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Abstract
Large fleets of engineering assets that are subject to ongoing degradation are pos-
ing the challenge of how and when to perform maintenance. For a given case study, 
this paper proposes a formulation for combined scheduling and planning of main-
tenance actions. A hierarchical approach and a two-stage approach (with either 
uniform or non-uniform time grid) are considered and compared to each other. 
The resulting discrete-time linear programming model follows the Resource Task 
Network framework. Asset deterioration is considered linearly and tackled with an 
enumerator-based formulation. Advantages of the model are its computational effi-
ciency, scalability, extendability and adaptability. The results indicate that combined 
maintenance planning and scheduling can be solved in appropriate time and with 
appropriate accuracy. The decision-support that is delivered helps the choice of the 
specific maintenance action to perform and proposes when to conduct it. The paper 
makes a case for the benefits of optimally combining long-term planning and short-
term scheduling in industrial-sized problems into one system.

Keywords Planning and scheduling · Maintenance · Engineering asset fleets

1 Introduction

With typical lifetimes between 30 and 50 years, industrial process plants are sub-
ject to several types of degradation during their life cycle (Wintle et  al. 2006). 
Efficient and sustainable operation during these timescales is important to 
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maintain competitiveness and ensure the safety and reliability of the plants. After 
the construction and the commissioning of a plant, the longest phase of the life 
cycle starts, the operation and maintenance phase. It is desired to keep the cash 
flows as high as possible during this period. However, decisions affecting this 
happen on different time-scales.

The long-term planning of shutdowns and turnarounds is essential for com-
panies in the process industries as they need to maintain high production lev-
els and safe and reliable operation. At the same time, regular turnarounds are 
required by statutory regulations and guidelines. One of the objectives of every 
turnaround and maintenance action is to minimize the downtime, as production 
losses directly correlate to profits. In larger turnarounds there are usually multi-
ple contractors involved, which poses a challenge from a logistics point of view. 
Therefore, rigorous planning in advance is required as described by Al-Turki 
et al. (2019).

At the same time, production losses may occur through unplanned shutdowns, 
caused on a short-term basis by equipment failure. This led Jardine et  al. (2006) 
to write a review on the newest technological advancements in condition monitor-
ing and predictive analytics that try to minimize the risk of unplanned shutdowns 
by detecting potential asset failures beforehand so that countermeasures in the form 
of maintenance actions can take place. Further advancements have been made and 
application in industry can be seen.

Long-term strategic planning of turnarounds or maintenance actions, but also 
investment projects can be handled with a lower level of detail on long time hori-
zons. This takes into account degradation processes with slow dynamics and allows 
for slack for logistic between distributed production sites. On the other hand, it is for 
operational reasons important to schedule different operations on a detailed level to 
enable different stakeholders to execute their tasks on time.

In the past separate scheduling and also planning models to approach these 
problems have been individually developed, described in literature and applied to 
industrial scenarios. Planning and scheduling are from a mathematical point of view 
very similar problems that mostly differ in regards of the considered time horizons. 
Scheduling is performed for time horizons from weeks to months, while planning 
considers time horizons of multiple years. The integration of scheduling and plan-
ning models has not progress as much as the development of the individual schedul-
ing or planning models.

Integration of planning and scheduling of maintenance actions is important for 
various reasons. The trend towards production networks makes use of economies 
of scale as more similar assets are aggregated in production systems to decrease the 
production cost per production unit. Therefore, large asset fleets are common in the 
process industry. While they offer the opportunity to respond to demand fluctua-
tions, they pose substantial challenges regarding the complexity of the underlying 
mathematical problems.

The data perspective is also an important reason to integrate both systems. From 
a managerial perspective it is strategically important to be aware of the long-term 
plan of maintenance actions that are expensive, take a long time causing production 
losses or need to fulfill legal requirements. On the other hand, some decisions cannot 
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be taken on a long-term basis and need to therefore, be handled in the time-frame of 
scheduling, for example a sudden machine failure that forces a stop of production.

This paper addresses the integration of optimal short-term scheduling of main-
tenance actions and the long-term planning of maintenance operations to increase 
the operational efficiency. Sect.  2 gives an overview of the work on similar inte-
gration approaches mostly in the field of production planning and scheduling. Even 
though this problem is common in many subcategories of the process industry, we 
will focus on a case study of an offshore compressor fleet of an oil and gas company. 
Both the problem definition and case study will be introduced in Sect. 3.

An overview of the requirements for the scheduling and the planning model are 
given in Sect. 4, followed by the detailed mathematical formulation and methodol-
ogy for the integration of both models. The results of the maintenance scheduling 
are illustrated and discussed within the different subcases in Sect. 5. Sections 6 and 
7 concern the presentation of the results of the various subcases and their discussion 
and interpretation. The conclusion gives an overview of the findings of this work 
and shows possible directions for future work.

2  Background and literature review

While scheduling and planning can be done independently from each other, the 
interdependence of both systems is evident. The scientific community has put in the 
past a fair amount of effort into the integration of both systems. The review arti-
cle of Maravelias and Sung (2009) summarizes the challenges and the opportuni-
ties for combined production planning and production scheduling. They introduce 
different modeling approaches, such as relaxed and aggregated scheduling formula-
tions as used in Harjunkoski and Grossmann (2002), Jain and Grossmann (2001) 
or Wilkinson et al. (1995). Harjunkoski and Grossmann (2002) present two strate-
gies for the decomposition of multistage scheduling problems. Jain and Grossmann 
(2001) combine MILP and CP techniques into one hybrid model that outperforms 
the techniques individually. Wilkinson et al. (1995) presented a method for produc-
ing accurate aggregate models based on a discrete-time formulation. As an alterna-
tive to relaxed and aggregated scheduling formulations, Maravelias and Grossmann 
(2001) name offline surrogate models (e.g. Wan et  al. (2005) for the simulation-
based optimization in supply chain management or Sung and Maravelias (2007) 
with an approach to solve production planning problems in multiproduct processes). 
Furthermore, an overview of different solution strategies is given, as depicted in 
Fig. 1. Next to iterative solution strategies which are not considered in this work, 
hierarchical and full-space solution strategies are explained with recent examples. 
In hierarchical models there is an information flow from the the master subproblem 
(i.e. the planning model) towards the slave problem (i.e. the scheduling model) and 
there is no feedback loop (e.g. McKay et al. 1995) with an aggregate formulation 
based on a detailed discrete-time formulation or Amaro and Barbosa-Póvoa (2008) 
with a supply chain case study from the pharmaceutical industry where the planning 
solution is used as an input for the scheduling level). Full-space models include a 
detailed scheduling submodel during the planning period and are hard to solve (e.g. 
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Bassett et al. 1996). One way to handle this is by focusing on time-based decomposi-
tion approaches (Bassett et al. 1996) or as (Papageorgiou and Pantelides 1996) with 
a single-level formulation. Maravelias and Grossmann (2001) state that the biggest 
challenges lie in the formulation of complex process networks and that uncertainty 
and data integration are complicating the efficient formulation.

Similarly, Grossmann et  al. (2008) give an overview of planning and schedul-
ing for the process industries from the point of view of enterprise-wide optimiza-
tion. Stated challenges are the modeling of novel mathematical programming and 
logic-based models that are able to capture the complexity of the reality while being 
simplified to a level in which the problem can be solved. If this is paired with the 
integration of optimal decision-making over multi-timescale, an efficient solution 
for industrial application can be presented. Other challenges that are mentioned are 
uncertainty and algorithmic challenges. Two applications are shown in case studies 
from batch scheduling and crude oil scheduling.

More recent work in this field is done by Zhang and Grossmann (2016). Their 
interest was in the intelligent management of electricity demand, also referred to 
as demand side management (DSM). Demand side management is used to refer 
to a group of actions designed to efficiently manage a site’s energy consumption, 
this includes also planning and scheduling of production levels and similar opera-
tions. As a field for future research the aggregation of multiple DSM participants is 
mentioned. To tackle the growing problem size and complexity of real-world prob-
lems, as the current formulations and algorithms may not yet be able to solve these 
problems. Therefore, thorough handling of uncertainty still remains out of reach for 
large-scale problems, as it would be computationally too demanding. They present 
two case studies from air separation plants.

Master Problem

Subproblem

Integrated 
Formula�on

Planning Model

Surrogate 
Scheduling Model

Detailed
Scheduling

Master Problem

Subproblem

Planning Model

Surrogate 
Scheduling Model

Detailed
Scheduling

Planning Model

Detailed
Scheduling

Feedback

(a) Hierarchical (b) Itera�ve (c) Full-space

Fig. 1  Uniform discretization of the planning and scheduling horizon (Maravelias and Grossmann 2001)
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While many approaches of integrating planning and scheduling work with dis-
crete time representation, there are also continuous-time representation approaches. 
In the work of Dogan and Grossmann (2006) the problem of integration of plan-
ning and scheduling for a continuous multiproduct plant is adressed. As the prob-
lem becomes computationally very expensive, a rigorous bi-level decomposition 
is proposed. While the upper level determines the potential products, their produc-
tion levels and inventories, the lower level solves the binary variables and a detailed 
sequence of the products. With integer and logic cuts the feasible search space is 
reduced and the gap between both solutions is tightened. For horizons of one to six 
months a method that is significantly faster than the full-space method was obtained, 
while converging with finite tolerance. The problem has less than 1000 binary vari-
ables and 6000 continuous variables. In a related work, Erdirik-Dogan et al. (2007) 
apply their approach to a small real-world case study from the chemical industry. 
Special challenges arise through sequence-dependent changeover times and two-
stage production.

A recent example for the need to integrate planning and scheduling is given in 
Carvalho et al. (2015). The food industry, in particular the ice-cream industry, has 
its own challenges that affect the production process and the management of it. Spe-
cifically, the perishability of raw materials within a longer planning horizon versus a 
just-in-time raw material delivery policy is interesting. The Resource Task network 
framework from Pantelides (1994) was used considering a discrete-time represen-
tation. Even though the problem size is small, the specifics of the process require 
additional constraints in the MILP formulation. The results show better economic 
results and effects on the final product quality as the raw materials can be processed 
just-in-time instead of being subject to longer storage times.

Another more recent work was presented by Vieira et  al. (2018) and discusses 
the integration and following decision support for planning and scheduling of auto-
mated assembly lines. The methodology combines mathematical programming with 
a discrete-event simulation model. This results in an initial production plan for a set 
of products, while in the scheduling step a more detailed validation of the capacity-
feasible schedule is done. This work is relevant, as it highlights the needed flexibility 
in specific industries to enable feasibility at any time.

While there is to the knowledge of the authors no research available of the inte-
gration of maintenance scheduling and planning, the maintenance topic is common 
in the PSE community.

Castro et  al. (2014) propose a continuous-time model for long-term scheduling 
of a gas power plant with parallel units. The model constraints have been provided 
using a generalized disjunctive programming formulation which is then transformed 
into MILP formulations using big-M and convex hull reformulations. A very differ-
ent approach was chosen by Yang et al. (2008) to schedule the maintenance actions 
in a manufacturing system. By utilizing a genetic algorithm an optimization proce-
dure identifies the most cost-effective maintenance schedule, comparing the sched-
ule to three different maintenance strategies, namely corrective, time-based and con-
dition-based maintenance. In this work, the time-based maintenance strategy is the 
reference point against which the optimized schedule is compared. Kopanos et al. 
(2017) include maintenance and production planning and apply it to a compressor 
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network in air separation plants. Similarly to the approach in this paper, a mixed 
integer programming model has been chosen and binary decision variables model 
the minimum run and shutdown times. However, the approach of Kopanos et  al. 
(2017) used a bigger amount of binary variables and the model includes details such 
as specifics of the downstream process, e.g. distillation columns or inventory levels. 
This causes the model to be big and not suitable to model large asset fleets.

The literature shows that there is extensive research done in the field of integra-
tion of planning and scheduling. However, for the integrated planning and sched-
uling of maintenance tasks, especially in the context of industrial-sized problems, 
no solution is provided. The contribution of this work is the integration of main-
tenance planning and scheduling into one model. Several integration approaches 
are tested, including a hierarchical model where the results of the planning model 
set new constraints for the scheduling model and hereby tighten the solution space. 
Two full-space model approaches are tested, one with an uniform time grid and one 
with a non-uniform time grid. A performance analysis of the three variants is con-
ducted and the application for large asset fleets is tested with a realistic case study 
from the oil and gas industry in order to find the integration approach with the best 
performance.

3  Motivating example

Processing units within the process industry are affected by process degradation. 
Over time, production systems are in need of maintenance. This is because specific 
parts in the machine are subject to stresses, fouling phenomena occur and machines 
degrade mechanically over time, impacting the performance. Another reason to per-
form maintenance is safety. Economic reasons play an important role: engineering 
assets (e.g. turbines or compressors) degrade and do not bring the same efficiency as 
they originally did (Aretakis et al. 2012).

Furthermore, there are many examples of industrial production facilities where 
production is distributed and/or in remote locations. A historical example for distrib-
uted production is the cotton industry (Thistlethwaite and Taylor 1953). This indus-
try faced similar problems like other distributed production facilities face nowadays. 
A major example, the one considered in this paper, is the oil and gas industry with 
offshore production facilities or production locations in the desert. Another exam-
ple is desalination plants on small islands or distributed energy generation including 
urban and rural wind and solar energy production facilities. Maintenance before an 
unplanned shutdown is in these scenarios even more critical, as the maintenance 
personnel are not necessarily in the proximity of the plant and production losses are 
higher due to the time needed for arranging the necessary logistics.

This work presents a case study from the oil and gas industry. This work focuses 
on the development of an integrated formulation for scheduling and planning in 
the case study. More detailed information about the data set can be found in the 
paper of Schulze et al. (2020) where the specific data structure and the parameters 
are explained in more detail. A general overview of the utilized case study is given 
below. Fleets of gas compressors are located on different offshore oil platforms (see 
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Fig.  2) and produce dry gas that is afterwards exported to onshore facilities. As 
is common in practice, all compressors are assumed to run at full capacity except 
when they are maintained.

Every asset is associated with the current, maximal and minimal (by operator 
specifications) goodness. This goodness is decreasing over time by a specific deg-
radation factor. As in the real-world, this degradation factor can be distingushed 
between recoverable and non-recoverable degradation and depends strongly on the 
gas content and the specific compressor model. Average values are assumed here 
that are in the range of other literature. Kurz and Brun (2012), Lakshminarasimha 
and Boyce (1994) and Igie et al. (2011) describe degradation rates of about 4% per 
year, thereof 3% as recoverable degradation and 1% as non-recoverable degradation. 
Figure 3 shows the pattern of the degradation with regular maintenance activities 
that is most relevant for this case study. Additionally, the compressors are also dete-
riorating which ultimately causes an asset failure. To model this, every compressor 
is associated with a Remaining Useful Lifetime (RUL) value which is decreasing 
over time. In an application scenario, this value is assumed to be updated by external 
Condition Monitoring systems.

Some maintenance types are already mentioned in Fig.  3. Next to compressor 
inspections and online and offline washing of compressors, full maintenances that 
are conducted onshore are also considered. Minor machine faults, e.g. leaking bear-
ings, may be maintained on the platform directly and in a shorter time. Every main-
tenance type is associated with a duration, required personnel and cost. It is common 
in the process industry to utilise the downtime of machinery due to the need for 
maintenance to perform a bigger set of maintenance actions, e.g. when performing 

Fig. 2  A compressor network for the distributed production of gas
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a long maintenance task, smaller maintenance tasks are performed on the side (if 
possible due to accessibility and availability of spare parts) or to perform an offline 
washing at the same time. A detailed overview of the maintenance tasks performed 
in this case study are provided in Table 1. Further details can be found in the study 
case study description (Schulze et al. 2020).

So far, the decision to conduct maintenance has been mostly driven by legal 
requirements and to prevent shutdowns. The perspective of maintaining more often 
in order to increase the efficiency is important but makes the problem more complex.

4  Problem statement and modeling approach

With the above motivating example in mind, we define a general modeling frame-
work for production systems that are subject to degradation with different mainte-
nance modes as countermeasures. Our goal is to determine on both a long-term and 
short-term perspective, what the optimal combination of maintenance actions is in 
order to maximize the operational profit while fulfilling the safety and reliability 
requirements.

Before presenting the detailed mathematical formulation, we will describe the 
basic principle that is followed in the given case study.

The generalized case is a continuous production plant with a set r ∈ R of pro-
ducing assets (e.g. compressors, reactors, furnaces). Each unit is available for pro-
duction if maintenance is currently not carried out. The possible maintenance tasks 
i ∈ I are associated with data for cost, duration, personnel needs and resulting asset 
improvement.

The mathematical model that is used in this work comprises both planning and 
scheduling decisions. Both are realized as discrete-time models and follow the 
Resource-Task Network (RTN) framework (Pantelides 1994). In the past, the RTN 
framework has been proven as both generic and simple, which has resulted in the 
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successful handling of industrial case studies, e.g. in Castro et al. (2013) where the 
demand side management of a steel plant is modeled as an RTN. As both models 
follow the RTN framework, their formulation structure is very similar, which allows 
for easier integration. The main differences of this work are the time length of the 
grids and the consideration of different maintenance types. This will be explained 
for both the planning and scheduling model individually, followed by an overview of 
the formulation itself. The Sects. 4.1 and 4.2 focus hereby on the ’why and what’ of 
the methodology, while the following sections dive into the ’how’ of the methodol-
ogy. In order to avoid duplicate information, the specific formulations for scheduling 
and planning are not introduced.

4.1  Planning model

The planning model is responsible for the long-term planning of the maintenance 
actions. On this time-scale the model is able to take slow degradation processes into 
account and to propose that a pre-emptive maintenance action should be performed 
because of degradation rather than because of machine failure. However, if a main-
tenance operation is pre-determined, e.g. by the scheduling model, the long-term 
planning is updated by fixing the degradation during this overhaul. The planning 
model does not include maintenance modes such as online or offline washing, as 
these are more frequent and short-term and thus do not match with the more coarse 
planning time grid.

4.2  Scheduling model

The scheduling model is responsible for the short-term planning of the maintenance 
actions. On this time-scale the slow degradation processes (e.g. fouling) have a 
lower influence, while real-time information from condition monitoring systems can 
give valuable input about the status of specific production assets, e.g. when an asset 
is predicted to break down within the next 30 days, maintenance needs to be sched-
uled before this moment. From an operational point of view it is important to allow 
this more detailed scheduling, as maintenance personnel need to be available and 
at the right location to perform the maintenance. While the planning model has a 
very coarse time-grid, the scheduling model also allows for timing those long-ahead 
planned maintenance types to the most optimal time point.

4.3  Mathematical formulation

A number of sets, parameters and variables are defined and presented in the 
nomenclature Table 2. Index i refers to a specific task and the index t refers to a 
specific time point. The following sets are defined: Let I be the set of all main-
tenance tasks. It has five subsets, since there are five types of maintenance as 
explained in the problem statement: The short maintenance ISM which is per-
formed off-shore, the long maintenance ILM which is performed on-shore, the 
online washing IOnW which has a short duration and is non-invasive for the unit 
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Table 2  Notation for the planning and scheduling formulation

Description

Index/set
 i Maintenance task
 t Time interval
 R Resource (all)
 Rc Resource (asset)
 Rn Resource (maintenance personnel)
 Rmax Maximum available amount of resource
 T Time interval
 TS Time interval (scheduling)
 TP Time interval (planning)
 I Maintenance tasks
 Ir Maintenance tasks performed on specific resource
 ISM Short maintenance task
 ILM Long maintenance task
 IInsp Inspection maintenance task
 IOffW Offline washing maintenance task
 IOnW Online washing maintenance task

Continuous variable
 ERUL

r,t
Enumerator for remaining useful life

 EGR
r,t

Enumerator for recoverable goodness
 EGN

r,t
Enumerator for non-recoverable goodness

 EInsp

r,t
Enumerator for compressor inspection

 EOffW

r,t
Enumerator for offline washing

 EOnW
r,t

Enumerator for online washing
 Gr,t Goodness of unit
 Gmax

r,t
Maximum goodness of specific unit

 Gmin
r,t

Minimum goodness of specific unit
 Ur Remaining useful life of specific unit
 Uinit

r
Remaining useful life of specific unit

Binary variable
 Ni,t Maintenance task i starts at t

Parameters
 DGN

r
Degradation factor for non-recoverable degradation

 DGR
r

Degradation factor for recoverable degradation (long maintenance)

 DInsp
r

Degradation factor for recoverable degradation (compressor inspection)

 DOffW
r

Degradation factor for recoverable degradation (offline washing)

 DOnW
r

Degradation factor for recoverable degradation (Online Washing)
 Kprofit Production profit per asset
 Ki Cost for maintenance action i
 �i Duration for maintenance action i
 HP Planning horizon
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itself, which means that it can be done without removing the unit from the sys-
tem, the offline washing IOffW which requires to shut down the compressor and the 
inspection IInsp which is shorter than a long maintenance action, but also does not 
restore the goodness as much as the long maintenance does. In time slots where 
maintenance is happening every type of maintenance (except online washing) 
stops the production, but the duration �i is individual for every compressor and 
type of maintenance. Another simplification has been done regarding the dura-
tion of maintenance tasks: The possible production losses due to a ramp-up and 
ramp-down of the production before and after the maintenance itself are included 
in the maintenance duration in order to account for all production losses due to 
the maintenance. The set of resources R has two subsets: compressors RC and 
maintenance personnel Rn . Each compressor is part of a compressor train on a 
specific platform. For the example case study, each platform has exactly one com-
pressor train with five compressors in series. In real-world there exists platforms 
with more than one compressor train. This may affect the cost for maintenance, 
if maintenance actions are performed for two trains on the same platform, if con-
ducted simultaneously or consecutively. However, this paper refers to the simpler 
case described beforehand.

The amount of resources available is limited for each available resource type 
between zero and the maximum available resources of the specific type:

For each compressor further information is needed to plan the maintenance. For 
each compressor RC and at each time t we track the Remaining Useful Life (RUL) 
Ur,t and the goodness Gr,t of the unit. Predictions about the Remaining Useful Life 
are available only up to a certain point in time, when the measurement of the con-
dition of the equipment indicates that a failure may happen soon. If the condition 
monitoring does not suggest that a machine failure is upcoming, the RUL is basi-
cally endless. However, in this formulation, a mixed approach between Time Based 
Maintenance and Condition Based Maintenance is applied and therefore the RUL is 
never infinite, but set to a reoccurring maintenance interval. The binary variable Ni,t 
takes the value 1 if a maintenance task i starts at time slot t and remains zero if the 
maintenance task does not start in that time slot.

(1)0 ≤ Rr,t ≤ Rmax
r

∀r ∈ R, t ∈ T

Table 2  (continued)

Description

 HS Scheduling horizon
 LP Planning slot length
 LS Scheduling slot length
 �i,t−� Discrete interaction
 � Length of time interval
 �S Length of scheduling time interval
 �P Length of planning time interval
 M Big M
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4.4  Time grids

The problem described in this paper tackles an existing challenge in the process 
industry: How to cope with long-term planning of maintenance, which includes 
planned turnarounds that allow opportunistic maintenance and takes degradation 
processes with slow dynamics into account, but also unforeseen machine failures 
and the inputs from condition monitoring (which is able to sense first indicators 
for upcoming machine failure about three months in advance)? We define two 
non-overlapping time intervals: TS defines the set of time intervals of the short-
term scheduling horizon, while TP defines the long-term planning time intervals, 
where the following holds true:

When choosing the size of the time-grid, two cases are possible: If the planning 
time-grid has the same level of detail as the scheduling time-grid, then the time-grids 
are uniform, otherwise they are non-uniform (see Fig. 4). More information about 
the non-uniform grid approach applied to an example case study about demand side 
management of an steel plant can be found in (Dalle Ave et al. 2019). Even though 
the time scales in this work are much longer than in the aforementioned paper, the 
time-grid ratio between the near and the far future shows similarly elongated time 
intervals. While the model captures the finer aspects of the scheduling problem for 
the near future, the further future is represented by longer time intervals.

(2)TS ∪ TP ⊆ T

Scheduling Horizon TS Planning Horizon TP

T= TS U TP

(a) Uniform time discretization of the scheduling and planning horizon

Scheduling Horizon TS Planning Horizon TP

(b) Non-uniform time discretization of the scheduling and planning horizon

Fig. 4  Uniform (a) and non-uniform (b) discretization of the planning and scheduling horizon
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The structural parameters for the length of the time horizons, HP and HS , as well 
as the length of the slots, LP and LS , are used to set up the the amount of slots that 
are needed to represent the time horizon with the required granularity. For the ease 
of simplicity, they are not explicitly used in the mathematical equations in this chap-
ter. While the horizon length is solely used to initialize the number of time slots in 
the specific model, the slot length is also used to scale other parameters, e.g. the 
degradation per slot.

The interface between these two time grids will be discussed in Sect. 4.12 about 
model integration.

4.5  Limits

Both the goodness and the remaining useful life have limits:

The remaining useful life should not fall below a certain threshold Umin
r

 . When this 
boundary is reached, a maintenance task needs to be performed. There are different 
options to choose Umin

r
 . When the value for the remaining useful life reaches zero, 

the unit will break and cannot be used any further. Setting Umin
r

= 0 is equivalent to 
a run-to-failure-strategy. Since predictions from a condition-monitoring system only 
have a certain accuracy, in reality Umin

r
 will be set to a value at which the risk of unit 

failure is acceptable. The higher this value is, the smaller is the risk of a machine 
failure, but also, the greater the risk, that machines might be maintained earlier than 
necessary. Similarly for the goodness:

While the goodness is decreasing over time, we can define a value Gmin
r

 which is the 
minimum goodness we allow the compressor to operate with (While Gmin

r
≥ 0 must 

hold true). Furthermore, the maximum goodness (i.e. the maximum performance 
that can be achieved) Gmax

r
 of each compressor is different and the initial goodness 

Ginit
r

 (with Gmax
r,t

≥ Ginit
r,t

 ) also needs to be defined, since the scheduling and planning 
model is applied to an existent asset fleet and not all of them operate in this moment 
with their maximum performance.

Both the goodness and the remaining useful life are decreasing over time. Each of 
the three maintenance types has an impact on these two properties. This is displayed 
in Fig. 3.

4.6  Enumerator formulation

The concept of the degradation of the goodness and the decreasing remaining useful 
life is based on the time since the last maintenance that affects these properties has 
been performed. Since there are different types of maintenance available and they 
all do not have the same effect on goodness and RUL, we introduce one counter for 
each type of maintenance and one for the remaining useful life (as it is affected by 

(3)Umin
r

≤ Ur,t ≤ Umax
r

∀r ∈ Rc, t ∈ T

(4)Gmin
r

≤ Gr,t ≤ Gmax
r

∀r ∈ Rc, t ∈ T
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the multiple maintenance types). For reasons of brevity, only the enumerator used 
for the remaining useful life ERUL

r,t
 is introduced:

The enumerator counts up by 1 for every time interval without maintenance that 
affects the RUL, otherwise it is reset. The constraint in Eq. 5 is active when there is 
no maintenance performed and it increments the enumerator. If there is maintenance 
it is relaxed by the big-M term. Equation 6 ensures that the enumerator is increas-
ing by maximum 1 in each time interval. Equation 7 also resets the enumerator to 
one. When there is maintenance, the upper bound for the enumerator is 1, otherwise 
the big-M term relaxes the upper bound. The lower bound of the counter is always 
1 (Eq. 8). An overview The relationship between the different enumerators and the 
associated maintenance tasks is given in Table 3.

4.7  Remaining useful lifetime

As mentioned before, the formulation for the remaining useful lifetime should 
allow the model to be used in two settings: Running in Time Based Maintenance 
(Overhaul of the asset after a pre-defined time) or Condition Based Maintenance 
(Maintenance performed on the basis of additional input information that pre-
dict when a fault will happen and when a maintenance needs to be performed in 
order to prevent this). Time Based Maintenance was the industry standard for a 
long time, but nowadays information about the condition are are a crucial part for 
making decisions about maintenance. For the Condition Based Maintenance there 

(5)ERUL
r,t

≥ ERUL
r,t−1

+ 1 −M
∑

i∈Ir∩(ISM∪ILM)

Ni,t ,∀r ∈ Rc, t ∈ T

(6)ERUL
r,t

≤ ERUL
r,t−1

+ 1 ,∀r ∈ Rc, t ∈ T

(7)ERUL
r,t

≤ 1 +M(1 −
∑

i∈Ir∩(ISM∪ILM )

Ni,t) ,∀r ∈ Rc, t ∈ T

(8)ERUL
r,t

≥ 1 ,∀r ∈ Rc, t ∈ T

Table 3  Relationships between 
the maintenance actions and the 
enumerators they reset

Maintenance type Impact on enumerators

Index Description ERUL EInsp EGN EGR EOffW EOnW

ILM Long maintenance ✓ ✓ ✓ ✓ ✓ ✓

ISM Short maintenance ✓ ✓

IInsp Inspection ✓ ✓ ✓ ✓

IOffW Offline washing ✓ ✓

IOnW Online washing ✓
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is a maximum lifetime given before a maintenance needs to be performed. With 
every time interval since the last maintenance this remaining useful lifetime is 
decreasing:

Equation 9 holds true for the formulation in the fullspace model with uniform time-
grid ( �P = �S ). For the hierarchical model and the fullspace-model with nonuniform 
time grid, the equation needs to be adapted to be feasible in the time horizon of the 
scheduling and the planning time horizon with their corresponding length for each 
discrete time-slot in the scheduling ( �S ) or planning ( �P ) time horizon.

It is assumed that Time-Based Maintenance is always performed. The set value 
gives the time at which the equipment is by latest maintained. This is reflecting legal 
requirements in many companies that defines the maximum interval between two 
maintenance actions. If this value is set very high, it will rarely be activated. Con-
dition monitoring will suggest maintenance actions to be performed at an earlier 
time. This is done as the value for Ur,t is updated with an prediction from condition 
monitoring systems. In the practical implementation of this paper, there exists no 
real-time condition monitoring system and therefore the initial case study contains a 
pre-defined RUL for every asset.

4.8  Goodness calculation

With the counters that have been defined before, it is possible to formulate the 
goodness Gr,t for each compressor at each time t.

The notation of the different parameters and variables is specified in Table 2. Every 
term of Equation 12 refers to one specific enumerator and subtracts, based on when 
the enumerator for a specific maintenance type was reset the last time, a certain 
amount of goodness. This deterioration is dependent on the degradation factor for 
the specific degradation type and the length of the time intervals. Respectively, for 
the hierarchical model and the full-space model with non-uniform time grid this 
mathematical formulation must be separated into the two different horizons:

(9)Ur,t ≤ Umax
r

− ERUL
r,t

� ∀r ∈ Rc, t ∈ T

(10)Ur,t ≤ Umax
r

− ERUL
r,t

�S ∀r ∈ Rc, t ∈ TS

(11)Ur,t ≤ Umax
r

− ERUL
r,t

�P ∀r ∈ Rc, t ∈ TP

(12)

Gr,t = Gmax
r

− DGR
r
�(EGR

r,t
− 1) − DGN

r
�(EGN

r,t
− 1)

−DInsp
r

�(E
Insp

r,t − 1) − DOffW
r

�(C
OffW

r,t − 1)

−DOnW
r

�(EOnW
r,t

− 1)

∀r ∈ Rc, t ∈ T
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While the dynamics of the considered degradation are rather slow, they have a larger 
impact on the time-horizon of the planning model. However, they are still consid-
ered in the scheduling model. The maintenance types that are considered in this 
shorter time-horizon are economically beneficial in regards to the degradation. The 
actual maintenance tasks are planning in the scheduling horizon, the results of the 
planning model are just estimated predictions.

It has to be noted, that Eq. 12 is calculating the degradation of the goodness in a 
linear fashion. Figure 3 shows however, that the degradation is not necessarily linear. 
The simplification made here is done to keep the mathematical problem in the MILP 
domain as solving a MINLP of the same problem size would not be feasible in industri-
ally reasonable time.

4.9  Allocation of tasks to units

In order to allocate a maintenance task to a compressor and to set the starting time of 
the maintenance, the binary variable Ni,t is introduced. It takes the value 1 if the main-
tenance task i on unit r starts at time t. At any time t only one maintenance task i can be 
performed on each compressor Rc . The previous constraint can be expressed by:

4.10  Resource balance

The resource balance describes the fact that in each active time interval that every task 
Ni,t consumes a specific amount of resources �r,i,t from the initial amount of resources 
Rr0 that have been available at the beginning of the time interval.

(13)

Gr,t = Gmax
r

− DGR
r
�S(E

GR
r,t

− 1) − DGN
r

�S(E
GN
r,t

− 1)

−DInsp
r

�S(E
Insp

r,t − 1) − DOffW
r

�S(E
OffW

r,t − 1)

−DOnW
r

�S(E
OnW
r,t

− 1)

∀r ∈ Rc, t ∈ TS

(14)

Gr,t = Gmax
r

− DGR
r
�P(E

GR
r,t

− 1) − DGN
r

�P(E
GN
r,t

− 1)

−DInsp
r

�P(E
Insp

r,t − 1) − DOffW
r

�P(E
OffW

r,t − 1)

−DOnW
r

�P(E
OnW
r,t

− 1)

∀r ∈ Rc, t ∈ TP

(15)
∑

i∈Ir

Ni,t ≤ 1 ∀t ∈ T , r ∈ Rc

(16)Rr,t = Rr,t−1 + Rr,0 −
∑

i

∑

�

Ni,t−��i,r,t−� ∀r ∈ R, t ∈ T
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In contrast to other RTN resource balances this resource balance does not consider 
the raw materials and products. It is assumed, that these are homogeneous commodi-
ties. Removing this helps to decrease the model size, which is often a limiting factor 
for complex real-life models. The included resources concern only the maintenance 
personnel and the assets themselves. Figure 5 displays an example of the resources 
within the RTN framework. The five tasks I can be performed on any of the specific 
resources, i.e. the different compressors. Whenever such a maintenance task is con-
ducted, also the maintenance personnel resource is consumed for the duration of the 
maintenance task.

4.11  Objective function

The target of the optimization is to maximize the profit, i.e. the sum of the production 
profit from each compressor minus the cost for maintenance.

The objective functions of the planning and scheduling models are identical. They 
consist of two different terms. First, the profit from the production must be summed 
up. Every platform has a specific production capacity. As long as a compressor is not 
in maintenance, it is operated at maximum capacity as defined by its goodness value. 
As soon as the compressors are maintained, the production needs to be shut down for 
the time period of the maintenance task. During the periods when the production is 
running, the maximum production capacity of a train needs to be multiplied with the 
product of the goodness of each compressor in the train. The second term takes the cost 
of every maintenance into account, which in addition to the production loss is a nega-
tive driver.

The objective function is formulated as follows:

(17)max z =
∑

r∈Rc

(KprofitGr,t − Ki

Ir
∑

i

T
∑

t

Ni,t)

R_c: Compressor Ressources
(every Maintenance Task can be performed 
on every compressor)

R_m: Maintenance Personnel Ressources 
(every Maintenance Task requires a set 
amount of Maintenance Personnel)

Fig. 5  Example representation of the resources within the RTN formulation
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4.12  Model integration

As described in the background section, there are different ways to integrate the 
planning and the scheduling models. In this work three different approaches are 
considered: A full-space model with a uniform time-grid, a full-space model with 
a non-uniform time-grid and a hierarchical model with a non-uniform time grid.

While the full-space models can be realized easier, the hierarchical model 
requires a more sophisticated formulation. In the first step the planning model is 
run with a coarse time-grid. This will determine when the relevant maintenance 
types need to be performed. In a top-down approach those maintenance actions 
that are overlapping with the scheduling horizon are assigned to the scheduling 
model. This is realized by specific matching constraints (see Fig. 6), that leave the 
freedom to pick the most detailed scheduling time-slots that happen to be within 
the time span of the corresponding planning time-slot that is overlapping with the 
scheduling horizon. The scheduling model is then solved and finds solutions for 
the fixed maintenance types but also for those maintenance types that were not 
considered in the planning model. Figure 6 illustrates how the integration works 
from a structural point of view. The figure shows in a simplified example that the 
first two planning slots are within the scheduling horizon. Each of the planning 
slots spans over five scheduling slots. If the planning model suggests a mainte-
nance in one of the planning slots, the sum of maintenance actions in the five cor-
responding scheduling slots also needs to be one. Vice versa, if no maintenance 
is planned in one of the two planning slots, the sum of maintenance actions in the 
corresponding scheduling slots must be equal to zero.

Resource 1, Maintenance Type 1 0 1 0 0 0 1
Resource 1, Maintenance Type 2 0 0 1 0 1 0
Resource 1, Maintenance Type 3 1 0 0 0 0 0

Resource 1, Maintenance Type 1 0 0 0 0 0 0 0 0 1 0

Resource 1, Maintenance Type 2 0 0 0 0 0 0 0 0 0 0

Resource 1, Maintenance Type 3 0 1 0 0 0 0 0 0 0 0

Resource 1, Maintenance Type 4 0 0 1 0 0 0 1 0 1 0
Resource 1, Maintenance Type 5 1 0 0 0 1 0 0 0 1 0
Resource 1, Maintenance Type 6 1 1 1 0 1 0 1 1 0 0

Scheduling Model:

Planning Model:

1. Solve planning model for relevant maintenance types
2. Export binaries from planning model that lay in the

scheduling horizon into auxiliary matrix
3. Set new constraint that forces the scheduling model

to adopt the maintenance decisions from the
planning model (but with flexibility regarding the
exact scheduling time slot)

4. Solve scheduling model and find solutions for all 
maintenance types (those, that are considered in 
planning and short-term maintenance)

Auxiliary matrix

Fig. 6  Overview of the structural integration in an hierarchical integration of planning and scheduling
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5  Example results

In this section, several cases from the described motivating example are run. In 
order to perform a performance analysis, the fleet size, the granularity of the time 
grid and the length of the time horizon are varied. Furthermore, the different options 
for the integration of planning and scheduling, as explained in the methodology Sec-
tion 4, are tested.

The different cases were solved using GAMS 24.8.4 with CPLEX 12.7.1.0 on an 
Intel(R) Core(TM) i7-6700HQ at 2.6 GHz and 16 GB RAM.

In order to compare between the different formulations (hierarchical model as 
well as full-space model with uniform/non-uniform time grid), the improvement 
of operational profit of the different cases with optimized maintenance schedules 
is calculated. The base of comparison is the same case study, but with a time-based 
maintenance plan for the long maintenance action that is performed on-shore. In this 
base-case every compressor is maintained every second year, independent from its 
actual degradation level. Short maintenance actions to avoid machine failure are still 
allowed and incorporated into the case studies. The improvement is calculated as the 
ratio of operational profit with optimized maintenance schedules to the operational 
profit for the same case, but with a time-based maintenance approach.

The computation is in all cases terminated after a total of 20,000 CPU-s. In 
the case of the hierarchical model where technically two sequential optimization 
problems are solved, 10,000 CPU-s are dedicated to the planning problem and the 
remaining 10,000 CPU-s are used to solve the scheduling problem. Furthermore, the 
calculation is terminated once the MIP-gap is below the threshold of 0.01%. This 
optimality gap is acceptable and a quick solution is preferred over decreasing the 
gap further.

Table  4 show the size of the mathematical problems in terms of constraints, 
binary variables and variables for various fleet sizes. In fact, the final problem size is 
affected by all the model parameters that are changed by individual case studies. The 
amount of compressors has a major effect on the problem size, next to the number of 
considered maintenance types and the granularity and length of the time grid. The 
table shows the example of the full-space model with non-uniform time grid for a 

Table 4  Overview of the model statistics for the smaller case studies (full-space model with non-uniform 
time grid for one compressor and varying time grid parameters) [horizon in days and slot length in hours]

Planning Scheduling Constraints Binary variables Variables

Horizon Slot length Horizon Slot length

60 24 30 3 3134 5524 1210
60 24 30 6 1572 2757 610
120 24 30 3 3160 5570 1220
120 24 30 6 1596 2797 620
180 24 30 3 3186 5616 1230
180 24 30 6 1620 2837 630
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planning horizon of 8 years with a granularity of months and a scheduling horizon 
of 1 month with a granularity of 3 h. Precise values for every case that was run 
would go beyond the scope of this paper, but the table provides an overview of the 
ballpark of the number of constraints, variables and binary variables that have been 
subject of this work. This highlights the complexity of the mathematical problem.

5.1  Hierarchical Model

A few much smaller case studies were run to give a better comparison to the two 
other formulation approaches, as the larger case studies cannot be solved for all 
modeling approaches. The results can be found in Table 5. For these cases, just one 
compressor is considered and the planning horizon is either 2, 4 or 6 months with 
one-month timeslots and in the scheduling horizon of one month the timeslots are 
either 3 or 6 h.

5.2  Fullspace model—uniform time grid

Table 6 shows the application of the full-space model formulation with a uniform 
time grid in which different cases are run. The fleetsize is varying between 1, 5 and 
10 compressors. For the length of the horizon, either two, four or six months were 
chosen, while the granularity is either 2, 3 or 6 h. A few cases with a time horizon of 
two or four years were run in order to compare the formulation against the hierarchi-
cal model, but as the formulation already struggles with smaller problem size and is 
not able to solve over such long time horizons, these are not included in the table.

5.3  Fullspace model—non‑uniform time grid

Similar as for the hierarchical model, some much smaller cases were run to facilitate 
comparison with the uniform model. These cases have a planning horizon of 2, 4 or 
6 months with timeslots of 1 month and a scheduling horizon of 1 month with time 
slots in 3 or 6 h. The results are presented in Table 7.

Table 5  Results of the hierarchical model for shorter time horizons (horizon in days, Slot length in 
hours)

Compres-
sors

Planning Scheduling Improve-
ment (%)

CPU-s MIP-Gap

Horizon Slot 
length

Horizon Slot 
length

Plan. Sched. Plan. (%) Sched. (%)

1 60 24 30 3 2.52 4.19 5.95 0.00 0.01
1 60 24 30 6 1.25 3.09 5.83 0.00 0.01
1 120 24 30 3 1.48 3.56 5.92 0.00 0.01
1 120 24 30 6 0.53 3.73 5.95 0.00 0.01
1 180 24 30 3 5.99 3.59 6.19 0.00 0.01
1 180 24 30 6 4.92 3.52 5.81 0.00 0.01
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5.4  Larger case studies—hierarchical model and non‑uniform fullspace model

While the results in the previous sections aimed to show the different performances 
of the modeling approaches, in this section the case studies are scaled up in order 
to illustrate the ability of the proposed methods to handle case studies of industrial-
sized problems.

Table 8 shows the application of the hierarchical model formulation to each of the 
different cases run. The fleet size is varies between 1, 5, 10, 25, 50 or 100 compres-
sors. While the planning model is running over a horizon of either 4 or 8 years with 
timeslots being one month, the scheduling model is run over a horizon of one month 
with the timeslots being either 3 h or 6 h.

Table 9 shows the application of the full-space model formulation with a non-
uniform time grid in which different cases are run. The fleet size is varied between 
1, 5 and 10 compressors. For the length of the planning horizon either four or eight 

Table 6  Results of the fullspace model with uniform time grid (horizon in days, slot length in hours)

Compressors Horizon Slot length Improvement (%) CPU-s MIP-Gap (%)

1 60 6 1.30 51.02 0.01
1 60 3 1.30 987.3 0.01
1 60 2 1.07 8680.3 0.01
1 120 6 0.56 692.22 0.01
1 120 3 0.95 20002.09 0.03
1 120 2 1.71 20001.34 6.95
1 180 6 4.19 2891.11 0.01
5 60 6 4.48 5878.61 0.01
5 60 3 3.67 20008.31 4.55
5 120 6 0.20 20001.73 0.54
5 120 3 2.56 20001.57 5.29
5 180 6 0.88 20000.99 1.30
10 60 6 0.72 20001.8 0.33

Table 7  Results of the fullspace model with non-uniform time grid for shorter time horizons (horizon in 
days, slot length in hours)

Compressors Planning Scheduling Improvement (%) CPU-s MIP-Gap (%)

Horizon Slot length Horizon Slot length

1 60 24 30 3 8.75 19.23 0.09
1 60 24 30 6 6.03 10.39 0.06
1 120 24 30 3 5.11 21.89 0.09
1 120 24 30 6 4.48 10.5 0.09
1 180 24 30 3 6.60 27.47 0.10
1 180 24 30 6 5.60 10.97 0.06
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years were chosen, with a scheduling horizon of one month. The granularity of the 
planning time-grid is one month, while the scheduling time-grid is divided into slots 
of either 3 or 6 h.

For the fullspace model with uniform time grid, no cases bigger than the ones in 
the previous subsection could be solved.

6  Discussion

In this section the results that were presented in the previous section will be dis-
cussed. First, the results for the individual formulation approaches are discussed, 
followed by a comparison of the performance of the different formulations, also 
regarding the ability to solve case studies of different sizes.

6.1  Hierarchical model

The obtained improvements for the hierarchical model range between 1 and 15%. If 
cases with the same fleet size are compared, it can be observed that in those cases 
where the ratio between scheduling horizon and planning horizon is the largest, 
the biggest improvements are achieved. This can be explained due to the increased 
efficiency that can be obtained by applying short-term maintenance modes such 
as washing. They restore a substantial part of the performance, while lasting very 
briefly. It can also be observed that the case studies including just one single com-
pressor have very high improvement rates. This might also be due to the specific 
case study that incorporates a single asset, as this may have an high initial degrada-
tion that can be resolved by maintenance. For cases with more compressors, this is 
evened out, as the properties of each asset are uniformly distributed between given 
boundaries.

Table 9  Results of the fullspace model with non-uniform time grid (horizon in days, slot length in hours)

Compressors Planning Scheduling Improvement 
(%)

CPU-s MIP-Gap (%)

Horizon Slot length Horizon Slot length

1 1440 24 30 3 5.70 456.23 0.01
1 1440 24 30 6 4.63 245.39 0.01
1 2880 24 30 3 5.66 648.89 0.01
1 2880 24 30 6 5.02 341.05 0.01
5 1440 24 30 3 1.43 20,001.83 5.05
5 1440 24 30 6 1.37 20,001.14 3.29
5 2880 24 30 3 1.23 20,000.78 10.92
5 2880 24 30 6 1.06 20,001.34 6.95
10 1440 24 30 3 1.31 20,002.41 15.70
10 1440 24 30 6 0.87 20,002.19 13.98
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Another factor that can be seen are the limitations imposed by the computation 
time limits. While the time limits for both planning and scheduling models are set 
to 10,000 CPU-s, this value is often reached for the planning horizon, especially by 
all case studies that have larger fleet sizes or a longer time horizon and/or a finer 
discretization.

However, the authors want to emphasize that the chosen limits of computation 
times are adequate. While calculations for planning horizons of several years could 
also take up more computation time (e.g. up to one week), the finer scheduling of 
maintenance tasks over a horizon of one or two months should happen around the 
timeframe of 10,000 CPU-s. Furthermore, the optimality gap in the planning model 
is assumed to be uncritical, as in a real-world implementation a rolling horizon 
approach would be chosen and therefore, it will be re-evaluated if the maintenance 
actions with a long duration should be performed within the next months (during the 
scheduling horizon). Such a rolling-horizon approach would be able to re-schedule 
as new information about the RUL would affect existing schedules and even without 
approaching asset-failure steadily new schedules need to be provided to the mainte-
nance personnel.

For some large problems, the solution time was actually not the only limitation, 
but also the available memory to process the optimization. In these cases, the opti-
mization was terminated prematurely and the improvement is in the lower range 
of the spectrum. Also, the largest MIP-gaps can be seen if the memory-limit was 
reached. This happened for the two cases with a fleet size of 100 assets and a sched-
uling time slot duration of 3 h. The MIP-Gap for the scheduling problem was there-
fore not indicated in the result table.

While the (time or memory) resources limit the planning model to achieve big-
ger improvements and create large MIP-gaps (ranging up to 6%), the MIP-gap in 
the scheduling model can be closed for most case studies (with the treshold set 
to 0.01%). For two cases, the scheduling model did not find any solution and the 
MIP-gap could not be calculated. In both cases, the time/memory resources were 
exhausted. This happened for the two cases with a fleet size of 100 assets and the 
finer discretization of the scheduling model. This means, that the case is too large to 
be solved with the given hardware resources in the given amount of time.

Summarizing, the hierarchical model shows the expected behaviour and the sen-
sitivity analysis with alternating some parameters to influence the case study size 
proves that the formulation is efficient for already quite big case studies, however 
the improvement benefits from more computational power and bigger time resource 
availability.

6.2  Fullspace model—uniform time grid

As mentioned in the results section, a few cases were run over longer time horizons. 
However, these cases demonstrated the size of the problem and the computational 
resources that are required. Even with just one asset, a long time horizon resulted in 
a problem size that is solvable, but with large MIP-gap and small improvement rates 
(ranging below 2%).
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The fact that a uniform time grid requires too many discrete time slots when 
it is not relevant (i.e. in the far future, where detailed scheduling is not actually 
required) and therefore the problem size becomes too big, disqualifies this for-
mulation actually for the usage in the aforementioned case study with large asset 
fleets. However, from a scientific point, the evaluation of the results still remains 
interesting and might be solved in the future with progression of computational 
power or with further research in order to develop better algorithms and support-
ing heuristics.

Firstly, the results show an improvement of up to about 4.5% compared to the 
base case. Within groups of cases with the same fleet size a trend can be seen that 
a finer granularity leads to more improvement. For the reported cases it can be 
seen that a longer time horizon decreases the improvement. However, this is a fal-
lacy, as the compared cases have very short time horizons and the way in which 
the comparison with the base case is constructed, it may happen that shorter time 
horizons appear to be better.

Secondly, even though the cases range over shorter time horizons compared to 
the planning horizons of the other approraches, the level of discretization is higher 
and therefore the problem contains more discrete time slots. This causes high com-
putational effort, so that the entire given time resources are required in most cases.

The MIP-gaps are actually rather small for most cases and do not exceed 7%.
Summarizing, the fullspace model with a uniform time grid is not able to pro-

vide an appropriate solution for the case study with longer time horizons. Cases 
with a larger amount of assets cannot be solved in appropriate time. Only for very 
limited case studies good results can be achieved.

6.3  Fullspace model—non‑uniform time grid

The behaviour of the fullspace model with a non-uniform time grid as described 
in the results, was expected. The formulation is able to solve case studies that are 
larger than the formulation with an uniform time grid. With the reduced amount 
of time slots this results is as expected.

However, for larger case studies, the problem size is still too big. The two prob-
lems of scheduling and planning, if combined into one problem, are substantially 
harder to solve than both models separately in a sequence. The case studies with 
one compressor were solved very quickly (below 30 s) and obtained improve-
ments of up to 9%. The case studies with 5 or 10 compressors could be solved, 
however the time limit was reached and the remaining MIP-Gaps were between 
3% and 15% with improvements lower than 1.5%.

Cases with a more detailed time grid (3 h slots) for the scheduling problem 
produce slightly higher improvements, while the computational time increases. 
For small problem sizes of one compressor over short time horizons, we can again 
observe the biggest improvements for very short case studies, which is however 
due to the ratio of the time span in which maintenance modes like washing are 
considered and therefore higher improvements can be achieved.
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6.4  Comparison of the formulations

When the hierarchical formulation is compared with the full-space models, both 
with uniform and non-uniform time grid, the most prevalent difference is the per-
formance, especially for larger case studies. The hierarchical model is able to solve 
case studies for up to 100 assets, while the full-space model with non-uniform time 
grid can be applied for up to about 5 assets and the full-space model with uniform 
time grid just for one asset, except when the time horizon is reduced to a level which 
is not suitable for industrial application of maintenance planning. The level of detail 
and the length of the time horizon is however suitable for maintenance scheduling.

The improvement rates of all models are, if the MIP-gap is closed up to the pre-
defined threshold, in a comparable range. While the way the base case is calculated 
influences the cases with a shorter time horizon, it is obvious that the improvement 
rates also in the longer cases are substantial enough for industrial application.

All three formulations result in solutions that are feasible. The degradation pat-
terns that can be observed are as expected by the linear formulation and also a good 
representation of the real-world behaviour. An example of the efficiency degradation 
is shown in Fig. 7. This is one example that is picked out of the different case stud-
ies. The overall goodness of the compressor is deteriorating from an initial efficiency 
of above 65% down to about 62%, with a number of longer and shorter maintenance 
actions like a complete overhaul or compressor washing in between. As soon as a 
maintenance action is performed, the goodness of the compressor will be (partially) 
reset in the following time slot. At the border between the scheduling and the plan-
ning model it can be seen, that specific maintenance types such as the compressor 
washing are not considered anymore. The cyclical pattern is occurring as expected. 
With enough resources (i.e. maintenance personnel available) this pattern will not 
change during regular operation (under the condition, that the degradation can be 
predicted and is uniform). Just in case of a suddenly reduced RUL of an asset or a 
bottle-neck of maintenance personnel, perhaps due to uncertainty in the length of a 
maintenance action, this pattern will change.

In order to visualize the results and to show how the optimized maintenance plan 
can achieve improvements in the sense of decision-support to operators, a base case 
schedule for long maintenance actions is compared with the proposed schedule 
from the hierarchical model. Figure 8 shows that in the optimized schedule all long 
maintenance actions for each platform happen in parallel and stacked. The base case 
suggests to perform each long maintenance subsequently instead of parallelizing 
all available maintenance personnel. Another room for improvement are additional 
maintenance actions that are available, in this case the online washing of compres-
sors, which is not considered in the base case.

7  Summary and conclusions

This paper presented different formulations for integrating planning and schedul-
ing of maintenance actions for compressor fleets in the oil and gas industry in 
order to maximize the operational profit while considering asset degradation. An 
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integral part of both the planning and scheduling models are the enumerator for-
mulations that help to represent the degradation of assets. The considered deg-
radation can be classified as a non-factor based model that is a function purely 
based on time and defined through the case study itself. Considered effects range 
from different types of performance degradation (e.g. fouling) to the remaining 
useful lifetime that gives insights into the operability of the asset and they are 
strictly linear with time. A set of different maintenance modes is included with 
individual pricing, duration and effect on the asset degradation.

Different formulations to address the problem have been introduced: A hier-
archical model and a full-space model with either non-uniform or uniform time-
grid. Both incorporate planning and scheduling with an MILP formulation fol-
lowing the Resource-Task-Network approach. Maintenance tasks are scheduled 
on a long-term and short-term horizon.

Fig. 7  Degradation pattern for one compressor for a time horizon of 8 years for the planning model (a) 
and 1 month for the scheduling model (b)
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The results of applying the formulation to a reality-inspired case study from 
the oil and gas industry shows that the formulations are able to improve the opera-
tional profit. With a performance analysis, the impact of adjusting model parameters 
such as the length of the time horizons of scheduling and planning model and the 
granularity of the time-grid have been tested. While improvements of up to 10% for 
the given case study can be reported, the required computational resources are, as 
expected, still very high. However, commercial solvers are able to solve the mathe-
matical problem in a time and accuracy that is appropriate for industrial application. 
The presented case studies highlighted the effectiveness of the proposed formulation 
to tackle the integration of maintenance planning and scheduling.

The three integration approaches showed in the direct comparison results in 
just minor differences regarding the improvement rate when using similar hyper-
parameters (planning/scheduling horizon and granularity of the time grids). How-
ever, there was a clear difference regarding the performance. While the hierarchi-
cal model was able to solve the maintenance planning and scheduling problem 
for large asset fleets over long time horizons, both full-space models resulted in 

Fig. 8  Gantt chart of the maintenance schedule over a period of 48 months for a fleet of 25 compressors. 
a shows the base case (just long maintenance in a 4-year interval) and b shows the optimized schedule 
including long maintenance and online washing
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too large optimization problems. The non-uniform time grid reduced the problem 
space by a lower level of detailedness during the planning horizon, but the result-
ing problem was still intractable.

The proposed formulations are able to solve the problem with a certain level 
of detail. However, for large cases, the maximum time resources are used up and 
the MIP-gap remains rather big. Different approaches can be part of future work, 
starting by using hardware with better computational power or by increasing 
the time resources for the optimization. If the proposed formulations are imple-
mented in a real-world scenario, this would be suggested, as computation times 
for a planning over several years is adequate to take several days of computational 
time. The scheduling formulation on the other hand requires with 10,000 CPU-s 
already a lot of time to compute, with respect to the scheduling horizon. This 
is especially the case for case studies with many assets. Without performance 
improvements the inclusion of stochastic approaches will be impossible. Another 
approach to solve this issue is the distributed optimization, where the asset fleet is 
segregated into smaller groups for which each a smaller problem is solved.
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