the past century and now
employ many new and complex architectures such as the convolutional layers pre-
sent in deep q-networks (Mnih et al. 2015). When training, a network’s parameters,
� are adjusted to minimise a certain loss. For Q-networks, this loss is related to the
Temporal Difference (TD)-error shown in Eq. 9, which is equivalent to the brack-
eted term from Eq. 8. Q� denotes the estimated action-value for network parameters
� . The loss is then most often the Mean Squared Error (MSE) across state-action
pairs.

2.3 Applying Q‑learning

With the underlying theory established, here we describe how to apply Q-learning to
control problems. First we describe the type of policy used to explore the environ-
ment while pursuing the optimal policy. Since its creation, Q-learning has also seen
several developments and improvements to its data efficiency and stability, some of
which we will introduce here.

2.3.1 �‑Greedy policies

As discussed in Sect. 2.2, to converge on the optimal policy an agent must visit all
states and continuously update all state-action pairs while learning. At the same
time, it must take actions already deemed optimal to maximise its return. This leads
to an issue commonly referred to as “exploration-vs-exploitation”.

In �-greedy policies, the amount of exploration an agent does is controlled by the
parameter � , where 0 ≤ � ≤ 1 . At each timestep the agent will take a random action
with probability � , otherwise it takes a greedy action. Usually, random actions are
sampled with equal probability from the action space, but this can be adjusted in
cases where random actions could be detrimental to the agent. It is sensible for an

(9)e =

{
Q�(st, at) − rt+1, if st+1 is terminal

Q�(st, at) −
(
rt+1 + � max

a
Q�(st+1, a)

)
otherwise

232 C. Wilson, A. Riccardi

1 3

agent to explore more at the start of its training and decrease the amount of explo-
ration as its Q estimates get closer to the optimal action-value function. There are
several ways to do this in practise; here we use a simple method of linearly decreas-
ing � from and initial value of �i to a final value of �f . Both of these values are hyper-
parameters which can be tuned to the problem being considered. Additionally, the
rate at which exploration decreases is controlled by the value N� , i.e. the number of
episodes over which � varies. The value of � after nep episodes is then determined as
shown in Eq. 10.

2.3.2 Experience replay

Q-learning in its original form performs updates on the most recently observed state
transition and updates at every timestep. However, since Q-learning is an off-policy
update method it does not need to update over whole trajectories taken by the pol-
icy, just the individual state transitions. Furthermore, this can be done with multiple
state transitions at each timestep. To do this, an agent saves its “experiences” of state
transitions into a replay memory and performs updates on minibatches of experience
sampled from this memory. This is the idea of experience replay, which has two
main benefits. First, the agent’s data efficiency is improved by updating on multi-
ple transitions at every timestep. Second, “one-step” Q-learning immediately loses
information about a state transition after updating which could be useful—especially
for rarely visited states. With experience replay every state transition is likely to be
used multiple times to update the network including seldom visited but potentially
valuable states.

The agent’s memory is denoted D and contains for each timestep, t, tuples of the
form

(
s
t
, a

t
, r

t+1, st+1

)
 which make up an entire state transition. When updating the

network, the agent samples a minibatch of k experiences from memory. In our case,
experiences are sampled with equal probability. For each state transition in the mini-
batch, the TD-error is computed using Eq. 9 and the network is updated using the
MSE. For problems with longer training periods it is necessary to limit the replay
memory size. In this case we use a parameter Nmem which is the maximum number
of transitions which can be stored. Old transitions are then removed on a first-in-
first-out basis.

2.3.3 Target network

It has been noted that Q-networks are inherently unstable and weight updates tend to
diverge and cause an “explosion” in their values. This is due to the ‘max’ operator in
Eq. 7 which as noted can result in over-estimations of the action value. One simple
method for mitigating this issue is to use a separate network for approximating target
action-values—referred to as a “target network”. The target network is initialised
identical to the main Q-network but does not update its own weights. Instead, the

(10)� = max

{
�i −

nep

N�

(
�i − �f

)
, �f

}

233

1 3

Improving the efficiency of reinforcement learning for a…

weights of the main Q-network are periodically copied to the target network. This
allows the targets to also converge on the optimal action-value function while decou-
pling the weight updates from this prediction.

The parameters of the target network are denoted �− . The TD-error used to update
the Q-network from Eq. 9 can then be written as shown for non-terminal st+1:

2.3.4 Algorithm for Q‑learning

Algorithm 1 shows the procedure we use to apply Q-learning with the components
described previously. This is the same as the DQN algorithm (Mnih et al. 2015)
with the only difference being the agent’s NN architecture. In the problem consid-
ered here, features are already extracted from the environment and so shallower NNs
with only fully connected layers instead of convolutional layers suffice to solve the
problem.

3 Powered descent problem

We use a 3-Degrees of Freedom (DOF) lander problem obtained from Gaudet et al.
(2020b). This section gives an overview of the environment properties; for a full
description we direct readers to the original paper.

(11)e = Q�(st, at) −
(
rt+1 + � max

a
Q�−(st+1, a)

)

234 C. Wilson, A. Riccardi

1 3

3.1 Environment description

In the powered descent problem, an agent—in this case the lander—starts from
one of a range of possible initial conditions a certain altitude and lateral distance
from a landing site. The goal of the agent is to make a soft pinpoint landing at the
desired location while minimising fuel consumption. There are three dimensions in
the action space which represent each of the lander’s body frame axes along which it
may produce thrust. In this 3-DOF problem, the lander’s motion is only translational
with no rotational components. The action space, here denoted � , is the commanded
thrust for each thruster. The body frame force acting on the lander, �B is then given
as shown:

In this 3-DOF case the inertial frame is equivalent to the body frame and so
�B = �N . The equations of motion are shown below:

where m is the lander’s mass, � is the position, and � is the velocity. Constant val-
ues in these equations are � = [0 0 − 3.7114]TN∕kg (gravitational field strength on
Mars), gref = 9.81 N/kg, and Isp = 210 s. The sampling time used for transmitting
data to the agent is 0.2s which is the frequency at which the agent receives state
observations.

One of the key problems with achieving a pinpoint landing is the large range
of possible initial conditions in which the lander can be located. The implemented
environment incorporates this uncertainty in the training process by sampling over
a wide range of initial conditions in training episodes. The range of possible condi-
tions for each relevant state value are shown in Table 1.

3.2 Shaped reward function

This problem can be readily considered as a sparse reward problem. This is where
all state transitions except to a terminal state yield zero reward and the terminal
reward indicates either success or failure of the task. These problems are particularly
challenging for RL agents since they have to explore the environment to ‘find’ the

(12)�B = � =

⎧
⎪⎨⎪⎩

Tx
cmd

T
y

cmd

Tz

cmd

⎫
⎪⎬⎪⎭

(13)�̇ = �

(14)�̇ =
�N

m
+ �

(15)ṁ = −
𝛴3

i=1
FB
i

Ispgref

235

1 3

Improving the efficiency of reinforcement learning for a…

correct terminal state which can take many trials. On the other hand, minimising
fuel consumption can easily be defined as a reward at every step which is inversely
proportional to the amount of fuel consumed. Combining these two aspects together
yields a situation where the agent is effectively discouraged from exploring by the
negative rewards received from consuming fuel. This obviously makes the agent less
likely to reach the target terminal state.

One way of dealing with this problem as presented in Gaudet et al. (2020b) is to
use a shaped reward function which guides the learning towards the goal. Although
this can cause a loss in optimality with respect to fuel consumption, this vastly
speeds up the learning by avoiding excessively long periods of exploration. The
reward function used in this environment is a weighted sum of different terms which
either penalise fuel consumption or constraint violations, or motivate the agent
towards the target landing zone. The rationale behind each term is discussed in the
original work and stated here:

where the following quantities are defined:

(16)
r = 𝛼

���� − �targ
��� + 𝛽

����
B��� + 𝜂

+ 𝜅
�
rz < 0and‖�‖ < rlimand‖�‖ < vlimandgs < gslim

�

(17)�targ = −v0

�
�̂

‖�̂‖
��

1 − exp

�
−
tgo

𝜏

��

(18)v0 =
‖‖�0‖‖

(19)tgo =
‖�̂‖
‖�̂‖

(20)�̂ =

{
� − [0 0 15], if rz > 15[
0 0 rz

]
, otherwise

Table 1 Range of initial
conditions in the lander
environment

Position values in m and velocity values in m/s

Parameter Min. Value Max. Value

Downrange position 0 2000
Crossrange position − 1000 1000
Elevation position 2300 2400
Downrange velocity − 70 − 10
Crossrange velocity − 30 30
Elevation velocity − 90 − 70

236 C. Wilson, A. Riccardi

1 3

Equation 17 can be imagined as a velocity field pointing towards the target land-
ing location. The magnitude of this velocity decreases exponentially as the position
becomes closer to the target and from 15m above the landing location the target
velocity is straight downwards with the aim of creating a soft, vertical landing. Per
the first term in Eq. 16, the agent is encouraged to follow this velocity. Then the
second term motivates minimising the fuel consumption and the third term, � is a
positive constant which motivates the agent to continue through the environment
towards the goal. The final term rewards a soft landing within state limits of position
rlim , velocity vlim , and glideslope gslim.

The constants � , � , � , and � are selected to weight each of the terms in the
reward function. We use the same values as in Gaudet et al. (2020b) of � = −0.01 ,
� = −0.05 , � = 0.01 , and � = 10 . In addition, �1 and �2 can be selected to tune the
magnitude of the velocity field. Again we use the same values from Gaudet et al.
(2020b) of �1 = 20 s and �2 = 100 s. The final state limits are specified as rlim = 5 m,
vlim = 2 m/s, and gslim = 79◦.

Like the reward function, careful selection of the state representation can assist
the agent in learning an effective policy. For such classes of landing problems, com-
mon state representations for control include quaternion or cartesian position (and
body-frame angles for 6-dof problems) (Battin 1999). In this case where the landing
target has a fixed position, cartesian state representation is inefficient since it does
not exploit the rotational symmetry of the problem.

The state representation used in this environment is closely related to the shaped
reward function and is shown in Eq. 23. Its main component is the error between
the spacecraft’s velocity and the target velocity for each component. It also includes
the parameter tgo from Eq. 19 which gives a crude estimate of the remaining time
before landing based on the position and target velocity. The final component of the
state representation is the altitude, rz , which is the most useful distance measure for
deciding actions.

In addition to this shaped state representation, we also compare the results when
training an agent using a ‘raw’ state representation as shown in Eq. 24. Instead of
using the velocity error, the agent uses as input the position, velocity, and mass of
the spacecraft at the current timestep.

(21)�̂ =

{
� − [0 0 − 2], if rz > 15

� − [0 0 − 1], otherwise

(22)𝜏 =

{
𝜏1, if rz > 15

𝜏2, otherwise

(23)s =
[
vx − vx

targ
, vy − v

y

targ, v
z − vz

targ
, tgo, rz

]

(24)s =
[
rx, ry, rz, vx, vy, vz, m

]

237

1 3

Improving the efficiency of reinforcement learning for a…

3.3 Discretised action space

As discussed previously, while Q-learning can operate in continuous state spaces
with more advanced implementations (Van de Wiele et al. 2020), in its most
common form it requires a discrete action space for maximising across actions.
The action space for the lander is the commanded thrust for each engine which
can be continuous or discretised with respect to a maximum thrust magnitude.
In Gaudet et al. (2020b) the agent uses a continuous action space with limits on
the total thrust from all of the engines. Using a discrete action space requires
sensible maximum values for each thruster to be defined as will be discussed in
Sect. 4.

In this environment the thrusters are oriented along each axis of the lander’s
body frame and each thruster can provide a force in the positive or negative
direction of its axis. Since it is usually redundant to produce a force in the neg-
ative z-direction—a force already provided by gravity—here we constrain the
agent to only choose positive thrusts for the z-thruster. The range of possible
thrust commands the agent can give is then specified as shown:

where Ti
max

 is the maximum possible thrust in the i-direction. The simplest way to
discretise this action space is to allow possible actions of {−1, 0, 1} ⋅ Ti

max
 in the x-

and y-direction and {0, 1} ⋅ Tz
max

 in the z-direction. Initial experiments showed it was
beneficial to include an intermediate action in the z-direction instead of this on/off
action and so for the simplest case we use {0, 0.5, 1} ⋅ Tz

max
 as the possible actions

for this. 3 dimensions with 3 possible actions gives an action space size of 33 = 27 ,
where we assume each engine is controlled independently of the others.

4 Results of Q‑learning applied to powered descent problem

Here we present the results obtained from applying the Q-Learning algorithm
to the previously described lander problem. These are presented in four main
parts. First, we show the procedure used for optimising hyperparameters with
two different loss functions. We discuss the differences in the values obtained
for each and will later compare their performance. Second, we look at the action
size selection, i.e. selecting an appropriate value for Ti

max
 and observe the effect

its value has on certain performance measures. Third, we compare our results
to those obtained using PPO in a continuous action space. Finally, we show the
results from applying the method with a raw state representation. Experiments
were run on an Ubuntu 18.04 computer with a 3.6 GHz Intel i7-4790 CPU and 8
GB RAM.

(25)� =

⎧⎪⎨⎪⎩

[−1, 1] ⋅ Tx
max

[−1, 1] ⋅ T
y
max

[0, 1] ⋅ Tz
max

⎫⎪⎬⎪⎭

238 C. Wilson, A. Riccardi

1 3

4.1 Hyperparameter optimisation

The main problem when optimising hyperparameters is the search space, which can
contain mixtures of real, integer, and possibly categorical values. In addition, the
number of hyperparameters can be large resulting in a significantly high-dimen-
sional search space which is difficult to optimise. One approach to the problem of
automatically selecting hyperparameters is to perform a random search and select
the best configuration, which can be surprisingly effective (Bergstra and Bengio
2012). Improvements to the random search include Hyperband, which uses a bandit
based approach to speed up evaluation (Li et al. 2017). This method assumes that an
algorithm’s performance in early training epochs can be used to indicate later train-
ing performance, which does not hold well when training RL agents. Other auto-
mated hyperparameter search methods incorporate Bayesian optimisation methods,
such as Spearmint (Snoek et al. 2012), Tree of Parsen Estimators (TPE) (Bergstra
et al. 2011), and Sequential Model-based Algorithm Configuration (SMAC) (Hutter
et al. 2011). Here we use TPE since this method has been applied successfully in
computer vision tasks which possess the problems previously described. The imple-
mentation used here is from the Python library “hyperopt”, which is designed for
applying TPE to machine learning models (Bergstra et al. 2013).

We fix the number of hidden layers in the Q-network as 3 and optimise the num-
ber of hidden units in each layer, denoted Ñi for the ith hidden layer. The other
hyperparameters related to the Q-network are the learning rate, � and target network
update steps, C. In this case the Q-learning algorithm has 4 additional hyperparam-
eters: initial exploration probability, �i ; number of episodes to decrease � , N� ; dis-
count factor, � ; and minibatch size, k. The final exploration probability �f is fixed as
0. To select the number of episodes over which to train agents in all experiments, we
first trained an agent for 10,000 episodes. This used an untuned, but stable, hyper-
parameter configuration as follows: Ñ1 = 100 , Ñ2 = 150 , Ñ3 = 100 , � = 2e − 5 ,
C = 65 , �i = 0.5 , N� = 2000 , � = 0.95 , k = 100 . The resulting learning curve is
shown in Fig. 2. Over the first 1000 episodes the reward oscillates before rapidly
increasing. After approximately 1500 episodes this rate of increase declines and
remains very gradual for the rest of the episodes. To strike a balance between max-
imising performance and minimising training duration, we chose 4000 episodes as
the duration for training—both for hyperparameter optimisation and training with
the selected hyperparameters.

In the context of RL problems there are several ways to define optimisation crite-
ria for hyperparameters. Since the agent’s main goal is to maximise its total reward,
one possible criterion is the total reward at the end of training. Here we also aim
to learn a near-optimal policy in the shortest number of training episodes possible.
This can effectively be achieved by minimising the area under the learning curve—
where the cumulative rewards are negative.

From here we present results from two separate hyperparameter optimisation
studies: reward-optimised and area-optimised. Due to the stochastic nature of the
environment and agent, each evaluation takes the average over 8 independent runs.
The loss value is then the upper 95% confidence interval in the average across runs.
This is to give an indication of worst case average performance such that evaluations

239

1 3

Improving the efficiency of reinforcement learning for a…

with low mean and high variance have a higher loss than those with lower variance.
The maximum magnitudes of the x-, y-, and z-direction thrusters can also be treated
as tunable hyperparameters. To minimise the dimensionality of the hyperparameter
search space, we set Tx

max
= T

y
max . Furthermore, the intermediate action magnitude in

the z-direction is always 0.5 ⋅ Tz
max

 during hyperparameter optimisation. The effect
of changing this relative magnitude is discussed later.

Table 2 shows the selected hyperparameters based on the area-optimised and
reward-optimised losses. Figures 3 and 4 show the results of the hyperparameter
optimisation as parallel plots. Each line in the plot represents one evaluation in
the optimisation and the magnitude on each axis shows the value for its respective
hyperparameter. Considering first the NN structure, we see that in both cases the
optimised networks take on an autoencoder structure (Hinton 1990) with a sparse
layer of few hidden nodes located between two larger hidden layers. The parallel
plots also clearly show this tendency towards such a structure, with many darker

Fig. 2 Initial training with untuned hyperparameters to select number of training episodes. Uniformly
filtered over 120 episodes for clarity

Table 2 Selected Q-Learning
hyperparameters when
optimising for area under
learning curve and final reward

Parameter Area-optimised Reward-optimised

Ñ1
212 150

Ñ2
80 65

Ñ3
218 165

� 3.96 × 10−5 2.08 × 10−5

C 70 65
�
i

0.367 0.269
N� 300 2700
� 0.914 0.926
k 58 104

240 C. Wilson, A. Riccardi

1 3

lines in a ‘V’ shape for both optimisations. This was not biased by the initial limits
selection which were over a wide range for each layer and gradually adjusted as the
optimisation progressed, and so it is interesting to see this structure emerge purely
from automated selection of the number of hidden nodes. The area-optimised net-
work is also larger with every layer containing more hidden nodes than the corre-
sponding reward-optimised layer.

When tuning learning rates, it is reasonable to assume that optimising for area
yields a higher learning rate to converge more quickly on a solution. This is reflected
in the optimised values for � which is nearly 2 times larger in the area-optimised
case. Again there are more darker lines higher up this axis in the area-optimised
parallel plot compared to that of the reward-optimised. Another key difference in
the hyperparameters comes in those affecting exploration: the value of N� for area-
optimised is 9 times smaller than that of reward optimised. This is also reasonable
since the area-optimised agent seeks to exploit actions as quickly as possible. While

Fig. 3 Parallel plots showing hyperparameter optimisation evaluations for area. Colour indicates loss,
normalised on a log scale for clarity

Fig. 4 Parallel plots showing hyperparameter optimisation for reward. Colour indicates loss, normalised
on a log scale for clarity

241

1 3

Improving the efficiency of reinforcement learning for a…

the initial exploration probability �i is slightly higher in the area-optimised case,
its exploration probability will quickly decrease to less than the reward-optimised
agent. Looking at the parallel plots, we can also see that the best performances in
terms of reward had a wide range of values for �i , however the best for the area
optimisation are clustered around lower values. This is also the case for N� , where
the best values for the reward optimisation tend to occupy a higher range of values.
The final notable difference is in the minibatch sizes: 58 and 104 for area-optimised
and reward-optimised respectively. The reason for this is unclear but, as can be seen
from the parallel plots, this behaviour was shown across all optimisation runs with
final reward favouring larger minibatch sizes and area under learning curve show-
ing a peak in performance at and near k = 58 . In the remainder of this section we
use both the area-optimised and reward-optimised hyperparameters to compare their
results.

4.2 Action size selection

In addition to the agent’s hyperparameters, there are several environmental param-
eters which can be tuned. For most of these we use default values as presented in
Gaudet et al. (2020b). The only parameters which we tune here are the action mag-
nitudes. As discussed previously, this was fixed in the z-direction as Tz

max
= 12 kN.

Initial tests showed that this gave suitable performance and did not need further tun-
ing. On the other hand, the action magnitudes in the x- and y-direction were found
to affect the performance both in terms of landing precision and fuel consumption.
This motivates a methodical approach to their selection.

Given the rotational symmetry of the problem about the z-axis, we can simplify
the selection of action magnitudes by letting Tx

max
= T

y
max such that we only need

to find a single value. We explore the effect changing this magnitude has on per-
formance by testing a trained agent over 500 episodes. This is done for values of
action magnitude in the range (5 kN,12 kN) in steps of 1 kN. As was done for the
hyperparameter optimisation, agents are trained for 4000 episodes. In the testing
episodes we examine the reward received by the agent and the fuel consumption. It
is expected that the optimal hyperparameters vary for every action magnitude, how-
ever due to time constraints and the time required to optimise the hyperparameters it
was not possible to do this for the full range of action magnitudes. Despite this, we
can still use the optimised values to obtain favourable performance across the range
as shown here.

The results of this study are shown in Fig. 5. One important observation is that
the trend in fuel consumption does not track the total reward; contrary to what might
be expected given fuel consumption is part of the reward function. This is because
of the landing bonus and velocity tracking terms in the reward function which can
be more fuel intensive to achieve but produce larger rewards. Both fuel consump-
tion and average total reward vary considerably across action magnitudes and occa-
sionally have large peaks and troughs, for example when the magnitude is 11 kN
for the area-optimised agent. Considering first the reward-optimised agent, its best
performance in terms of reward is at 9 kN, but this also has the third highest fuel

242 C. Wilson, A. Riccardi

1 3

consumption across its range. Furthermore, the reward shows higher variance at
9 kN relative to other values. We select the action magnitude for the reward opti-
mised agent as 11 kN which gives the second highest reward and median fuel con-
sumption. This differs significantly for the area-optimised agent for which 11 kN is
notably the worst performing value. Peak reward for this agent is at 10 kN which
does also show favourable fuel consumption. However, as before we consider the
point which has lower variance in reward to be more beneficial and so the action
magnitude for the area-optimised agent is selected as 12 kN.

Initially the midpoint thrust in the z-direction was fixed at half the maximum
thrust, i.e. 6 kN. Here we also test the effect of varying this magnitude on the perfor-
mance of a trained agent. Using the x and y action magnitudes specified previously,
we vary the midpoint of the z-direction action between 0.3 and 0.7 of the maximum
thrust and observe the changes in fuel consumption and average total reward. The
results of this are shown in Fig. 6. Both metrics occupy a much narrower range of
values compared to those in Fig. 5. In particular, the average total reward for each

(a) Fuel consumption (b) Average total reward

Fig. 5 Change in performance with varying values of action magnitude for the powered descent problem.
The respective goals are to minimise the fuel consumption and maximise the reward. Error-bars denote
one standard error

(a) Fuel consumption (b) Average total reward

Fig. 6 Change in performance with varying mid-points of z-direction action for the powered descent
problem. Error-bars denote one standard error

243

1 3

Improving the efficiency of reinforcement learning for a…

set of optimised hyperparameters remains nearly constant across the values of the
midpoint thrust. As expected, the fuel consumption increases with the midpoint
thrust, especially for the area-optimised agents. However, values below 0.5 again
show very little improvement in the fuel consumption for both agents. As with the
previous tests, these varying midpoint actions would likely have different associated
hyperparameters. Furthermore, in this case all of these agents were trained using the
same midpoint action of 0.5 which was only varied in testing. Despite these limita-
tions, the results shown here suggest tuning this action has little effect on the result-
ing performance, and so this midpoint action was kept fixed at half the maximum
magnitude.

4.3 Training and testing agents

With the hyperparameters and action sizes defined, here we show the results
obtained from applying these agents to the environment. As with the hyperparame-
ter optimisation, the stochastic nature of the environment and agents means it is nec-
essary to run them multiple times to determine their range of performance. We do
50 training runs of 4000 episodes for each agent and observe their learning curves.
The results of this are shown in Fig. 7—averaged across runs with standard devia-
tion shown.

Both sets of hyperparameters show very similar trends in the learning curves
which show a sharp increase in average reward over the first 300 episodes before
gradually plateauing at their maximum average reward. As would be expected, the
area-optimised curves reach their maximum more quickly than the reward-opti-
mised. Considering the standard deviation, we see little variance in performance
over most of the training period. In both cases the highest variance occurs in the

Fig. 7 Learning curves averaged over 50 runs for each agent. Shaded area indicates +/- one standard
deviation. Uniformly filtered (average) over 120 episodes for clarity

244 C. Wilson, A. Riccardi

1 3

initial episodes when more random actions are taken. This variance also increases
slightly towards the end of training—notably in the reward-optimised curves. This is
highlighted in Fig. 8 which shows the reward optimised run which performs poorly
towards the end of training, causing the standard deviation of reward-optimised runs
to increase. Up to the final 500 episodes, this curve tracks the mean very closely.
In the final 300 episodes the average total reward decreases sharply—mirroring the
rapid increase in early training. This behaviour can be due to the inherently unstable
nature of Q-Learning (Van Hasselt et al. 2016). This instability is partly mitigated
by the use of the target network, as discussed previously, and by careful tuning of
hyperparameters. While we aimed to optimise the hyperparameters using a metric
which encouraged robustness in the solution, achieving a more robust solution less
susceptible to diverging performance would require more training runs per evalua-
tion. However, most of the trained agents display favourable learning performance
and can be successfully applied to the problem.

The results which follow use the optimal trained agents from each of the hyper-
parameter runs; i.e. the area-optimised agent with smallest area under the learn-
ing curve and the reward-optimised agent with highest average reward at the end
of training. These individual learning curves along with the number of steps per
episode are shown in Fig. 10. For comparison, a learning curve obtained from train-
ing an agent using PPO is shown in Fig. 9. Note that the y-scales are identical in
both Figures, however the x-scale shows the difference in training times between
Q-learning and PPO. The number of training episodes used to train the agent with
Q-learning is an order of magnitude less than that of PPO. The policy trained using
PPO does converge on a higher average reward than either of the Q-learning agents,
which could be a result of the discretised action space causing a loss in optimality.
This suggests a necessary trade-off between performance and learning time when
choosing a RL algorithm to train an agent. While the average total reward is different

Fig. 8 Mean and worst performing learning curves for the reward-optimised agent

245

1 3

Improving the efficiency of reinforcement learning for a…

at the end of training, the number of steps per episode of every trained agent is con-
sistently close to 300. This is likely a result of the shaped reward function which
effectively specifies the velocity at all states and therefore will tend to cause similar
durations across episodes (Fig. 10).

Figures 11 and 12 show an example trajectory of the reward-optimised and area-
optimised agents respectively. These figures show the position and velocity of a
lander over the course of one episode starting from initial conditions close to the
edge of its range experienced in training. In both cases the position and velocity

Fig. 9 Average reward and steps per episode over a training run of the PPO agent. Data from Gaudet
et al. (2020b)

Fig. 10 Average reward and steps per episode over a training run of Q-learning for two different sets of
hyperparameters. Uniformly filtered (average) over 120 episodes for clarity

246 C. Wilson, A. Riccardi

1 3

show an expected tendency towards zero with a very low velocity in the z-direction
over the final seconds of the episode. The reward-optimised agent appears to achieve
a softer landing with lower vertical velocity than that of the area-optimised agent.

(a) Position (b) Velocity

(c) Thrust

Fig. 11 Trajectory of the reward-optimised agent over a sample episode with commanded thrusts

(a) Position (b) Velocity

(c) Thrust

Fig. 12 Trajectory of the area-optimised agent over a sample episode with commanded thrusts

247

1 3

Improving the efficiency of reinforcement learning for a…

As will be shown, this was common across testing episodes. The figures also show
the commanded thrusts, i.e. the agent’s actions over the course of the trajectory. It
is worth noting that although the thrust oscillates between magnitudes very often, if
we assume a minimum duration of 0.01 s (Kienitz and Bals 2005), given the action
sampling time used here of 0.2s, these control actions can provide a physical solu-
tion. For both agents the thrusts in the x- and y-directions show similar behaviour
with a small difference in their magnitude as discussed previously. On the other
hand, while the reward-optimised agent frequently selects the Tz = 0.5 ⋅ Tz

max
 action

in the z-direction, the area-optimised agent resembles more a ‘bang-bang’ control-
ler which switches between zero and its maximum amplitude. It is possible that this
represents a local minimum solution which the area-optimised agent quickly con-
verged on, but with worse performance than the policy found after more episodes by
the reward-optimised agent.

Finally we test each agent’s ability to handle the varying initial conditions by run-
ning many Monte Carlo simulations of an episode for a trained agent. The distribu-
tions for these are the same as for training and are simulated 5000 times to test over
a broad range of initial conditions. Figure 13 and Table 3 show the distributions of

Fig. 13 Scatter and KDE plots showing distributions of terminal landing states for each agent

248 C. Wilson, A. Riccardi

1 3

terminal velocity and position for both the reward-optimised and area-optimised, as
well as the fuel consumption. Both agents consistently achieve x- and y-velocities
within the desired range, however the area-optimised agent has slightly higher vari-
ance in the x-velocity. The x- and y-positions show a greater spread than the respec-
tive velocities for both agents. While they mostly reach the desired landing region
within a 5m radius, there are several points for both agents which do not satisfy
this requirement. The most striking difference in performance between the agents
is in the terminal z-velocity. The mean z-velocity of the reward-optimised agent is
-1.827 m/s whereas for the area-optimised agent it is -3.927 m/s. This means the
area-optimised agent is consistently unable to achieve the soft landing requirement,
but the reward-optimised agent shows much better performance in achieving a soft
pinpoint landing.

We compare the results from the Q-Learning agents to those obtained from the
agent trained using PPO. The results from running the same 5000 test episodes for
the PPO agent as for Q-Learning are shown in Table 4. From this, we see that the
agent trained with PPO achieves a more precise landing with a maximum distance
from the landing position of only 1.2 m, compared to 7.918 m for the reward-opti-
mised agent and 10.798 for the area optimised. Furthermore, the velocities are gen-
erally lower for the PPO agent. These differences can be attributed to the coarse dis-
cretisation for the Q-learning agents which limits their ability for finer control. This
is particularly important for achieving the pinpoint landing over the final few metres
of descent, and so training a separate controller for this final phase could improve
the overall performance. In addition, increasing the action space size with more dis-
crete magnitudes could improve the agent’s landing precision, but at the expense
of increased problem complexity. Finally comparing the fuel consumption, the

Table 3 Comparison of test results from both agents trained with Q-Learning

Statistics shown for terminal state over 5000 test episodes

Area Reward

Mean Min. Max. STD Mean Min. Max. STD

xy-position (m) 2.501 0.032 10.798 1.228 3.09 0.082 7.918 1.422
xy-velocity (m/s) 0.709 0.007 1.958 0.373 0.591 0.011 1.393 0.267
z-velocity (m/s) − 3.927 − 6.029 − 1.865 0.659 − 1.827 − 2.647 − 0.714 0.361
Fuel (kg) 295.5 254.9 408.8 18.1 306.4 267.4 376.1 17.3

Table 4 Test results for agent
trained with PPO. Statistics
shown for terminal state over
5000 test episodes

PPO

Mean Min. Max. STD

xy-position (m) 0.744 0.318 1.2 0.16
xy-velocity (m/s) 0.254 0.228 0.295 0.008
z-velocity (m/s) − 0.719 − 0.913 − 0.107 0.12
Fuel (kg) 291.1 262.1 353.6 14.4

249

1 3

Improving the efficiency of reinforcement learning for a…

averages for each agent are very similar: 291.1 kg for PPO, 295.5 for area-optimised
Q-Learning, and 306.4 for reward-optimised Q-Learning. The area-optimised agent
has both the highest maximum fuel consumption at 408.8 kg and the lowest mini-
mum with 254.9, however this is lilkely due to this agent rarely achieving a ‘soft’
landing and therefore requiring less fuel to decelerate. Although the reward-opti-
mised agent consumes more fuel than the area-optimised, it clearly shows superior
landing performance and achieves comparable fuel consumption to the PPO agent.

4.4 Training with raw state representation

Applying the same methodology as for the results above, we also train an agent
using Q-Learning with a raw state representation, as given by Eq. 24. Again we
tune hyperparameters for this problem formulation using the two area- and reward-
based optimisation criteria. These gave the optimised hyperparameters as shown in
Table 5. The action magnitudes used were the same as for the shaped state, with
Tx
max

= T
y
max = 11 kN for the reward-optimised agent and Tx

max
= T

y
max = 12 kN for

the area-optimised agent. These hyperparameters appear different to those of the
shaped state problem (Table 2). In particular the NN structures do not show the clear
autoencoder structure. Furthermore, the parameters �i and N� show the opposite
behaviour of what is expected, with reward optimised favouring lower values for
both compared to the area optimised.

Figure 14 shows the learning curves for the agents trained using each set of
hyperparameters with the raw state representation. We can clearly see that
it does not converge on as high a reward as the previous agents, only achiev-
ing an average cumulative reward of around −40 per episode. Nevertheless, both
agents appear to ‘learn’ as their learning curves increase sharply throughout the
early episodes. Testing these agents as before reveals their performance in terms
of achieving a pinpoint soft landing is, however, very poor. Figure 15 shows the
final positions and velocities for these agents over 5000 test episodes, which
show it has a much wider spread of horizontal positions and velocities in the x-
and y-directions than the agents using the shaped state. More importantly, the
z-direction velocity is always very high with both agents always having terminal

Table 5 Selected Q-Learning
hyperparameters when
optimising for area under
learning curve and final reward
in the ‘raw state’ configuration

Parameter Area-optimised Reward-optimised

Ñ1
105 120

Ñ2
150 200

Ñ3
165 130

� 4.67 × 10−5 3.89 × 10−5

C 65 65
�
i

0.441 0.316
N� 1850 900
� 0.941 0.923
k 95 120

250 C. Wilson, A. Riccardi

1 3

Fig. 14 Learning curves for agents trained with a raw state representation

Fig. 15 Scatter and KDE plots showing distributions of terminal landing states for each agent trained
with a raw state representation

251

1 3

Improving the efficiency of reinforcement learning for a…

z-velocities of magnitude greater than 15 m/s. This is likely due to the nature
of the reward function, which rewards the agent for following a target velocity.
While the agent has learned to follow this velocity over the start of the trajectory,
to avoid receiving the negative rewards over the final descent, where the target
velocity decreases more sharply, it accelerates towards the end instead of deceler-
ating. This shows the importance of properly defining the RL problem, including
the state representation, and suggests further research is needed into how to avoid
such reward-hacking behaviour when using fixed state representations.

5 Conclusions

We have demonstrated that widely used RL techniques are applicable to the dif-
ficult control problem of powered descent. With respect to the goal of improv-
ing the learning time, it is clear that this has been achieved by simplifying the
problem to a discrete action space and using a data-efficient algorithm. While
this approach does not yield the same level of optimality as a continuous action
agent, it is still capable of achieving near-optimal solutions which can cope with
uncertainties. Using this approach required tuning of hyperparameters and careful
selection of action space parameters. Both of these factors were shown to have a
significant effect on the performance of an agent. In particular, hyperparameter
tuning for different loss functions gave contrasting values for the hyperparameters
with corresponding variations in performance of the trained agents. In this case,
optimising for mean reward at the end of training produced a more successful
agent than optimising for area under the learning curve.

One of the limitations of the methodology presented here is the separate tuning
of hyperparameters and action space. Ideally these would either be optimised in
parallel with the action space magnitude as a variable, or optimised over a range
of action magnitudes to allow a trade-off between solutions which could also con-
sider hardware limitations. Other parameters relating to the reward function were
also kept at their default values for the purpose of this study. Optimising these
could also give improvements in performance.

The idea of creating simpler problems to improve the learning time has uses
in many other environments. This could also be developed to incorporate trans-
fer learning (Taylor and Stone 2009), such that agents trained quickly on sim-
ple problems can be transferred to more complex environments using knowledge
acquired from a simpler problem. Attempting to minimise training times eventu-
ally leads to the problem of “one-shot-learning”—having an agent learn to solve
a problem online in a single episode. This will likely involve meta-learning pro-
cedures which can optimise various aspects of a learning agent beyond what we
have considered here. Future work will look into exploiting environment models
for faster training times in similar spacecraft control problems, with the long term
goal of achieving online adaptive agents capable of one-shot-learning.

252 C. Wilson, A. Riccardi

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Acikmese B, Ploen SR (2007) Convex programming approach to powered descent guidance for mars
landing. J Guid Control Dyn 30(5):1353–1366. https:// doi. org/ 10. 2514/1. 27553

Acikmese B, Carson JM, Blackmore L (2013) Lossless convexification of nonconvex control bound
and pointing constraints of the soft landing optimal control problem. IEEE Trans Control Syst
Technol 21(6):2104–2113. https:// doi. org/ 10. 1109/ TCST. 2012. 22373 46

Barsce JC, Palombarini JA, Martinez EC: Towards autonomous reinforcement learning: Automatic
setting of hyper-parameters using Bayesian optimization. In: 2017 43rd Latin American Com-
puter Conference, CLEI 2017, vol 2017. Institute of Electrical and Electronics Engineers Inc, pp
1–9 (2017)

Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Trans Syst Cybernet SMC–13(5):834–846

Battin RH (1999) An introduction to the mathematics and methods of astrodynamics, Revised Edi-
tion. American Institute of Aeronautics and Astronautics. https:// doi. org/ 10. 2514/4. 861543

Bellman R (1966) Dynamic programming. Science 153(3731):34–37
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res

13(2):281–305
Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. Adv

Neural Inf Process Syst 24:2546–2554
Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: hyperparameter optimi-

zation in hundreds of dimensions for vision architectures. In: 30th international conference on
machine learning, ICML 2013, vol 28, pp 115–123

Blackmore L, Açikmeşe B, Scharf DP (2010) Minimum-landing-error powered-descent guidance for
mars landing using convex optimization. J Guid Control Dyn 33(4):1161–1171. https:// doi. org/
10. 2514/1. 47202

Braun R, Manning R, Braun R, Manning R (2006) Mars exploration entry, descent and landing chal-
lenges. In: 2006 IEEE aerospace conference. IEEE, Big Sky, MT, USA, pp 1–18. https:// doi. org/
10. 1109/ AERO. 2006. 16557 90

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) OpenAI
Gym. arXiv preprint arXiv: 1606. 01540

Deisenroth MP, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy
search. In: Proceedings of the 28th international conference on machine learning. https:// doi. org/ 10.
1055/s- 2002- 35543

Duan Y, Chen X, Schulman J, Abbeel P (2016a) Benchmarking deep reinforcement learning for continu-
ous control. arXiv 48:14. https:// doi. org/ 10. 1109/ CVPR. 2014. 180

Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I, Abbeel P (2016b) RL2 : Fast Reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv: 1611. 02779

Dulac-Arnold G, Evans R, van Hasselt H, Sunehag P, Lillicrap T, Hunt J, Mann T, Weber T, Degris T,
Coppin B (2015) Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:
1512. 07679

Fazlyab AR, Fani Saberi F, Kabganian M (2016) Adaptive attitude controller for a satellite based on
neural network in the presence of unknown external disturbances and actuator faults. Adv Space Res
57(1):367–377. https:// doi. org/ 10. 1016/j. asr. 2015. 10. 026

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2514/1.27553
https://doi.org/10.1109/TCST.2012.2237346
https://doi.org/10.2514/4.861543
https://doi.org/10.2514/1.47202
https://doi.org/10.2514/1.47202
https://doi.org/10.1109/AERO.2006.1655790
https://doi.org/10.1109/AERO.2006.1655790
http://arxiv.org/abs/1606.01540
https://doi.org/10.1055/s-2002-35543
https://doi.org/10.1055/s-2002-35543
https://doi.org/10.1109/CVPR.2014.180
http://arxiv.org/abs/1611.02779
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
https://doi.org/10.1016/j.asr.2015.10.026

253

1 3

Improving the efficiency of reinforcement learning for a…

Furfaro R, Linares R (2017) Waypoint-based generalized ZEM/ZEV feedback guidance for planetary
landing via a reinforcement learning approach. In: 3rd international academy of astronautics confer-
ence on dynamics and control of space systems, DyCoSS, pp 401–416

Gaudet B, Furfaro R (2014) Adaptive pinpoint and fuel efficient mars landing using reinforcement learn-
ing. IEEE/CAA J Automatica Sinica 1(4):397–411. https:// doi. org/ 10. 1109/ JAS. 2014. 70046 67

Gaudet B, Furfaro R, Linares R (2020a) Reinforcement learning for angle-only intercept guidance of
maneuvering targets. Aerospace Sci Technol. https:// doi. org/ 10. 1016/j. ast. 2020. 105746

Gaudet B, Linares R, Furfaro R (2020b) Deep reinforcement learning for six degree-of-freedom planetary
landing. Adv Space Res 65(7):1723–1741. https:// doi. org/ 10. 1016/j. asr. 2019. 12. 030

Guo Y, Hawkins M, Wie B (2013) Applications of generalized zero-effort-miss/zero-effort-velocity feed-
back guidance algorithm. J Guid Control Dyn 36(3):810–820

Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (2018) Deep reinforcement learning that
matters. In: The thirty-second AAAI conference on artificial intelligence, pp 3207–3214

Hinton GE (1990) Connectionist learning procedures. In: Machine learning. Elsevier, vol 3, pp 555–610.
https:// doi. org/ 10. 1016/ b978-0- 08- 051055- 2. 50029-8

Hunt KJ, Sbarbaro D, Zbikowski R, Gawthrop PJ (1992) Neural networks for control systems-a survey.
Automatica 28(6):1083–1112. https:// doi. org/ 10. 1016/ 0005- 1098(92) 90053-I

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm
configuration. In: International conference on learning and intelligent optimization. Springer, pp
507–523

Ichikawa Y, Sawa T (1992) Neural network application for direct feedback controllers. IEEE Trans Neu-
ral Netw 3(2):224–231. https:// doi. org/ 10. 1109/ 72. 125863

Jiang X, Li S, Furfaro R (2019) Integrated guidance for Mars entry and powered descent using rein-
forcement learning and pseudospectral method. Acta Astronautica 163:114–129. https:// doi. org/ 10.
1016/j. actaa stro. 2018. 12. 033

Kienitz KH, Bals J (2005) Pulse modulation for attitude control with thrusters subject to switching
restrictions. Aerospace Sci Technol 9(7):635–640. https:// doi. org/ 10. 1016/j. ast. 2005. 06. 006

Klumpp AR (1974) Apollo lunar descent guidance. Automatica 10(2):133–146. https:// doi. org/ 10. 1016/
0005- 1098(74) 90019-3

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2017) Hyperband: a novel bandit-based
approach to hyperparameter optimization. J Mach Learn Res 18(1):6765–6816

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous con-
trol with deep reinforcement learning. arXiv preprint arXiv: 1509. 02971

Mao Y, Szmuk M, Acikmese B (2016) Successive convexification of non-convex optimal control prob-
lems and its convergence properties. In: 2016 IEEE 55th conference on decision and control (CDC).
IEEE, Las Vegas, NV, USA, pp 3636–3641. https:// doi. org/ 10. 1109/ CDC. 2016. 77988 16

Meditch J (1964) On the problem of optimal thrust programming for a lunar soft landing. IEEE Trans
Autom Control 9(4):477–484

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidje-
land AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra
D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature.
https:// doi. org/ 10. 1038/ natur e14236

Mnih V, Puigdomènech Badia A, Mirza M, Graves A, Harley T, Lillicrap TP, Silver D, Kavukcuoglu
K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on
machine learning

Ng AY (2003) Shaping and policy search in reinforcement learning. University of California, Berkeley
Ng AY, Russell SJ et al (2000) Algorithms for inverse reinforcement learning. In: ICML, vol 1, p 2
Quadrelli MB, Wood LJ, Riedel JE, McHenry MC, Aung MM, Cangahuala LA, Volpe RA, Beauchamp

PM, Cutts JA (2015) Guidance, navigation, and control technology assessment for future planetary
science missions. J Guid Control Dyn 38(7):1165–1186. https:// doi. org/ 10. 2514/1. G0005 25

Riccardi A, Minisci E, Di Carlo M, Wilson C, Marchetti F (2018) Assessment of intelligent control tech-
niques for space applications. Technical report, European Space Agency

Riedmiller M (2005) Neural fitted Q iteration—first experiences with a data efficient neural reinforce-
ment learning learning method. In: 16th European conference on machine learning. Porto, Portugal.
https:// doi. org/ 10. 1007/ 11564 096_ 32

Saridis GN (1979) Toward the realization of intelligent controls. Proc IEEE 67(8):1115–1133. https:// doi.
org/ 10. 1109/ PROC. 1979. 11407

Scherffig L (2002) Reinforcement learning in motor control. Ph.D. thesis, University of Osnabruck

https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1016/j.ast.2020.105746
https://doi.org/10.1016/j.asr.2019.12.030
https://doi.org/10.1016/b978-0-08-051055-2.50029-8
https://doi.org/10.1016/0005-1098(92)90053-I
https://doi.org/10.1109/72.125863
https://doi.org/10.1016/j.actaastro.2018.12.033
https://doi.org/10.1016/j.actaastro.2018.12.033
https://doi.org/10.1016/j.ast.2005.06.006
https://doi.org/10.1016/0005-1098(74)90019-3
https://doi.org/10.1016/0005-1098(74)90019-3
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/CDC.2016.7798816
https://doi.org/10.1038/nature14236
https://doi.org/10.2514/1.G000525
https://doi.org/10.1007/11564096_32
https://doi.org/10.1109/PROC.1979.11407
https://doi.org/10.1109/PROC.1979.11407

254 C. Wilson, A. Riccardi

1 3

Schulman J, Levine S, Moritz P, Jordan M, Abbeel P (2015) Trust region policy optimization. In: 32nd
international conference on machine learning, ICML 2015, vol 3, pp 1889–1897

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal Policy Optimization Algo-
rithms. arXiv preprint arXiv: 1707. 06347. http:// arxiv. org/ abs/ 1707. 06347

Schweighofer N, Doya K (2003) Meta-learning in reinforcement learning. Neural Netw 16(1):5–9.
https:// doi. org/ 10. 1016/ S0893- 6080(02) 00228-9

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou
I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lil-
licrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with
deep neural networks and tree search. Nature. https:// doi. org/ 10. 1038/ natur e16961

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algo-
rithms. In: Proceedings of the 25th international conference on neural information processing sys-
tems-Volume 2, pp 2951–2959

Song Zy, Wang C, Theil S, Seelbinder D, Sagliano M, Liu Xf, Shao Zj (2020) Survey of autonomous
guidance methods for powered planetary landing. Front Inf Technol Electron Eng 21(5):652–674
(2020). https:// doi. org/ 10. 1631/ FITEE. 19004 58

Sutton RS (1996) Generalization in reinforcement learning: successful examples using sparse coarse cod-
ing. Adv Neural Inf Process Syst 8:1038–1044

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge. https:// doi.
org/ 10. 1109/ MED. 2013. 66088 33

Talebi HA, Khorasani K, Tafazoli S (2009) A recurrent neural-network-based sensor and actuator fault
detection and isolation for nonlinear systems with application to the satellite’s attitude control sub-
system. IEEE Trans Neural Netw 20(1):45–60. https:// doi. org/ 10. 1109/ TNN. 2008. 20043 73

Taylor ME, Stone P (2009) Transfer learning for reinforcement learning domains: a survey. J Mach Learn
Res 10:1633–1685

Van de Wiele T, Warde-Farley D, Mnih A, Mnih V (2020) Q-Learning in enormous action spaces via
amortized approximate maximization. arXiv preprint arXiv: 2001. 08116

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In: Pro-
ceedings of the 30th AAAI conference on artificial intelligence, pp 2094–2100

Wang JX, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo JZ, Munos R, Blundell C, Kumaran D, Botvin-
ick M (2017) Learning to reinforcement learn. arXiv preprint arXiv: 1611. 05763. https:// doi. org/ 10.
1039/ c0046 15a

Watkins CJCH (1989) Learning from Delayed Rewards. Ph.D. thesis, King’s College
Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292
Wilson C, Marchetti F, Carlo MD, Riccardi A, Minisci E (2019) Intelligent control: a taxonomy. In: 2019

8th international conference on systems and control, ICSC 2019, pp 333–339. Institute of Electrical
and Electronics Engineers Inc. https:// doi. org/ 10. 1109/ ICSC4 7195. 2019. 89506 03

Young SR, Rose DC, Karnowski TP, Lim SH, Patton RM (2015) Optimizing deep learning hyper-param-
eters through an evolutionary algorithm. In: Proceedings of MLHPC 2015: machine learning in
high-performance computing environments—held in conjunction with SC 2015: the international
conference for high performance computing, networking, storage and analysis. https:// doi. org/ 10.
1145/ 28348 92. 28348 96

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Callum Wilson1 · Annalisa Riccardi1

 * Callum Wilson
 callum.j.wilson@strath.ac.uk

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/S0893-6080(02)00228-9
https://doi.org/10.1038/nature16961
https://doi.org/10.1631/FITEE.1900458
https://doi.org/10.1109/MED.2013.6608833
https://doi.org/10.1109/MED.2013.6608833
https://doi.org/10.1109/TNN.2008.2004373
http://arxiv.org/abs/2001.08116
http://arxiv.org/abs/1611.05763
https://doi.org/10.1039/c004615a
https://doi.org/10.1039/c004615a
https://doi.org/10.1109/ICSC47195.2019.8950603
https://doi.org/10.1145/2834892.2834896
https://doi.org/10.1145/2834892.2834896
http://orcid.org/0000-0003-3736-1355
http://orcid.org/0000-0001-5305-9450

255

1 3

Improving the efficiency of reinforcement learning for a…

1 Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street,
Glasgow G1 1XQ, UK

	Improving the efficiency of reinforcement learning for a spacecraft powered descent with Q-learning
	Abstract
	1 Introduction
	1.1 Related work

	2 Reinforcement learning for optimal control
	2.1 RL fundamentals
	2.1.1 Value functions
	2.1.2 Markov decision processes
	2.1.3 Generalised policy iteration

	2.2 Q-learning
	2.2.1 Q-networks

	2.3 Applying Q-learning
	2.3.1 -Greedy policies
	2.3.2 Experience replay
	2.3.3 Target network
	2.3.4 Algorithm for Q-learning

	3 Powered descent problem
	3.1 Environment description
	3.2 Shaped reward function
	3.3 Discretised action space

	4 Results of Q-learning applied to powered descent problem
	4.1 Hyperparameter optimisation
	4.2 Action size selection
	4.3 Training and testing agents
	4.4 Training with raw state representation

	5 Conclusions
	References

