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Abstract
This paper proposes a method for the solution of constrained min-max problems. The
method is tested on a benchmark of representative problems presenting different struc-
tures for the objective function and the constraints. The particular min-max problem
addressed in this paper finds application in optimisation under uncertainty when the
constraints need to be satisfied for all possible realisations of the uncertain quantities.
Hence, the algorithm proposed in this paper search for solutions that minimise the
worst possible outcome for the objective function due to the uncertainty while satis-
fying the constraint functions in all possible scenarios. A constraint relaxation and a
scalarisation procedure are also introduced to trade-off between objective optimality
and constraint satisfaction when no feasible solutions can be found.
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MP-AIDEA Multi-population adaptive inflationary differential evolution algo-
rithm

OBDH On board data handling
PSO Particle swarm optimisation
PSS Pascoletti-Serafini scalarissation
QoI Quantity of interest
TTC Telemetry, tracking and command system
WCS Weighted chebyshev scalarisation
WSS Weighted-Sum scalarisation

1 Introduction

Amin-maxoptimisation problemaims atminimising,with respect to a vectord defined
in some space D, the maximum value of a given cost function with respect to a vector
u, different from d. In this paper we are interested in a class of constrained min-max
problems where the constraints have to be always satisfied for all values of u in a given
set U .

Min-max problems appear in a wide range of applications. They can be found in
the optimal sequence of moves for a computer player in famous board games: the
Egyptian ancient game Seega (Abdelbar et al. 2003), the game of checkers (Hughes
2005) and chess (Shannon 1950). They are used to formulate the design for robustness
of systems affected by uncertainty: design of electric circuits (Agnew 1981), design
of on-line controllers (Sebald and Schlenzig 1994), of aerodynamic shapes (Ong et al.
2006), of the location of sensors and pursuit-evasion games betweenmissile and target
(Kim and Tahk 2001).

Due to their wide applicability, they can appear in different forms. They can be seen
indeed as a special case of bi-level optimisation problems where two agents quantify
their utility with opposite fitness functions. From a game theoretic point of view min-
max problems are two-players zero-sum games where the optimal strategy brings
the two agents to a Nash equilibrium. From an engineering point of view min-max
problems can be seen as deterministic approaches tomake decisions under uncertainty.
In this case one can understand the engineering problem as a zero-sum gamewhere the
two antagonist players are respectively the designer, handling the decision variables,
and Nature, handling the uncertainty variables.

Mathematical Programming (Agnew 1981; Chaney 1982) has been widely used to
solvemin-max problems. An overview of classical discrete approaches can be found in
Aissi et al. (2008). The use of Mathematical Programming, however, requires, strong
assumptions on the nature of the problem and tends to be problem specific.

On the other hand heuristic approaches (Cramer et al. 2009; Lung and Dumitrescu
2011; Cavalier et al. 2007) and in particular evolutionary based algorithms (Cramer
et al. 2009; Lung and Dumitrescu 2011; Laskari et al. 2002; Zhou and Zhang 2010)
appear to be more flexible. For example one can find a form of Genetic Algorithm
(GA) in Cramer et al. (2009), a special version of the Differential evolution (DE)
called Crowding Differential Evolution (CrDE) combined with the Nash ascendancy
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relation in Lung and Dumitrescu (2011) and a form of Particle Swarm Optimisation
(PSO) in Laskari et al. (2002).

As stated in Zhou and Zhang (2010) we can divide the class of evolutionary
approaches for min-max problems in three branches. The first one includes problems
with a discrete set of possible scenarios U . In Laskari et al. (2002) U is by definition
discrete and small, in Cavalier et al. (2007), initially continuous, it is instead discre-
tised by a uniform grid while in Cramer et al. (2009) it is reduced to be discrete by
a random selection. The second branch considers a continuous space U and directly
solves a sequence of nested problems (Agnew 1981; Sebald and Schlenzig 1994).
This approach could be computationally intractable if no strategy is implemented to
alleviate the cost. Finally, a third category uses a form of co-evolution optimisation
(Kim and Tahk 2001; Cramer et al. 2009; Tahk and Sun 2000; Shi and Krohling 2002)
where two separate populations evolve simultaneously with a predator-prey interac-
tion in D and U separately each one being competitor and environment to the other.
As demonstrated in Jensen (2001) however most of the co-evolutionary algorithms for
min-max have to satisfy a symmetric assumption known as Issac’s condition (Tamer
Basar 1982). A class of problems that can be properly modelled under this assumption
exists (Tahk and Sun 2000; Barbosa 1999) and for them the co-evolution approach
is proved to converge to the global solution (Power 1998). However this is not the
general case and newmethods to overcome this limitation are presented in Branke and
Rosenbusch (2008).

In the interest of completeness, we include also the Best Replay approach cited by
Marzat et al. (2013)where two optimisation problems are alternated until convergence,
one minimising over D and the other maximising overU . It has been proven, however,
that this approachoften does not converge or it cycles throughwrongdesign candidates,
problem known as the Red Queen Effect.

Another research line, applicable to anypreviously presentedmethod, dealswith the
reduction of the computational complexity. It makes use of surrogates which approxi-
mate the fitness function (Lung and Dumitrescu 2011; Zhou and Zhang 2010; Marzat
et al. 2013). In particular, Zhou and Zhang (2010), Marzat et al. (2013) consider
response surfaces within an Efficient Global Optimisation (EGO) where they alter-
nate the minimisation in D of the surrogate of the maxima inU and the maximisation
in U of the real function for the obtained optimal solution in D.

When it comes to constraint handling, in the existing literature, only few papers
could be found that have explored how to deal with constraints in min-max opti-
misation. Most of them need to start from some strong assumptions on the nature
of constraints and cost functions and have been developed for constrained bi-level
problems and not specifically for the treatment of min-max problems (Sinha et al.
2020, 2018). In Kim and Tahk (2001) the duality between primal constrained min-
max problem and dual unconstrained min-max problem with the Lagrange multipliers
is demonstrated for both separable and non-separable constraints under the Issac’s
condition. The constrained problem is then translated in the unconstrained one and a
co-evolutionary algorithm is finally used to converge to the saddle point. Other works
instead, still dealing with both min-max problem and constraint handling, go in the
opposite direction. They indeed translate a single-level constrained problem in an
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unconstrained min-max problem and use the co-evolution approach to solve it (Tahk
and Sun 2000; Shi and Krohling 2002).

This paper proposes a novel algorithm for the solution of a class of constrained
min-max problems. The proposed algorithm is inspired by the procedure suggested by
Shimizu and Aiyoshi (1980) and further elaborated in Zhou and Zhang (2010), Marzat
et al. (2013). The idea is to alternate aminimisation and a restoration (ormaximisation)
process. As the alternation of these two processes progresses, we incrementally build
a discrete representation of the space of the maxima in U . This representation is
then used in the minimisation process to converge to an approximation of the desired
min-max solution. This mechanism takes memory of the previous solutions avoiding
the optimiser to follow the same path again and again. For this reason the proposed
algorithm does not suffer from the Red queen Effect. Themain novelty is the extension
of this logic to the handling of constraints that need to be satisfied for all maxima in a
given set. The paper proposes also a constraint relaxation and a scalarisation techniques
that allow convergence to a solution in the case the given set U is too restrictive. A
multi-population inflationary differential evolution algorithm is proposed to address
both the constrained minimisation and the maximisation.

The paper is structured as follows. First we introduce the constrained min-max
problems of interest.We then present the general algorithm together with a complexity
analysis. The paper then introduces a benchmark of synthetic functionswith increasing
complexity. Finally the proposed method is tested on a real application case of space
systems engineering under epistemic uncertainty.

2 Problem statement

This paper is concerned with the following class of single-objective constrained min-
max problems:

mind∈D maxu∈U f (d,u)

s.t .
ci (d,u) ≤ 0 ∀u ∈ U ,∀i ∈ Ic = [1, ..., s]T

(1)

where f is the objective function and ci is the i-th constraint function. Both f and ci are
defined on the space D ×U and depend on a vector of design (or decision) variables
d ∈ D ⊂ Rn and a vector of uncertain (or environmental) variables u ∈ U ⊂ Rm .
The solution dopt of Eq. (1) has two properties: it satisfies all the constraint functions
ci over the whole uncertain domain U and minimises the worst realisation of the
objective function f over U . Furthermore, we assume that both f and ci are locally
C2. This assumption can be relaxed if the local search can handle non-differentiable
or discontinuous problems.

3 Amemetic single objective constrainedmin-max approach

The proposed algorithm is a bi-level optimisation procedure based on the alternation
of a minimisation and a restoration step. The minimisation step searches for a global
solution to the constrained min-max problem:

123



Global solution of constrained min-max problems with inflationary… 103

mind∈D maxua f ∈ Āu f
f (d,ua f )

s.t .
maxuac∈ Āuc

maxi∈Ic ci (d,uac) ≤ 0.
(2)

While the restoration step searches for a solution to the following two global maximi-
sation problems, given the solution d̄ coming from problem (2):

maxu∈U f (d̄,u)

s.t .
maxi∈Ic ci (d̄,u) ≤ 0

(3)

max
u∈U max

i∈Ic
ci (d̄,u) (4)

The two archives Āu f and Āuc contain respectively the solutions of problem (3) and
(4). By iteratively alternating the minimisation and restoration steps, one fills the two
archives with the maxima of problems (3) and (4). Thus we can say that problem (2)
searches for an optimal d over a discrete representation of the space of the maxima of
problems (3) and (4).

This mechanism was first proposed for unconstrained problems by Shimizu and
Aiyoshi (1980) and Marzat et al. (2013). A solution approach using a memetic algo-
rithm was then introduced in Vasile (2014) and the constrained version was first
formulated in Filippi and Vasile (2019). In this paper we provide five main contri-
butions: (i) a detailed algorithmic presentation of a memetic solution approach, (ii) a
constrained relaxation strategy, (iii) a scalarisation strategy, (iv) an algorithmic com-
plexity analysis and (v) an extensive benchmark on which our proposed solver of
constrained min-max problems can be tested.

The solution approach is summarised in Algorithms 1–8 and explained in the fol-
lowing subsectionswith the help of the flow diagrams in Figs. 1 and 2 and the examples
in Figs. 3, 5 and 6.

3.1 Initialisation

The algorithm is initialised either by selecting a random value d̄ or with a given
first guess and then by searching for a first solution to problems (3) and (4). These
first solutions are then saved into the two archives Au f and Auc. Problems (3) and
(4) are global optimisation problems in general. In the following we will propose
the use of a memetic global optimiser which combines Differential Evolution with a
multi-restart mechanism and local search. Given the global nature of the search for
a solution, one needs to set the amount of computational resources allocated to the
solution of each of the minimisation and maximisation problems. We quantify this
resource in terms of objective function evaluations. More specifically, with reference
to problem (3) the maximum number of function evaluations nfeval,max is the number
of calls to the objective function f (d̄,u) while for problem (4) we count the function
calls to maxi ci (d̄,u). Once the maximum number of function evaluations per sub-
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104 G. Filippi and M. Vasile

Fig. 1 Flow diagram of the constrained min-max alternative approaches described in Sects. 3.1, 3.2 and 3.4
– 3.7 and summarised in Algorithms 1–8. In particular, this diagram describes the sequence of optimisation
problems applied for the standard approach and its alternative strategies: the constraint relaxation and the
scalarisation. The first optimisation problem is defined in block A and it refers to the general constrained
min-max in Eq. (1). If a solution exists for this problem, no further analysis is required (link 1). If differently,
two alternatives are given. The first (link 2) brings to the relaxation strategy (blockB). Here an unconstrained
min-max problem is solved to find ε. The relaxed constrained min-max problem is then solved (Sect. 3.4).
Link 3 instead brings to the scalarisation strategy (Sect. 3.5). Block C is first solved to find the reference
points in the Pareto front (ideal and nadir). Finally, the scalarisation procedure is activated (block D)

problem are defined one needs to define the maximum number of iterations nloop,max
of minimisation/restoration.

The steps for the initialisation are summarised in Algorithm 1. Line 1 presents how
to define the problem in order to be solved by Algorithm 2: the required information
on objective function f (d,u), set of constraint functions c(d,u), dimensions nD and
nU of the design and uncertain vectors d ∈ D ⊂ RnD and u ∈ U ⊂ RnU and the
bounds of each variable in d and u. Line 2 defines the constraints on the computational
resources for the single sub-problems in Eqs. (2) – (4). They are the maximum num-
ber of function evaluations nouterfeval,max for problem (2), ninnerfeval,max for problem (3) and

ninner,cfeval,max for problem (4). Line 3 defines the threshold σstop below which Algorithm 2
is considered to have converged. Line 4 defines the limit on the computational cost for
the whole procedure (1) with its maximum number of function evaluations nfval,max
and maximum number of iterations nloop,max between minimisation and restoration.
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Fig. 2 Flow diagram of the constrained min-max algorithm for the standard approach in block A in Fig. 1.
The relaxation and scalarisation alternatives (blocks B,C and D) follow however the same logic. Algo-
rithms 2, 1, 4, 7 and 8 and Sects. 3.1, 3.2, 3.6 and 3.7 explain in detail all the represented blocks. Each
of them lists the main operations that are performed: the optimisation problems and the archives updating.
The algorithm is initialised. Then there is the iteration between blocks ’Restoration’ and ’Minimisation’.
Finally the ’Cross Check’ is performed and the solution is chosen

Line 5 defines the optimisation algorithms and its parameter settings that are used to
solve the sub-problems in Eq. (2) – (4). On line 6 the initial design vector is defined
by the user or initialised randomly with a hyper-cube sampling procedure. In the case
some important uncertain scenarios in U or design configurations in D are already
known, the initial archives can be seeded with these scenarios, otherwise they are ini-
tialised as empty sets (line 7). Similarly, it is done for the archives relative to functions
f and c (line 8). Lines 9 and 10 initialise the counters of the number of function eval-
uation nfeval and the iteration nloop between minimisation and restoration processes.
The initial accepted constraint violation ε (line 11) is initialised to zero.

3.2 Minimisation-restoration loop

The main algorithm is summarised in Algorithm 2. Using the first design guess d̄
from the initialisation, Eqs. (3) and (4) are solved in parallel (lines 4 and 5) within the
first restoration, or inner, loop (lines from 2 – 8). With d̄ fixed, the former equation
evaluates the feasible worst case condition of f while the latter determines the worst
constraint violation. In the followingwewill adopt a multi-population version of Infla-
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Algorithm 1 Initialisation
1: Define the problem: objective function f , constraint function c, dimension (nD and nU ), lower and

upper bounds for both design space D and uncertain space U .

2: Define computational limits to the sub-problems: ninner, ffval,max, n
inner,c
feval,max, n

outer
fval,max

3: Define algorithm convergence threshold σstop.
4: Define computational limits to the whole algorithm: nfval,max and nloop,max
5: Define optimiser(s) and its (their) parameters setting for all optimisation steps
6: Define/initialise design vector d̄ (latin hypercube sample or input)
7: Define/initialise vectors archives: Au f , Auc, Ad , Au (∅ or input)
8: Define/initialise functions archives: A f , Acf , Ac (∅ or input)
9: Initialise number of function evaluation nfeval = 0
10: Initialise number of loops nloop = 0
11: Initialise accepted violation ε = 0

tionary Differential Evolution (Carlo et al. 2019) to solve Eqs. (3) and (4). In this case
multiple solutions are returned. The solution ua f is selected following Algorithm 3.
In particular, if none of the outputs from the optimiser is feasible (no elements in no
one of the populations), the uncertain vector with the lowest constraint violation is
chosen (lines 2 – 3 of Algorithm 3). Otherwise, within the set of feasible solutions,
the uncertain vector with the highest value of f is selected (line 5 of Algorithm 3).
The uncertain vectors solutions are then stored in the archives as illustrated in Algo-
rithm 4. Consider first lines 9 – 11 of Algorithm 4: the uncertain vector solutions ua f
corresponding to the feasible maximum of f for the fixed d̄ is saved in Au f , the cor-
responding f (d̄,ua f ) and maxi∈Ic ci (d̄,ua f ) are saved in A f and Acf respectively.
Consider now lines 12 and 13 of Algorithm 4: the uncertain vector solutions uac that
maximises the constraint violation for the same fixed design vector is saved in Auc,
while the corresponding maxi∈Ic ci (d̄,uac) is saved in Ac. Finally, on lines 14 and 15
of Algorithm 4 the archives Āu f and Āuc are created by removing from Au f and Auc

all the repeated elements (with a selected tolerance of 1e-8 on the euclidean distance
between two elements in the archive).

The main loop is then started (line 9 of Algorithm 2 and Eq. (2)) with an alternation
of the minimisation, or outer, step (lines 10, 11 and 12) and restoration, or inner,
step (lines from 13 to 17). The latter has been already described. A further check is,
however, performed in lines 1 to 8 of Algorithm 4 before the updating procedures of
the archives. If the condition in line 2 holds, indeed, the inner loop in Eq. (3) has failed.
Then the solution generated in this loop is discarded and the one of the previous outer
loop is maintained. This condition follows the same criterion used in Algorithm 3
by giving priority to the constraint satisfaction. Similarly the condition in line 6 for
Eq. (4).

The outer step addresses the solution of the constrained minimisation in Eq. (4).
Also for this minimisation loop we propose the use of a multi-population version of
Inflationary Differential Evolution (Carlo et al. 2019). For each new design vector
generated by the optimiser the cost function and constraints are evaluated for all the
u vectors in Āu f and Āuc and the worst cost function and constraint violation values
are retained (line 11). Note that in some cases it is desirable to run a local search
every time a vector in the two archives Āu f and Āuc is evaluated (see for example
Vasile (2014)). This added local search significantly increases the computational cost
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Fig. 3 Algorithm 2 applied to test caseMWP10&GFC1. Sub-figure a shows the test case’s characteristics by
plotting both the objective function f and the constraint function c. Sub-figure b shows the convergence of
both the worst case conditions max f and max c for the design solutions found at each iteration. Sub-figures
c and d plot the functions c and f respectively in the coupled space D ×U , all the design solutions at the
different iterations (vertical lines) and the corresponding worst case for f and c (dots and stars). The white
areas correspond to feasible solutions c ≤ 0 in (c) and unfeasible solutions f s.t. c > 0 in (d). Sub-figure
e represents, for each explored design configuration, the corresponding f (continuous lines) and c (dotted
lines). Sub-figure f, represents the space of the maxima of f and c over the design space

of each single evaluation of the outer loop but in some cases improves convergence to
the point that the overall cost of the algorithm is reduced. For this reason we inserted
this option in the algorithm although it is not tested in this paper. It was, however,
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tested, for the case of unconstrained min-max problems, in a previous work by the
authors Vasile (2014). At the end of the minimisation process, the archive Ad of the
design configurations is updated with the new design solution d̄.

If the condition in line 18 of Algorithm 2 holds, the constraint relaxation strategy
described in Algorithm 5 is activated. An alternative option, the trade-off strategy in
Algorithm 6, can instead be activated if condition in line 21 is true. These alternatives
can be visualised in Fig. 1. If the former condition holds, problem A is stopped, the
relaxation step in the first block in B is performed finding ε and finally the constrained
min-maxproblem is updated as in the second block inB. If instead the second condition
hold, block A is stopped and then blocks C and D are solved.

The minimisation and restoration steps are alternated until condition in line 9 is
satisfied. In particular, the iteration holds until the number of calls to the function has
not reached the maximum allowed (nfeval < nfeval,max), the number of iterations is
below the upper bound (nloop < nloop,max) and the solutions saved in archives have
not converged (maxA(σ ) > σstop) where maxA(σ ) is the maximum standard deviation
between all the archives in the last 3 iterations. The violation of at least one of these
conditions corresponds to the termination criterion.

Then, the cross-check between all the design vectors archived in Ad is performed
(line 26). The cross-check procedure is explained in Sect. 3.6 and summarised in
Algorithm 7. Finally, the solution is chosen following Algorithm 8 (line 28).

An example of the application of Algorithm 2 to the two functions MWP10 and
GFc1 (see Sect. 4.1), without constraint relaxation and trade-off can be visualised in
Fig. 3. In sub-figures c and d an initial design guess d̂ and each new design d̄ proposed
by theminimisation step are represented as vertical lines. The correspondingworst case
scenario for f and c are plotted, with the same colour, as dots and stars respectively.
Sub-figure e shows sections of f and c over U for different design configurations.
Sub-figure f shows how the space of the maxima of f and c as it appears to the
minimisation process. In particular, sub-figure (c) shows that the algorithm is able to
find at the first iteration, for this test case, the subspace D̂ ∈ D in which the design
solutions are feasible for any uncertain scenario. The first design guess d̂ (blue line)
finds the worst scenario for u = 10. In b indeed, the maximum constraint violation
is brought to zero at the second iteration and all the other iterations are then used to
minimise the worst case of f working within the design domain D̂.

3.3 Memetic strategy

When problems in Eqs. (2) to (4) within the min-max Algorithm 2 are global opti-
misation problems we propose the use of the memetic optimisation algorithm Multi–
Population Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) (Di
Carlo et al. 2019). It combines the Darwinian evolution of a number of populations of
candidates through a Differential Evolution (DE) strategy with the Lamarckian evolu-
tion of the best agent in each converged population through a local search algorithm.
In particular, the local refinement is performed if the converged solution is not in
the basin of attraction of previous local minima. A number of local restart are then
performed before globally restarting.
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Algorithm 2 Constrained min-max
1: Initialisation: Algorithm 1
2: if Āu f = ∅ ∧ Āuc = ∅ then
3: Initialisation loop:
4: Run ua f = argmaxu∈U f (d̂, u) s.t. maxi∈Ic ci (d̂, u) ≤ ε

5: Run uac = argmaxu∈U maxi ci (d̂, u)

6: if multiple outputs, choose best ua f as in Algorithm 3
7: Update archives as in Algorithm 4
8: end if
9: while nfeval < nfeval,max ∧ nloop < nloop,max ∧ maxA(σ ) > σstop do
10: Minimisation loop:
11: d̄ = argmind∈D{maxua∈ Āu f

f (d, ua)} s.t. maxua∈ Āuc
maxi∈Ic ci (d, ua) ≤ ε

12: Update global archive Ad = Ad ∪ {d̄}
13: Restoration loop:
14: Run ua f = argmaxu∈U f (d̄, u) s.t. maxi∈Ic ci (d̄,u) ≤ ε

15: Run uac = argmaxu∈U maxi ci (d̄,u)

16: if multiple outputs, choose best uac: Algorithm 3
17: Update archives: Algorithm 4
18: if relaxation flag ∧ not convergence ∧ satisfy limits on nfeval and nloop then
19: Stop Algorithm 2 and apply the constraint relaxation strategy: Algorithm 5
20: end if
21: if trade-off flag ∧ convergence on d, fmax, cmax ∧ satisfy limits on nfeval and nloop then
22: Stop Algorithm 2 and apply the trade-off strategy: Algorithm 6
23: end if
24: end while
25: for all d ∈ Ad do
26: Cross-check: Algorithm 7
27: end for
28: Select which solution [dopt, uopt] to return: Algorithm 8

Algorithm 3 Solution Selection - Inner loop
1: for all output ua f of the restoration level do
2: if �ua f → maxi∈Ic ci (d̄, ua f ) ≤ ε then
3: select u with minimum violation
4: else
5: select between the feasible u the one with the highest objective function f.
6: end if
7: end for

MP-AIDEA depends on the following parameters: the maximum number of func-
tion evaluation nfeval,max, the number of populations npop, the number of agents in
each population Npop, the convergence threshold ρ of DE, and the radius of the global
restart bubble δglobal.

An example of a run of MP-AIDEA with npop = 2 for problem MWP-1&GFc-1
is in Fig. 4 which shows, for the evolving populations, the alternations of DE steps
together with the local refinements. For this test case the MATLAB function solver
fmincon has been used. Given the constraint on the maximum number of function
evaluations, the algorithm is able to perform only one local restart in each popula-
tion. Colours red, blue and green refer to the first population while colours orange,
yellow and brown refer to the second population. As shown in the figure, first the two
populations are initialised randomly and evolved independently until convergence is
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Algorithm 4 Archive Updating
1: if in the main loop then
2: if ( fout > fin ∧ cout < 0) ∨ (0 < cout < cin) then
3: update ua, f = u from outer loop
4: end if
5: if cout > cin then
6: ua,c = u from outer loop
7: end if
8: end if
9: Au f = Au f ∪ {ua f }
10: A f = A f ∪ { f (d̄, ua f )}
11: Acf = Ac, f ∪ {maxi ci (d̄,ua f )}
12: Auc = Auc ∪ {uac}
13: Ac = Ac ∪ {maxi ci (d̄, uac)}
14: Āu f = Au f \ repeated solutions
15: Āuc = Auc \ repeated solutions

Fig. 4 Convergence of
MP-AIDEA with two
populations in the outer loop of
Algorithm 2 for test problem
MWP1&GFc1. Coloured areas
represent the convergence of the
differential evolution steps
(different set of colours for
different populations) while dots
represents optimal solutions of
the local search

achieved (being the parameter ρ one of the termination criteria). In particular the red
(orange) area represent the evolution of the best agent in the population while the blue
(yellow) represent the mean value and the green (brown) the worst agent. From the
two converged solutions a local search is performed with f mincon until the green
and brown points are obtained. From these two local minima then the two populations
are locally reinitialised. The overall process is then repeated till convergence.

3.4 Constraint relaxation strategy

The min-max problem proposed in this paper imposes quite stringent conditions on
the satisfaction of the constraints as constraints need to be satisfied for all possible
values of u ∈ U . It is, therefore, possible that no solution dopt is feasible in all U .
Since we are interested in the worst case solution for both constraints and objective
function, when no feasible d is possible we introduce an automatic relaxation of the
constraints.
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In order to find a set X ⊂ D that is feasible for all u ∈ U , we first solve the
following minmax problem:

min
d∈Dmax

u∈U max
i∈Ic

ci (d,u) (5)

Problem (5) minimises the maximum violation of the constraints and returns a
solution vectors dmin,c and umin,c. Vectors dmin,c satisfies the constraint:

cε ≤ 0 (6)

for all u ∈ U , where:
cε = c − ε (7)

and
ε = max

i∈Ic
ci (dmin,c,umin,c) (8)

The relaxation strategy is explained in Algorithm 5. If condition on line 18 of Algo-
rithm 2 is satisfied then Algorithm 5 is triggered. Once in Algorithm 5, until condition
in line 2 holds, problem (5) is solved (see lines 3 – 8 of Algorithm 5), with the iteration
between the following minimisation

min
d∈D max

uac∈ Āuc

max
i∈Ic

ci (d,uac), (9)

and restoration step
max
u∈U max

i∈Ic
ci (d̄,u) (10)

This is an unconstrained min-max formulation where the optimised function is the
vector of constraints c. The solution at convergence is the minimum over D of the
worst constraint violations in U . In line 10 that value is associated to the relaxation
parameter ε. In this way the algorithm is re-conducted to Eq. (5) by means of the
relaxation of the constraint violation and Eq. (1) is translated in:

mind∈D maxu∈U f (d,u)

s.t .
ci (d,u) ≤ ε ∀u ∈ U ,∀i ∈ Ic = [1, ..., n]T

(11)

3.5 Scalarisation strategy

This subsection presents a different point of view that is based on the parameter-based
scalarisation approach (Kasimbeyli et al. 2019) for the solution of Eq. (1). It is here
supposed that the decision maker, who is the final user of this methodology, is able
to assign preference weights to the different Quantity of Interests (QoIs) involved in
the problem under analysis. The scalarisation approach then has been preferred to the
direct multi-objective optimisation because, for a given set of weights, it reduces the
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Algorithm 5 Constraint Relaxation
1: Inherit vectors from Algorithm 2
2: while not convergence of relaxation do
3: Minimisation loop:
4: d̄ = argmind∈D{maxuac∈ Āuc

c(d,uac)}
with the cross-check as in Algorithm 7.

5: Restoration loop:
6: Run uac = argmaxu∈U maxi ci (d̄, u)

7: if multiple outputs, choose best uac: Algorithm 3
8: Update archives Auc and Ac: Algorithm 4
9: end while
10: set ε = maxu∈U maxi ci (d̄, u)

11: Restart Algorithm 2

computational complexity. Problem (11) indeed can be seen as an Epsilon-Constraint
Scalarisation (ECS) (Filippi and Vasile 2020; Haimes et al. 1971) formulation of the
bi-objective min-max problem:

min
d∈D

[
max
u∈U f (d,u),max

u∈U max
i∈Ic

ci

]
(12)

Thus one could be interested in a trade-off between f and ε and accept larger relax-
ations of the constraints in favour of a better objective. Note that in the context of
uncertainty quantification this implies accepting a higher probability of violating the
constraints in favour of a better cost function.

We now introduce the assumption that a preference vector ω = [ω f , ωc]T can be
defined a priori and explain the scalarisation approach summarised in Algorithm 6.

In the first part (line 2 – 10) the reference points cideal, fnadir, fideal and cnadir are
calculated. cideal is the minimum (best) over D of the worst case constraint violations
in U :

cideal = min
d∈Dmax

u∈U max
i∈Ic

ci (d,u) (13)

and it is equal to the relaxed constraint ε. For the corresponding design vector dc-ideal
the worst scenario for the objective function is fnadir (lines 3 to 8):

fnadir = max
u∈U f (dc-ideal,u) (14)

In line 9 the unconstrained min-max problem

fideal = min
d∈Dmax

u∈U f (d,u) (15)

is solved to define the best design configuration d f -ideal that minimises the worst
scenarios of the objective function f regardless the constraint violation. d f -ideal is
then used in line 10 to calculate the corresponding worst condition for the constraint
violation:

cnadir = max
u∈U max

i∈I ci (d f -ideal,u) (16)
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An example of the reference points for a generic Pareto front applied to themin-max
problem is in Fig. 5 where zideal = [ fideal, cideal] and znadir = [ fnadir, cnadir]. In the
second part (lines 13 – 27) it is instead described the scalarisation procedure. Nadir
and ideal points are here used to normalise f and c:

f̄ = f − fideal
fnadir − fideal

(17)

c̄ = maxi∈Ic ci − cideal
cnadir − cideal

. (18)

Three different methods were considered in this study: ECS,Weighted-Sum Scalar-
isation (WSS) (Gass and Saaty 1955) and Chebychev/Pascoletti-Serafini Scalarisation
(CPSS) where the last one is a smooth combination of Weighted Chebyshev Scalari-
sation (WCS) (Bowman 1976) and Pascoletti-Serafini Scalarissation (PSS) (Bo et al.
2007). A comparison of the different approaches can be found in Filippi and Vasile
(2020). The difference in Algorithm 6 is only within the minimisation loop (lines 13
– 22).

The WSS solves the minimisation over the design space D of the weighted sum of
the worst case scenarios for f and c in the respective archives (line 18):

min
d∈D

[
ω f max

u∈ Āu f

f̄ (d,u) + ωc max
u∈ Āuc

c̄(d,u)
]

(19)

The CPSS solves two different problems. During the DE step of Inflationary Dif-
ferential Evolution, the algorithm addresses the following problem:

min
d

max
i

ωi z̄i (20)

where we have introduced the weight vector ω = [ω f , ωc]T and the objective vector
z̄ = [maxua f ∈Au f f̄

(
d,ua f

)−z f ,maxuac∈Auc c̄(d,uac)−zc]T . During the local search
step of Inflationary Differential Evolution, instead, the CPSS addresses the following
constrained minimisation problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mind∈D t

t < 0

ω f
(
maxua f ∈Au f f̄ (d,uu f ) − z f

)
< t

ωc
(
maxuac∈Auc c̄(d,uac) − zc

)
< t

(21)

where z f and zc are the values of f̄ and c̄ respectively for the best solution obtained
from the DE step in Eq. (20) and from which the local search is initialised. For all
three methods, the restoration problem solves the two problems:

max
u∈U f (d̄,u) (22)

max
u∈U max

i∈Ic
ci (d̄,u) (23)
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Fig. 5 A generic Pareto front for the min-max problem. In this case the functions max f and max c are
considered as conflicting objectives. The ideal zideal, nadir znadir and utopian zutopian points are represented.
They are theoretic points that collapse the extreme behaviour of the different solutions in the Pareto front.
zideal is the combination of the best solutions for the different objectives. znadir represents instead the worst
possible combination of points. zutopian is finally defined by means of an ε from zideal

For the given preference vector, the optimal worst case condition for f and the optimal
relaxation of the constraint ε are given, at convergence, by Eqs. (22) and (23).

The three possible scalarisation procedures ECS, WSS and CPSS can be used to
reconstruct the Pareto front for the minimisation trade-off between the worst case
scenarios max f and max c. Fig. 6 shows a comparison of the three methods, where
the combination of the objective functionGF f 1 in Table 1 and the constraint function
GFc1 in Table 2 has been chosen as representative test case.We usedMP-AIDEAwith
the following settings: maximum number of function evaluation nfeval,max = 3000,
number of populations npop = 2, number of agents in the population Npop = 5,
dimension of the bubble for the global restart δglobal = 0.1 and DE threshold for each
population ρ = 0.1. The whole constrained min-max algorithm has then been run
until convergence. For ECS the algorithm has been run for 60 different thresholds
ranging between 1 and 6.2 (calculated minimum and maximum constraint violation.)
For WSS and CPSS, instead, the trigonometric weights

w f = cos θ
cos θ+sin θ

wc = sin θ
cos θ+sin θ

(24)

have been used letting θ varying from 0 to π
2 and using a discretisation of 60 interval as

well. Fig. 6 shows that WSS is not capable of finding optimal Pareto points in the non
convex part of the Pareto front (Das and Dennis 1997) and also, using equally spaced
weights, it finds non-equally spaced points in the front. The ECS strategy gives better
results. The best performance is, however, obtained with the CPSS. Indeed it allows
the user to express a preference through the selection of the weights and, as shown in
Fig. 6, with the same number of simulations (60 different descent directions for the
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Fig. 6 Pareto front
corresponding to the trade-off
between the two conflicting
goals max f and max c. The
results refer to test case
GF f 1&GFc1. In particular, the
ε-constraint (EC) approach has
been applied with different
thresholds while the
Chebychev/Pascoleti Serafini
(CPSS) and the Weighted-Sum
(WSS) scalarisations have been
applied with different preference
vectors

CPSS and epsilon values for the ECS) it is able to find more Pareto optimal solutions
than ECS. For these reasons CPSS was chosen and implemented in Algorithm 2

3.6 Cross-check

All the optimisation problems in the minmax algorithm require the identification of a
global maximumor a global minimum. Since it is proposed to use amemetic algorithm
it is possible that some of themaxima orminima in the archive are only locally optimal.
Note that the use of a deterministic global optimiser would remove this problem but
would introduce a tractability problem due to the potential NP-hard nature of some
optimisation problems.

In order tomitigate the occurrence of localminima/maxima in the archiveswe intro-
duce a cross-check of the solutions following the procedure explained in Algorithm 7.
It is performed for each design vector d̄ that can be proposed by the optimiser during
the minimisation step and at the end of the whole algorithm (respectively in line 9 and
19 of Algorithm 2). Referring to Algorithm 7, lines 1 – 7 regard the objective function
f while lines from 8 – 14 regard the constraint function c. In both cases, for a given d̄
objectives and constraints are evaluated for all the u vectors in the archives Āu f and
Āuc. We also introduced an option (through local flag) to run a local search from each
new pair [Nd, u]. This option slows down Algorithm 2 but improves the quality of the
solution if the functions present nested minima/maxima. Finally, line 15, retains the
worst values of f and c for the archives Āu f and Āuc for each d̄.

3.7 Selection of output solution

After the termination criterion in Algorithm 2 is applied and the cross-check over
the archives is performed (line 21), the solution for the min-max problem is selected
following Algorithm 8. In particular, if a feasible subset Âd of the archive Ad of
the design vectors exists (line 1) the selected solution vector is the one, within Âd ,
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Algorithm 6 Scalarisation Strategy
1: Inherit vectors from Algorithm 2
2: Normalisation points:
3: if Algorithm 2 not converged then
4: run relaxation strategy in Algorithm 5

cideal = ε = mind∈D maxu∈U maxi∈Ic ci (d, u)

5: fnadir = maxu∈U f (dc-ideal, u)

6: else
7: cideal and fnadir from Algorithm 2.
8: end if
9: run Algorithm 2 for the unconstrained problem on f :

fideal = mind∈D maxu∈U f (d, u)

10: cnadir = maxu∈U maxi∈I ci (d f -ideal,u)

11: Scalarisation step:
12: while satisfy limits on n f val , nloop ∧ not convergence do
13: Minimisation loop:
14: if Weighted-sum scalarisation then
15: mind∈D

[
ω f maxu∈ Āu f

f̄ (d, u) + ωc maxu∈ Āuc
c̄(d, u)

]
with the cross-check as in Algorithm 7,
f̄ and c̄ defined in Eqs. (17) and (18)

16: else if Chebyshev Pascoletti-Serafini scalarisation then
17: during the Differential Evolution step:

18: mind∈D
∥∥∥ω f (maxu∈Au f f̄ (d, u), ωc maxu∈Auc c̄(d, u)

∥∥∥∞
19: during the Local Search step:
20: mind∈D,t<0 t

s.t.
ω f

(
maxua f ∈Au f f̄ (d, ua f ) − z f

)
< t

ωc
(
maxuac∈Auc c̄(d, uuc) − zc

)
< t

f̄ and c̄ defined in Eqs. (17) and (18)
21: end if
22: Update global archive Ad = Ad ∪ {d̄}
23: Restoration loop:
24: Run ua f = argmaxu∈U f (d̄, u)

25: Run uac = argmaxu∈U maxi∈I ci (d̄,u)

26: if multiple outputs, choose best uac: Algorithm 3
27: Update archives: Algorithm 4
28: end while
29: for all d ∈ Ad from phase 2 do
30: Cross-check: Algorithm 7
31: end for
32: Select which solution [dopt, uopt] to return: Algorithm 8

minimising the worst value of f (line 2). If, on the other hand, Âd is an empty set, the
design vector that minimises the constraint violation is selected (line 4).

3.8 Computational complexity

The computational cost of Algorithm 2 is measured in terms of number of func-
tion calls. With reference to the minimisation step, the counter nouterfeval takes into
account, for both the constrained and the unconstrained min-max problems, the calls
to maxu∈ Āu f

f (d,ua f ) in Eq. (2). The same criterion, then, holds for the constraint
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Algorithm 7 Cross-Check
1: for all elements ua f ∈ Āu f do
2: if local flag then
3: Compute local maximum f (d̄, u∗

a) s.t. maxi∈Ic ci (d̄, u∗
a) ≤ ε from ua f

4: else
5: Compute f (d̄, ua) s.t. maxi∈Ic ci (d, ua f ) ≤ ε

6: end if
7: end for
8: for all elements uac ∈ Āuc do
9: if local flag then
10: Compute local maximum maxi∈Ic ci (d̄, u∗

a) from uac
11: else
12: Compute maxi∈Ic ci (d̄, uac)
13: end if
14: end for
15: For each d̄ Save worst vectors ua f and uac in the archives Āu f and Āuc .

Algorithm 8 Select Solution - Output

1: if Âd = {d|maxuac∈Auc maxi∈Ic ci (d, uac) ≤ ε} = ∅ then
2: take d ∈ Âd that minimise maxua f ∈Au f f (d, ua f )
3: else
4: take d ∈ Ad that minimise maxuac∈Auc maxi∈Ic ci (d, uac)
5: end if

relaxation step in Eq. (9) and for the two trade-off steps in Eqs. (15) and (19). It has
to be noted that, as the algorithm proceeds in the search of the global optimum solu-
tion, the archives Āu f and Āuc of the uncertainty vectors increase progressively in
dimension. Each minimisation step explores a maximum number of possible design
configurations which is limited by the input parameter nouterfeval,max. However, due to
the growth of the archives of the solutions coming from the restoration step, each
evaluation of the minimisation loop becomes increasingly more expensive.

With reference to the maximisation step, instead, the cost of the two separate prob-
lems in Eqs. (3) and (4) has to be considered. For the former ninner, ffeval counts the number

of calls to the objective function f (d̄,ua f ) and it is limited by the input ninner, ffeval,max. This
holds true also for the two steps in the trade-off strategy in Eqs. (16) and (22) and for
the relaxation step in Eq. (10) where the function c is considered instead of f . For the
latter, ninner,cfeval counts the number of calls to maxi ci (d̂,u) in Eq. (4) where the input

ninner,cfeval,max is the upper limit.
Finally, the parameters nfeval,max and nloop,max give an upper limit on the whole cost

of Algorithm 2. Note that nfeval,max and nloop,max represent an upper limit because, as
it is shown in line 9 of Algorithm 2, we use an additional termination criterion that
looks at the convergence of the solutions in the archives.

The computational complexity of the different parts of the overall algorithm is as
follows:

1. Local Search: the local search uses theMatlab fmincon function. All the alternative
algorithms (interior-point, trust-region-reflective, sqp, sqp-legacy, active-set) can
be selected. We use here interior-point that works well with both large sparse and
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small dense problems. The complexity is O(n3D) or O(n3U ) depending on which
step between minimisation and restoration is considered, where nD is the design
and nU the uncertain vector’s dimension.

2. Adaptation of CR and F: The DE parameters CR and F in MP-AIDEA are auto-
adapted for each element of each population. For npop evolving populations with
Npop agents, the complexity isO(npopNpopn2D) andO(npopNpopn2U ) for inner and
outer problem respectively (Di Carlo et al. 2019).

3. Restart mechanisms. The populations evolve with a differential evolution DE
approach which is restarted, locally and globally, a number of times. The local
restart has a cost proportional to npopNpop. The cost for the global restart,
instead, has a component related to the clustering procedure O(NpopnDniter) or
O(nLMn2Uniter) with niter the required number of iteration for the clustering and
nLM the number of local minima, and a component related to the verification that
the new population is far from the clusters O(NpopnLM ) (Di Carlo et al. 2019).

4. Outer-Loop. During the minimisation step there is a cost related to the test-
ing of each design vector suggested by the optimiser in combination with
all the uncertain vectors saved in the archives Āu f and Āuc and there is a
cost due to the selection of their maximum. In both cases the complexity
is O(|| Āu f ||nouterfval,max) ≤ O(nloopnouterfval,max) for the objective function f and

O(|| Āuc||nouterfval,max) ≤ O(nloopnouterfval,max) for the constraint function c.
5. Cross-Check. As in the outer loop there is here a cost for the cross-check and a cost

for the selection of the maxima. In both cases it is: O(||Ad |||| Āu f ||) ≤ O(n2loop)

and O(||Ad |||| Āuc||) ≤ O(n2loop) for f and c respectively because each design
vector d ∈ Ad is considered.

6. Select Solution. After the final cross-check, the archives are updated and the set of
design vectors Âd feasible in all the uncertain domain can be defined. The min-
max solution is selected following Algorithm 8 sorting the feasible solutions f
(O(|| Âd ||)) or minimising the constraint violation c (O(||Ad ||)).

4 Testing procedure

Algorithm 2 has been tested on the benchmark described and explained in this section.
Each test case is a combination of an objective function f and a constraint function
c. Depending on the mathematical features of each problem, a local optimiser or a
global optimiser have been used for the three problems in Eqs. (2) to (4). The criteria
used to choose the right optimiser is explained in Sect. 4.3.

Given the stochastic nature of MP-AIDEA, each optimisation for each problem has
been repeated 100 times. Results are then reported in Section 5. For the evaluation of
the algorithm’s performance, the Success Rate SR is used instead of best value, mean,
and variance. The SR was suggested in Vasile et al. (2011) for a generic problem
min f and a generic algorithm. It is here generalised to consider also the handling of
constraints. The definition of SR is in Sect. 4.2.
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Table 1 test cases for the objective function f

ID objective functions

MWP-1 5(d21 + d22 ) − (u21 + u22) + d1(−u1 + u2 + 5) + d2(u1 −
u2 + 3)

MWP-2 4(d1 − 2)2 − 2u21 + d21u1 − u22 + 2d22u2

MWP-3 d41u2 + 2d31u1 − d22u2(u2 − 3) − 2d2(d1 − 3)2

MWP-4 −∑3
i=1(u1 − 1)2 + ∑2

i=1(d1 − 1)2 + u3(d2 − 1) +
u1(d1 − 1) + u2d1d2

MWP-5 −(d1 − 1)u1 − (d2 − 2)u2(d3 − 1)u3 + 2d21 + 3d22d
2
3

MWP-6 u1(d
2
1 − d2 + d3 − d4 + 2) + u2(−d1 + 2d22 − d23 +

2d4 + 1)+ d3(2d1 − d2 + 2d3 − d24 + 5)+ 5d21 + 4d22 +
3d23 + 2d24 − ∑3

i=1 u
2
i

MWP-7 2d1d5+3d4d2 +d5d3+5d24 +5d25 −d4(u4−u5−5)+
d5(u4 − u5 + 3) + ∑3

i=1(ui (d
2
i − 1)) − ∑5

i=1 u
2
i

MWP-8 (d1 − 5)2 − (u1 − 5)2

MWP-9 min(3 − 0.2d1 + 0.3u1, 3 + 0.2d1 − 0.1u1)

MWP-10 sin(d1−u1)√
d21+u21

MWP-11
cos(

√
d21+u21)√

d21+u21+10

MWP-12 100(d2 −d21 )2 + (1−d1)
2 −u1(d1+d22 )−u2(d

2
1 +d22 )

MWP-13 (d1 − 2)2 + (d2 − 1)2 + u1(d
2
1 − d2) + u2(d1 + d2 − 2)

GFf-1 10(nD + nU ) + ∑nD
i=1(d

2
i + u2i − 10

[
cos(2πdi ) +

cos(2πui )
] − 5

GFf-2
∑[(Rdi+1,ui+1 (di ) − 5)2 − ((Rdi+1,ui+1 (ui ) − 5)2]

Table 2 test cases for the constraint functions c

name constraint functions

GFc-1
∑

di + ui + K

GFc-2 max
[
0,

∑
di + ui + K

]

GFc-3

{
0 if maxi (di − dopti ) ≤ 0.1

1 else

GFc-4

{
0 if maxi (di − dopti ) ≤ 0.1

30n + ∑[x2i − 30 cos(2πxi )] − 30 else

GFc-5

{
0 if maxi (di − dopti ) ≤ 0.1

30n + ∑[x2i,R − 30 cos(2πxi,R)] − 30 else

GFc-6
[ ∑

(xi − xopti )
∑

(d2i − 2ui )
∑

(di − dopti )
](2/7)

GFc-7 1 − AC/BD

GFc-8
∑[(di,R − 5)2 − (ui,R − 5)2]
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Fig. 7 GFf-1 in the case nD = nU = 1

4.1 Benchmark

The equations of f and c are listed in Tables 1 and 2 respectively. The constraint
functions c are more extensively presented in the following Sects. 4.1.1 – 4.1.10 and
visualised in Figs. 7, 8, 9, 10, 11, 12 and 13 for the case nD = nU = 1. Table 3 lists
lower and upper bounds, dimensions and optimal solutions for the unconstrained prob-
lems in Table 1. The same solutions holds also for the constraint min-max problems
for which the constraint does not change the global optimum. Table 4 presents instead
the reference solutions for the constraint min-max problems for which the constraint
function changes the position of the global optimum.

MWP-1,2,...,7 are convex-concave test functions taken from chapter 5 of Baxter
et al. (2008). Objective functions MWP-8,...,11 are first introduced in Power (1998)
and then used also in Cramer et al. (2009), Lung and Dumitrescu (2011), Zhou and
Zhang (2010) whileMWP-12,13 are instead selected from Cramer et al. (2009), Lung
and Dumitrescu (2011), Zhou and Zhang (2010). They have been used all together in
Marzat et al. (2013) as benchmark for the unconstrained min-max problem. Functions
GFf-1,2 and GFc-1,2,...,8 have been specifically designed for the testing of Algo-
rithm 2, given the lack of a benchmark in the literature for the constrained version of
the min-max problem.

Both f and c are designed to include different structures that can be encounter in
practice (Jamil and Yang 2013). In particular, they exhibits the following features:

1. Modality: number of local optima that try to trap the algorithm in the wrong peak.
2. Basin or plateau: a relatively steep decline that surrounds a large area. There is no

information to drive the algorithm.
3. Valley: similar to the basin but it is narrow area.
4. Non separability: property related to the coupling between parameters. Non-

separable functions are in general more difficult to optimise.
5. Dimensionality: property related to the number of parameters or dimension of the

problem. The search space increases with the dimension, increasing then also its
difficulty.
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Fig. 8 GFf-2 in the case nD = nU = 1

Fig. 9 GFc-4 applied to MWP-11 in the case nD = nU = 1. Feasible areas are white

6. Non differentiability: cuspids, corners, tangents and discontinuities are features
that make functions non differentiables in some points. Some of the constraint
functions present cuspids, corners and discontinuity. In particular discontinuity is
an abrupt change in the function values. Discontinuities are classified in jump,
infinite, removable, endpoint, or mixed. Some of the constraint functions c present
jump discontinuities.

MWP-9 is not differentiable. MWP-1,8,9,12,13 are uni-modal in both D and U .
On the other hand MWP-4,5,6,7,10,11 are multi-modal in both D and U . MWP-
2,3 are multi-modal in D only. The new test cases GF f -1, 2 and GFc-1, ..., 8 are
explained in the following. They depend on the components di of the design vector d,
the components ui of the uncertainty vector u and the combined vector x = [d,u]T .

4.1.1 GFf-1

GFf-1 is amodifications of the Rastrigin functionwhere half of the variables are design
parameters and the others are uncertain variables.
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Fig. 10 GFc-5 applied to MWP-11 in the case nD = nU = 1. Feasible areas are white

c(d,u) = 10(nD + nU ) +
nD∑
i=1

(d2i + u2i − 10
[
cos(2πdi ) + cos(2πui )

] − 5 (25)

It is continuous, differentiable, scalable, without valleys and basins, and highly
multi-modal with hundreds of local peaks.

4.1.2 GFf-2

GFf-2 is a variation of the saddle-point function MWP-8:

c(d,u) =
n∑

k=1

[(dk,R − 5)2 − ((uk,R − 5)2] (26)

where both components dk,R and uk,R are obtained rotating dk and uk respectively
by the angle

θk =
{

π/8 + 1kdk+1/20 + uk+1/20 if k < n

π/8 + 1kdk/20 + uk/20 else
(27)

GFf-2 is continuous, differentiable, non-separable, scalable, without valleys and
basins, and uni-modal.

4.1.3 GFc-1

GFc-1 is a hyper-plane and it is a linear function in both d and u:

c(d,u) =
n∑

i=1

di + ui + K (28)

where K = −∑
i di −

∑
i uu,i −0.05 with uu,i the upper bound for the i-th uncertain

variable. GFc-1 is continuous, differentiable, separable, scalable, without valleys and
basins, and uni-modal.

123



Global solution of constrained min-max problems with inflationary… 123

Fig. 11 GFc-6 applied to MWP-10 in the case nD = nU = 1. Feasible areas are white

4.1.4 GFc-2

GFc-2 is a modification of GFc-1. It is a continuous piece-wise linear function where
the feasible region is a plateau. It is the intersection of two hyper-planes, the second
being at the border between of feasible and infeasible regions.

max
[
0,

n∑
i=1

di + ui + K
]

(29)

with K as in Eq. (28). GFc-2 is continuous, non differentiable, separable, scalable,
with a plateau, without valleys and uni-modal.

4.1.5 GFc-3

In GFc-3 there are a jump discontinuities, valleys and plateaus. The feasible area
is a narrow multidimensional circle. The function is not differentiable, scalable and
uni-modal:

c(d,u) =
{
0 if maxi (di − dopti ) ≤ 0.1

1 else
(30)

4.1.6 GFc-4

GFc-4 is a modification of the Rastrigin function where a jump discontinuity is intro-
duced:

c(d,u) =
⎧⎨
⎩
0 if maxi (di − dopti ) ≤ 0.1

30n +
n∑

i=1
[x2i − 30 cos(2πxi )] − 30 else

(31)

It is highlymulti-modal, discontinuous, not differentiable with valleys and plateaus,
separable and scalable.

123



124 G. Filippi and M. Vasile

Fig. 12 GFc-7am applied to MWP-10 in the case nD = nU = 1. Feasible areas are white

4.1.7 GFc-5

GFc-5 is a modifications of Eq. (31). Here a rotation of the vectors d and u is also
introduced.

c(d,u) =
⎧⎨
⎩
0 if maxi (di − dopti ) ≤ 0.1

30n +
n∑

k=1
[x2k,R − 30 cos(2πxk,R)] − 30 else

(32)
The rotated components dk,R and uk,R are given by the angle θk = di + 2ui .

GFc-5 is discontinuous, not differentiable, with valleys and plateaus, scalable, sep-
arable and multi-modal.

4.1.8 GFc-6

GFc-6 is a multi-dimensional peak function with high coupling between D and U. It
is unfeasible in most of the domain while it is satisfied only in few narrow non linear
valleys varying with d.

c(d,u) =
[

2n∑
i=1

(xi − xopti )
∑
i

(d2i − 2ui )
∑
i

(di − dopti )

](2/7)

(33)

It presents very narrow non-linear valleys. It is continuous, locally non differen-
tiable, without plateaus, scalable, non separable and multi-modal.
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Fig. 13 GFc-8 applied to MWP-10 in the case nD = nU = 1. Feasible areas are white

4.1.9 GFc-7

GFc-7 is a multi-dimensional peak functions with high coupling between D and U
and narrow unfeasible areas varying with d.

A =
nD∑
i=1

((3/2di − (du,i − dopt,i )/2)(sin(di )/di ) − dopt,i/2)
1/5

+
nU∑
i=1

((3/2ui − (uu,i − uopt,i )/2)(1 − uopt,i/2)
1/5

B =
nD∑
i=1

(du(sin(du,i )/du,i ) − dopt,i/2)
1/5

+
nU∑
i=1

(uu(1 − uopt,i/2)
1/5

C = (d1 − dopt,1)
2/5

D = (du,1 − dopt,1)
2/5

c(d,u) = 1 − AC/BD

(34)

where du,i and uu,i are the upper bounds for di and ui respectively. GFc-7 has very
narrow non-linear peakswith large plateaus. It is continuous, locally non differentiable
(for the cuspids), without valleys, scalable, separable and multi-modal in D.

4.1.10 GFc-8

GFc-8 is a rotated versions of MWP-8:

c(d,u) =
n∑

i=1

[(di,R − 5)2 − (ui,R − 5)2] (35)
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where di,R and ui,R are obtained from di and ui respectivelywith the rotation angle
in Eq. (27). It is non-separable, scalable, continuous, differentiable and uni-modal and
without valleys and plateaus.

4.2 Success rate

The Success Rate (SR) is adopted here for the performance assessment ofAlgorithm 2.
Its definition is given in Algorithm 9 for a generic algorithm A applied to a generic
constrained problem CP on the D ×U space. It is defined as the ratio js

n between the
index of performance js and the number of independent experiments n.

First, all the parameters required byAlgorithm 2 are fixed (refers to the initialisation
in Algorithm 1). The following parameters are then defined: the number of repetition
of the experiments n, the tolerances tol f , told and tolu on the solution error for the
objective function f , the design vector d and the uncertain vector u respectively.
The formula for SR is in line 15. It depends on the tolerances and on the errors δkc ,
δkf , δkd and δku with respect to the reference solutions fref, dref and uref in Tables 3

and 4. In particular, δkc depends on the uncertain vector uopt,c that is the worst for
the constraint function c while δkf depends on the vector uopt, f that make worst the
objective functions f . δu is necessary to verify the convergence on the maximisation
in the inner loop (restoration in Sect. 3) and then to avoid counting as success solution
an f kopt close to fref that is coming from a lucky combination of a wrong maximisation
and a wrong minimisation in the outer loop (optimisation in Sect. 3).

Algorithm 9 Success Rate
1: Define the parameters for algorithm A to solve the constrained problem CP;
2: Define the number of repetition n;
3: Define tolerances tol f , told and tolu ;
4: Initialise the index of performance js = 0;
5: for k = [1,2,.., n] do
6: Run A on CP with the defined settings;
7: Compute f kopt ← A(CP(d, u));

8: Compute ckopt ← A(CP(d, u));

9: Compute dkopt: optimal solution for the design vector

10: Compute ukopt: optimal solution for the uncertain vector

11: Compute δkf = | fre f − f kopt|;
12: Compute δkd = ||dre f − dkopt||;
13: Compute δku = ||ure f − ukopt||;
14: Compute δkc = max(0, ckopt);

15: if δkc ≤ 0 ∧ δkf < tol f ∧ δkd < told ∧ δku < tolu then
16: js = js + 1
17: end if
18: end for
19: SR = js

n
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Table 4 Reference solutions for the test cases in Table 1 with the constraint changing the global optimum

ID nD nU d min-max u min-max f min-max

GFf-2 & GFc-8 10 10 [4]10 [6.1712]10 1.4261

20 20 [4]20 [6.1712]20 2.8522

30 30 [4]30 [6.1712]30 4.2784

40 40 [4]40 [6.1712]40 5.7045

50 50 [4]50 [6.1712]50 7.1306

4.3 Algorithm settings

An important feature of the proposed approach is its modularity in the sense that any
optimiser can be plugged in and used for the single optimisation problem in Eqs. (2) –
(4). To enhance efficiencies ofAlgorithm2, then, the right combination of optimisation
solvers should be selected. An optimal choice would require a prior knowledge of the
main features of a given problem. For complex multi-modal functions, we suggest
the use of the memetic optimisation solver MP-AIDEA because it has shown to be
efficient and effective, on average, on a wide range of problems mixing different
characteristics. For continuous uni-modal functionswe use instead theMatlab fmincon
solver with an interior-point scheme. We give here the parameter settings of MP-
AIDEA that have been used for all tests. The number of agents for each population
Npop and the maximum number of function evaluations were set to be respectively
Npop = max[5, nD], nouterfeval,max = 500nD , n

inner,f
feval,max = 500nU and ninner,cfeval,max = 500nU .

The dimension of the bubble for the global restart is δglobal = 0.1, the number of
populations is npop = 2 and the convergence threshold of DE is ρ = 0.25.

5 Results

The results are presented and explained in this section. In particular, four sets of test
have been performed. In the first, Algorithm 2 has been combined with the optimiser
fmincon, while in the other casesMP-AIDEAhas been used. First we consider one uni-
modal problem.The performance of the algorithm is assessed increasing the dimension
of the problem.Thenwe consider theworst-case complexity analysis on the benchmark
presented in Sect. 4.1 with a wide variety of difficulties. A complexity analysis on the
algorithm convergence is then presented for a selected test case for different problem
dimensions. Finally we apply Algorithm 2 to solve a realistic engineering problem:
the design for robustness of a communication satellite.

5.1 Uni-modal test problem

For the first set of results, the test case used is given by the combination of the objec-
tive function GFf-2 and the constraint function GFc-8. They are both continuous,
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Table 5 Success rates of GFf-2 and GFc-8 for different problem dimensions (rows) and limits on the
maximum number of function evaluations (columns). Optimiser: fmincon. δd = δu = δ f = 0.1, δc = 0

dim 2e5 4e5 6e5 8e5 1e6 2e6 3e6 4e6 5e6 6e6 7e6

10 × 10 0.03 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

20 × 20 – – – – 0.28 1.00 1.00 1.00 1.00 1.00 1.00

30 × 30 – – – – – 0.14 0.92 1.00 1.00 1.00 1.00

40 × 40 – – – – – 0.7 0.8 0.34 0.79 0.97 1.00

50 × 50 – – – – – – – – 0.04 0.16 0.30

differentiable, unimodal and non-separable. With these features a local optimiser is
sufficient to solve Eqs. (2)– (4) at each iteration. The constraint function c admits
only one feasible design vector, which is different from the unconstrained optimum
of GFf-2. The local optimiser we used in this test is fmincon. The test functions are
devised to be scalable with a predictable value of the exact min-max solution. Results
are collected in Table 5 for a number of function evaluations up to 7e6. The table
shows up to dimension nD = 40 and nU = 40 the algorithm can achieve SR = 1
within the maximum number of function evaluations. For nD = 50 and nU = 50, 7e6
is not enough and the best result is a success rate of 30%.

5.2 Multi-modal test problems

For the second set of experiments, Tables 6, 7, 8, 9, 10, 11 and 12 collect the results for
all the test cases given by the combination of objective functions f from Table 1 and
constraint functions c from Table 2. The last two columns of each table, niter,min
and niter,max, collect the minimum and maximum number of loops for which the
algorithm achieves SR = 1 (rows with the symbol − correspond to problems for
which SR = 1 has not been obtained for any of the 100 runs). For almost all the
problems Algorithm 2 converges to the correct solution with an SR = 1 within the
maximum number of function evaluations. For some problems (namelyGFF1-GFC1,
MWP10-GFC4, MWP11-GFC5, MWP11-GFC2) few of the runs did not converge to
the correct minimum of f but the SR is still reasonably high.

5.3 Convergence complexity

Sections 5.1 and 5.2 show the performance of Algorithm 2 with respect to the worst-
case computational complexity where an upper bound on the number of function
evaluations (nfeval,max) is fixed for each optimisation step of the approach: nouterfeval,max,

ninner,ffeval,max and ninner,cfeval,max. It is here interesting to show an other computational com-
plexity analysis that is related to the order of magnitude of the number of function
evaluations needed to converge to the optimal solution. In particular, Table 13 sum-
marises the results for the test case GF f -1&GFc-1. This test case has been selected
as representative because it is scalable in both design D and uncertain U spaces
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Table 13 Problem
GF f -1&GFc-1. Convergence
complexity

dim nout, ff eval nin, f
f eval nin,c

f eval n f eval

2 667.1 493.5 162.5 1323.1

3 2631.8 1232.2 200.5 4064.5

4 9607.1 2229.9 241.0 12078.0

5 17405.2 3151.2 254.5 20810.9

6 74085.8 13971.8 645.0 88702.6

7 86616.2 16354.2 992.6 103963.0

8 184190.9 29084.7 1337.4 214613.0

9 211740.5 43107.5 1591.9 256439.9

10 234045.3 51374.4 1765.1 287184.8

and it is also one of the most difficult within the proposed benchmark. Each row in
Table 13 corresponds to a different problem dimension: n = nD = nU = 2, 3, ..., 10.
The columns represent the average costs at convergence over 10 repetitions for the
constrainedminimisation in the outer loop in Eq. (2) (nout, ff eval ), the constrainedmaximi-

sation in the inner loop in Eq. (3) (nin, f
f eval ), the maximisation of the constraint function

in the inner loop in Eq. (2) (nin,c
f eval ) and finally the average cost for the whole algorithm

(n f eval ). The quantities n
out, f
f eval , n

in, f
f eval and n

in,c
f eval have been determined averaging the

sum, for the different algorithm’s iterations, of the number of function evaluations
at convergence. The optimiser MP-AIDEA has been used. In order to assure conver-
gence in each optimisation step in Algorithm 2, the number of populations has been
set equal to the problem dimension n pop = n (the problem is highly multi-modal)
and the maximum allowed number of function evaluations of each step has been fixed
at nouterfeval,max = ninner,ffeval,max = ninner,cfeval,max = 1e4n while for the whole algorithm it is
nfeval,max = 2e6n. The remaining input parameters for MP-AIDEA have been fixed
as in Sect. 4.3.

5.4 Space system design

The min-max approach in Algorithm 2 is finally tested on the design for robustness of
a Complex Engineered System (CEdS) under uncertainty. The system under analysis
is an observation spacecraft and the goal of the mission is the fire detection within
a belt centred at the latitude of 50 deg. The spacecraft is modelled as the network
shown in Fig. 14 where the nodes correspond to its subsystems and the links to the
coupling between them. The mathematical models that have been used for the nodes
are a modification of the ones the authors extensively presented in Filippi et al. (2019).
The differences are described in the following and are in the explicit definition of a
node for the orbital dynamic and in the payload subsystem. Design and uncertain
variables are listed in Tables 14 and 15 respectively.

Within the orbit node, considering a circular Low Earth Orbit (LEO), the altitude
h, inclination i , the minimum elevation angle εmin at which the ground station is
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Global solution of constrained min-max problems with inflationary… 139

Fig. 14 Representation of the spacecraft as a complex system. The two quantities of interest are the mass
of the M and the percent of coverage are PC for the payload

Table 14 Spacecraft model - design parameters

Design parameter Symbol Units id LB UB Sub-system

Altitude h km d1 1000 1400 Orbit

Min elevation angle ground station εmin deg d2 15 20 Orbit

Inclination i deg d3 0 90 Orbit

Width for square detector d μm d4 20 40 Payload

Quality factor for imaging Q − d5 0.5 2 Payload

Operating wavelength λ μm d6 3 6 Payload

Obdh type τobdh − d7 0 1 Obdh

Compression factor C − d8 0.2 0.6 Obdh

Slew angle sl deg d9 10 60 Aocs

Time for slew manuvers tsl s d10 10 20 aocs

Frequency f GHz d11 7 10 ttc

Modulation β − d12 0 1 ttc

Amplifier type τamp − d13 0 1 ttc

Cell type τcell − d14 0 1 Power

Bus voltage Vbus V d15 3 5 Power

Allowed bus drop Vdrop V d16 1 3 Power

123
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Table 15 Spacecraft model - uncertain parameters

Uncertain parameter Symbol Units id LB UB Sub-system

Magnetic latitude latm deg u1 0 10 Orbit

Maximum incidence angle I Amax deg u2 60 80 Payload

Max ground sampling distance Ymax m u3 60 80 Payload

Δ Mass Δm % u4 0 20 obdh

Δ Power Δp % u5 0 20 obdh

Antenna efficincy ηant − u6 0.6 0.9 ttc

Antenna gain Gant dB u7 1 5 ttc

Mass distribution network mrfdn kg u8 0.1 0.5 ttc

Cell packing efficiency ηpack − u9 0.8 0.9 Power

Harness mass factor kharn % u10 1 10 Power

Worst case angle of incidence θ deg u11 20 40 Power

Reflectance factor q − u12 0.5 0.7 aocs

Residual dipole m Am2 u13 0.0005 0.0015 aocs

Delta inertia δ I − u14 2 10 aocs

able to see the orbiting satellite and the magnetic latitude latm are used to evaluate the
coupling variables with the Attitude andOrbit Control System (AOCS), the Telemetry,
Tracking and Command System (TTC), the Power System and the Payload System
(Fig. 14). These coupling variables are: the period of each orbit Po, the number of
orbits No the satellite perform due to the shift of the longitude of the ascending node,
the time of eclipse for each orbit Tecl, the dynamic pressure pdyn, the mean Earth
magnetic field strength Km , the gravitational field Kg , the maximum distance to the
target Dmax, and the access time Tac (or total time in view) between the target and the
satellite, where the target is the ground station at 22 deg of latitude used for down-link
and up-link. With exception of Tac the formulas can be found in Filippi et al. (2019).
Instead, considering that the satellite ground track is determined by the inclination
i and by the longitude of the ascending node Lnode and that the latter increases by
360 deg in 1346 min (the rotation of the Earth relative to the stars), Tac is calculated
considering the total number of orbits i that happens during this period Tac = ∑

i Tac,i .
Following Wertz et al. (1999), that describes the motion of the satellite as seen from
a point on the Earth (the ground station), Tac,i is evaluated as:

Tac,i = P

180deg
arccos

cos λmax,i

cos λmin,i
(36)

with λmin,i and λmax,i the minimum and maximum Earth Central Angle for the i-th
orbit.

The Payload System is an infrared camera that is used to detect possible fires and its
target is the belt at 50 deg of latitude. Within the payload node the model’s parameters
are h (shared with the orbit node), Po (coupling parameter), the width for square
detector d, the quality factor Q, the operating wavelength λ, the maximum incidence
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angle of the instrument I Amax and the maximum ground sampling distance Ymax. The
model evaluates the following coupling variables: the data volume DV shared with
On Board Data handling (OBDH) and the power requirement P shared with the Power
System. The model evaluates also the payload mass and the percentage of coverage
area PC of each orbit during which the payload target is seen. In particular, PC is
calculated following Wertz et al. (1999) as function of λmax, i and the latitude of the
target Lat = 50 deg:

PC =

⎧⎪⎨
⎪⎩
0 if Lat > λmax + i

φ1/180 if i + λmax > Lat > i − λmax

(φ1 − φ2)/180 if i − λmax > Lat > 0

(37)

where

cosφ1 = − sin λmax + cos i sin Lat

sin i cos Lat
(38)

and

cosφ2 = sin λmax + cos i sin Lat

sin i cos Lat
(39)

The remaining couplings between nodes are the compressed data volume DV c that
OBDH send to TTC for down-link to the ground station and the power requirements
P of all the nodes (orbit excluded) that the Power sub-system has to make available.
Finally, the global outputs of the network are the overall mass M of the satellite, sum
of the masses of the components, and the percent coverage PC of payload target land.
In the optimisation framework, M is considered to be the performance indicator while
PC is the constraint to be satisfied. This mission design problem is translated into the
following constrained min-max problem:

mind∈D maxu∈U M(d,u)

s.t .
PC(d,u) ≥ ν ∀u ∈ U

(40)

In order to explore the conflict between f and c, the corresponding Pareto front
has been reconstructed. We want to apply here the main min-max method presented
in Algorithm 2. The algorithm has then been repeated using 30 different values for the
threshold ν through an ECS approach.

The results of Eq. (40) are shown in Fig. 15 for which the optimiser MP-AIDEA
has been used with the setting specified in Section 4.3. In particular, Fig. 15a presents
the Pareto front reconstructed for the different values of ν, while the shape of the front
can be understood looking at Fig. 15b,c,d. There are indeed two different geographical
targets on the Earth for the defined mission: the ground station (22 deg of latitude)
used for up-link and down-link by TTC and the area that has to be monitored by the
payload for possible fire detection (50 deg of latitude).

These two targets are quantified in the respectively node’s models by Tac and PC ,
the latter being the constraint function c and the former having an high impact on
the final mass M of the overall spacecraft that is the objective function f . The most
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Fig. 15 Optimal Pareto points for the spacecraft design problem in Eq. (40) calculated with Algorithm 2 and
applying the EC approach, running 30 optimisations with different thresholds ν in the constraint function
c. Sub-figure a shows the Pareto Front representing the tension between max c and max f . Sub-figures b,c,d
explain the shape of the Pareto Front. The most important design parameters leading the trade-off between
f and c are the altitude H = d1 and the inclination I = d3. Sub-figure (b) shows the increase of altitude
(points) and inclination (stars) for the different solutions in sub-figure a. Sub-figure c presents the time
in view between satellite and the ground station for a series of revolutions as function of the inclination.
Sub-figure d finally shows the percent of land coverage by the payload

influential design parameters with regard to PC and Tac in the trade-off within the set
of optimal Pareto points are the altitude h = d1 and the inclination i = d3. Fig. 15b
shows their optimal values while moving in the front, while Fig. 15c,d show finally
the corresponding values of Tac and PC . For low values of ν in the constraint function
(left side of the Pareto front) the design solution selects the orbit inclination that
maximise the amount of time for the link between the spacecraft’ antenna and ground
station. This configuration reduces the overall mass M at the expense of the capacity
of detect fires (PC). As ν increases, the solutions becomes sub-optimal for Fig. 15c
while maximises the area in Fig. 15d.

6 Conclusion

The paper has presented a new algorithm for the solution of a class of constrained
min-max problems. The class of min-max problems emerges naturally from the need
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to make robust decisions under uncertainty in the case in which constraints need to
be always satisfied. The method is based on the alternation of a minimisation and
a restoration step. This scheme is fairly optimiser agnostic and we demonstrated its
applicability even in the case a simple gradient search is used. For the case in which the
min-max solution requires the global exploration of a complex solution space we have
proposed the use of a memetic approach based on Inflationary Differential Evolution.
Our complexity analysis has revealed that the algorithm is overall of polynomial
complexity with maximum exponent equal to 2.

The combination of the proposed solution strategy and memetic global optimiser
was extensively tested on a new benchmark of objective and constraint functions with
a variety of features that can be encountered in real-life applications.

Results show that the algorithm we propose is successful at identifying the con-
strained min-max solution with a limited number of calls to objective functions and
constraints. Such solutionminimises theworst case realisation of the objective function
in the uncertain space while guaranteeing its feasibility in all the possible scenarios.
The benchmark is complemented by a real case of robust optimisation of a space
systems.

In the case in which a feasible solution in all the uncertain domain could not
be found, we proposed a constraint relaxation procedure to automatically adapt the
admissible region. Finally we proposed a trade-off approach between unconstrained
min-max solution and constraint satisfaction based on a combination of Chebyshev
and Pascoletti-Serafini scalarisation. This approach is promising for cases in which
a user defined relaxation of the constraint is possible as it allows one to explore the
optimal trade-off curve between optimality and reliability. The use of this approach
will be further developed in future work.
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