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Abstract
The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is 
considered among the most frequently used techniques to deal with multi-criteria 
group decision-making (MCGDM) conflicts. In this article, we have presented an 
extended TOPSIS technique in the framework of interval type-2 trapezoidal Pythag-
orean fuzzy numbers (IT2TrPFN). We first projected a novel approach to evaluate 
the distance between them using ordered weighted averaging operator and (�, �)
-cut. Subsequently, we widen the concept of TOPSIS method formed on the dis-
tance method with IT2TrPFNs and applied it on MCGDM dilemma by considering 
the attitudes and perspectives of the decision-makers. Lastly, an application of solar 
tracking system and numerous contrasts with the other existing techniques are pre-
sented to express the practicality and feasibility of our projected approach.

Keywords Multi-criteria group decision-making (MCGDM) · Interval type-2 
trapezoidal Pythagorean fuzzy numbers (IT2TrPFN) · Ordered weighted averaging 
operator (OWA)
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1 Introduction

“Multi-criteria group decision-making” (MCGDM) is a branch of operational 
research that yields results to rank and assess the optimum alternatives from set of 
alternatives under multiple criterion regarding multiple decision-maker’s choices 
and preferences Celik et  al. (2015). In the conventional MCGDM techniques, the 
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alternative ratings and criterion weights were articulated using crisp values or natu-
ral language was employed by the decision-makers. It has been become complex to 
state the linguistic terms exactly and accurately by using these terms. Consequently, 
the “fuzzy set” (FS) theory introduced by Zadeh (1965a) was supposed to be used 
for coping up with the problems involving subjective uncertainties Chakraborty 
et  al. (2018), Chakraborty et  al. (2019), Alamin et  al. (2020), [52]. Afterwards, 
“type-2 fuzzy sets” (T2FS) Mendel et al. (2006), Mendel and John (2002), Mendel 
(2007), an extension of “type-1 fuzzy sets” (T1FS) were introduced since they can 
engage with more uncertainties than T1FSs. The most extensively used T2FSs are 
“interval type-2 fuzzy sets” (IT2FS) Mendel (2007), Mendel and John (2002), Men-
del et al. (2006) that is a particular case of frequently used T2FSs.

Later on, Atanassov introduced “intuitionistic fuzzy sets” (IFS) Atanassov (1986) 
that considers both membership and non-membership grades Phu et  al. (2019). 
Many investigators have declared their uniqueness in decision-making because of 
their significance in dealing with uncertainty. “Pythagorean fuzzy sets” (PFS) pio-
neered by Yager (2013) is a generalization of IFS being an innovative tool used for 
modeling imprecision and ambiguous information occurring in MCGDM problems. 
PFSs are proved to be adeptly more competent in managing vagueness, imprecision 
and uncertainties than IFSs in several decision-making processes. The prominent 
characteristic of the PFSs in comparison to the IFSs is to ease the state that “the sum 
of membership and non-membership degree is less than or equal to one with the 
square sum of membership and non-membership degree less than or equal to one”. 
For handling the uncertainties and impreciseness more accurately, we have intro-
duced “interval type-2 Pythagorean fuzzy sets” (IT2PFS) that are capable to detain 
the fuzziness more efficiently. If a IT2PFS is convex and defined on a bounded 
and closed interval then it is called “interval type-2 Pythagorean fuzzy number” 
(IT2PFN). Decision-making is one of the most widely used phenomena in our day-
today life. One of the most powerful theories is that of the multi-attribute decision-
making (MADM) also known as multi-criteria decision-making (MCDM) or multi-
criteria decision-analysis (MCDA) for handling problems that extensively impact 
the human real-life problems. In literature, there are various MCGDM techniques 
including ELECTRE, fuzzy VIKOR, PROMETHEE, fuzzy AHP, fuzzy ANP Celik 
et al. (2015), Kahraman et al. (2015), Chen (2011), Chen et al. (2012), Touqeer et al. 
(2020), Touqeer et al. (2020), Touqeer et al. (2020). All these MCGDM techniques 
engages FSs that are not capable to handle indeterminacy and irregularity involved 
in MCGDM processes so, in the recent times, few Pythagorean MCGDM strategies 
have been productively established for dealing with such ambiguities. Many use-
ful tactics have been established to enrich PFS theory. Another approach involv-
ing MCGDM problem under fuzzy framework was presented by Yang et al. (2020) 
where TOPSIS is extended in trapezoidal interval type-2 fuzzy environment using �
-cut.

TOPSIS Mardani et  al. (2015) is among the most widely used techniques for 
dealing with MCGDM setbacks in different fields. The main objective of TOPSIS is: 
the optimal alternative must possess shortest distance from “Positive Ideal Solution” 
(PIS) and farthest distance from “Negative Ideal Solution” (NIS). In the presented 
article, we have broaden the prevailing approach in the context of IT2PFN using the 
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novel notion of (�, �)-cut. We have proposed an extended TOPSIS approach where 
OWA operator is utilized to depict the outlook and perspectives of decision-makers. 
Based on IT2PFN structure, this paper utilizes a well-known Pythagorean fuzzy 
number having trapezoidal appearance called an IT2TrPFN. The core difference of 
the anticipated approach is that it utilizes IT2TrPFN and uses (�, �)-cut to defuzzify 
the IT2PFNs.

The remaining article is structured in this manner: Sect. 2 recalls some fundamen-
tal concepts about PFS, IT2PFS, IT2TrPFN, (�, �)-cut, OWA operator and TOPSIS 
method. Section 3 presents a technique to compute distance between two IT2TrP-
FNs using (�, �)-cut and OWA operator and also projects an analytical solution of 
distance between two IT2TrPFNs. Section 4 anticipates thorough methodology of 
extension of TOPSIS in the framework of IT2TrPFNs using the projected distance 
approach. Section 5 demonstrates the application of solar tracking system to prove 
the feasibility of the anticipated approach. Section 6 compares the proposed tech-
nique with previous techniques to demonstrate the viability of presented approach. 
Section 7 sums up the paper and provides conclusion.

2  Preliminaries

Several related definitions and concepts about PFS, IT2PFS, IT2TrPFN, (�, �)-cut, 
OWA operator and TOPSIS method used in the subsequent discussions are reviewed 
in brief in the following section.

2.1  Pythagorean fuzzy set (PFS) and interval type‑2 pythagorean fuzzy set 
(IT2PFS)

Definition 2.1 Yager (2013) A PFS ̄̄E on universal set � is defined as:

where 𝜇 ̄̄E
(𝜍) and 𝜈 ̄̄E(𝜍) represent the “Pythagorean membership degree and Pythago-

rean non-membership degree” of ̄̄E at � respectively.

Definition 2.2 Peng and Yang (2015), Rahman et al. (2018) The degree of indeter-
minacy of � to ̄̄E is defined as:

where 𝜋 ̄̄E
(𝜍) ∈ [0, 1].

Definition 2.3 Let ̄̄E(𝜍) = [ ̄̄EU(𝜍), ̄̄EL(𝜍)] be a IT2PFS on universal set � where 
� ∈ � and ̄̄EU ∶ � → [0, 1] and ̄̄EL ∶ � → [0, 1] are two type-1 Pythagorean fuzzy 
sets (T1PFS) known as upper and lower Pythagorean fuzzy sets respectively having 

(1)̄̄E = {⟨𝜍,𝜇 ̄̄E
(𝜍), 𝜈 ̄̄E(𝜍)⟩��𝜇2

̄̄E
(𝜍) + 𝜈2̄̄E

(𝜍) ≤ 1,𝜇 ̄̄E
(𝜍), 𝜈 ̄̄E(𝜍) ∈ [0, 1], 𝜍 ∈ �}

(2)𝜋 ̄̄E
(𝜍) =

√
1 − 𝜇2

̄̄E
(𝜍) − 𝜈2

̄̄E
(𝜍)
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the condition 0 ≤ ̄̄EL(𝜍) ≤ ̄̄EU(𝜍) ≤ 1 . If ̄̄E ∈ 𝜍 is convex and defined on a bounded 
and closed interval then ̄̄E is termed as IT2PFN on �.

Definition 2.4 The degree of indeterminacy of an IT2PFN is defined as:

where 𝜋U
̄̄E
(𝜍),𝜋L

̄̄E
(𝜍) ∈ [0, 1] . (Fig. 1)

2.2  Interval type‑2 trapezoidal pythagorean fuzzy number (IT2TrPFN)

In this subsection, the concept of IT2TrPFNs along with some of their operations 
are discussed.

Definition 2.5 Shakeel et  al. (2020) Let ̄̄EU = [ ̄̄e1
U
, ̄̄e2

U
, ̄̄e3

U
, ̄̄e4

U
;𝜇U

̄̄E
, 𝜈U

̄̄E
] and 

̄̄EL = [ ̄̄e1
L
, ̄̄e2

L
, ̄̄e3

L
, ̄̄e4

L
;𝜇L

̄̄E
, 𝜈L

̄̄E
] be the upper and lower trapezoidal Pythagorean  

fuzzy number (TrPFN) defined on the universal set � where 
0 ≤ ̄̄e1

U ≤ ̄̄e2
U ≤ ̄̄e3

U ≤ ̄̄e4
U ≤ 1,0 ≤ ̄̄e1

L ≤ ̄̄e2
L ≤ ̄̄e3

L ≤ ̄̄e4
L ≤ 1 , 0 ≤ 𝜇L

̄̄E
≤ 𝜇U

̄̄E
≤ 1 , 

0 ≤ 𝜈L
̄̄E
≤ 𝜈U

̄̄E
≤ 1 and ̄̄EL ⊂ ̄̄EU . The Pythagorean membership function 𝜇 ̄̄E

 and 
Pythagorean non-membership function 𝜈 ̄̄E is defined as follows:

(3)

𝜋 ̄̄E
(𝜍) =[𝜋U

̄̄E
(𝜍),𝜋L

̄̄E
(𝜍)]

=

[√
1 −

(
𝜇U
̄̄E

)2
(𝜍) −

(
𝜈U
̄̄E

)2
(𝜍),

√
1 −

(
𝜇L
̄̄E

)2
(𝜍) −

(
𝜈L
̄̄E

)2
(𝜍)

]

(4)𝜇 ̄̄E
(𝜍) =

⎧
⎪⎪⎨⎪⎪⎩

(𝜍− ̄̄e11)𝜇 ̄̄E

̄̄e12− ̄̄e11

̄̄e11 ≤ 𝜍 < ̄̄e12

𝜇 ̄̄E
̄̄e12 ≤ 𝜍 ≤ ̄̄e13

( ̄̄e14−𝜍)𝜇 ̄̄E

̄̄e14− ̄̄e13

̄̄e13 < 𝜍 ≤ ̄̄e14

0 otherwise

Fig. 1  An interval type-2 
trapezoidal pythagorean fuzzy 
number (IT2TrPFN)
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where 𝜇 ̄̄E
= [𝜇 ̄̄EU (𝜍),𝜇 ̄̄EL (𝜍)]and 𝜈 ̄̄E = [𝜈 ̄̄EU (𝜍), 𝜈 ̄̄EL (𝜍)]are IT2PFNs.

The number ̄̄Ecan be represented as 
̄̄E = [ ̄̄EU , ̄̄EL] = ([ ̄̄e1

U
, ̄̄e2

U
, ̄̄e3

U
, ̄̄e4

U
;𝜇U

̄̄E
, 𝜈U

̄̄E
], [ ̄̄e1

L
, ̄̄e2

L
, ̄̄e3

L
, ̄̄e4

L
;𝜇L

̄̄E
, 𝜈L

̄̄E
]) and is called 

IT2TrPFN.

2.2.1  Operations on IT2TrPFN

Definition 2.6 Let ̄̄E1 = ([ ̄̄e11
U
, ̄̄e12

U
, ̄̄e13

U
, ̄̄e14

U
;𝜇U

̄̄E
, 𝜈U

̄̄E
], [ ̄̄e11

L
, ̄̄e12

L
, ̄̄e13

L
, ̄̄e14

L
;𝜇L

̄̄E
, 𝜈L

̄̄E
]) 

and ̄̄E2 = ([ ̄̄e21
U
, ̄̄e22

U
, ̄̄e23

U
, ̄̄e24

U
;𝜇U

̄̄E
, 𝜈U

̄̄E
], [ ̄̄e21

L
, ̄̄e22

L
, ̄̄e23

L
, ̄̄e24

L
;𝜇L

̄̄E
, 𝜈L

̄̄E
]) be two 

IT2TrPFNs and � ≥ 0 . Then following are the basic operations defined on 
IT2TrPFNs: 

1. Addition:
 ̄̄E1 ⊕

̄̄E2 =
⟨[

̄̄eU
11
+ ̄̄eU

21
, ̄̄eU

12
+ ̄̄eU

22
, ̄̄eU

13
+ ̄̄eU

23
, ̄̄eU

14
+ ̄̄eU

24
;

√
(𝜇U

1
)2 + (𝜇U

2
)2 − (𝜇U

1
)2(𝜇U

2
)2, 𝜈U

1
𝜈U
2

]
,

[
̄̄eL
11
+ ̄̄eL

21
, ̄̄eL

12
+ ̄̄eL

22
, ̄̄eL

13
+ ̄̄eL

23
, ̄̄eL

14
+ ̄̄eL

24
;

√
(𝜇L

1
)2 + (𝜇L

2
)2 − (𝜇L

1
)2(𝜇L

2
)2, 𝜈L

1
𝜈L
2

]⟩
2. Multiplication:
  ̄̄E1 ⊗

̄̄E2 =
⟨[

̄̄eU
11
̄̄eU
21
, ̄̄eU

12
h̄
U

22
, ̄̄eU

13
̄̄eU
23
, ̄̄eU

14
̄̄eU
24
;𝜇U

1
𝜇U

2
,

√
(𝜈U

1
)2 + (𝜈U

2
)2 − (𝜈U

1
)2(𝜈U

2
)2
]
,

[
̄̄eL
11
̄̄eL
21
, ̄̄eL

12
̄̄eL
22
, ̄̄eL

13
̄̄eL
23
, ̄̄eL

14
̄̄eL
24
;𝜇L

1
𝜇L

2
,

√
(𝜈L

1
)2 + (𝜈L

2
)2 − (𝜈L

1
)2(𝜈L

2
)2
]⟩

3. Multiplication by an ordinary number:
 𝜉 ̄̄E1 =

⟨[
𝜉 ̄̄eU

11
, 𝜉 ̄̄eU

12
, 𝜉 ̄̄eU

13
, 𝜉 ̄̄eU

14
;

√
1 − (1 − (𝜇U

1
)2)𝜉 , (𝜈U

1
)𝜉
]
,[

𝜉 ̄̄eL
11
, 𝜉 ̄̄eL

12
, 𝜉 ̄̄eL

13
, 𝜉 ̄̄eL

14
;

√
1 − (1 − (𝜇L

1
)2)𝜉 , (𝜈L

1
)𝜉
]⟩

4. Exponential:
 ̄̄E1

𝜉
=
⟨[

̄̄eU
𝜉

11
, ̄̄eU

𝜉

12
, ̄̄eU

𝜉

13
, ̄̄eU

𝜉

14
;(𝜇U

1
)𝜉 ,

√
1 − (1 − (𝜈U

1
)2)𝜉

]
,[

̄̄eL
𝜉

11
, ̄̄eL

𝜉

12
, ̄̄eL

𝜉

13
, ̄̄eL

𝜉

14
;(𝜇U

1
)𝜉 ;(𝜇L

1
)𝜉 ,

√
1 − (1 − (𝜈L

1
)2)𝜉

]⟩

2.3  
(
˛,ˇ

)
‑Cut

Definition 2.7 The (�, �)-cut of a Pythagorean Fuzzy number labelled by ̄̄E(𝛼, 𝛽) is 
defined in this way:

where �, � ∈ [0, 1] and are fixed numbers.

(5)𝜈 ̄̄E(𝜍) =

⎧
⎪⎪⎨⎪⎪⎩

(𝜍− ̄̄e11)𝜈 ̄̄E
̄̄e12− ̄̄e11

̄̄e11 ≤ 𝜍 < ̄̄e12

𝜈 ̄̄E
̄̄e12 ≤ 𝜍 ≤ ̄̄e13

( ̄̄e14−𝜍)𝜈 ̄̄E
̄̄e14− ̄̄e13

̄̄e13 < 𝜍 ≤ ̄̄e14

0 otherwise

(6)̄̄E(𝛼, 𝛽) = {⟨𝜍, (𝜇 ̄̄E
(𝜍), 𝜈 ̄̄E(𝜍))⟩ ∶ 𝜍 ∈ �,𝜇 ̄̄E

(𝜍) ≥ 𝛼, 𝜈 ̄̄E(𝜍) ≤ 𝛽}
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Definition 2.8 The (�, �)-cut of an IT2PFN ̄̄E is represented as follows:

where 𝜍 ∈ �, [𝜇U
̄̄E
(𝜍),𝜇L

̄̄E
(𝜍)], [𝜈U

̄̄E
(𝜍), 𝜈L

̄̄E
(𝜍)], 𝛼, 𝛽 ∈ [0, 1]and ̄̄e(𝛼) ∈ [ ̄̄e

l
(𝛼), ̄̄e

r
(𝛼)],

̄̄f(𝛼) ∈ [̄̄f
l
(𝛼), ̄̄f

r
(𝛼)], ̄̄e(𝛽) ∈ [ ̄̄e

l
(𝛽), ̄̄e

r
(𝛽)], ̄̄f(𝛽) ∈ [̄̄f

l
(𝛽), ̄̄f

r
(𝛽)].

If (�, �)-cut on ̄̄E
Lexists, then the intervals [ ̄̄e(𝛼), ̄̄f(𝛼)]and [ ̄̄e(𝛽), ̄̄f(𝛽)]are divided 

into three sub-intervals: [ ̄̄el(𝛼), ̄̄er(𝛼)], [ ̄̄er(𝛼), ̄̄fl(𝛼)]and [̄̄fl(𝛼), ̄̄fr(𝛼)];[ ̄̄el(𝛽), ̄̄er(𝛽)] , 
[ ̄̄er(𝛽),

̄̄fl(𝛽)]and [̄̄fl(𝛽), ̄̄fr(𝛽)]respectively. ̄̄e(𝛼)and ̄̄e(𝛽)cannot suspect a value larger 
than ̄̄er(𝛼)and ̄̄er(𝛽) . Similarly, ̄̄f(𝛼) ∈ [̄̄fl(𝛼),

̄̄fr(𝛼)]and ̄̄f(𝛽) ∈ [̄̄fl(𝛽),
̄̄fr(𝛽)]cannot 

suspect a value smaller than ̄̄fl(𝛼)and ̄̄fl(𝛽)respectively. However, if (�, �)-cut on 
̄̄ELdoesn’t exist, then both ̄̄er(𝛼)and ̄̄fl(𝛼); ̄̄er(𝛽)and ̄̄fl(𝛽)can suspect values freely in 
the whole intervals [ ̄̄el(𝛼), ̄̄fr(𝛼)]and [ ̄̄el(𝛽), ̄̄fr(𝛽)].

2.4  OWA operator

Definition 2.9 Sang and Liu (2014) An OWA operator with n dimension is a map-
ping ̄̄E ∶ �

n
→ � associated with an n vector Ẅ = (ẅ1,… , ẅn) in such a way that 

ẅi ∈ [0, 1] and 
∑n

i=1
ẅi = 1 . Moreover,

where ̄̄fj represents j-th largest element of aggregated objects collection ̄̄e1,… , ̄̄en.

(7)
̄̄E ={⟨𝜍, ([𝜇U

̄̄E
(𝜍),𝜇L

̄̄E
(𝜍)] ≥ 𝛼, [𝜈U

̄̄E
(𝜍), 𝜈L̄̄E

(𝜍)] ≤ 𝛽)⟩}
=[ ̄̄e(𝛼), ̄̄f(𝛼)], [ ̄̄e(𝛽), ̄̄f(𝛽)]

(8)̄̄e(𝛼) ∈

{
[ ̄̄el(𝛼), ̄̄er(𝛼)] 𝛼 ∈ [0,𝜇L

̄̄E
]

[ ̄̄el(𝛼),
̄̄fr(𝛼)] 𝛼 ∈ [𝜇L

̄̄E
, 1]

(9)̄̄f(𝛼) ∈

{
[̄̄fl(𝛼),

̄̄fr(𝛼)] 𝛼 ∈ [0,𝜇L
̄̄E
]

[ ̄̄el(𝛼),
̄̄fr(𝛼)] 𝛼 ∈ [𝜇L

̄̄E
, 1]

(10)̄̄e(𝛽) ∈

{
[ ̄̄el(𝛽), ̄̄er(𝛽)] 𝛽 ∈ [0, 𝜈L

̄̄E
]

[ ̄̄el(𝛽),
̄̄fr(𝛽)] 𝛽 ∈ [𝜈L

̄̄E
, 1]

(11)̄̄f(𝛽) ∈

{
[̄̄fl(𝛽),

̄̄fr(𝛽)] 𝛽 ∈ [0, 𝜈L
̄̄E
]

[ ̄̄el(𝛽),
̄̄fr(𝛽)] 𝛽 ∈ [𝜈L

̄̄E
, 1]

(12)̄̄Eẅ( ̄̄e1,… , ̄̄en) =

n∑
j=1

ẅj
̄̄fj
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2.5  TOPSIS method

Assuming a MCGDM problem having n alternatives (P1,… , Pn) and m criterion 
(Q1,… , Qn) . Each alternative is estimated in accordance with n criterion. Decision 
matrix X = (xij)n×m exhibits all the values designated to alternatives correspond-
ing to each criterion. W̆ = (ẅ1,… , ẅm) shows the criterion weights satisfying ∑m

j=1
ẅj = 1.

2.5.1  TOPSIS algorithm

Step 1:  Formulate a normalized decision matrix.

  For benefit type criteria:

  
 For cost type criteria:

  
 where nij is the normalized value of xij.
Step 2:  Evaluate weighted normalized decision matrix U = (ŭij)n×m . 

 where ẅj is the j-th criterion weight and 
∑m

j=1
ẅj = 1.

Step 3:  Evaluate the PIS and NIS. 

 where Kt is the benefit criterion set and Kc is the cost criterion set.
Step 4:  Acquire the distances of alternatives from PIS and NIS. 

(13)nij =
xij

max(xij)

(14)nij =
min(xij)

xij

(15)ŭij = ẅjnij

(16)
P∗ ={ŭ

∗

1
, ŭ

∗

2
,… , ŭ

∗

n
}

=
{
(max

i
ŭij|j ∈ Kt)(min

i
ŭij|j ∈ Kc)

}

(17)
N− ={ŭ

−

1
, ŭ

−

2
,… , ŭ

−

n
}

=
{
(max

i
ŭij|j ∈ Kc)(min

i
ŭij|j ∈ Kt)

}

(18)D∗

i
=

√√√√ n∑
j=1

(ŭij − ŭ
∗

j
)2
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Step 5:  Asses relative closeness to the ideal alternatives. 

Step 6:  Rank the alternatives with respect to the relative closeness to ideal alterna-
tives. The larger the relative closeness coefficient the better the alternative 
is.

3  Method to compute distance between two IT2TrPFNs

In the following segment, we projected a novel technique to estimate the distance 
between two IT2TrPFNs using (�, �)-cut and OWA operator that can be employed 
to determine the distance of an alternative from PIS and NIS whose ratings of local 
criterion are represented as IT2TrPFNs. Moreover, we established an analytical 
solution of the distance between two IT2TrPFNs that can be used for calculating the 
distance more suitably and easily. (Fig. 2)

The techniques of computing the distance between two IT2TrPFNs are shown as 
follows:

Firstly, a new assumption is made about the (�, �)-cuts of a IT2TrNN when � and � 
are over the lower membership and non-membership functions i.e. 𝜇L

̄̄E
 and 𝜈L

̄̄E
 . For a 

IT2TrPFN ̄̄E (seen in Fig. 3), it is assumed that when 𝛼, 𝛽 > 𝜇L
̄̄E
, 𝜈L

̄̄E
 ; ̄̄e(𝛼) lies freely in 

the interval [ ̄̄el(𝛼), ̄̄fr(𝛼)] and ̄̄f(𝛼) lies freely in the interval [ ̄̄el(𝛼), ̄̄fr(𝛼)] , which implies 
that the �-cuts of a IT2TrPFN are [([ ̄̄el(𝛼), ̄̄fr(𝛼)]), ([ ̄̄el(𝛼), ̄̄fr(𝛼)])] when 𝛼 > 𝜇L

̄̄E
 . Simi-

larly, ̄̄e(𝛽) lies freely in the interval [ ̄̄el(𝛽), ̄̄fr(𝛽)] and ̄̄f(𝛽) lies freely in the interval 
[ ̄̄el(𝛽),

̄̄fr(𝛽)] , which implies that the �-cuts of a IT2TrPFN are 
[([ ̄̄el(𝛽),

̄̄fr(𝛽)]), ([ ̄̄el(𝛽),
̄̄fr(𝛽)])] when 𝛽 > 𝜈L

̄̄E
 . In order to get rid of the overlapping of 

right and left intervals of � and � cuts of IT2TrPFN, we make an amendment in the 

(19)D−

i
=

√√√√ n∑
j=1

(ŭij − ŭ
−

j
)2

(20)RCi =
Y−

i

Y−

i
+ Y∗

i

Fig. 2  The ( (�, �))-cut of an 
IT2TrPFN
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above assumption that ̄̄e(𝛼) values freely in the interval [ ̄̄el(𝛼),
xL
2
+xL

3

2
] and ̄̄f(𝛼) lies freely 

in the interval [ x
L
2
+xL

3

2
, ̄̄fr(𝛼)] when 𝛼 > 𝜇L

̄̄E
 . Similarly, ̄̄e(𝛽) lies freely in the interval 

[ ̄̄el(𝛽),
xL
2
+xL

3

2
] and ̄̄f(𝛽) lies freely in the interval [ x

L
2
+xL

3

2
, ̄̄fr(𝛽)] when 𝛽 > 𝜈L

̄̄E
 . In other 

words, we replace ̄̄er(𝛼) and ̄̄fl(𝛼) with x
L
2
+xL

3

2
 when 𝛼 > 𝜇L

̄̄E
 , ̄̄er(𝛽) and ̄̄fl(𝛽) with x

L
2
+xL

3

2
 

when 𝛽 > 𝜈L
̄̄E
 . Therefore, ̄̄er(𝛼),̄̄fl(𝛼),̄̄er(𝛽) and ̄̄fl(𝛽) are redefined in the following way:

Figure  3 indicates a novel definition of (�, �)-cut of a IT2TrPFN when 
(𝛼, 𝛽) > (𝜇L

̄̄E
, 𝜈L

̄̄E
) and (𝛼, 𝛽) < (𝜇L

̄̄E
, 𝜈L

̄̄E
).

3.1  Algorithm for computing distance between two IT2TrPFNs

Step 1: Computing the (�, �)-cut of the difference between two IT2TrPFNs. For 
IT2TrPFNs ̄̄E and ̄̄F

(21)̄̄er(𝛼) ≜
{

̄̄er(𝛼) 𝛼 ∈ [0,𝜇L
̄̄E
]

xL
2
+xL

3

2
𝛼 ∈ [𝜇L

̄̄E
,𝜇U

̄̄E
]

(22)̄̄fl(𝛼) ≜
⎧⎪⎨⎪⎩

̄̄fl(𝛼) 𝛼 ∈ [0,𝜇L
̄̄E
]

xL
2
+xL

3

2
𝛼 ∈ [𝜇L

̄̄E
,𝜇U

̄̄E
]

(23)̄̄er(𝛽) ≜
{

̄̄er(𝛽) 𝛽 ∈ [0, 𝜈L
̄̄E
]

xL
2
+xL

3

2
𝛽 ∈ [𝜈L

̄̄E
, 𝜈U

̄̄E
]

(24)̄̄fl(𝛽) ≜
⎧⎪⎨⎪⎩

̄̄fl(𝛽) 𝛽 ∈ [0, 𝜈L
̄̄E
]

xL
2
+xL

3

2
𝛽 ∈ [𝜈L

̄̄E
, 𝜈U

̄̄E
]

Fig. 3  The (�, �)-cut of an 
IT2TrPFN
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 the difference between them can be estimated by using subtraction operation 
identified as ̄̄E − ̄̄F that is also an IT2TrPFN. The (�, �)-cut of ̄̄E − ̄̄F is portrayed 
in Fig. 4 and determined as follows: 

 Now, we have 

̄̄E =( ̄̄EU , ̄̄EL)

=[( ̄̄eU
1
, ̄̄eU

2
, ̄̄eU

3
, ̄̄eU

4
;𝜇U

̄̄E
, 𝜈U

̄̄E
), ( ̄̄eL

1
, ̄̄eL

2
, ̄̄eL

3
, ̄̄eL

4
;𝜇L

̄̄E
, 𝜈L̄̄E

)]

̄̄F =( ̄̄FU , ̄̄FL)

=[(̄̄fU
1
, ̄̄fU

2
, ̄̄fU

3
, ̄̄fU

4
;𝜇U

̄̄F
, 𝜈U

̄̄F
), (̄̄fL

1
, ̄̄fL

2
, ̄̄fL

3
, ̄̄fL

4
;𝜇L

̄̄F
, 𝜈L̄̄F

)]

(25)( ̄̄E − ̄̄F)𝛼 =
[
[( ̄̄E − ̄̄F)𝛼1, (

̄̄E − ̄̄F)𝛼2][(
̄̄E − ̄̄F)𝛼3, (

̄̄E − ̄̄F)𝛼4]
]

(26)( ̄̄E − ̄̄F)𝛽 =
[
[( ̄̄E − ̄̄F)𝛽1, (

̄̄E − ̄̄F)𝛽2][(
̄̄E − ̄̄F)𝛽3, (

̄̄E − ̄̄F)𝛽4]
]

(27)( ̄̄E − ̄̄F)𝛼1 =
( ̄̄eU

2
− ̄̄fU

3
− ̄̄eU

1
+ ̄̄fU

4
) ⋅ 𝛼

min
(
𝜇U
̄̄E
,𝜇U

̄̄F

) + ̄̄eU
1
− ̄̄fU

4
𝛼 ∈

[
0,min

(
𝜇U
̄̄E
,𝜇U

̄̄F

)]

(28)( ̄̄E − ̄̄F)𝛼2 =

⎧
⎪⎨⎪⎩

( ̄̄eL
2
−̄̄fL

3
− ̄̄eL

1
+̄̄fL

4
)⋅𝛼

min

�
𝜇L
̄̄E
,𝜇L

̄̄F

� + ̄̄eL
1
− ̄̄fL

4
𝛼 ∈

�
0,min

�
(𝜇L

̄̄E
,𝜇L

̄̄F

��

̄̄eL
2
−̄̄fL

3
+ ̄̄eL

3
−̄̄fL

2

2
𝛼 ∈

�
min

�
𝜇L
̄̄E
,𝜇L

̄̄F

�
, min

�
𝜇U
̄̄E
,𝜇U

̄̄F

��

(29)( ̄̄E − ̄̄F)𝛼3 =

⎧
⎪⎨⎪⎩

̄̄eL
4
− ̄̄fL

1
−

( ̄̄eL
4
−̄̄fL

1
− ̄̄eL

3
+̄̄fL

2
)⋅𝛼

min

�
𝜇L
̄̄E
,𝜇L

̄̄F

� 𝛼 ∈

�
0,min

�
(𝜇L

̄̄E
,𝜇L

̄̄F

��

̄̄eL
2
−̄̄fL

3
+ ̄̄eL

3
−̄̄fL

2

2
𝛼 ∈

�
min

�
𝜇L
̄̄E
,𝜇L

̄̄F

�
, min

�
𝜇U
̄̄E
,𝜇U

̄̄F

��

Fig. 4  The (�, �)-cut of differ-
ence between ̄̄E and ̄̄F
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where ( ̄̄E − ̄̄F)𝛼1 < ( ̄̄E − ̄̄F)𝛼2 < ( ̄̄E − ̄̄F)𝛼3 < ( ̄̄E − ̄̄F)𝛼4when 𝛼 ∈

[
0,min

(
𝜇L

̄̄E
,𝜇L

̄̄F

)] 
and ( ̄̄E − ̄̄F)𝛼1 < ( ̄̄E − ̄̄F)𝛼2 = ( ̄̄E − ̄̄F)𝛼3 < ( ̄̄E − ̄̄F)𝛼4 when 

𝛼 ∈

[
min

(
𝜇L
̄̄E
,𝜇L

̄̄F

)
, min

(
𝜇U
̄̄E
,𝜇U

̄̄F

)]
 . Similarly, 

 where ( ̄̄E − ̄̄F)𝛽1 < ( ̄̄E − ̄̄F)𝛽2 < ( ̄̄E − ̄̄F)𝛽3 < ( ̄̄E − ̄̄F)𝛽4 when 

𝛽 ∈

[
0,min

(
𝜈L
̄̄E
, 𝜈L

̄̄F

)]
 and ( ̄̄E − ̄̄F)𝛽1 < ( ̄̄E − ̄̄F)𝛽2 = ( ̄̄E − ̄̄F)𝛽3 < ( ̄̄E − ̄̄F)𝛽4 when

  𝛽 ∈

[
min

(
𝜈L
̄̄E
, 𝜈L

̄̄F

)
, min

(
𝜈U
̄̄E
, 𝜈U

̄̄F

)]
.

Step 2: Calculating the distance between two IT2TrPFNs at � and � level. Further, 
the (�, �)-cut intervals of the difference between two IT2TrPFNs are integrated 
within the range of � and � respectively by which the difference between two 
IT2TrPFNs is converted into type-2 interval, calculated as follows: 

(30)( ̄̄E − ̄̄F)𝛼4 =
̄̄eU
4
− ̄̄fU

1
−

( ̄̄eU
4
− ̄̄fU

1
− ̄̄eU

3
+ ̄̄fU

2
) ⋅ 𝛼

min
(
𝜇U
̄̄E
,𝜇U

̄̄F

) 𝛼 ∈

[
0,min

(
𝜇U
̄̄E
,𝜇U

̄̄F

)]

(31)
( ̄̄E − ̄̄F)𝛽1 =

( ̄̄eU
2
− ̄̄fU

3
− ̄̄eU

1
+ ̄̄fU

4
) ⋅ 𝛽 − ̄̄eU

2
+ ̄̄fU

3
+ ( ̄̄eU

1
+ ̄̄fU

4
) ⋅min

(
𝜈U
̄̄E
, 𝜈U

̄̄F

)

min
(
𝜈U
̄̄E
, 𝜈U

̄̄F

)
− 1

𝛽 ∈

[
0,min

(
𝜈U
̄̄E
, 𝜈U

̄̄F

)]

(32)( ̄̄E − ̄̄F)𝛽2 =

⎧⎪⎪⎨⎪⎪⎩

( ̄̄eL
2
−̄̄fL

3
− ̄̄eL

1
+̄̄fL

4
)⋅𝛽− ̄̄eL

2
+̄̄fL

3
+( ̄̄eL

1
+̄̄fL

4
)⋅min

�
𝜈L
̄̄E
,𝜈L
̄̄F

�

min
�
𝜈L
̄̄E
,𝜈L
̄̄F

�
−1

𝛽 ∈

�
0,min

�
𝜈L
̄̄E
, 𝜈L

̄̄F

��

̄̄eL
2
−̄̄fL

3
+ ̄̄eL

3
−̄̄fL

2

2
𝛽 ∈

�
min

�
𝜈L
̄̄E
, 𝜈L

̄̄F

�
, min

�
𝜈U
̄̄E
, 𝜈U

̄̄F

��

(33)( ̄̄E − ̄̄F)𝛽3 =

⎧
⎪⎪⎨⎪⎪⎩

( ̄̄eL
4
−̄̄fL

1
− ̄̄eL

3
+̄̄fL

2
)⋅𝛽+ ̄̄eU

3
−̄̄fL

2
−( ̄̄eL

4
−̄̄fL

1
)⋅min

�
𝜈L
̄̄E
,𝜈L

̄̄F

�
1−min

�
𝜈L
̄̄E
,𝜈L

̄̄F

� 𝛽 ∈

�
0,min

�
(𝜈L

̄̄E
, 𝜈L

̄̄F

��

̄̄eL
2
−̄̄fL

3
+ ̄̄eL

3
−̄̄fL

2

2
𝛽 ∈

�
min

�
𝜈L
̄̄E
, 𝜈L

̄̄F

�
, min

�
𝜈U
̄̄E
, 𝜈U

̄̄F

��

(34)
( ̄̄E − ̄̄F)𝛽4 =

( ̄̄eU
4
− ̄̄fU

1
− ̄̄eU

3
+ ̄̄fU

2
) ⋅ 𝛽 + ̄̄eU

3
− ̄̄fU

2
− ( ̄̄eU

4
− ̄̄fU

1
) ⋅min

(
𝜈U
̄̄E
, 𝜈U

̄̄F

)

1 −min
(
𝜈U
̄̄E
, 𝜈U

̄̄F

)

𝛽 ∈

[
0,min

(
𝜈U
̄̄E
, 𝜈U

̄̄F

)]
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 where 

 Similarly, 

 where 

(35)

△𝛼(
̄̄E, ̄̄F) = ∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼d𝛼

=

[
∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼1d𝛼,∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼2d𝛼

]

[
∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼3d𝛼,∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼4d𝛼

]

(36)∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼1d𝛼 =
̄̄eU
2
− ̄̄fU

3
− ̄̄eU

1
+ ̄̄fU

4

2 ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
)

(37)∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼2d𝛼 =
̄̄eL
2
− ̄̄fL

3
− ̄̄eL

1
+ ̄̄fL

4

2 ⋅min(𝜇L
̄̄E
,𝜇L

̄̄F
)

+
̄̄eL
2
− ̄̄fL

3
+ ̄̄eL

3
− ̄̄fL

2

2 ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
)

(38)∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼3d𝛼 =
̄̄eL
4
− ̄̄fL

1
− ̄̄eL

3
+ ̄̄fL

2

2 ⋅min(𝜇L
̄̄E
,𝜇L

̄̄F
)

+
̄̄eL
2
− ̄̄fL

3
+ ̄̄eL

3
− ̄̄fL

2

2 ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
)

(39)∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼4d𝛼 =
̄̄eU
4
− ̄̄fU

1
+ ̄̄eU

3
+ ̄̄fU

2

2 ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
)

(40)

△𝛽(
̄̄E, ̄̄F) = ∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽d𝛽

=

[
∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽1d𝛽,∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽2d𝛽

]

[
∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽3d𝛽,∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

(H̆ − ̄̄F)𝛽4d𝛽

]

(41)∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽1d𝛽 =
̄̄eU
2
− ̄̄fU

3
− ̄̄eU

1
+ ̄̄fU

4

2 ⋅
(
min(𝜈U

̄̄E
, 𝜈U

̄̄F
) − 1

)

(42)∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽2d𝛽 =
̄̄eL
2
− ̄̄fL

3
− ̄̄eL

1
+ ̄̄fL

4

2 ⋅min(𝜈L
̄̄E
, 𝜈L

̄̄F
)

+
̄̄eL
2
− ̄̄fL

3
+ ̄̄eL

3
− ̄̄fL

2

2 ⋅
(
min(𝜈U

̄̄E
, 𝜈U

̄̄F
) − 1

)
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 As ( ̄̄E − ̄̄F)𝛼1 < ( ̄̄E − ̄̄F)𝛼2 < ( ̄̄E − ̄̄F)𝛼3 < ( ̄̄E − ̄̄F)𝛼4 when 𝛼 ∈

[
0,min

(
𝜇L
̄̄E
,𝜇L

̄̄F

)]
 

and ( ̄̄E − ̄̄
F)𝛼1 < ( ̄̄E − ̄̄

F)𝛼2 = ( ̄̄E − ̄̄
F)𝛼3 < ( ̄̄E − ̄̄

F)𝛼4 when 𝛼 ∈

[
min

(
𝜇L

̄̄E
,𝜇L

̄̄F

)
, min

(
𝜇U

̄̄E
,𝜇U

̄̄F

)] . It 

can be concluded that ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼 < ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼2d𝛼 <

∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼3d𝛼 < ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼4d𝛼 . Exchanging the position of ̄̄E 

and ̄̄F in Eqs.(35,36,37, 38,39 and 40), we obtain that: 

 Similarly, 

 Thus, it is shown that the difference between ̄̄E and ̄̄F at (�, �) level has an 
important property i.e. △𝛼(

̄̄F, ̄̄E) = −△𝛼 (
̄̄E, ̄̄F) and △𝛽(

̄̄F, ̄̄E) = −△𝛽 (
̄̄E, ̄̄F) . 

It indicates that it doesn’t satisfy commutativity. However, no matter what the 
computational order of both is, the absolute values of the endpoints of two inter-
vals are equal.

Step 3: In the following step, we introduce an OWA operator for defuzzifying ̄̄E − ̄̄F 
at � and � level. The distance between them is denoted by d( ̄̄E, ̄̄F) and can be 
determined as: 

(43)∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽3d𝛽 =
̄̄eL
4
− ̄̄fL

1
− ̄̄eL

3
+ ̄̄fL

2

2 ⋅
(
1 −min(𝜈U

̄̄E
, 𝜈U

̄̄F
)
) +

̄̄eL
2
− ̄̄fL

3
+ ̄̄eL

3
− ̄̄fL

2

2 ⋅min(𝜈U
̄̄E
, 𝜈U

̄̄F
)

(44)∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽4d𝛽 =
̄̄eU
4
− ̄̄fU

1
− ̄̄eU

3
+ ̄̄fU

2

2 ⋅
(
1 −min(𝜈U

̄̄E
, 𝜈U

̄̄F
)
)

(45)

△𝛼(
̄̄F, ̄̄E) = ∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄F − ̄̄E)𝛼d𝛼

=

[
− ∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼4d𝛼,−∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼3d𝛼

]

[
− ∫

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼2d𝛼,−∫
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼1d𝛼

]

(46)

△𝛽(
̄̄F, ̄̄E) = ∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄F − ̄̄E)𝛽d𝛽

=

[
− ∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽4d𝛽,−∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽3d𝛽

]

[
− ∫

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽2d𝛽,−∫
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽1d𝛽

]
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 where Fẅ is an OWA operator (see Eq 2.4).

The degree of “orness” corresponding to Fẅ is determined as:

If the orness degree related to the OWA operator is greater than 1
2
 , it depicts that the 

distance between two IT2TrPFNs is overestimated; in contrast, if it is less than 1
2
 , it 

means the distance is underestimated; further, if the orness degree is equal to 1
2
 , it 

implies that the distance is average of the endpoints of the difference between them 
at � and � level.

We suppose that an OWA operator Fẅ is related to a weighting function 
Ẅ = (ẅ1, ẅ2, ẅ3, ẅ4) . Resulting ( ̄̄E − ̄̄F)𝛼1 < ( ̄̄E − ̄̄F)𝛼2 < ( ̄̄E − ̄̄F)𝛼3 < ( ̄̄E − ̄̄F)𝛼4 and 
( ̄̄E − ̄̄F)𝛼1 < ( ̄̄E − ̄̄F)𝛼2 = ( ̄̄E − ̄̄F)𝛼3 < ( ̄̄E − ̄̄F)𝛼4 , distance between ̄̄E and ̄̄F can be 
computed as:

According to Eqs. (27, 28, 29 and 30), we have

(47)

d( ̄̄E, ̄̄F) =
�
Fẅ(△𝛼(

̄̄E, ̄̄F))
�

=

�
Fẅ

�
�

min(𝜇U
̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼1d𝛼,… ,�
min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛼4d𝛼

��

=

⎧
⎪⎨⎪⎩

Fẅ

�
∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼,… , ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼4d𝛼

�
if ̄̄E > ̄̄F

Fẅ

�
− ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼,… ,− ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼4d𝛼

�
if ̄̄E < ̄̄F

(48)

d( ̄̄E, ̄̄F) =
�
Fẅ(△𝛽(

̄̄E, ̄̄F))
�

=

�
Fẅ

�
�

min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽1d𝛽,… ,�
min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0

( ̄̄E − ̄̄F)𝛽4d𝛽

��

=

⎧
⎪⎨⎪⎩

Fẅ

�
∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽1d𝛽,… , ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽4d𝛽

�
if ̄̄E > ̄̄F

Fẅ

�
− ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽1d𝛽,… ,− ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽4d𝛽

�
if ̄̄E < ̄̄F

(49)
orness(Ẅ) =

1

n − 1

n∑
i=1

(n − i)ẅi

= ẅ1 +
n − 2

n1
× ẅ2 +…+

1

n − 1
× ẅn−1

(50)

d( ̄̄E, ̄̄F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẅ4 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼 + ẅ3 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼2d𝛼 + ẅ2 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼3d𝛼+

ẅ1 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼4d𝛼 if ̄̄E > ̄̄F

−ẅ1 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼 − ẅ2 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼2d𝛼 − ẅ3 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼3d𝛼−

ẅ4 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
(H̆ − ̄̄F)𝛼4d𝛼 if ̄̄E < ̄̄F
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( ̄̄F − ̄̄
E)𝛼1 = −( ̄̄E − ̄̄

F)𝛼4, (
̄̄
F − ̄̄

E)𝛼2 = −( ̄̄E − ̄̄
F)𝛼3, (

̄̄
F − ̄̄

E)𝛼3 = −( ̄̄E − ̄̄
F)𝛼2, (

̄̄
F − ̄̄

E)𝛼4 = −( ̄̄E − ̄̄
F)𝛼1 

Therefore, the distance between two IT2TrPFNs ̄̄E and ̄̄F can be computed as 
follows:

By following the same procedure as mentioned above and using Eqs. (31, 32, 33 and 
34). We can get

To acquire analytical solution of distance between two IT2TrPFNs, we suppose that 
̄̄E > ̄̄F.

where �1,�2,�3,�4 and � are constant terms calculated as follows:

𝜒1 =
̄̄eU
2
−̄̄fU

3
− ̄̄eU

1
+̄̄fU

4

2
,𝜒2 =

̄̄eL
2
−̄̄fL

3
− ̄̄eL

1
+̄̄fL

4

2
,𝜒3 =

̄̄eL
4
−̄̄fL

1
− ̄̄eL

3
+̄̄fL

2

2
,𝜒4 =

̄̄eU
4
−̄̄fU

1
− ̄̄eU

3
+̄̄fU

2

2
 and 

𝜎 =
̄̄eL
2
−̄̄fL

3
+ ̄̄eL

3
−̄̄fL

2

2
.

(�, �)-cut and OWA operator are the core tools of this approach. Firstly, the dif-
ference between two IT2TrPFNs is converted from a IT2TrPFN to a type-2 interval 
by using (�, �)-cut. Afterwards, the distance between two IT2TrPFNs is acquired by 
defuzzifying the difference between them at (�, �) level using OWA operator. By fol-
lowing this methodology, an analytical solution is attained that can be implemented to 
TOPSIS for acquiring the distances from alternatives to PIS and NIS.

(51)

d( ̄̄E, ̄̄F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẅ4 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼1d𝛼 + ẅ3 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼2d𝛼 + ẅ2 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼3d𝛼+

ẅ1 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛼4d𝛼 if ̄̄E > ̄̄F

ẅ4 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛼1d𝛼 + ẅ3 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛼2d𝛼 + ẅ2 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛼3d𝛼+

ẅ1 ∫ min(𝜇U

̄̄E
,𝜇U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛼4d𝛼 if ̄̄E < ̄̄F

(52)

d( ̄̄E, ̄̄F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẅ4 ∫ min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽 1d𝛽 + ẅ3 ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽 2d𝛽 + ẅ2 ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽 3d𝛽+

ẅ1 ∫ min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0
( ̄̄E − ̄̄F)𝛽 4d𝛽 if ̄̄E > ̄̄F

ẅ4 ∫ min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛽 1d𝛽 + ẅ3 ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛽 2d𝛽 + ẅ2 ∫ min(𝜈U

̄̄E
,𝜈U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛽 3d𝛽+

ẅ1 ∫ min(𝜈U
̄̄E
,𝜈U

̄̄F
)

0
( ̄̄F − ̄̄E)𝛽 4d𝛽 if ̄̄E < ̄̄F

(53)

d( ̄̄E, ̄̄F) = ẅ4 ⋅ 𝜒1 ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
) + ẅ3 ⋅

[
𝜒2 ⋅min(𝜇L

̄̄E
,𝜇L

̄̄F
) + 𝜎 ⋅min(𝜇U

̄̄E
,𝜇U

̄̄F
)
]

ẅ2 ⋅
[
𝜒3 ⋅min(𝜇L

̄̄E
,𝜇L

̄̄F
) + 𝜎 ⋅min(𝜇U

̄̄E
,𝜇U

̄̄F
)
]
+ ẅ1 ⋅ 𝜒4 ⋅min(𝜇U

̄̄E
,𝜇U

̄̄F
)

= (ẅ4𝜒1 + ẅ3𝜎 + ẅ2𝜎 + ẅ1𝜒4) ⋅min(𝜇U
̄̄E
,𝜇U

̄̄F
) + (ẅ3𝜒2 + ẅ2𝜒3) ⋅min(𝜇L

̄̄E
,𝜇L

̄̄F
)

(54)

d( ̄̄E, ̄̄F) = ẅ4 ⋅ 𝜒1 ⋅min(𝜈U
̄̄E
, 𝜈U

̄̄F
) + ẅ3 ⋅

[
𝜒2 ⋅min(𝜈L̄̄E

, 𝜈L̄̄F
) + 𝜎 ⋅min(𝜈U

̄̄E
, 𝜈U

̄̄F
)
]

ẅ2 ⋅
[
𝜒3 ⋅min(𝜈L̄̄E

, 𝜈L̄̄F
) + 𝜎 ⋅min(𝜈U

̄̄E
, 𝜈U

̄̄F
)
]
+ ẅ1 ⋅ 𝜒4 ⋅min(𝜈U

̄̄E
, 𝜈U

̄̄F
)

= (ẅ4𝜒1 + ẅ3𝜎 + ẅ2𝜎 + ẅ1𝜒4) ⋅min(𝜈U
̄̄E
, 𝜈U

̄̄F
) + (ẅ3𝜒2 + ẅ2𝜒3) ⋅min(𝜈L̄̄E

, 𝜈L̄̄F
)
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4  Extension of TOPSIS with IT2TrPFNs

In existent MCGDM circumstances, decision-makers have distinct decision-making 
outlooks over the losses and gains. Few decision-makers possesses optimistic attitude, 
few have pessimistic while others have neutral outlook. The presented TOPSIS tech-
nique can assist decision-makers having distinct decision-making perspectives to attain 
the optimal selection. Decision-makers having optimistic outlook tend to grant more 
concern over the gains than the losses thereby, the gains will be overrated and the losses 
will be underrated. The contradictory is valid for the decision-makers having pessimis-
tic outlook. Hence, decision-makers with optimistic outlook will overestimate the dis-
tance from an alternative to NIS and underestimate the distance from an alternative to 
the PIS. In contrast, decision-makers holding pessimistic attitude have the opposite. In 
the presented approach, OWA operator is utilized to depict the outlook of decision-
makers that contributes significantly in MCGDM process. In typical TOPSIS method, 
the performance ratings of the local criterion related to the alternatives are articulated 
using crisp numbers, on the contrary, we put forward an extended TOPSIS technique 
in the framework of IT2TrPFNs to tackle with MCGDM conflicts based upon the dis-
tance approach introduced in Sect. 3.

4.1  Proposed TOPSIS method algorithm

Step 1: Form a decision matrix. Let (P1,… , Pn) be n alternatives and (Q1,… , Qm) 
be m criterion. Let �1,… , �m be the m weights associated with the criterion such 
that 

∑m

j=1
�j = 1 . Let D[X̆ij]n×m be the decision matrix, where 

Step 2: Normalize the decision matrix. 

where X̆∗

j
= max X̆

U

ij
 (for j ∈ Kt ) and X̆−

j
= min X̆

L

ij
 (for j ∈ Kc ). The normal-

ized decision matrix is formalized in the following manner: 

(55)

X̆ =(X̆
U
, X̆

L
)

=[(ă
U

1
, ă

U

2
, ă

U

3
, ă

U

4
;𝜇U

X̆
, 𝜈U

X̆
), (ă

L

1
, ă

L

2
, ă

L

3
, ă

L

4
;𝜇L

X̆
, 𝜈L

X̆
)]

D[X̆ij]n×m =

⎡⎢⎢⎢⎢⎣

[X̆
U

11
, X̆

L

11
] [X̆

U

12
, X̆

L

12
] ⋯ [X̆

U

1m
, X̆

L

1m
]

[X̆
U

21
, X̆

L

21
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 It should be known that normalization is only necessary when the criterion are 
estimated by using different sets of linguistic variables. Apart from that, it is not 
mandatory.

Step 3: Deduce the PIS and NIS. 

 where Kt is benefit type criterion set and Kc is the cost type criterion set.
Step 4: Acquire the distances among the alternatives from PIS and NIS. According 

to the definitions of PIS and NIS, the local criterion’s performance ratings of PIS 
must not be any less than the prevailing alternatives if the criterion are benefit 
type otherwise the converse is true if the criterion are cost type. Alternatively, for 
NIS the local criterion’s performance ratings must not be surpassing than that of 
existent alternatives if the criterion are benefit type however the converse is true 
if the criterion are cost type. Hence, we have 

 We assume Fẅ is an OWA operator having the weighting function 
W̆ = (ẅ1, ẅ2,… , ẅn) , the distances from local criterion’s ratings of the prevail-
ing alternatives to that of PIS and NIS can be obtained by Eq. (58, 59) in the 
following manner: 
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−

m
}

=
{
(max

i
N̆ij|j ∈ Kc)(min

i
N̆ij|j ∈ Kt)

}

ŭ
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(ŭ

−U

j1
, ŭ
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 where 0 <orness(Ẅ) <
1

2
 for decision-makers having optimistic attitude, 1

2
<

orness(Ẅ) < 1 for decision-makers possessing pessimistic attitude and orness 
(Ẅ) =

1

2
 for decision-makers having neutral attitude. 

where 0 <orness(Ẅ) <
1

2
 for decision-makers possessing pessimistic atti-

tude, 1

2
<orness(Ẅ) < 1 for decision-makers holding optimistic outlook and 

orness(Ẅ) =
1

2
 for decision-makers having neutral outlook. It is indicated that 

OWA operator depicts the perspectives of decision-makers by overestimating or 
underestimating the distances among the local criterion corresponding to alter-
natives and their ideal solutions. Further, the distances from alternatives to PIS 
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∗

j
)
𝛼2
d𝛼
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(ŭ

∗

j
− N̆ij)𝛽3

d𝛽 + ẅ1 ∫
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−

j
) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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and NIS can be computed by considering weighted sum aggregations of crite-
rion as follows: 

Step 5: Compute the relative closeness to ideal alternatives as follows: 

Step 6: Rank the alternatives on the basis of their relative closeness to ideal alterna-
tives. The alternative having the largest relative closeness coefficient is considered 
to be the best or optimal alternative.

5  Example

In the following section, we demonstrate a numerical example involving MCGDM 
problem to achieve the practicability of our anticipated extended TOPSIS technique 
in the framework of IT2TrPFNs.

5.1  Solar tracking system

Chandrasekhar et al. (2013) The growing desires of energy have forced the novelty 
in the domain of solar energy. Although there are a number of sun trackers avail-
able but it is quite crucial to discover the optimal one. An idyllic sun tracker would 
precisely indicate towards the sun’s direction balancing equally the adjustments in 
altitudinal angle of sun and latitudinal offset of sun. The prerequisite of sun tracker 
is to exploit the accessible solar energy to the utmost amount and give best possible 
outcome. The commonly used tracking systems are listed below:

• Active Tracker (AT).
• Manual Tracking (MT).
• Passive Tracker (PT).

On the following few important factors, all of the above mentioned tracking systems 
are based:

• Response: The response of a solar tracker is among the most vital constraints of 
a tracking system. It is the capability of a tracker system to rapidly modify its 
angle to the requisite degree when sun’s direction changes.

• Reliability: It is the ability of giving a specific voltage for specific intensity of 
sun’s energy over a phase of long period of time. This aspect is quite significant 
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ŭ
∗

j
, N̆ij

)

(65)Y−

i
=
∑

𝛿jd
(
ŭ
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as the usage would ultimately decrease if the sun tracker is not consistent for 
long term.

• Accuracy: The more the accuracy of solar tracking system the more it can dis-
tribute the rated power output. The most exact solar tracker system can deliver up 
to 90 percent of the rated output power. Therefore it is a fundamental criteria to 
select the appropriate solar tracker system.

Selection of a solar tracker is a mandatory course as it is essential in attaining the 
best possible level of energy derived from the sun. There are many existing tracker 
systems that are insufficient in the assistance of an expert’s acquaintance in opting 
for the right system for specific context. Hence, in this article an attempt is made to 
discover a quite appropriate sun tracking system under the support of keen decision-
making. The three sun tracking systems namely AT, PT and MT are considered as 
three alternatives i.e. P1, P2 and P3 respectively. The three criterion are: reliability 
(Q1) , response (Q2) and accuracy (Q3) , where where Q1 is cost criterion and Q2 and 
Q3 are benefit criterion.

In order to pick the best solar tracking system amongst the three, first we rate 
each of the three alternatives in terms of three criterion and give the local crite-
rion weights. The criterion ratings corresponding to all alternatives are provided in 
Table 1 and the criterion weights are shown in Table 2.

Table 1  Criterion ratings corresponding to all alternatives

Alter-
natives

Criterion

Q
1

Q
2

Q
3

Reliability Response Accuracy
P
1

[(0.5757, 0.5656, 0.5555, 0.5454;

0.8, 0.7)

(0.4646, 0.4545, 0.4444, 0.4843;

0.6, 0.5)]

[(0.9952, 0.9745, 0.9952, 0.9585;

0.8, 0.7)

(0.8730, 0.8523, 0.8730, 0.8363;

0.6, 0.5)]

[(0.8436, 0.9684, 0.8246, 0.8259;

0.8, 0.7)

(0.7325, 0.5732, 0.7135, 0.4148;

0.6, 0.5)]

P
2

[(0.9574, 0.9299, 0.5895, 0.8821;

0.8, 0.7)

(0.0.8463, 0.4188, 0.4784, 0.7710;

0.6, 0.5)]

[(0.7777, 0.7926, 0.7743, 0.8164;

0.8, 0.7)

(0.6215, 0.6815, 0.6632, 0.7053;

0.6, 0.5)]

[(0.9548, 0.9954, 0.9259, 0.9259;

0.8, 0.7)

(0.7372, 0.7443, 0.7145, 0.7145;

0.6, 0.5)]

P
3

[(0.5287, 0.5181, 0.5005, 0.5109;

0.8, 0.7)

(0.4176, 0.4070, 0.4114, 0.4608;

0.6, 0.5)]

[(0.8888, 0.8765, 0.8654, 0.8543;

0.8, 0.7)

(0.7777, 0.7654, 0.7543, 0.7432;

0.6, 0.5)]

[(0.5177, 0.5070, 0.5074, 0.5608;

0.8, 0.7)

(0.4065, 0.4060, 0.4050, 0.4040;

0.6, 0.5)]

Table 2  Criterion weights
�
1

�
2

�
3

0.5 0.3 0.2
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In this numerical example, ranking results are discussed in three situations: 
optimistic,pessimistic and neutral. Based upon our anticipated approach, the meth-
odology for choosing the best tracking system is demonstrated as follows: 

Step 1: Build a decision matrix based on Table 1 denoted by D[Xij]3×3 and repre-
sented as follows: 

Step 2: Normalize the decision matrix.
  Normalization is not necessary as the criterion in this example is assessed using 

the same set of linguistic variables.
Step 3: Estimate the PIS and NIS respectively by using Eqs. (58, 59). 

Step 4: Acquire the distances of alternatives from PIS and NIS. We allot three OWA 
operators with different weighting functions given as follows: 

 For decision-maker’s optimistic attitude: the OWA operators for computing dis-
tances from local criterion’s ratings to PIS and NIS are allotted with weighting 
functions Ẅ1 and Ẅ2 respectively. For decision-maker’s pessimistic attitude: the 
OWA operators are appointed with weighting functions Ẅ2 and Ẅ1 respectively. 
For decision-maker’s neutral attitude: the OWA operators are allotted with 
weighting functions Ẅ3.

  Then, the distances from ratings of local criterion of all alternatives to PIS 
and NIS can be determined by using Eqs.(60, 61,62 and 63). Further, distances 
from alternatives to PIS and NIS can be acquired by using Eqs. (64, 65) and the 
distances in three situations of decision-maker’s attitude are presented in Table 3.
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} = {X̆31, X̆12, X̆23}

= {[(0.5287, 0.5181, 0.5005, 0.5109;0.8, 0.7), (0.4176, 0.4070, 0.4114, 0.4608;0.6, 0.5)],

[(0.9952, 0.9745, 0.9952, 0.9585;0.8, 0.7), (0.8730, 0.8523, 0.8730, 0.8363;0.6, 0.5)],

[(0.9548, 0.9954, 0.9259, 0.9259;0.8, 0.7), (0.7372, 0.7443, 0.7145, 0.7145;0.6, 0.5)]}

N−

i
= {ŭ

−

1
, ŭ

−

2
, ŭ

−

3
} = {X̆21, X̆22, X̆33}

= {[(0.9574, 0.9299, 0.5895, 0.8821;0.8, 0.7), (0.0.8463, 0.4188, 0.4784, 0.7710;0.6, 0.5)],

[(0.7777, 0.7926, 0.7743, 0.8164;0.8, 0.7), (0.6215, 0.6815, 0.6632, 0.7053;0.6, 0.5)],

[(0.5177, 0.5070, 0.5074, 0.5608;0.8, 0.7), (0.4065, 0.4060, 0.4050, 0.4040;0.6, 0.5)]}

FẄ1
= (0.1, 0.1, 0.1, 0.7), orness(W̆1) =

2

5

FẄ2
= (0.4, 0.3, 0.2, 0.1), orness(W̆2) =

3

4

FẄ3
= (0.1, 0.2, 0.3, 0.4), orness(W̆3) =

1

2
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Step 5: Compute the relative closeness of alternatives using Eq.(66) and the out-
comes are given in Table 4.

Step 6: Rank the alternatives. They are ranked according to the descending order of 
their relative closeness coefficients.

Notice that the ranking results of three alternatives varies for different deci-
sion-makers having dissimilar decision-making perspective. Coincidentally all the 
three decision-makers possessing optimistic, pessimistic and neutral attitude have 
following priorities for the tracking system choice: P1, P3 and P2 . In the actual and 
factual decision-making situation, decision-makers are not normally objective i.e. 
their decision-making perspective is not neutral. Hence, in such cases where their 
attitude is optimistic or pessimistic have more realistic importance.

6  Comparative analysis

A comparative revision is executed to verify the consequences of the projected 
technique with several other approaches. This investigation is based on the same 
input information presented in Sect. 5.

6.1  Theoretical comparison with other methods

The anticipated extended TOPSIS technique in the framework of IT2TrPFNs is 
founded on the distance method for IT2TrPFNs presented in Sect.  3 where the 
( �, �)-cut method and OWA operator plays the vital role. We have chosen two 

Table 3  Distances from 
alternatives to PIS and NIS

Alternatives P
1

P
2

P
3

Distances Y

∗

1

Y

−

1

Y

∗

2

Y

−

2

Y

∗

3

Y

−

3

Optimistic 0.0860 0.4450 0.3533 0.2527 0.2086 0.3839
Pessimistic 0.0851 0.5139 0.4462 0.3043 0.2040 0.2826
Neutral 0.0995 0.4745 0.3930 0.2515 0.1973 0.3236

Table 4  Relative Closeness 
Coefficients of All Alternatives

RC
1

RC
2

RC
3

Optimistic 0.8225 0.4169 0.6479
Pessimistic 0.8579 0.4054 0.5807
Neutral 0.8266 0.3902 0.6212
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prevailing distance based methods from literature: a signed-distance based 
approach for TOPSIS and a distance operational rule described as follows:

• Signed distance-based approach:
  The signed distance of a IT2TrPFN ̄̄E far from 0̆ is defined as: 

 Taking into account the above signed distance, the distance between two 
IT2TrPFNs ̄̄E and ̄̄F can be determined as: 

• Distance operational rule:
  The distance between two IT2TrPFNs can be computed as: 

Compared with the above two existing distance methods, the main distinctive-
ness and advantages of the projected extended TOPSIS technique can be accom-
plished in the following manner: 

1. The anticipated technique computes the distances between two IT2TrPFNs by 
integrating the ( �, �)-cuts and establishes an analytical solution of the distances. 
Moreover, the intended method imparts a more precise and suitable approach to 
compute the distances between IT2TrPFNs.

2. The widely used TOPSIS technique suspects that the decision- makers are entirely 
objective that invades the truth that decision-makers frequently have their own 
subjective decision-making outlook. Some have optimistic decision-making 
perspective, few have pessimistic and rest of them have neutral outlook. In the 
anticipated extended TOPSIS technique, the OWA operator is used to depict the 
outlook of the decision-makers that can provide multiple subjective decisions for 
distinct decision-makers.

3. The extended TOPSIS technique based on ( �, �)-cut has not been yet explored 
thoroughly in the framework of IT2TrPFNs that are considered to be more sophis-
ticated than other types of FSs. Our reserach fills in the space of ( �, �)-cut based 
extended TOPSIS technique in IT2TrPFN framework.
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6.2  Numerical comparison with other methods

The relative closeness coefficients computed by using the signed distance-based 
approach are given in Table 5 while those computed by using the distance opera-
tional rule are given in Table 6 and the comparison of the relative closeness coef-
ficients computed by our proposed approach and other two methods are given in 
Table 7.

Based on the comparative study, the achieved results reveals that the projected 
approach is considerably much better than the rest of the two techniques since it 
can produce several subjective ranking consequences in varying situations where 
the decision-makers have distinct decision-making outlook while in the two consid-
ered approaches, attitude of the decision-makers is not considered that implies the 
two techniques can merely yield objective ranking outcomes for the decision-mak-
ers. Though, in the existent world, the outlook of decision-maker plays a vital role 
while choosing the best alternative. Therefore, it is presented that our anticipated 
technique can produce multiple subjective decisions for the decision-makers whilst 
choosing the best alternative according to their decision-making perspective. Conse-
quently, our presented approach is more suitable and accurate in dealing MCGDM 
problems as it considers the outlook of decision-makers.

7  Conclusion

TOPSIS is considered among the most widely known approach to deal with 
MCGDM conflicts. In this article, we have projected an extended TOPSIS approach 
in the framework of IT2TrPFNs. In contrast with the existing approaches, the major 

Table 5  Relative closeness 
coefficients using signed 
distance-based method

RC
1

RC
2

RC
3

0.1140 0.1823 0.7158

Table 6  Relative closeness 
coefficients using distance 
operational rule

RC
1

RC
2

RC
3

0.4141 0.4614 0.3484

Table 7  Comparison of relative 
closeness coefficients of all 
alternatives

RC
1

RC
2

RC
3

Proposed Method
Optimistic 0.8225 0.4169 0.6479
Pessimistic 0.8579 0.4054 0.5807
Neutral 0.8266 0.3902 0.6212
Signed Distance-Based Method 0.1140 0.1823 0.7158
Distance Operational Rule 0.4141 0.4614 0.3484
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contribution of our work is to anticipate a new distance computation technique for 
IT2TrPFNs using OWA operator and (�, �)-cut by which a more exact and flexible 
analytical solution of the distance amongst two IT2TrPFNs is presented. Moreover, 
we have anticipated a novel TOPSIS technique for coping up with MCGDM prob-
lems formed on the distance method which can produce multiple subjective deci-
sions for the decision-makers having distinct decision-making perspectives. None-
theless, the weighting functions associated with the OWA operators are allocated 
without making any examination or practice in this research that may manipulate the 
worth of decisions. At some point in the future, we aim to broaden our research in 
the other directions and its application in some other fuzzy systems.
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