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Abstract
We perform a comprehensive study on the performance of derivative free optimiza-
tion (DFO) algorithms for the generation of targeted black-box adversarial attacks 
on Deep Neural Network (DNN) classifiers assuming the perturbation energy is 
bounded by an �

∞
 constraint and the number of queries to the network is limited. 

This paper considers four pre-existing state-of-the-art DFO-based algorithms along 
with a further developed algorithm built on BOBYQA, a model-based DFO method. 
We compare these algorithms in a variety of settings according to the fraction of 
images that they successfully misclassify given a maximum number of queries to the 
DNN. The experiments disclose how the likelihood of finding an adversarial exam-
ple depends on both the algorithm used and the setting of the attack; algorithms 
limiting the search of adversarial example to the vertices of the �∞ constraint work 
particularly well without structural defenses, while the presented BOBYQA based 
algorithm works better for especially small perturbation energies. This variance in 
performance highlights the importance of new algorithms being compared to the 
state-of-the-art in a variety of settings, and the effectiveness of adversarial defenses 
being tested using as wide a range of algorithms as possible.
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1 Introduction

Deep Neural Networks (DNNs) achieve state-of-the-art performance on a grow-
ing number of applications such as acoustic modelling (Hinton et al. 2012), image 
classification (He et  al. 2015), and fake news detection (Monti et  al. 2019) to 
name but a few. Alongside their growing application, there is a literature on the 
robustness of deep networks which shows that it is often possible to subtly per-
turb the input image of a DNN in order to degrade its performance; these pertur-
bations are referred to as adversarial examples (Goodfellow et al. 2015; Szegedy 
et  al. 2014). For example, see (Dalvi et  al. 2004; Eykholt et  al. 2018; Kurakin 
et al. 2017; Sitawarin et al. 2018; Yuan et al. 2019) where road signals are per-
turbed so as to be wrongly interpreted by self driving cars that analyze images of 
them with DNNs. Methods to generate these adversarial examples are classified 
according to two main criteria (Yuan et al. 2019): 

Adversarial Specificity  establishes what the aim of the adversary is. In non-tar-
geted attacks, the method perturbs the image in such a 
way that it is misclassified into any category other than 
the original one. While in targeted settings, the adver-
sary specifies a category into which an image should be 
misclassified.

Adversary’s Knowledge  defines the amount of information available to the 
adversary. In White-box settings the adversary has 
complete knowledge of the network architecture and 
weights, while in the Black-box setting the adversary 
is only able to obtain the pre-classification output vec-
tor. The White-box setting allows for the use of gradi-
ents of a misclassification objective to efficiently com-
pute the adversarial example (Carlini and Wagner 2017; 
Chen et  al. 2018; Goodfellow et  al. 2015), while the 
same optimization formulation of the Black-box set-
ting requires use of a derivative free approach (Alzantot 
et al. 2019; Chen et al. 2017; Ilyas et al. 2018; Narodyt-
ska and Kasiviswanathan 2017).

In this work we consider the targeted black-box setting. In particular we follow 
Chen et al. (2017) where:

– the perturbation, which causes the network to change the classification, is 
bounded in magnitude by a specified �∞-norm, �

∞
 , i.e. each pixel in the image 

cannot be perturbed by more than �
∞

;
– the number of queries to the DNN needed to generate a targeted adversarial 

example should be as small as possible.
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The Zeroth-Order-optimization (ZOO) algorithm proposed in Chen et  al. 
(2017) describes a Derivative Free optimization (DFO) method for computing 
adversarial examples in the black-box setting using a coordinate descent optimi-
zation method. At the time this was a substantial departure from previous black-
box algorithms which trained a proxy DNN and then employ gradient based 
white-box attacks on the proxy network (Papernot et al. 2017; Tu et al. 2018). It 
was demonstrated in Chen et al. (2017) that these algorithms are especially effec-
tive when numerous adversarial examples are computed, but become less efficient 
when an individual adversarial examples is considered. Following the introduc-
tion of ZOO, there have been numerous improvements using other model-free 
DFO based approaches, see for example (Al-Dujaili and O’Reilly 2020; Alzantot 
et al. 2019; Andriushchenko et al. 2020; Chen et al. 2020; Ilyas et al. 2018, 2019; 
Moon et al. 2019). Many of these algorithms were developed in parallel, and so 
have not yet been bench-marked in a consistent setting, e.g. on the same network.

In this article, we present two frameworks for comparative evaluation of the 
existing algorithms that claim to have the fewest number of DNN queries to gen-
erate a successful attack. These are: GenAttack  (Alzantot et  al.  2019) which is 
based on a genetic direct-search method; Parsimonious algorithm (Moon et  al. 
2019), based on a combinatorial direct-search method on the vertices of the per-
turbation domain; the Square algorithm (Andriushchenko et al. 2020), based on a 
randomized direct-search method on the vertices of the perturbation domain; the 
Frank-Wolfe algorithm (Chen et al. 2020) based on a momentum mechanism that 
approximates the gradient via finite differences; and BOBYQA (Ughi et al. 2019), 
which explicitly develops models to approximate the loss function and then mini-
mizes the model over a trust region using techniques from continuous optimiza-
tion. The aforementioned list of algorithms covers the leading classes of DFO 
algorithms for limited function evaluations, see e.g., (Conn et  al. 2009; Larson 
et al. 2019) for recent reviews of DFO methods. The two frameworks are struc-
tured as follows: 

1. In the first setting we consider attacks on DNNs trained on CIFAR10 and Ima-
geNet datasets, with or without the adversarial defense by MadryLab (Engstrom 
et al. 2019); this is the canonical setup for the comparison of black-box attacks 
that was considered in previous literature. We illustrate in Fig. 1 a measure of 
how the performance of the considered algorithms compare, while further refined 
measures of comparison are included in Sect. 4. We observe that the algorithms 
that limit the optimization domain to the �∞ perturbation boundary, i.e. the Par-
simonious and Square algorithms, are consistently the most effective. In particu-
lar, the Square algorithm achieves the highest Success Ratio (SR) with a fixed 
maximum number of queries, except for when the DNNs have been adversarially 
trained, and the Parsimonious algorithm achieves the highest SR when a network 
is trained with the MadryLab defense. However, these results are relative to the 
current state-of-the-art defense in a field which is in continuous development 
(Dhillon et al. 2018; Wang et al. 2019) and newly proposed methods usually have 
a varying effect on the different attacking algorithms; for example the MadryLab 
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defense (Engstrom et al. 2019) that we consider is most effective on Square algo-
rithm in the ImageNet case.

2. In the second framework, the algorithms are allowed to perturb only a fraction 
of the pixels in the input; this is especially inspired by the structural defenses 
that transform the input in the wavelet space (Guo et al. 2018). This framework 
allows us to understand the sensitivity of different algorithms to choices such as 
initialization, experimental protocol, dataset, and adversarial training. Our results 

(a)

(b)

Fig. 1  The success rate (SR) of targeted attacks as a function of the perturbation’s allowed �∞ magnitude 
for algorithms: GenAttack (Alzantot et al. 2019), Parsimonious (Moon et al. 2019), Square (Andriush-
chenko et al. 2020), Frank-Wolfe (Chen et al. 2020), and the BOBYQA based algorithm further devel-
oped here. Specifically for a ResNet50 network trained either on the CIFAR10 (a) or the ImageNet (b) 
dataset with (Adv) and without (Non-Adv) the defense by MadryLab Engstrom et al. (2019). An attack 
is considered successful if the method found the targeted adversarial example with less than 3’000 or 
15’000 queries to the network trained on CIFAR and ImageNet dataset, respectively. Results for the case 
SR=0, i.e. when no perturbations were successful, are excluded from the plot
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demonstrate that the Parsimonious, Square, and BOBYQA based algorithms alter-
natively perform the best for different maximum perturbation energies.

The results in this paper show that the most likely algorithm to find an adversarial 
example varies according to the considered setting; the type of dataset, the defense, 
and the perturbation energy bound have a varying impact on the different algo-
rithms. As a consequence of these experiments, new algorithms should be compared 
to the state-of-the-art in a variety of settings as done here, and the effectiveness of 
an adversarial defense should be tested with a variety of algorithms, including the 
BOBYQA based algorithm further developed in this paper.

The outline of the paper is as follows: in Sect. 2 we present how an adversarial 
example is generated by solving an optimization problem, and how DFO methods fit 
in this context. For completeness, we also summarize the model-based BOBYQUA 
method in Sect. 2.2 as the manuscript (Ughi et  al. 2019) where it was introduced 
for adversarial misclassification is unpublished. In Sect. 3 we present two popular 
techniques used in existing methods to improve the efficiency and scalability to high 
dimensional inputs. Section  4 presents the experimental setup and a comparative 
analysis of existing algorithms along with a focus on our proposed BOBYQA based 
algorithm. We close with some concluding remarks in Sect. 5.

2  Adversarial examples formulated as an optimization problem

In classification tasks, a DNN outputs a vector whose length is equal to the num-
ber of classes and the DNN parameters are trained to match the maximum element 
of the given output to the correct class of the input. Adversarial perturbations are 
obtained by modifying the input in such a way that the maximum element of DNN 
output corresponds to a target class different from the original one.

Consider a classification operator F ∶ X → C  from input space X  to output 
space C  of classes. A targeted adversarial perturbation � to an input � ∈ X  has the 
property that it changes the classification to a specified target class t, i.e F(�) = c 
and F(� + �) = t ≠ c.

Following the formulation in (Alzantot et  al. 2019); given an input space 
X = [l, u]n , with l and u being respectively the minimum and maximum values of 
the interval in which the pixels may vary, an output space C = {1,… , nc} , where nc 
is the number of classes, a maximum energy budget �

∞
 , and a suitable loss function 

L  , then the task of computing the adversarial perturbation � can be cast as an opti-
mization problem such as

(1)

min
�

L(�, �)

s.t. ‖�‖
∞
≤ �

∞
;

[� + �]j ≥ l ∀j ∈ 1, ..., n

[� + �]j ≤ u ∀j ∈ 1, ..., n



1324 G. Ughi et al.

1 3

where the final two inequality constraints are due to the perturbed image being still 
an image, i.e. (� + �) ∈ X  . Denoting the pre-classification output vector by f (�) , 
i.e. F(�) = arg maxf (�) , then the misclassification of � to target label t is achieved 
by � if f (� + �)t ≥ maxj≠t f (� + �)j . As demonstrated in Alzantot et al. (2019), Car-
lini and Wagner (2017), Chen et al. (2017), in this study we consider the following 
loss function for computing � in (1)

Not having access to the internal parameters of the DNN, the gradient of the loss 
over the input space cannot be readily computed and instead the adversarial pertur-
bation is found using specially adapted DFO algorithms.

2.1  Derivative free optimization for adversarial examples

Derivative free optimization is a well developed field with numerous classes of 
methods, see (Conn et al. 2009) and (Larson et al. 2019) for reviews on DFO princi-
ples and algorithms. Example classes of such methods include: direct search meth-
ods such as simplex, model-based methods, hybrid methods such as finite differ-
ences or implicit filtering, as well as randomized variants of the aforementioned and 
methods specific to convex or noisy objectives. For the generation of adversarial 
examples, the algorithms that we consider rely on four types of DFO methods:

– Those where the gradient is computed via finite differences, either by sampling 
all the canonical directions as in ZOO attack (Chen et al. 2017) or random direc-
tions as in the Frank-Wolfe algorithm (Chen et al. 2020);

– Those where the solution is thought to be in one of the vertices of the �∞ domain, 
i.e. �i ∈ {−�

∞
, �

∞
} for any i. The Parsimonious algorithm (Moon et  al. 2019) 

implements a combinatorial direct-search within the different possible vertices, 
initializing the perturbation to −�

∞
 for all the pixels and then switching col-

lections of them to +�
∞

 , when such an action decreases the loss function. The 
Square algorithm (Andriushchenko et al. 2020) instead implements a randomized 
direct-search method where square blocks of pixels are iteratively perturbed to be 
either +�

∞
 or −�

∞
;

– Those where a direct search over the perturbation domain is performed using a 
genetic method such as GenAttack (Alzantot et al. 2019).

– Those referred to as model-based methods, where the loss function (1) is approx-
imated from its samples with a continuous function which is then minimized 
using techniques from continuous optimization. Bounded Optimization BY Quad-
ratic Approximation (BOBYQA) (Powell 2009) is the first such model-based 
method adapted to generate adversarial examples in the workshop manuscript 
(Ughi et  al. 2019), motivated by its efficacy in climate modelling (Tett et  al. 
2013) where the aim is to minimize the number of function samples required. 
As Ughi et al. (2019) is unpublished, we describe model-based methods in more 
detail in Subsect.  2.2 for completeness, and state some improvements of Ughi 
et al. (2019) in Subsect. 4.1.

(2)L(�, �) = log
(
�j≠tf (� + �)j

)
− log

(
f (� + �)t

)
.
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2.2  Model‑based DFO

Given a set of q samples Y = {�1, ..., �q} with �i ∈ ℝ
n , model-based DFO methods 

start by identifying the minimizer of the objective among the samples at itera-
tion k, �k = arg min�∈Y L(�) . Following this, a model for the objective function 
L  is constructed, typically centered around the minimizer. In its simplest form 
one uses a polynomial approximation to the objective, such as a quadratic model 
centered in �k

with ak ∈ ℝ , �k , � ∈ ℝ
n , and �k ∈ ℝ

n×n being also symmetric. In a white-box set-
ting one would set �k = ∇L(�k) and �k = ∇

2L(�k) , but this is not feasible in the 
black-box setting as we do not have access to the derivatives of the objective func-
tion. Thus at each iteration k, the parameters ak , �k and �k are usually defined by 
imposing interpolation conditions

and when n + 1 ≤ q < 1 + n + n(n + 1)∕2 (i.e. the system of equations is under-
determined) the model could be set as linear by imposing �k = � for any k (Noce-
dal and Wright 2006), or the interpolation conditions could be considered as the 
constraint in an optimisation problem, as done in the BOBYQA method by (Powell 
2009) presented in the following subsection. The objective model (3) is considered 
to be a good estimate of the objective in a neighborhood referred to as a trust region. 
Once the model mk is generated, the update step � is computed by solving the trust 
region problem

where � is the radius of the region where we believe the model to be accurate, for 
more details on trust region methods see (Nocedal and Wright 2006). The new point 
�k + � is added to Y  and a prior point is potentially removed to improve the accu-
racy of the model according to geometric considerations, such as the poisedness of 
the sample set which minimizes the potential for degeneracy of the model, (Schein-
berg and Toint 2010) for details. In this paper, we consider an exemplary model-
based method called BOBYQA.

2.2.1  BOBYQA

The Bound Optimization BY Quadratic Approximation (BOBYQA) method, intro-
duced in Powell (2009), updates the parameters of the model a, �, and � , in each 
iteration in such a way as to minimize the change in the quadratic term �k between 
iterates while otherwise fitting the sample values:

(3)mk(�
k
+ �) = ak + �⊤

k
� +

1

2
�⊤�k�,

(4)mk(�
i
) = L(�i) ∀i ∈ 1, 2,… , q,

(5)
min
�

mk(�k + �)

s.t. ‖�‖ ≤ �,
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with n + 1 < q < 1 + n + n(n + 1)∕2 and �k initialized as the zero matrix. When 
the number of parameters q = n + 1 then the model is considered as linear with �k 
set as zero. At each iteration the set Y  is updated with the insertion of the new point, 
�k + � , and the removal of the sample which affects the most negatively the model 
accuracy. The two main notions used to determine which sample to remove are dis-
tance from the new sample and a measure to minimize the potential for degeneracy 
of the model, considerations that are built on concepts of stability (Powell 2009) 
and of poisedness (Scheinberg and Toint 2010), for more details refer to (Roberts 
2019, Chapter  6). This process of maintaining a fixed number of samples insures 
that the dimension of Y  is fixed.

3  Improving efficiency and computational scalability

Because of the high number of pixels in the input images, the generation of adver-
sarial examples involves solving a high dimensional problem, which makes the 
use of any DFO method impractical; for instance, the application of the BOBYQA 
method requires the solution of (6) which scales in memory allocation at least quad-
ratically with the input dimension, and thus is computationally too expensive. Con-
sequently, the implementation of DFO based adversarial algorithms relies on strate-
gies to reduce the dimensionality of the problem, this improves the computational 
scalability along with the efficiency, as demonstrated experimentally. Instead of 
solving (1) for � ∈ ℝ

n directly, the DFO based algorithms consider variations of the 
domain sub-sampling and/or the hierarchical liftings techniques. Domain sub-sam-
pling iteratively sweeps over batches of b ≪ n variables, while hierarchical lifting 
clusters and perturbs variables simultaneously, as described in following sections.

3.1  Domain sub‑sampling

The simplest version of domain sub-sampling consists of partitioning the input 
dimension into smaller disjoint domains and optimizing the loss function in each of 
them sequentially. That is, in an n dimensional problem, one considers k = ⌈n∕b⌉ 
sets of integers, {�j

}
k
j=1

 , of size b ≪ n which are disjoint and which cover all of [n]. 
Then (1) is solved sequentially on the dimensions identified by the sets �j . This is 
possible since the optimization domain is box like, i.e. � ∈ [l, u]n , and each dimen-
sion’s bound is independent from the others. Formally, rather than solving (1) for 
� ∈ ℝ

n directly, for each of j = 1,… , k one sequentially solves for the �j ∈ ℝ
n vari-

ables which are only non-zero for entries in �j . The resulting sub-domain perturba-
tions �j are then summed to generate the full perturbation � =

∑k

j=1
�j , see Fig. 2 as 

an example. That is, the optimization problem (1) is adapted to repeatedly looping 
over j = 1,… , k:

(6)
min

ak ,�k ,�k

‖�k −�k−1‖2F

s.t. mk(�
i
) = L(�i), ∀i ∈ 1, 2,… , q,
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where the sets {�j
}
k
j=1

 are usually computed again once j is equal to k, and the sub-
domain perturbations �j are initialized as null.

We identified three possible ways of selecting the sub-domains {�j
}
k
j=1

;

– In Random Sampling one considers at each iteration a different random sub-sam-
plings of the domain, i.e. k = 1 . The ZOO algorithm used this kind of sampling 
(Chen et al. 2017).

– In Ordered Sampling one generates a random disjoint partitioning of the domain, 
i.e. k = ⌈n∕b⌉ and �j ∩�l = � for any j and l. A new partitioning is generated 
when each variable has been optimized over once. This sampling is implemented 
in the Parsimonious algorithm.

– In Variance Sampling one still generates a random disjoint partitioning of the 
domain, but chooses the sub-sampling sets {�j

}
k
j=1

 in order to optimize over the 

(7)

min
�j

L

(
� +

∑

h≠j

�� , �j

)

s.t.

‖‖‖‖‖‖

k∑

h=1

�h
‖‖‖‖‖‖∞

≤ �
∞
;

[
� +

k∑

h=1

�h

]

r

≥ l ∀r ∈ �
j;

[
� +

k∑

h=1

�h

]

r

≤ u ∀r ∈ �
j,

(a) (b) (c)

Fig. 2  Example of how the perturbation � evolves through the iterations when an image in ℝ4×4 is 
attacked. In a the perturbation is � = �0 and a sub-domain of b = 4 pixels (in red) is selected. Once the 
optimal perturbation �1 in the selected sub-domain is found, the perturbation is updated in b and a new 
sub-domain of dimension b is selected. The same is repeated in c 
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dimensions that have highest local variance in intensity first. Specifically, the 
variables are ordered by the variance in intensity among the 8 neighboring varia-
bles (e.g. pixels) in the same color channel of the input � . The sets {�j

}
k
j=1

 are 
further reinitialized after each loop through j = 1,… , k.

The sub-sampling of the domain affects the efficiency with which an algorithm 
successfully finds an adversarial example. For instance, in Fig.  3 we compare 
how these different sub-sampling techniques affect the BOBYQA based algo-
rithm when generating adversarial example for the MNIST and CIFAR10 dataset. 
It can be observed that variance sampling consistently has a higher success rate 
cumulative distribution function as compared with random and ordered sampling. 
This suggest that pixels belonging to high-contrast regions are more influential 
than the ones in low-contrast ones, and hence variance sampling is the preferable 
ordering.

To simplify the notation in the following section, the optimization variable is 
considered to be �j = �j�̃j where �̃j ∈ ℝ

b and �j
∈ ℝ

n×b is such that [�j
]pq is one 

(a) (b)

(c) (d)

Fig. 3  Cumulative distribution function of successfully perturbed images as a function of number of que-
ries by the BOBYQA based algorithm attacking DNNs trained on the MNIST and the CIFAR10 datasets. 
In each image the effectiveness of different sub-sampling methods in generating a successful adversarial 
example is shown for different values of maximum perturbation energies �

∞
 . See (Ughi et al. 2019) for 

details about experimental setup
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if the qth element of �j is p, zero otherwise. The implementation of variance 
sampling method at iteration j in a domain of dimension n

�
 is summarized in 

Algorithm 1.

3.2  Hierarchical lifting

Authors of ZOO attack (Chen et  al. 2017) demonstrated that fewer queries are 
required to find adversarial example when pixels are considered in clusters, and not 
independently. This lead to the hierarchical lifting approach where one optimizes 
over increasingly higher dimensional spaces at each step, referred here as level � ; 
Figure  4 shows how effective this approach is when implementing the BOBYQA 
based algorithm. These low dimensional spaces are lifted to the image space via a 

Fig. 4  Impact of hierarchical lifting approach on Loss function (2) as a function of the number of que-
ries to a ResNet50 trained on ImageNet dataset to find the adversarial example for a single image with 
the BOBYQA based method. The green vertical lines correspond to changes of hierarchical level, which 
entail an increase in the dimension of the optimization space
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linear lifting, where at each level � a linear lifting ��
∶ ℝ

n
� → ℝ

n is considered and 
a perturbation �̂

�
∈ ℝ

n
� is found to be added to the full perturbation � , according to

Here �0 is initialized as � and the perturbations �j of the previous layers are consid-
ered as fixed. An example of how this works is illustrated in Fig. 5. The hierarchi-
cal lifting considered here is analogous to the derivative-based Recursive Multiscale 
Trust-Region method in Gratton et al. (2008). Our piece-wise constant lifting is sub-
stantially simpler than (Gratton et  al. 2008) in that we only progress from coarse 
to fine grids as opposed to “W” and “V” cycles between scales; this simplicity is 
beneficial for the misclassification application here where our aim is to minimize the 
number of function queries used by the DFO method.

All the methods considered in this work rely on ideas which can be interpreted 
through this approach. The algorithms that we consider rely on two kinds of linear 
lifting �� differentiated by the way each scalar in �̂ is associated to a set of pixels in 
the original image domain ℝn ; namely the random and the block liftings. The former 
relates a random set of pixels of the original image to each hyper-variable; this forces 
the perturbation to be of high-frequency nature, as illustrated in Fig. 6a, which sev-
eral articles indicate as being the most effective (Guo et al. 2018; Gopalakrishnan et al. 
2018; Sharma et  al. 2019). The GenAttack and Frank-Wolfe algorithms use a varia-
tion of this kind of lifting. The latter instead is based on interpolation operations; a 
sorting matrix �� ∶ ℝ

n
� → ℝ

n is applied such that every index of �̂
�
 is uniquely asso-

ciated to a node of a coarse grid masked over the original image. Afterwards, an 
interpolation ��

∶ ℝ
n
→ ℝ

n is implemented over the values in the coarse grid, i.e. 

(8)� =

�∑

j=0

�j =

�∑

j=0

�j�̂j.

(a) (b) (c)

Fig. 5  Example of how the perturbation � is generated in a hierarchical lifting method with n
1
= 4 

and n
2
= 16 on an image in ℝ12×12 . In a the perturbation is � = �

0
 and the boxes generated via the grid 

of dimension n
1
 are highlighted in red. Once the optimal perturbation �

1
 is found, the perturbation is 

updated in b and the image is further divided with a grid with n
2
 blocks. The final solution obtained after 

optimization is shown in c 
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�
�
= ���� �̂

�
= �� �̂

�
 . Both Square and Parsimonious algorithms implement hierar-

chical lifting with the piece-wise constant interpolation, here referred to as block lift-
ing. At the lower levels, the interpolation lifting generates low frequency perturbations, 
as illustrated in Fig. 6b.

Since n
�
 may still be very high, for each level � domain sub-sampling is also applied 

considering �̂
�
=

∑k

j=0
�̃
j

�
 . In the piece-wise constant case with variance sampling, 

the blocks are ordered according to the variance of mean intensity among neighboring 
blocks, in contrast to the variance within each block as suggested in Chen et al. (2017). 
Consequently, at each level the adversarial example is found by solving the following 
iterative problem

(a)

(b)

Fig. 6  Examples for a random and b block liftings. In the random case each pixel in the perturbation 
is associated to just one element of �̂

�
 . Block lifting uses a piece-wise constant interpolation � over a 

coarse grid ��̂
�
 and each block is associated uniquely to one of the variables in �̂

�
 . In both cases, the lift-

ing � is such that each element �ij is either 1 or 0
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where �̄ =

∑�−1

i=0
�i + ��

∑
m≠j �̂

m

�
 . Algorithm  2 gives an implementation of the 

block lifting matrix when in the grid has dimension n
�
.

4  Comparison of derivative free methods

In this section, we compare algorithms based on a selection of state-of-the-art DFO 
methods. In particular we consider an improved version of the BOBYQA based 
algorithm (Ughi et al. 2019), GenAttack algorithm (Alzantot et al. 2019), Parsimo-
nious algorithm (Moon et al. 2019), Square algorithm (Andriushchenko et al. 2020) 
and Frank-Wolfe algorithm (Chen et al. 2020) in the following two frameworks:

– Section  4.3 considers the canonical setup for black-box adversarial attacks on 
which the considered algorithms have been tuned in their respective articles. 
Specifically, we consider attacks on networks trained adversarially or not on 
CIFAR10 and ImageNet, two popular datasets in the literature, and with no fur-
ther defense implemented.

– Section 4.4 considers a setup that simulates structural defenses on which the dif-
ferent algorithms were not tuned. We limit the perturbation to a fixed number 
of pixels with high variance in intensity considering attacks on a network non-
adversarially trained on the CIFAR10 dataset.

The performance of all algorithms is measured in terms of the distribution of que-
ries needed to successfully find adversaries to identical networks given a fixed �∞ 
perturbation constraint and the same input images. In particular, the algorithms are 
compared according to the cumulative fraction of images successfully misclassified 

(9)

min
�̃
j

�

L

(
� + �̄,���k�̃

j

�

)

s.t.
‖‖‖�̄ + ���k�̃

j

�

‖‖‖∞ ≤ 𝜀
∞

[
� + �̄ + ���k�̃

j

�

]

r
≥ l ∀r ∈ {1, ..., n}

[
� + �̄ + ���k�̃

j

�

]

r
≤ u ∀r ∈ {1, ..., n},
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(abridged by CDF for cumulative distribution function) as a function of the number 
of queries to the DNN, which corresponds to the data profile comparison measure 
introduced in Moré and Wild (2009). For each experimental setting A  , the single 
attacks are denoted by a, and the following variable is introduced

that is set to infinity in case the adversarial example is not found. Thus, the CDF for 
a number of queries � is

4.1  Parameter setup for algorithms

The experiments use publicly available implementations for the GenAttack (Alzan-
tot et  al. 2019), Parsimonious (Moon et  al. 2019), Square (Andriushchenko et  al. 
2020), and Frank-Wolfe (Chen et al. 2020) algorithms1 using the same hyper-param-
eter setting and hierarchical lifting approach as suggested by the respective authors.

Following (Ughi et al. 2019), for the BOBYQA based algorithm we consider lin-
ear models to approximate the loss function; i.e., � = � and q = n + 1 at all iter-
ations. Further, we use the variance sub-sampling method as done in (Ughi et  al. 
2019). However, here we consider block lifting as described in Sect. 3.22, rather than 
the linear lifting in (Ughi et al. 2019); we consider an initial domain of dimension 
n1 = 2 × 2 × 3 , and double the refinement of the grid at each layer, i.e. n

�+1 = 4n
�
 ; 

we set the batch sampling size b = 25 . The BOBYQA based algorithm is summa-
rized in Algorithm 3 and a Python implementation of the proposed algorithm based 
on BOBYQA package from Cartis et al. (2019) is available on Github3.

(10)ta = # of queries to find an adversarial attack

(11)CDF(�) =
1

|A| size{a ∈ A ∶ ta ≤ �}.

1 GenAttack: https:// github. com/ nesl/ adver sarial_ genat tack.
 Parsimonious algorithm: https:// github. com/ snu- mllab/ parsi monio us- black box- attack.
 Square algorithm: https:// github. com/ max- andr/ square- attack.
 Frank-Wolfe algorithm https:// github. com/ uclaml/ Frank- Wolfe- AdvML.
2 The choice for this kind of lifting was driven by preliminary experiments in which we considered also 
a grid method with linear interpolation and a random lifting method as well. It is possible to run the 
analysis using the code in 3
3 https:// github. com/ giughi/ An- Empir ical- Study- of- DFO- Algor ithms- for- Targe ted- Black- Box- Attac ks- 
in- DNNs

https://github.com/nesl/adversarial_genattack.
https://github.com/snu-mllab/parsimonious-blackbox-attack.
https://github.com/max-andr/square-attack.
https://github.com/uclaml/Frank-Wolfe-AdvML.
https://github.com/giughi/An-Empirical-Study-of-DFO-Algorithms-for-Targeted-Black-Box-Attacks-in-DNNs
https://github.com/giughi/An-Empirical-Study-of-DFO-Algorithms-for-Targeted-Black-Box-Attacks-in-DNNs
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4.2  Dataset and neural network specifications

We performed experiments using the popular ResNet50 architecture (He et al. 2016) 
with two training scenarios; one with the unperturbed images, and one with the 
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defense4 proposed in Engstrom et  al. (2019). The number of experiments and the 
choice of the targets for each individual dataset is described below.

CIFAR10 The CIFAR10 dataset contains images from 10 classes and of dimen-
sion 32x32x3. To generate a comprehensive distribution for the queries at each 
energy budget, ten correctly classified images are considered per each class, and 
each of them is targeted to all of the 9 remaining classes; this way we generate a 
total of 900 attacks per maximum perturbation energy per adversarial method.

ImageNet This dataset contains millions of images with a dimension of 
299x299x3 divided among 1000 classes. Because of the high dimensionality and 
number of classes, random images are attacked considering a random target class. 
We conducted 200 and 160 tests for networks trained both with and without adver-
sarial training per maximum perturbation energy.

4.3  Results for standard and madryLab Trained DNNs

In Figures 7 and 8 we present the CDF for different maximum perturbation ener-
gies �

∞
 . The pixels are normalized to be in the interval (−1∕2, 1∕2) , hence, �

∞
= 0.1 

would imply that any pixel is allowed to change 10% of the total intensity range from 
its initial value. The CDFs are illustrated so that we can easily see which method 
has been able to misclassify the largest fraction of images in the given test-set for 
a fixed number of queries to the DNN. The confidence intervals of the CDFs are 
reported in Appendix 1 and they entail that the CDFs identify the best algorithms in 
the CIFAR10 case almost surely while in the ImageNet one with high confidence.

For the CIFAR10 dataset in Figure  7, we observe that algorithms that search 
the perturbation directly in the vertices of the perturbation domain require the least 
amount of network queries. In the case of non-adversarially trained networks, the 
Square algorithm is able to misclassify using the least number of queries; this is 
demonstrated by its associated solid green CDF being consistently above that of the 
other methods. Specifically, when �

∞
= 0.05 , at 1000 queries Square algorithms 

has a CDF of 0.97 compared to 0.94 and 0.88 of the Parsimonious and BOBYQA 
methods respectively, and for �

∞
= 0.005 at 3000 queries Square achieves a CDF of 

0.20 which is 50% times higher than Parsimonious and BOBYQA. When the net is 
instead trained adversarially, dashed lines, Square algorithm looses a lot of its effec-
tiveness becoming comparable to the BOBYQA based method, while Parismoni-
ous algorithm achieves almost always the highest fraction of successfully perturbed 
images for any given maximum number of queries. For example, when �

∞
= 0.05 

at 3,000 queries the CDF of Parisomonious is 0.29 compared to 0.25 and 0.23 of 
Square and BOBYQA.

In the ImageNet dataset, see Figure 8(a), we observe that an adversarial method 
can be especially susceptible to particular defenses. Specifically, when the network 
is trained without a defense, the Square algorithm has a success rate CDF that is 
consistently higher than the other methods, but the success rate CDF for the Square 

4 These networks are available already trained at https:// github. com/ Madry Lab/ robus tness

https://github.com/MadryLab/robustness
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(a) (b)

(c) (d)

(e) (f)

Fig. 7  Cumulative fraction of test set images successfully misclassified with adversarial examples gener-
ated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA based approaches for differ-
ent maximum perturbation energies �

∞
 and DNNs trained on the CIFAR10 dataset. In all results the solid 

and dashed lines denoted by ‘Non-Adv’ and ‘Adv’ corresponds to attacks on networks trained without or 
with the MadryLab defense strategy (Engstrom et al. 2019) respectively
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algorithm is decreased by the MadryLab defense so that it is substantially less effec-
tive than Parsimonious and BOBYQA algorithms. On the other hand, the Parsimoni-
ous method achieves similar results to Square algorithm in the non-adversarial case. 
On average for the different maximum perturbation energies Parsimonious is 0.045 
less efficient than Square, but when the defense is introduced it finds the adversarial 
examples with the least number of queries. In Figure 8(a) Parisomious has a CDF of 
0.33 at 15,000 queries while BOBYQA 0.24 and Square 0.07. The rate with which 
the CDFs decrease as the maximum perturbation energy �

∞
 decreases it also dif-

fers by algorithm. The CDF for Square decreases moderately faster than for Par-
simonious such that Square has a consistently higher CDF than Parsimonious for 
� = 0.1 in Figure 8(a) but consistently lower in Figure 8(d). Moreover, the success 
rate for BOBYQA decreases the slowest with �

∞
 such that in Figure 8 its CDF is 

(a) (b)

(c) (d)

Fig. 8  Cumulative fraction of test set images successfully misclassified with adversarial examples gener-
ated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA based approaches for differ-
ent maximum perturbation energies �

∞
 and DNNs trained on the ImageNet dataset. In all results the solid 

and dashed lines denoted by ‘Non-Adv’ and ‘Adv’ corresponds to attacks on networks trained without or 
with the MadryLab defense strategy (Engstrom et al. 2019) respectively
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similar to or grater than Parsimonious. Specifically, in Figure 8(d) at 15,000 the final 
CDF of BOBYQA algorithm queries is 1.42 times higher than the one of the Square 
algorithm.

The Frank-Wolfe algorithm is able to achieve results comparable to the ones of 
the methods above while considering the small-dimensional problem of CIFAR10 
with a very low maximum perturbation energy. However, when considering the Ima-
geNet case and the adversarially trained DNNs, the Frank-Wolfe algorithm has a 
substantially lower success rate CDF; e.g. in the ImageNet case with non-adversarial 
training, Square algorithm achieves a CDF 1.66 times higher than the Frank-Wofle 
algorithm when �

∞
= 0.05.

GenAttack has a higher success rate CDF than the Frank-Wolfe algorithm in the 
ImageNet case for �

∞
= 0.1 , see Figure  8(a), but, besides this case, it constantly 

achieves the lowest success rate.
The relative success of the misclassification algorithms as a function of the 

allowed perturbation energy is determined by the training loss function and associ-
ated partition of the input space into regions associated with each class (Liu et al. 
2017)[Figure  3]. Each correctly classified example, not on the boundary between 
classes, has a small enough �

∞
 region surrounding it where misclassification cannot 

be obtained. As �
∞

 is increased the fraction of the perturbations which admit mis-
classification can be expected to increase, and misclassification becomes trivial once 
�
∞

 is sufficiently large that the majority of vertices correspond to misclassification. 
In fact, Goodfellow et al. (2015) suggest the pre-classification output vector is maxi-
mally misclassified according to (2) at vertices.

For these reasons we can expect that vertex search methods such as Parsimonious 
and Square are preferable for large �

∞
 while model based methods such as BOBYQA 

and Frank-Wolfe become increasingly beneficial, relatively, as �
∞

 decreases and the 
fraction of vertices which correspond to misclassification becomes small. Although 
both BOBYQA and Frank-Wolfe are based on a linear approximation of the prob-
lem, their respective number of samples taken differs substantially by how the sam-
ples are selected to construct the model and the subspaces with which they optimize 
over. In particular, Frank-Wolfe optimizes over b = 25 dimensional subspaces drawn 
at random from the unit sphere while BOBYQA sequentially optimizes over subsam-
pled batches of variables as described in Sect. 3.1. The relative impact of these dif-
fering dimensionality reduction techniques has not been explored and may account 
for some of the superior performance of BOBYQA as compared to Frank-Wolfe.

4.4  Results with fixed pixel count constraints

In addition to network training designed to increase robustness, such as MadryLab 
considered previously, there are a multitude of other defenses and real world con-
straints (Hao-Chen et al. 2020). The relative success rate, or other characteristics, of 
adversarial algorithms can be expected to differ in these diverse settings. To dem-
onstrate this, we consider one such setting where the maximum number of pixels 
allowed to be perturbed is limited. This is motivated by the defenses where network 
inputs are thresholded in a wavelet domain to exclude high frequency perturbations 
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(Guo et al. 2018), as well as by real world constraints such as attacks designed to 
appear structured such as localized perturbations designed to look like graffiti 
(Eykholt et al. 2018; Naseer et al. 2019). We allow the algorithms to perturb only 
the fixed selection of the 1000 pixels of the targeted image that have the highest 
variance in intensity in their channel neighborhood. Because of the previous results 
it is possible to identify three methods that work consistently better than the oth-
ers, and thus only these will be considered, namely: the Parsimonious, the Square, 
and the BOBYQA based algorithms. To allow the perturbations to be limited to the 
selected pixels, we consider the Square algorithm with squares of pixel dimension, 
the Parsimonious algorithm on the finest grid, and the BOBYQA algorithm without 
the hierarchical lifting, i.e. �1

= � where � is the identity matrix.
The results reported in Figure 9 suggest that when the domain is dimensionally lim-

ited, the most efficient algorithm changes according to the allowed maximum perturba-
tion energy. When the maximum perturbation energy decreases and the linear model 
is more accurate, the BOBYQA method manages to achieve a higher SR than both 
Square and Parsimonious algorithms, unlike in the previous experiments. Moreover, 

(a) (b)

(c) (d)

Fig. 9  Cumulative fraction of test set images successfully misclassified with adversarial examples gener-
ated by Parsimonious, Square, and our BOBYQA based approaches for different maximum perturbation 
energies �

∞
 against a ResNet50 trained non-adversarially on the CIFAR10 dataset when only the 1000 

pixels with the highest variance in intensity in their neighborhood are allowed to be modified
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the Parsimonious algorithm has almost identical behavior to Square algorithm for high 
energy bounds, but becomes more efficient when the maximum energy is �

∞
= 0.05 . 

Figures 9 and 7 also differ by the former not employing hierarchical lifting as described 
in Sect. 3.2 while Figure 7 does make use of lifting. The overall trends between Fig-
ures 7 and 9 are consistent which suggests that the use of lifting does not change the 
overall trends observed between classes of methods, rather it consistently reduces the 
overall number of samples needed for misclassification.

We also considered experiments on ImageNet, but limiting the number of pixels 
that could be perturbed did not allow for any successful misclassification with less than 
15,000 queries.

4.5  Relative computational cost

While the focus in this manuscript is to compare the different typology of algorithms 
according to the their misclassification success rate as a function of the number of que-
ries to the DNN; it is also worth noting that the different type of DFO algorithms can 
be expected to have differing computational burdens. Table 1 displays the average time 
for each algorithm to update their perturbation of the input per 1,000 queries. In par-
ticular, these results are obtained by running 10 attacks to the ResNet50 non-adversari-
ally trained on ImageNet with a perturbation error of �

∞
= 10−3 , and the time was then 

averaged on one thousand queries. However, we remark that these algorithms were not 
optimised on a computational point of view and these results are reported mainly for an 
indicative purpose.

All the algorithms have computational costs on the same order of magnitude. The 
Square algorithm stands out as having the lowest computational burden and achieving 
state-of-the-art misclassification rates for non-adversarially trained networks. However, 
for networks trained with the MadryLab defense, Parsimonious is observed to have a 
superior misclassification rate, at the cost of taking approximately 4 times longer to 
compute the perturbation. Finally, the fact that BOBYQA and Parsimonious algorithms 
are the slowest shows how sophisticated hierarchical approaches are computationally 
intensive, though can be beneficial for lower perturbation energies or networks trained 
against adversarial attacks.

Table 1  Average time required by different algorithms in processing 1000 queries to the ImageNet non-
adversarially trained ResNet50

BOBYQA GenAttack Frank-Wolfe Parismonious Square

Time/1000 queries 43.7s 11.7s 18.6s 51.8s 12.7s
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5  Discussion and conclusion

We have compared for the first time how the the existing GenAttack (Alzantot et al. 
2019), Parsimonious (Moon et  al. 2019), Square (Andriushchenko et  al. 2020), 
and Frank-Wolfe (Chen et  al. 2020) algorithms, and the herein further developed 
BOBYQA based method, behave when the available �∞ energy for a perturbation 
varies, and an adversarial training or a structural defense is considered.

The results suggest that those methods limiting the search for an adversarial 
example to the vertices of the �∞ perturbation domain generally work better. 
Whilst Square algorithm is especially effective on the non-adversarially trained 
networks, the Parsimonious algorithm manages to outperform any other approach 
when the networks are adversarially trained with the MadryLab implementation. 
Furthermore, the Parsimonious algorithm performs better than Square when con-
sidering the structural defense that limits the attacks on some pixels, suggesting 
that an algorithm based on combinatorial search is robust in its hyper-parameters 
to the setting where it is applied.

The BOBYQA based algorithm was further developed in this paper to explore 
how model-based approaches compare to the state-of-the-art algorithms, and was 
found to achieve similar results to the Parsimonious and Square algorithms. In 
almost in all the experiments the BOBYQA based algorithm achieves a success 
rate CDF comparable to the ones of the Parsimonious and the Square algorithms; it 
achieves the state-of-the-art success rate at saturation for low maximum perturbation 
energy constraint both in the ImageNet case and in the pixel constrained problem, 
thus becoming the preferable choice in these cases. Figures 7 and 9 differ in part by 
the former making use of hierarchical lifting as described in Sect. 3.2 while the later 
does not employ any lifting. The aforementioned performance trends are consist-
ent in Figures 7 and 9 which suggests that while lifting reduces the overall number 
of samples, it does not impact the relative performance between algorithms. New 
dimensionality reduction techniques are a topic of recent investigation for DFO, see 
for example (Cartis et  al. 2020), or variations of the derivative-based multi-level 
approach (Gratton et al. 2008), and might further improve the results observed here.

In conclusion, we find that both the structure of the algorithm and the attack 
setting have the potential to impact the algorithm performance. These obser-
vations highlight the importance of comparing any new algorithm to the state-
of-the-art in a variety of different settings, such as is done here. Similarly, the 
effectiveness of an adversarial defense for DNNs should always be tested using as 
wide a range of algorithms as possible.

Appendix A experiments with confidence intervals

The results that are reported in Sect. 4 show how the different algorithms com-
pare in expectation but do not give an estimate on how confident the results are. 
To get a measure of this, we bootstrap (Efron and Tibshirani 1994) the data. In 
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particular, we do this by sampling 100 times 50% of the data with reinsertion for 
both the CIFAR10 and ImageNet case. In Figure 10 and 11 the 90% confidence 
interval is plotted in the shaded regions while the median result is plotted with 
the continuous line.

In the CIFAR10 case, the confidence regions are very near to the median val-
ues suggesting that the results that have been plotted in the main text have a very 
small variance. Since the shaded regions are almost distinct, the comparison 
between the methods is almost sure. On the other hand, the results relative to 
ImageNet have a larger confidence interval due to the fewer attacks considered. 
This is especially relevant for low energies as the confidence intervals overlap, 
and thus the median CDF of a method being higher than the other implies that 

(a) (b)

(c) (d)

Fig. 10  Cumulative fraction of test set images successfully misclassified with adversarial examples gen-
erated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA based approaches for dif-
ferent maximum perturbation energies �

∞
 and DNNs trained on the CIFAR10 dataset. In all results the 

solid and dashed lines denoted by ‘Non-Adv’ and ‘Adv’ corresponds to attacks on networks trained with-
out or with the MadryLab defense strategy (Engstrom et al. 2019) respectively. The shaded region corre-
sponds to the 90% confidence intervals for each method computed via boot-strapping the data
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one is more efficient than the other only with some probability. For example, for 
� = 0.01 the BOBYQA algorithm is better than square with a confidence of 70%.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

(a) (b)

(c) (d)

Fig. 11  Cumulative fraction of test set images successfully misclassified with adversarial examples gen-
erated by GenAttack, Parsimonious, Square, Frank-Wolfe, and our BOBYQA based approaches for dif-
ferent maximum perturbation energies �

∞
 and DNNs trained on the ImageNet dataset. In all results the 

solid and dashed lines denoted by ‘Non-Adv’ and ‘Adv’ corresponds to attacks on networks trained with-
out or with the MadryLab defense strategy (Engstrom et al. 2019) respectively. The shaded region corre-
sponds to the 90% confidence intervals for each method computed via boot-strapping the data

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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