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Abstract
This paper presents a new computational procedure for optimization of structures 
subjected to dynamic loads. The optimization problem is formulated with discrete 
design variables that represent the members from a table of commercially available 
members. Also, the requirements in the American Institute of Steel Construction 
(AISC) manual are formulated as constraints. This results in a nondifferentiable 
optimization problem. In the new procedure, the dynamic load is transformed into 
equivalent static loads (ESLs). Then the static response optimization problem hav‑
ing discrete design variables is solved using a metaheuristic optimization algorithm. 
Three methods to calculate the ESLs are investigated. It is found that the ESL cycles 
cannot converge to the final design. Therefore after a few ESL cycles, the original 
dynamic loads need to be used in the optimization process. Four example problems 
are solved to analyze the procedure. Based on this analysis, it is concluded that the 
new procedure is more efficient compared to a procedure that does not use the ESL 
cycles because it reduces the total CPU effort to obtain the final design. Also, bet‑
ter final designs are found. The reason is that many more designs are analyzed very 
efficiently with the ESL procedure.

Keywords Equivalent static loads method · Metaheuristic algorithms · Discrete 
variables · Structural optimization · Dynamic loads
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�  Stress correction factor
�  Lateral displacement
�max  Allowable lateral displacement
�  Coefficient of restitution parameter
�  Resistance factor or reduction factor
�  Exploration penalty coefficient
�L  Linear stress response
�N  Nonlinear stress response
�  Rotation
�max  Allowable rotation
�  Small number
�  Exponent penalty coefficient
CMS  Number of designs in �� matrix
D  Set of discrete values
DIF  Dynamic increase factor
F  Merit function
f  Cost function
Fu  Ultimate stress
Fy  Yield stress
fpenalty  Penalty function
g  Constraint function
Iter  Iteration
IterESL  Iteration in the ESL step
k  Constraint number
L  Length of the member
l  Total number of constraints
mi  Mass of the ith design
mm  Mass of the mth colliding body of the moving group
Mn  Nominal flexural strength
ms  Mass of the sth colliding body of the stationary group
Mu  Requires flexural strength
MaxIter  Limit on number of iterations
MaxIterESL  Limit on number of iterations in the ESL step
MaxItertransient  Limit on number of iterations for ECBO with transient analysis
MK  Total number of memebers
N  Number of elements in the discrete set
n  Total number of loading conditions
NG  Total number of member groups
nvar  Total number of design vraibles
Pn  Nominal axial strength
Pu  Requires axial strength
Pro  Algorithmic parameter
rnp  Random number between 0 and 1
Si  Section for design variable i
Si,max  Heaviest section for design variable i
Si,min  Lightest section for design variable i
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SIF  Strength increase factor
t  Time
w  Weight per unit length
Ws  Total weight of the strcture
�̈  Accelerations vector
�̇  Velocities vector
��  Colliding bodies matrix
��ESL  Colliding bodies matrix in the ESL step
��  Colliding memory matrix
��ESL  Colliding bodies matrix in the ESL step
�  Damping matrix
�  Stifness matrix
�L  Linear stifness matrix
�N  Nonlinear stifness matrix
�  Mass matrix
�  Loads vector
��  Diagonal matrix with diagonal elements as random numbers 

between − 1 and 1
�  Dynamic displacements vector
�m  Velocity of the mth colliding body of moving group
�s  Velocity of the sth colliding body of stationary group
�  Vector of design variables
�m  Location of the mth colliding body of moving group
�s  Location of the sth colliding body of stationary group
�  Static displacement vector
CB  Colliding body
ECBO  Enhanced colliding bodies optimization
ESLM  Equivelent static load method
ESLs  Equivelent static loads
KKT  Karush–Kuhn–Tucker
MOESL  Metaheuristic optimization with equivalent static loads

1 Introduction

It is important to consider transient dynamic loads in the design process of many 
structures in engineering applications since many loads in the real‑world act dynam‑
ically. At the same time, it is important to consider minimizing the total cost while 
achieving all the safety and performance requirements for structures (Arora 1999).

Optimization of structures subjected to dynamic loads using gradient‑based algo‑
rithms includes calculating the gradients of all the problem functions provided the 
functions are differentiable. Several methods can be used to calculate the gradients 
such as: direct method, the adjoint method, and the modal approximation method 
(Kang et al. 2006). Then a gradient‑based optimization algorithm is used to deter‑
mine the design improvement by solving a subproblem. This process involves 
the integration of the equations of motion and sensitivity equations. Numerical 
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integration of these equations is computationally expensive. Moreover, for some 
problem with material and/or geometrical nonlinearities, the numerical integration 
methods can have convergence difficulties. Therefore, it can be difficult to optimize 
structures subjected to dynamic loads in a mathematical optimization process (Kang 
et al. 2001). To overcome these difficulties, efforts have been made to transform the 
dynamic load into static loads.

One of the well‑known dynamic to static loads transformation methods is based 
on the displacement field obtained using dynamic analysis of the structure (Kang 
et al. 2001). That is, the dynamic load is transformed into multiple equivalent static 
load sets. Then the equivalent static loads (ESL) are considered as multiple loading 
conditions in static response optimization process. This is called an ESL cycle of 
the optimization process. These cycles are repeated until a final design is obtained. 
More details of this process are provided in Sect. 5.

Mathematical foundation for the ESL method (ESLM) was presented for linear 
dynamic response optimization by Park and Kang (2003) . Stolpe (2014) suggested 
some changes to the stopping criterion in Park and Kang (2003) algorithm based on 
an analysis of the optimality conditions. Park and Lee (2019) made some changes 
to the ESLM based on the suggestions in Stolpe (2014). The theoretical validation 
showed that when the ESLM process terminated, the optimum solution satisfied the 
Karush–Kuhn–Tucker (KKT) necessary condition (first derivative test or first order 
necessary conditions). A solution to a general optimization problem must satisfy 
these conditions. For constrained problem, all constrains must satisfy the regularity 
condition (Arora 2017). Recently, Stolpe et al. (2018) applied the ESLM to topology 
optimization of a simple two bar truss having just one degree of freedom. The prob‑
lem was formulated to minimize dynamic compliance subject to constraints on the 
cross‑sectional areas and volume of the truss. For this two‑variable problem, the true 
optimum solution is available by the graphical optimization method (Arora 2017). It 
was shown that ESLM converged to a design that did not meet the KKT conditions. 
It was suggested to further evaluate the ESLM on a larger set of topology optimiza‑
tion problems. It is noted that for class of problems considered in the present work, 
there are no optimality conditions to be satisfied at the final design. Therefore, the 
analyses presented by Stolpe (2014) and Stolpe et al. (2018) are not applicable for 
the present class of problems.

Calculus‑based local optimization algorithms are applicable to continuous vari‑
ables and differentiable functions. To solve a differentiable problem with discrete 
variables, many gradient‑based optimization strategies are available (Arora 2017). 
One strategy is to initially treat the discrete variables as continuous (if possible) and 
then round‑off their values at the optimum point to get their discrete values. With 
such an approach, the final solution may be infeasible or not optimum. Moreover, 
for some engineering problems with discrete variables, it is not possible to compute 
gradient information because the problem functions are not differentiable. Frame 
design optimization examples presented and discussed later in the paper are a class 
of problems where gradient‑based optimization methods are not applicable.

Stochastic, metaheuristic or nature‑inspired algorithms do not require gradi‑
ent information, such as the well‑known Genetic Algorithms (Goldberg and Hol‑
land 1988), Particle Swarm Optimization (Eberhart et  al. 2001), Ant Colony 
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Optimization (Dorigo 1992), Harmony Search (Geem et al. 2001), and many oth‑
ers. In these algorithms, the search is not limited to a neighborhood of the current 
point, and the discrete variables and nondifferentiable functions can be treated 
routinely. They use random search in the whole design space instead of gradient‑
based search in a neighborhood of the current point. They are applicable for both 
continuous and discrete variables and with one or more objective functions. Also, 
they tend to converge to a global minimum (although there is no guarantee of this) 
for the problem instead of a local minimum as with the gradient‑based methods. 
Since only the structural response is required in the optimization process, these 
methods can handle any kind of problems (linear, nonlinear, static, dynamic, 
differentiable, nondifferentiable). Like gradient‑based optimization method, the 
computation cost of linear or nonlinear dynamic analysis is more than that for 
linear static analysis. Therefore, using metaheuristic algorithms could be imprac‑
tical for dynamic response optimization problems since they generally require 
many structural analyses to reach the final design. Other discrete variable opti‑
mum design methods such as the branch and bound method can be used to solve 
problems with only a few design variables having a few allowable discrete values 
for the design variables. However, once design variables and discrete elements 
become large these methods required a tremendous number of simulations. Thus, 
metaheuristic algorithms are preferred because they can often offer a better trade‑
off between the number of simulations and the solution quality.

In this study, the ESLM for structures subjected to dynamic loads is investi‑
gated numerically with metaheuristic optimization algorithms and discrete design 
variables. This has not been investigated before in the literature. The problem 
functions are assumed to be nondifferentiable which is the case with some prac‑
tical problems as discussed in the sequel. The idea is to investigate if the num‑
ber of transient structural analyses and computational time required to reach the 
best design can be reduced compared to a procedure that does not use the ESLs. 
The method is named metaheuristic optimization with equivalent static loads 
(MOESL). That is, the dynamic load for linear or nonlinear transient problems 
will be transformed into multiple equivalent static load sets using the ESLM. 
Then the linear static response problem will be optimized using a metaheuristic 
optimization algorithm. These ESL cycles will be repeated as long as the design 
population keeps improving. Enhanced Colliding Bodies Optimization (ECBO) 
algorithm will be used as the metaheuristic algorithm (Kaveh and Mahdavi 
2014a), although any other such algorithm may also be used.

ESLM with gradient‑based optimization (when used for differentiable prob‑
lems) obtains one solution at the end of an ESL cycle. That solution is used to 
generate new ESLs for the next cycle (Kang et  al. 2001). Metaheuristic algo‑
rithms, however, deal with a population of designs. Therefore, at the end of an 
ESL cycle, there is a population of designs that has been improved based on 
the linear static analysis process. For the next cycle, only one design can be 
used to generate new ESLs. The question is which design from the population 
should be used to calculate ESLs? There are several possibilities for this. Three 
approaches are examined to select the design that is used to generate the ESLs for 
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the next ESL cycle (see Sect. 7). Example problems are solved to evaluate these 
approaches and the ESLM with metaheuristic algorithms.

It is important to note that the present work presents a computational and statisti‑
cal study of the performance of the ESLM for nondifferentiable and discrete vari‑
able structural optimization problems. The main purpose of the investigation is to 
determine if the enormous computational burden of solving this class of problems 
can be reduced by incorporating the ESLM in metaheuristic algorithms. Also, the 
quality of the final solution with ESLM will be assessed.

2  General statement for discrete variable structural optimization 
problem

In many practical design cases, design variables are discrete because members must 
be selected from the available sizes in a catalog. The formulation of the discrete 
design variables optimization problem is different from the continuous design varia‑
bles optimization. In general, the nonlinear dynamic response optimization problem 
with discrete design variables is stated as:

where � is the vector of design variables with nvar unknowns, Di is a set of dis‑
crete values for the ith design variable, f (�) is a cost function (in this study, f (�) 
is the total mass or weight of the structure), � is the mass matrix, � is the damp‑
ing matrix, � is the stiffness matrix, � is the dynamic displacements vector, �̇ is 
the velocities vector, �̈ is the accelerations vector, t is time, gk is the kth constraint 
function that needs to be imposed at all time points, and l is the total number of con‑
straints. The linear dynamic response problem is the same as the nonlinear dynamic 
response problem except that � is not a function of the displacement vector �.

The linear static response optimization problem subjected to the � loading condi‑
tions can be stated as:

where n is the total number of loading conditions.

(1)Find � = [x1, x2, , xnvar]; xi ∈ Di; i = 1, 2,… , nvar

(2)to minimize f (�)

(3)
subject to�(�)�̈(t) + �(�)�̇(t) +�(�,�(t))�(t) = �(t)

gk(�,�(t), �̇(t), �̈(t), t) ≤ 0; for all t and k = 1, 2,… , l

(4)Find � = [x1, x2, xnvar]; xi ∈ Di; i = 1, 2,… , nvar

(5)to minimize f (�)

(6)
subject to ��� = �(t)

gk�(�) ≤ 0; k = 1, 2,… , l; � = 1, 2,… , n
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3  Formulation for optimization of steel frames

3.1  Design variables

For the truss design examples (Sects. 8.1.1 and 8.1.2), design variables are cross‑sec‑
tional areas that are selected directly from the discrete set. For framed design exam‑
ples (Sects.  8.2.1 and 8.2.2), the AISC (2017) W‑shapes available in the manufacturers 
catalog are desired for beams and columns. Figure  1 shows an example of a 2‑story 
2‑bay steel framed and the applied loads. The finite element model of the structure is 
shown in Fig. 1. This design example is a 2‑story 2‑bay planar steel frame having 4 
beams and 6 columns (more details will be provided later). It represents the class of 
the problem that cannot be solved using gradient‑based optimization algorithms. The 
design variables are classified as linked discrete variables (Arora 2017). That is, once 
the section number is known, all the cross‑sectional properties are available from the 
tables for evaluating cost and constraint functions. To further explain the design vari‑
ables, consider a small part of the AISC (2017) wide‑flange sections table shown in 
Table 1. Once an integer value is assigned to a design variable, a section is specified. 
For example, if a design variable is assigned a value of 4, then the section from Table 1 
is W44X230. For this section, the weight per foot is 230 lbs (104.3 kg), the cross‑sec‑
tional area is 67.8 inch2 (437.42 cm2 ), the total depth is 42.9 inches (108.97 cm), and 
so on. In other words, all the cross‑sectional properties are available to formulate and 
check the performance constraints.

This way the design variables in Eqs. (1) and (4) become:

where Si is a section selected from the discrete set for design variable i, Si,min and 
Si,max are the lightest and the heaviest sections, respectively.

(7)Find � = [S1, S2, , Snvar]

(8)Si,min ≤ Si ≤ Si,max; i = 1, 2,… , nvar

Fig. 1  Schematic of the 2‑story 2‑bay frame and the applied dynamic load



650 M. Al-Bazoon, J. S. Arora 

1 3

Ta
bl

e 
1 

 A
SI

C
 W

‑s
ha

pe
 d

at
ab

as
e 

(p
ar

tia
l)

1 
lb

 =
 0

.4
53

 k
g.

 1
 in

 =
 2

.5
4 

cm
. 1

 in
2
 =

 6
.4

5 
cm

2

Se
ct

io
n 

nu
m

be
r

Sh
ap

e
W

 (l
b/

ft)
A 

(in
2
)

d 
(in

)
W

eb
Fl

an
ge

A
xi

s X
‑X

…
h
o
 (i

n)
P
A
 (i

n)
P
B
 (i

n)

t w
 (i

n)
t w

 /2
 (i

n)
b
f (

in
)

t f
 (i

n)
I x

 (i
n4
)

Z
x
 (i

n3
)

S
x
 (i

n3
)

r x
 (i

n)

1
W

44
X

33
5

33
5

98
.5

44
.0

1.
03

0
1/

2
15

.9
1.

77
31

10
0

16
20

14
10

17
.8

…
42

.2
13

2
14

8
2

X
29

0
29

0
85

.4
43

.6
0.

86
5

7/
16

15
.8

1.
58

27
00

0
14

10
12

40
17

.8
…

42
.0

13
1

14
7

3
X

26
2

26
2

77
.2

43
.3

0.
78

5
7/

16
15

.8
1.

42
24

10
0

12
70

11
10

17
.7

…
41

.9
13

1
14

7
4

X
23

0
23

0
67

.8
42

.9
0.

71
0

3/
8

15
.8

1.
22

20
80

0
11

00
97

1
17

.5
…

41
.7

13
0

14
6

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋱

⋮
⋮

⋮

27
3

W
4X

13
13

2.
83

4.
16

0.
28

0
1/

8
4.

06
0.

34
5

11
.3

6.
28

5.
46

1.
72

…
97

49
5

59
9



651

1 3

Discrete variable optimization of structures subjected to…

3.2  Cost function

The problem is to minimize the total weight of the structure. Thus, Eqs. (2) and (5) 
become:

where Ws is the total weight of the structure, � is the design vector, NG is the total 
number of member groups for the structure, wng is the weight per unit length of the 
members in the ngth group (available in AISCs tables), MK is the total number of 
members in the ngth group, and Lmk is the length of the mkth member.

3.3  Constraints

Restrictions imposed on the structural members are: displacement and strength 
constraints. These constraints are implicit functions of the design variables and are 
explained in the following subsections.

3.3.1  Displacement constraints

Two types of displacement constraints are imposed in this study: 

1. Maximum member end rotation. The normalized form of this constraint is as fol‑
lows: 

 where �j is rotation at joint j, and �max is the allowed rotation.
2. Maximum side-sway deflection (or inter‑story drift (ISD)). The normalized form 

of this constraint is as follows: 

 where �r and �r−1 are lateral displacements of two adjacent stories, and �max is 
the allowable lateral displacement.

3.3.2  Strength constraints

According to the AISC (2017), symmetric members subjected to axial force and 
bending must satisfy the interaction ratio strength requirement:

(9)Ws(�) =

NG∑

ng=1

wng

MK∑

mk=1

Lmk

(10)
|�j|
�max

− 1 ≤ 0

(11)
|�r − �r−1|

�max
− 1 ≤ 0
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here � is the resistance factor ( �c = 0.85 and �t = 0.90 for compression and ten‑
sion, respectively). �b=0.9 is the flexural resistance factor. Pu and Pn are the required 
and the nominal axial strengths (compression or tension), respectively. Muz is the 
required flexural strengths. Mnz is the nominal flexural strengths. Constraints in Eq. 
(12) needs to be imposed at each point along the axis of every member in the struc‑
ture. Thus, the equation represents infinite constraints. In the numerical process, the 
constraints are evaluated at several points along the axis of the member. These con‑
straint values are then used to evaluate the penalty function.

Also note that the constraints in Eqs. (10) to (12) are functions of time. They are 
evaluated at all the time grid points and imposed there in numerical calculations.

In Eqs. (12), evaluation of Pn and Mnz is an involved process (AISC 2017) that 
requires checking of several failure modes (i.e., several if then else requirements). 
For example, to find Pn , first one needs to find whether the member force is tensile 
or compressive. For tension members, Pn is calculated based on whether the gross 
section yields or the net section ruptures. For compression members, Pn is calcu‑
lated based on consideration of several failure modes, such as yielding of the mate‑
rial, local buckling of flanges or the web (elastic or inelastic), and global member 
buckling (elastic or inelastic). Similarly, calculation of Mnz involves checking several 
flexural failure modes. All the foregoing calculations involve various cross‑sectional 
properties of the sections that are available in Table 1.

Thus, it is concluded that it is not possible to obtain a functional expression for 
the constraints in Eqs. (12) in terms of the design variables (the integer number of 
the sections). Even if that were somehow possible, there would be several disconti‑
nuities in the functions due to all the ”if then else” requirements mentioned in the 
foregoing paragraph. Also, notice that constraints in Eq. (12) have a discontinuity at 
Pu∕(�Pn) = 0.2 . Therefore, due to all these reasons, the gradient‑based methods are 
not applicable to this class of applications.

4  Challenges for solving the problem

Section 3 shows that class of problems that require selecting sections from catalogs 
and imposing codes strength constraints (such as design of framed steel structures to 
satisfy AISC code requirements) involves noncontinuous design variables and non‑
differentiable constraints. That is, gradient‑based optimization algorithms cannot be 
used. Also, the number of possible design combinations is extremely large based on 
the number of design variables and the size of allowable discrete sets. Therefore, 
integer programming methods such as the branch and bound method are not appli‑
cable for this class of problems. Thus, in this study, a metaheuristic algorithm is 
selected to solve the problem.

(12)

Pu

𝜙Pn

+
8

9
(
Muz

𝜙bMnz

) − 1 ≤ 0 if
Pu

𝜙Pn

≥ 0.2

Pu

2𝜙Pn

+
Muz

𝜙bMnz

− 1 ≤ 0 if
Pu

𝜙Pn

< 0.2
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The drawback of most metaheuristic algorithms is that they require many sim‑
ulations to obtain good designs. Therefore, using metaheuristic algorithms could 
be impractical for dynamic response optimization problems because one dynamic 
analysis might take long computation time depending on the size of the structure 
and structural nonlinearity. Therefore, the performance of ESLM with metaheuristic 
algorithms is evaluated in this study based on the quality of the final solution and 
computational effort.

It is noted here that computation of metaheuristic algorithms can be speeded up 
using parallel processing and multicore processors. However, this aspect is not eval‑
uated in the present study.

5  Transformation of dynamic loads into equivalent static loads 
(ESLs)

In this section, we summarize the basic concepts and steps of the ESLM for continu‑
ous design variables using the gradient‑based optimization algorithms (Kang et al. 
2001). The dynamic response of a structure subjected to dynamic loads is described 
by the following differential equation obtained after a finite element model for the 
structure has been developed:

where � is the mass matrix, � is the stiffness matrix ( � is a function of the design 
variables and displacement vector of nonlinear dynamic analysis and just the design 
variables for linear dynamic analysis), � is the damping matrix, � is the dynamic 
displacements vector, �̇ is the velocities vector, and �̈ is the accelerations vector, � 
is the vector of design variables, �(t) is the applied loads vector, t is time (generally 
discretized for numerical integration), and n is the total number of the time steps.

Linear static analysis with the finite element method is described by the following 
equation:

where �L is the linear stiffness matrix, � is the static displacements vector, and �s 
is the external static loads vector. ESLs are static loads that generate the same dis‑
placement fields as from dynamic loads at a given design � . Using Eq. (14), an ESL 
at an arbitrary time (t�) is expressed calculated as follows:

This way, the dynamic load is transformed into n loading vectors, i.e., n loading con‑
ditions for static analysis of the structure.

Figure  2 describes the concept of ESLM. That is, after linear or nonlinear 
dynamic analysis of the structure, an equivalent load vector (��) is generated at 
each time step using Eq. (15). It is seen that for a given design � , the linear static 

(13)
�(�)�̈(t) + �(�)�̇(t) +�(�, �(t))�(t) = �(t);

t = t1, t2,… , tn

(14)�L� = �s

(15)�� = �(�)�(t�); � = 1, 2,… , n
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response from the � th load vector (��) is the same as the dynamic response at the � th 
time step. Therefore, the displacement profile of the dynamic response is the same 
as the displacement profile calculated from the linear static analysis (Kim and Park 
2010). However, the profile of the ESLs is quite different from those of the dynamic 
loads because the ESLs are applied at each degree of freedom of the model even if 
the dynamic load is applied along only one degree of freedom. After the design is 
changed during the optimization iterations, the static and dynamic displacement pro‑
files would be different because the ESLs are based on the starting design.

Optimum design of structures subjected to dynamic loads using the ESLs pro‑
ceeds as shown in Fig.  3 and explained as follows (this will be called the ESLM 
(Park 2011)): 

Step 1  Select an initial design for the structure. Perform dynamic analysis of the 
structure to generate the displacement profile �(t) using Eq. (13).

Step 2  Calculate the ESLs using Eq. (15).
Step 3  Perform static response optimization of the structure using ESLs calculated 

in Step 2. These loads are kept fixed during this optimization process. This 
is called an ESL cycle of the ESLM.

Step 4  Check the stopping criteria; if satisfied stop; otherwise continue.
Step 5  Since the final design from Step 3 is different from the starting design, the 

static displacements will be different from dynamic displacements for the 

Fig. 2  Dynamic response vs ESL response for a given design (modified from Kim and Park (2010))
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final design. Therefore, perform the dynamic analysis of the structure for 
the design obtained at the end of the ESL cycle and go to Step 2.

After a few cycles of the above process, the design changes are quite small 
such that the ESLs do not change much and a solution to the original dynamic 
response optimization problem is achieved.

6  Enhanced colliding bodies optimization (ECBO)

Metaheuristic optimization algorithms deal with unconstraint objective functions 
to improve designs. One way of treating constraints in metaheuristic algorithms 
is to combine constraints with the cost function to define a merit function F(�) 
for linear or nonlinear dynamic response formulation (Eqs. (1) to (3)) that is then 
minimized:

where fpenalty(�) is the penalty function which is based on violations of the 
constraints for the problem, � ≥ 1 is exploration penalty coefficient (in this 
study, � = 1 ), 𝜁 > 1 is penalty function exponent (in this study, � = 2 ), and 
max(0, gk(ti)) ≥ 0 is the violation value of the kth inequality constraint at the time 
point ti.

For linear static formulation (Eqs. (4) to (6)), the merit function to be minimized, 
is:

(16)F(�) =f (�) × fpenalty(�)

(17)fpenalty(�) =[1 + �

n∑

i=1

l∑

k=1

max(0, gk(ti))]
�

Fig. 3  Optimization process 
with the ESLM (modified from 
Kim and Park (2010))
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where gk� is the kth inequality constraint of the � th loading condition. This penalty 
function magnifies the weight of the design if the constraints are violated; otherwise, 
its value is one. This type of constraints handling is well‑known in metaheuristic 
optimization (Kaveh 2014).

Kaveh and Mahdavi (2014a) developed CBO that is inspired by the laws of the 
one‑dimensional collision. The algorithm works with a population of designs at each 
iteration. The initial population is generated randomly, and the designs are stored 
in a matrix called the colliding bodies matrix ( �� ). Each design in the population 
is considered as an object or body having pseudo‑mass that is calculated using the 
merit function value for each design as follows:

where mi is the mass of the ith body (design), Fi(�) and Fk(�) are the merit function 
values of the ith and kth bodies (designs), respectively, and 2o is the total number 
of CBs or the population size. This way the designs are sorted from the best to the 
worst. Note that larger mass in Eq. (20) corresponds to a smaller value for the merit 
function.

The entire population is ranked and divided into moving objects and stationary 
objects as follows:

where �s and �s are the velocity and position of the sth CB in the stationary group, 
respectively, and �m and �m are the velocity and position of the mth CB in the mov‑
ing group, respectively.

Using the conservation law of linear momentum and the coefficient of restitu‑
tion, one dimensional collision between the bodies is simulated. Based on that, new 
velocities of the stationary and moving objects are calculated as follows:

(18)F(�) =f (�) × fpenalty(�)

(19)fpenalty(�) =[1 + �

n∑

�=1

l∑

k=1

max(0, gk�)]
�

(20)mi =
1∕Fi(�)

∑2o

k=1
1∕Fk(�)

; i = 1, 2, ..., 2o

(21)�s =0; s = 1, 2, ..., o

(22)�m =�m − �s; m = l + 1, ..., 2o and s = m − o

(23)�́s =
(1 + 𝜖)mm�m

mm + ms

; s = 1, 2, ..., o and m = s + o

(24)�́m =
(mm − 𝜖ms)�m

mm + ms

; m = o + 1, ..., 2o and s = m − n
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where �́s is the velocity of the sth CB of stationary group after collision; �́m is the 
velocity of the mth CB of the moving group after collision, respectively, ms is the 
mass of the sth CB of the stationary group, mm is the mass of the mth CB of the 
moving group, � is the coefficient of restitution parameter, Iter is the current itera‑
tion of ECBO, and MaxIter is the limit on number of iterations for ECBO. Using 
these velocities and random numbers, each design in the population is updated as 
follows:

where �new
s

 and �new
m

 are the new positions of the stationary and moving bodies, 
respectively, �s and �m are the old positions of the stationary and moving bodies, 
respectively, and [��s] and [��m] are diagonal matrices with diagonal elements as 
random numbers between ‑1 and 1. To obtain discrete values of designs, �new

s
 and 

�new
m

 are rounded to the nearest permissible discrete values. This process is repeated 
until a limit on the iterations is reached or there is very little change in the best 
design for several iterations.

In the enhanced version of the colliding bodies optimization (ECBO), a collid‑
ing memory matrix called �� is used to store some good designs. These designs 
replace the worst designs in the �� matrix at every iteration. This way the good 
designs are always preserved. In addition, a parameter Pro ∈ [0, 1] is introduced 
that is used along with random numbers to regenerate a component of selected 
designs in the �� matrix. This mechanism is shown to give diversity to the design 
population leading to a better final design (Kaveh and Ghazaan 2014). The math‑
ematical model of this step is as follows:

where xj
i
 is the jth variable of the ith design, rnp is a random number between 

0 and 1, and xj,min and xj,max are the lower and upper bounds of the jth variable, 
respectively.

Many metaheuristic algorithms need a selection of several algorithmic param‑
eters in their calculations which is a major drawback because their specification 
determines the performance of these algorithms. ECBO, however, requires just 
one algorithmic parameter specification and performs well in term of the qual‑
ity of solutions and convergence time. In addition, ECBO has been used to solve 
truss, frame, and other engineering optimization problems (Kaveh and Mahdavi 
(2014b, 2014c)). It has shown very good convergence behavior compared to other 
metaheuristic algorithms such as genetic algorithm, particle swarm, and harmony 
search (Kaveh and Mahdavi 2015). Therefore, this metaheuristic algorithm is 
selected for use in this study.

(25)� =1 −
Iter

MaxIter

(26)�new
s

=�s + [��s]�́s; s = 1, 2, ..., o

(27)�new
m

=�m + [��m]�́m; m = o + 1, ..., 2o

(28)x
j

i
= xj,min + rnp × (xj,max − xj,min) if Pro > rnpi; i = 1, ..., 2o
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7  Discrete variable optimization using ESL for transient problems

As mentioned earlier, metaheuristic optimization algorithms search not only near 
the current design point but also in the entire design space. That is, small changes 
in design variables are not guaranteed which is an important assumption in the 
ESLM (at least near the local optimum point) with gradient‑based optimization 
(Kang et al. 2001). Also, in ESLM with gradient‑based optimization, there is one 
solution at the end of an ESL cycle. That solution is used to generate new ESLs 
for the next cycle. In metaheuristic algorithms, however, there is a population of 
designs at the end of an ESL cycle. Since most metaheuristic optimization algo‑
rithms deal with a population of designs, it is not obvious which design should 
be used to calculate the ESLs for the static response optimization cycle. Three 
approaches are proposed and investigated for calculating ESLs in this study:

1. The best design from static analysis ESL1.
  Design that has the lowest merit function value based on linear static analyses 

(the best design at the end of an ESL cycle) is used to generate ESLs for the next 
ESL cycle. In each cycle, only one dynamic analysis is needed in this approach.

2. The best design from dynamic analysis ESL2.
  It was observed that the best design at the end of an ESL cycle (which is based 

on linear static analyses) may not be the best design when a transient analysis is 
performed for the final population. Therefore, dynamic analyses are performed 
for designs in �� (4 designs in this study) and the first 25% of �� (the first 10 
designs in this study). Just the first 25% of �� is used instead of the entire popula‑
tion because it is expected that the best design will be in this range. Then design 
that has the lowest merit function is used to generate ESLs for the next cycle. In 
each cycle, the number of dynamic analyses is 14 in this approach.

3. The heaviest feasible design from dynamic analysis ESL3.
  This approach is like ESL2 except that heaviest feasible design is used to gen‑

erate ESLs for the next cycle. This design usually generates smaller ESLs values 
because the heavier structure is usually stiffer giving smaller displacements. If 
there is no feasible design (which usually happens in the first few cycles), ESL2 
is used to generate ESLs for the next cycle. In each cycle, the number of dynamic 
analyses is 14 in this approach.

In the proposed algorithm, ESL method is used to transform the problem to 
linear static response optimization problem subjected to load cases that give the 
same displacement field as for the transient problem for the selected design (see 
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Sect.  5). Then the linear static problem is optimized using ECBO. MOESL is 
explained in flowchart (Fig. 4), pseudocode (Algorithm 1), and as follows:

Fig. 4  Metaheuristic optimization with equivalent static loads process
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Step 1 Generation of an initial population.
A population of designs is randomly generated from the design domain and saved 

in the �� matrix.
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Step 2 Evaluation of designs in ��.
In this step, all designs in �� are analyzed using a transient solver. Using the 

simulation results and Eqs. (16) and (17), the merit function F(�) is calculated for 
each design (Eq. (18)). Then the designs are arranged in an ascending order based 
on their merit function values. The colliding memory matrix �� is generated. The 
best design of the population is used to generate the ESLs; �� and �� are passed to 
ECBO with ESLM block in Fig. 4. Also, two matrices ��ESL and ��ESL are set to 
�� and �� , respectively. These two matrices save the population that has the best 
design (so far) at the end of ECBO with ESLM, ��ESL and ��ESL will be passed to 
ECBO without the ESLM block instead of last cycle �� and ��.

Step 3 Optimum design with the calculated ESLs.
Using linear static analyses of the structure, optimum design is found with the for‑

mulation given in Eqs. (4) to (6). This completes a cycle of the ESLM. The termination 
criteria for one ESL cycle are as follows:

If1 IterESL ≥ 0.25 ×MaxIterESL

If2
Merit(IterESL) −Merit(IterESL − 0.1 ×MaxIterESL)

Merit(IterESL)
≤ �

   Terminate the current cycle
End2
End1

where IterESL is the current iteration, MaxIterESL is the limit on number of iterations 
for the ESL cycle, � is a small number (in this study � = 10−3 ), Ni is the number of 
elements in the discrete set Di , and nvar is number of design variables. That is, when 
there is no or small improvement in the current merit function value after many iter‑
ations, the current ESL cycle is terminated.

Step 4 Transient analysis of final design(s).
Perform transient analysis of a design or multiple designs depending on ESL1, 

ESL2, or ESL3 approach used.
Step 5 Updating ��ESL and ��ESL.
In this step, ��ESL and ��ESL matrices are updated depending on the approach as 

follows:
1‑ ESL1:
If the transient analysis for the best design from static analysis at the end of an ESL 

cycle shows this design to be better than the best design in ��ESL , update ��ESL and 
��ESL as follows:

Else do not update ��ESL and ��ESL.

(29)MaxIterESL =0.5 ×MaxItertransient

(30)MaxItertransient =

nvar∑

i=1

Ni

(31)
��ESL = ��(colliding bodies matrix of the current ESL cycle)

��ESL = ��(colliding bodies matrix of the current ESL cycle)
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2‑ ESL2: in this approach, the design that has the lowest merit function is used to 
generate ESLs for the next cycle (as described above).

If the design that has the lowest merit function is better that the best design in 
��ESL , update ��ESL and ��ESL as follows:

Else do not update ��ESL and ��ESL.
3‑ ESL3: in this approach, the heaviest feasible design is used to generate ESLs for 

the next cycle (as described above).
If the design that has the lowest merit function is better that the best design in 

��ESL , update ��ESL and ��ESL as follows:

Else do not update ��ESL and ��ESL.
This way, the population that generates the best design ( ��ESL ) and the best designs 

saved from cycle to cycle ( ��ESL ) are passed to ECBO at the end of ESLM.
To terminate the ESL method, the following criterion is used (note that the mini‑

mum number of ESL cycles is set to 5): no better design is found for two ESL cycles. 
The stopping criteria are checked at this stage; if satisfied, the ESL method is termi‑
nated and we go to the ECBO with full transient analyses (Step 7); otherwise, we con‑
tinue to Step 6.

Step 6 Initialization for a new ESL cycle.
In this step, new ESLs are re‑calculated based on ESL1, ESL2, or ESL3 approach, 

and a new population of designs is generated from the design domains in the ��ESL 
matrix. Analysis of results from some preliminary runs shows that the convergence 
behavior of MOESL is better when new ��ESL matrix is generated at the beginning 
of each ESL cycle compared to passing the last ��ESL to the next cycle. The updated 
��ESL is passed to the next cycle as ��ESL to keep improving the best designs 
obtained from previous cycles. This way, new designs are explored by generating new 
��ESL when the best designs (so far) are saved by setting �� = ��ESL.

Step 7 ECBO without ESL cycles.
If the stopping criteria for the ESL step are satisfied, ��ESL matrix and the ��ESL 

are passed to ECBO with full transient analyses. These two matrices have improved 
designs using ECBO with ESLM. Then, the formulation given in Eqs. (1) to (3) is used 
to find the final best design. It was found that with just the ESL cycles, the algorithm 
could not reach the best design. Therefore, Step 7 was necessary to further improve the 
design.

(32)

��ESL = ��(colliding bodies matrix of the current ESL cycle)

��ESL = best 4 designs from{ previous ��ESL (4 designs),

�� (4 designs) of the current ESL cycle, or 25% of

�� of the current ESL cycle (10 designs)}

(33)

��ESL = ��(colliding bodies matrix of the current ESL cycle)

��ESL = best 4 designs from{ previous ��ESL (4 designs),

�� (4 designs) of the current ESL cycle, or 25% of

�� of the current ESL cycle (10 designs)}
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In nonlinear dynamic problems, ESLs generate the same displacements as those 
from the nonlinear dynamic analysis; however, they do not generate the same stress 
responses because of the nonlinear relationship between stress and strain and strain and 
displacement (Kim and Park 2010). Therefore, when there are stress constraints, the 
difference in stresses can be adjusted to �̄�L𝛼 as follows:

where � is the stress correction factor, �L�,i and �N�,i
 are the linear and nonlinear 

stress responses from Eqs. (15) and (13), respectively, i is the element number, and 
j is the iteration number. This procedure is used in nonlinear truss design example 
(Sect. 8.1.2).

8  Numerical examples

In the following sections, four discrete structural optimization examples are solved for 
minimum structural mass or weight to test the performance of the proposed algorithm. 
ECBO and the first two design examples (truss structures) are coded using MATLAB 
and the models and simulation are verified using the commercial finite element analy‑
sis program ANSYS (Bhatti 2006). These two examples are solved in Choi and Park 
(2002) and Kim and Park (2010) using gradient‑based algorithms and continuous 
design variables. In this study, they are used to test the proposed algorithm. The frame 
design examples are coded in MATLAB and interfaced with the structural analysis pro‑
gram SAP2000 using the Open Application Programming Interface (OAPI). SAP2000 
provides analysis and design tools that are easy to use, however, any other software 
having similar capabilities can be used. The frame design examples are solved for the 
first time in this study. They represent the class of problem that cannot be solved using 
gradient‑based algorithms (as described in Sects. 3 and 4).

The first numerical example is solved using the two simultaneous single‑step Runge‑
Kutta method (ODE23 MATLAB function). For the rest of the examples, Newmarks 
method ( � = 1∕4 and � = 1∕2 , the implicit and unconditionally stable method (Paz 
and Kim 2019)) is used for linear and nonlinear dynamic analysis while the direct stiff‑
ness method is used for linear static analysis.

ECBO parameters are set as follows: population size is 40, Pro is 0.4, and the num‑
ber of designs to be saved in �� (CMS) is 4 (10% of the population). For all design 
examples, the time duration for dynamic analysis is set so that the maximum response 
is covered.

Since the optimization algorithms are stochastic in nature, 10 independent optimiza‑
tion runs were performed for each case to test the performance of ECBO with ESL. 
In each individual run, the initial population was the same for ECBO without the ESL 
cycles and for MOESL to make a fair comparison.

(34)
𝛽𝛼,i =

𝜎N𝛼,i

𝜎L𝛼,i

�̄�
j

L𝛼
= 𝜎

j

L𝛼,i
× 𝛽𝛼,i;𝛼 = 1, 2,… , n
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Performance of the proposed method is evaluated based on the final cost function 
value, the cost function value after the ESL step, the total number of transient structural 
analyses needed to reach the best design, and the total CPU time needed to reach the best 
design. A Core i7 with CPU of 3.4 GHz and Ram of 8 GB desktop computer is used.

8.1  Testing MOESL with known problems

8.1.1  Eighteen‑bar truss (linear dynamic analysis)

Figure 5 shows the configuration of the 18‑bar truss subjected to a half sine wave 
load at nodes 1, 2, 4, 6, 8. This example was solved in Choi and Park (2002) 
for continuous design variables with gradient‑based optimization algorithms. The 
modulus of elasticity and the density are 69 GPa and 2765 kg/m3, respectively. 
All members are subjected to stress limitations of 138 MPa in both tension and 
compression. The allowable displacement for all nodes in both vertical and hori‑
zontal directions is ±203 mm. The optimization problem is to minimize the total 
mass of the structure. Four sizing variables and eight shape variables are selected 
as the design variables.

To test the performance of the proposed algorithm, this example is re‑for‑
mulated as a discrete variable optimization problem. The sizing variables are 
selected from the discrete set of 100 elements where the range of the cross‑sec‑
tional area is from 1 to 150 cm2 with 1.505 cm2 increment. The shape variables 
are the x and y coordinates of nodes 3, 5, 7, 9. The shape variables are selected 
from the discrete set of 100 elements where the range is from ‑317.5 (half the 
span of 635 cm) to 317.5 cm with 6.141 cm increment. The members of the truss 
are divided into 4 groups giving 4 sizing design variables (Choi and Park 2002): 
all top chord members, all bottom chord members, all vertical members, and all 
diagonal members. Considering the peaks of the displacements and the stresses, 
the time duration for dynamic analysis is set from 0 to 8 second. The time interval 
is divided into 100 increments giving 100 loading conditions for static response 
optimization with the ESL approach. Each loading condition vector has 18 ele‑
ments since there are 18 degrees of freedom for the truss. Table 2 summarizes 
results for 10 different runs for ECBO without the ESL cycles and for the three 
ESL methods. The data in the table for the 10 runs for each ESL method includes: 
Final mass (kg), mass at the end of ESL cycles (kg), number of ECBO iterations 

Fig. 5  Schematic of the 18‑bar truss and the applied dynamic load
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without the ESL cycles, number of dynamic analyses, number of static analyses, 
CPU time at the end of ESL step, and the total CPU time needed to obtain the 
final design. It is interesting to note that of the 30 runs (the total runs of ESL1, 
ESL2, and ESL3), 6 runs converged to a mass value of about 2520.5, 17 runs 
converged to the mass that was within 0.1% of the best value and the remaining 7 
runs converged to within 0.2% of the best value. This shows the robustness of the 
proposed algorithm for this example because all the designs would be acceptable 
from a practical applications point of view.

It is noted from the data in Table  2 that at the end of ESL cycles, the best 
design has not been reached for all the runs. Therefore, the algorithm must switch 
to ECBO with dynamic analysis of the entire population to obtain the final design. 
It is also noted that many more ESL cycles beyond the ones shown in Table 2, did 
not result in improved designs.

To compare the ECBO with and without ESL cycles, averages and standard devia‑
tions of some key parameters for 10 runs for each method are examined. These data 
are summarized in Table 3. The averages of the final masses and the total number of 
dynamic analyses show that the proposed method (MOESL with ESL1, ESL2 or ESL3) 
obtains not only better final designs but also needs a significantly smaller number of 
dynamic analyses compared to ECBO without the ESL cycles. That is, the average 
of dynamic analyses of ECBO without ESL cycles is 42524 analyses whereas ESL1, 
ESL2, and ESL3 have averages of 20,964, 22,616, and 23,000 analyses, respectively. 
Tables 2 and 3 show that not only the quality of final designs is improved but also the 
total CPU time is reduced for MOSEL compared to ECBO without ESL. That is, the 
average of the total CPU time of 10 runs for ECBO without ESL is 51.35 min whereas 
for ESL1, ESL2, and ESL3 it is 27.13 min, 29.04 min, and 28.98 min, respectively.

To study the performance of three proposed ESL approaches, averages and 
standard deviations for the 10 runs of each ESL method given in Table  3 are 

Fig. 6  Convergence history of 18‑bar truss of the first run
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examined. It is seen that ESL2 has the smallest averages and standard deviations 
for the final mass as well as the mass at the end of ESL cycles. This shows that 
ESL2 approach is more reliable in obtaining the final solution. Although ESL2 
approach has a slightly higher average for the number of dynamic analyses and 
CPU time, it is preferred because of its reliability in obtaining the final design. 
Performance of ESL1 is a close second to ESL2 for this example.

The best initial and final designs of the first run of ECBO without the ESL 
cycles and MOESL using ESL2 approach are shown in Table 4. For the same ini‑
tial population, MOESL found a lighter design of 2521.75 kg. After 6 ESL cycles 
(614 + 40 = 124 dynamic analyses), the total structure mass became 2570.62 kg (this 
is just 1.94 % heavier than the best design). As shown in Fig. 6, MOESL converges 
faster than ECBO without ESLs. That is, when ECBO obtains the total mass of 
2531.17 kg at iteration 1153, and ECBO with ESL needs just 236 iterations to reach 
the same mass. That is, with a population of 40 designs, ECBO without ESL cycles 
needs 917 iterations (91,740 ‑ 614 = 36,596 dynamic analyses) more than MOESL to 
reach the same mass of 2531.17 kg. MOESL final design configuration is depicted in 
Fig. 7. The problem was also run 100 times. The data from these runs did not result in 
much difference in average and standard deviation. That is, the average and standard 
deviation of final mass for 100 runs are 2525.93 kg and 4.02 kg using ECBO, respec‑
tively, while when ESL2 is used the average and standard deviation of final mass are 
2522.78 kg and 1.22 kg, respectively (the results of 10 runs are shown in Table 3).

The optimum structural mass found by Choi and Park (2002) is 3260.9 kg using 
a gradient‑based algorithm. In this study, the best structural mass is found to be 
2520.5 kg. This is a somewhat surprising result since the optimum mass is expected 
to be higher with discrete design variables. Since MOESL is a metaheuristic algo‑
rithm, it is likely to converge to a global minimum point whereas a gradient‑based 
method converges to a local minimum point.

8.1.2  Ten‑bar truss (nonlinear dynamic analysis)

Figure 9 shows the configuration of the 10‑bar cantilever truss subjected to a half 
sine wave load at nodes 2 and 4. This example was solved in Kim and Park (2010) 
for continuous design variables using a gradient‑based optimization algorithm. The 
material nonlinearity is considered in this problem. The Youngs modulus is 200 

Fig. 7  Optimum configuration for the 18‑bar truss
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GPa, the tangent modulus is 50 GPa, the yield stress is 200 MPa, the Poisson ratio is 
0.3, and the mass density is 7860 kg/m3.

To evaluate the proposed algorithm, this problem is also re‑formulated as a dis‑
crete variable problem. The optimization problem is to minimize the total mass of 
the structure. The design variables are the cross‑sectional areas of the members 
(Table 7). The size variables are selected from the discrete set of 100 elements where 
the range of the cross‑sectional areas is from 78.5 to 2826 cm2 with 27.752 mm2 
increment. All members are subjected to stress limitations of 250 MPa in both ten‑
sion and compression. Considering the peaks of the displacements and the stresses, 
the time duration for the analysis is set from 0 to 0.03 second with a time step of 
0.0002 second. This gives 150 loading conditions for static response optimization 
with the ESL approach. Each loading condition vector has 8 elements since there are 
8 degrees of freedom for the truss.

Table 5 shows results for 10 different runs of ECBO without the ESL cycles and the 
results of MOESL with the three approaches, ESL1, ESL2, and ESL3. The data in the 
table for all the 10 runs includes: final mass (kg), mass at end of ESL cycles (kg), num‑
ber of ECBO iterations without the ESL cycles, number of dynamic analyses, number 
of static analyses, CPU time at the end of ESL step, and the total CPU time needed to 
obtain the final design. It is interesting to note that of the 30 runs (the total runs of ESL1, 
ESL2, and ESL3), 4 runs converged to a mass value of 25.2 kg, 10 runs converged to 
the mass that was within 2.5% of the best value and 8 runs converged to within 5.0% 
of the best value. An examination of the averages and standard deviations in Table 6 
for this example leads to the same conclusion as for Example 1: MOESL obtains bet‑
ter designs with less number of dynamic analyses compared to ECBO without the ESL 
cycles, GOESL needs less CPU time to reach the final design, and ESL2 approach per‑
forms more reliably in obtaining the final design than ESL1 and ESL2. The best initial 
and final designs of the first run of ECBO without ESL cycles and MOESL using ESL2 
are shown in Table 7. For the same initial population ECBO with ESL2 found a lighter 
design of 26.05 kg. After 7 ESL cycles, the total structure mass became 41.58 kg (the 

Table 3  Comparison of averages and standard deviations for 10 runs of the18‑bar truss

Metric Averages Standard deviation

ECBO Alone ESL1 ESL2 ESL3 ECBO Alone ESL1 ESL2 ESL3

Final mass (kg) 2526.32 2521.92 2521.85 2523.5 4.28 1.37 1.10 1.50
Mass at end of 

ESL cycles (kg)
– 2592.68 2583.41 2607.97 – 6.90 5.13 8.90

No. of dynamic 
analyses

42,524 20,964 22,616 23,000 9208 2691 4791 962

No. of static 
analyses

– 62,988 60,408 42,140 – 18,644 19,488 6848

ESL step CPU 
time (min)

– 1.96 1.88 1.31 – 0.58 0.66 0.21

Total CPU time 
(min)

51.35 27.13 29.04 28.98 11.12 3.28 5.49 1.27
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best design is 59.62% lighter). As shown in Fig. 8, MOESL converges faster than ECBO 
without ESL cycles. ECBO reaches the best design of 26.92 kg at iteration 765 and 
MOESL needs just 119 iterations to obtain a similar mass. That is, with a population of 
40 designs, ECBO needs 25742 more dynamic analyses (646 iterations) than MOESL.

The average of final masses and the average of the total number of dynamic 
analyses of the proceeding two examples show that the proposed method 
(MOESL) gives better results. The best design using the ESL2 approach shows 
better convergence behavior and final designs of the three approaches. Therefore, 
this approach is used in the next two examples. The problem was also run 100 
times. The data from these runs did not result in much difference in average and 
standard deviation. That is, when ECBO alone was used the average and stand‑
ard deviation of final mass for 100 runs are 26.72 kg and 2.24 kg, respectively, 

Fig. 8  Schematic of the 10‑bar truss and the applied dynmaic load

Fig. 9  Convergence history of 10‑bar truss of the first run
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while when ESL2 is used the average and standard deviation of final mass are 
25.81 kg and 0.41 kg, respectively (the results of 10 runs are shown in Table 6).

The optimum structural mas found by Kim and Park (2010) is 21.77 kg. In 
this study, the best structural mass is found to be 25.2 kg. This is an expected 
result as the minimum mass is likely to increase with the discrete design vari‑
ables. The discretized domain imposes additional constraints on the problem.

This nonlinear optimization problem is also solved using two additional non‑
linear procedures.

1‑ The loads that are used in ESL cycles are calculated using the nonlinear stiff‑
ness matrix and displacements from the equation of motion (Eq. (13)) as follows:

where �� are the equivalent load vectors, �N is the nonlinear stiffness matrix, and � 
is the dynamic displacements vectors. These load vectors are calculated at the begin‑
ning on each cycle. Then, in each cycle, the linear stiffness matrix is used in the 
optimization process of an ESL cycle.

2‑ The equivalent load vectors are calculated using procedure 1. However, 
instead of using the linear stiffness matrix in the optimization process, the non‑
linear stiffness matrix is used. That is, in each cycle, nonlinear static analyses 
are used in the optimization process. In both procedures ESL2 is used.

The results of the two nonlinear procedures showed there are no advantages 
over the method described in Sect. 7. That is, the averages and standard devia‑
tions of 10 individual runs of the structural mass in the end of ESL step and final 
designs are similar to those in Table  6. However, the CPU time of the second 
procedure is 5 time more the ESL2 CPU time in Table 6 because of using non‑
linear static analyses in the optimization process. These two procedures are not 
discussed for continuous variable problems in Kim and Park (2010). The reason 
perhaps is that these procedures would require gradient evaluation for the nonli‑
bear problems which is a tedious process.

(35)�� = �N(�)�(t�);� = 1, 2,… , n

Table 6  Comparison of averages and standard deviations for 10 runs of the10‑bar truss

Metric Averages Standard deviation

ECBO Alone ESL1 ESL2 ESL3 ECBO Alone ESL1 ESL2 ESL3

Final mass (kg) 26.8 26.2 25.73 27.08 2.1 1.36 0.39 1.56
Mass at end of ESL 

cycles (kg)
– 67.96 44.75 72.32 – 28.97 12.33 10.26

No. of dynamic analyses 24788 10911 11869 10726 8268 3849 3025 3812
No. of static analyses – 47420 58380 29540 – 14496 26569 3909
ESL step CPU time (min) – 1.21 1.49 0.75 – 0.37 0.68 0.10
Total CPU time (min) 14.87 7.76 8.61 7.19 4.96 2.44 1.79 2.32
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8.2  Frame problems

8.2.1  Two‑story two‑bay frame (linear dynamic analysis)

This design example is a 2‑story 2‑bay planar steel frame having 4 beams and 
6 columns and has not been solved in the literature before. It is modeled using 
SAP2000 and MATLAB with 19 nodes and 20 elements. Note that in order to 
get more accurate analysis results intermediate nodes are introduced for each 
member of the frame. The frame has 48 degrees of freedom that is subjected 
to a half sine wave load at nodes 2 and 3 and uniformly distributed static load 
of 5 kip/ft (72.97 kN/m) on members 13 to 20 as shown in Fig. 1. All ground 
supports are fixed. Material properties are: Youngs modulus, E=29000 ksi (200 
GPa), yield stress, Fy=50 ksi (344.7 MPa), and poisons ratio, � = 0.3.

Based on primarily analysis of the problem, columns 1 and 2 are selected 
from the first lightest 50 standard W‑shapes provided in AISC tables (AISC 
2017) while the rest of the members are selected from the lightest 50‑99 stand‑
ard W‑shapes provided in AISC tables (AISC 2017). The sections are rearranged 
in an ascending order based on their weight. The problem is formulated as an 
integer variable optimization problem where the section number is treated as a 
design variable (see Sect.  3.1). All members are subjected to interaction ratio 
strength requirement (Eq. 12).

Considering the peaks of the displacements and the stresses, the time range 
for the analysis is set from 0 to 4 second with a time step of 0.04 second. This 
gives 100 loading conditions for static response optimization with the ESLM. 
Each loading condition vector has 48 elements since there are 48 degrees of 
freedom for the frame.

This example was also solved without the intermediate nodes for the mem‑
bers. That model was more efficient to solve. However, the final designs were 
not as good as with the increased degrees of freedom. The reason is that with 
more degrees of freedom a more accurate dynamic response is obtained result‑
ing in better ESLs as well.

Table 8 gives the best initial and final designs of the first run. For the same 
initial population, MOESL found a lighter design of 9369 lb (4249.7 kg). After 
5 ESL cycles, the total structure weight becomes 10,392 lb (4713.7 kg). The 
best design is 10.9% lighter. As shown in Fig. 10, MOESL converges faster than 
ECBO without ESL cycles. ECBO reaches the best design of 9624 lb (4365.4 
kg) at iteration 149 whereas MOESL needs 64 iterations to obtain a design of 
9636 lb (4370.8 kg). From Table 9, the average of 10 individual runs for final 
weight is better with MOESL (9361.9 lb (4246.5 kg)) than with ECBO without 
the ESLM (9466.8 lb (4294.1 kg)). The average of the total number of dynamic 
analyses shows that MOESL needs a smaller number of dynamic analyses than 
ECBO without ESL cycles to reach the final design. However, the average of the 
total CPU time is almost similar.



677

1 3

Discrete variable optimization of structures subjected to…

Ta
bl

e 
8 

 In
iti

al
 a

nd
 fi

na
l d

es
ig

n 
of

 2
‑s

to
ry

 2
‑b

ar
 fr

am
e 

of
 th

e 
fir

st 
ru

n

a
 M

em
be

r n
um

be
r w

he
re

 th
e 

m
ax

im
um

 in
te

ra
ct

io
n 

ra
tio

 o
cc

ur
s. 

1 
lb

 =
 0

.4
53

 k
g

D
es

ig
n 

va
ria

bl
e 

no
.

M
em

be
r n

o.
B

es
t i

ni
tia

l d
es

ig
n

EC
BO

M
O

ES
L 

(E
SL

2)

Fi
na

l d
es

ig
n

C
yc

le
 1

C
yc

le
 2

C
yc

le
 3

C
yc

le
 4

C
yc

le
 5

Fi
na

l d
es

ig
n

1
1–

2
W

16
X

31
W

12
X

35
W

14
X

43
W

14
X

43
W

14
X

43
W

14
X

43
W

14
X

43
W

16
X

36
2

3–
4

W
10

X
39

W
5X

19
W

8X
31

W
8X

31
W

8X
31

W
8X

31
W

8X
31

W
5X

16
3

5–
6

W
27

X
84

W
18

X
86

W
24

X
84

W
24

X
76

W
24

X
76

W
24

X
76

W
24

X
76

W
24

X
76

4
7–

8
W

21
X

62
W

18
X

46
W

18
X

50
W

21
X

48
W

21
X

48
W

21
X

48
W

21
X

48
W

12
X

45
5

9–
10

W
8X

48
W

14
X

48
W

21
X

68
W

24
X

76
W

24
X

76
W

24
X

76
W

24
X

76
W

24
X

76
6

11
–1

2
W

8X
48

W
21

X
44

W
21

X
44

W
21

X
44

W
21

X
44

W
21

X
44

W
21

X
44

W
21

X
44

7
13

–1
4

W
14

X
53

W
24

X
68

W
16

X
67

W
16

X
67

W
16

X
67

W
16

X
67

W
16

X
67

W
16

X
67

8
15

–1
6

W
18

X
76

W
18

X
86

W
21

X
68

W
24

X
68

W
24

X
68

W
24

X
68

W
24

X
68

W
24

X
68

9
17

–1
8

W
12

X
50

W
21

X
48

W
24

X
84

W
18

X
71

W
18

X
71

W
18

X
71

W
18

X
71

W
21

X
55

10
19

–2
0

W
24

X
76

W
18

X
60

W
24

X
68

W
24

X
68

W
24

X
68

W
24

X
68

W
24

X
68

W
21

X
55

M
ax

. i
nt

er
ac

tio
n 

ra
tio

1.
45

0 
(7

)
0.

99
1 

(4
)

0.
90

9 
(6

)
0.

92
7 

(3
)

0.
92

7 
(3

)
0.

92
7 

(3
)

0.
92

7 
(3

)
0.

97
8 

(6
)

W
ei

gh
t (

lb
)

98
64

96
24

10
72

8
10

39
2

10
39

2
10

39
2

10
39

2
93

96
M

er
it 

fu
nc

tio
n

37
84

8.
5

96
24

10
72

8
10

39
2

10
39

2
10

39
2

10
39

2
93

96
Ite

ra
tio

n
1

14
9

14
0

11
8

63
63

63
88

D
yn

am
ic

; s
ta

tic
 a

na
ly

se
s

40
, 0

59
60

; 0
14

; 5
60

0
14

; 4
72

0
14

; 2
52

0
14

; 2
52

0
14

; 2
52

0
35

20
; 0



678 M. Al-Bazoon, J. S. Arora 

1 3

Ta
bl

e 
9 

 D
at

a 
fo

r 1
0 

di
ffe

re
nt

 ru
ns

 o
f t

he
 2

‑s
to

ry
 2

‑b
ay

 fr
am

e

1 
lb

 =
 0

.4
53

 k
g

Ru
n

A
ve

ra
ge

SD

1
2

3
4

5
6

7
8

9
10

EC
BO

 w
ith

ou
t E

SL
 c

yc
le

s
W

ei
gh

t (
lb

)
96

24
94

68
94

80
92

40
95

40
96

00
95

64
92

76
94

68
94

08
94

66
.8

12
8.

6
N

o.
 o

f i
te

ra
tio

n
14

9
21

0
18

4
24

1
19

9
11

5
20

9
21

0
21

0
16

8
18

9.
5

36
.6

N
o.

 o
f d

yn
am

ic
 a

na
ly

se
s

59
60

84
00

73
60

96
40

79
60

46
00

83
60

84
00

84
00

67
20

75
80

14
64

.6
To

ta
l C

PU
 ti

m
e 

(h
r)

9.
78

13
.7

9
12

.0
8

15
.8

3
13

.0
7

7.
55

13
.7

3
13

.7
9

13
.7

9
11

.0
3

12
.4

4
2.

40
M

O
ES

L
ES

L2
 F

in
al

 w
ei

gh
t (

lb
)

93
96

92
16

90
76

94
80

94
30

92
52

94
14

95
64

94
32

93
60

93
61

.9
14

2.
8

 W
ei

gh
t a

t e
nd

 o
f E

SL
 c

yc
le

s (
lb

)
10

,3
92

99
48

10
,3

69
10

,5
00

10
,1

28
10

,1
40

10
,4

40
10

,3
56

10
,2

84
10

,0
92

10
,2

64
.9

17
8.

3
 N

o.
 o

f i
te

ra
tio

ns
88

22
0

21
9

10
6

18
2

14
8

15
5

92
14

9
76

14
3.

5
52

.6
 N

o.
 o

f c
yc

le
s

5
5

5
7

5
5

5
6

5
5

5.
3

0.
7

 N
o.

 o
f d

yn
am

ic
 a

na
ly

se
s

35
20

88
00

87
60

42
40

72
80

59
20

62
00

36
80

59
60

30
40

57
40

21
04

.5
 N

o.
 o

f s
ta

tic
 a

na
ly

se
s

17
88

0
16

,8
00

16
,0

40
34

,9
60

19
,2

80
14

,7
60

19
,4

00
23

,7
20

19
,2

80
17

,3
60

19
,9

48
58

10
.5

 E
SL

 st
ep

 C
PU

 ti
m

e 
(h

)
2.

48
2.

33
2.

23
4.

86
2.

68
2.

05
2.

69
3.

29
2.

68
2.

41
2.

77
0.

81
 T

ot
al

 C
PU

 ti
m

e 
(h

)
8.

38
16

.9
0

16
.7

2
11

.9
8

14
.7

4
11

.8
8

12
.9

9
9.

47
12

.5
8

7.
52

12
.3

2
3.

23



679

1 3

Discrete variable optimization of structures subjected to…

8.2.2  Two‑story two‑bay frame subjected to blast loads (nonlinear dynamic 
analysis)

The configuration of this numerical example is the same as the previous example 
except that it is subjected to blast load. This example has also not been solved in 
the literature. For simplicity, the blast load is modeled as a triangle and the nega‑
tive pressure phase is neglected. In addition, a uniformly distributed static load of 5 
kip/ft (72.97 kN/m) on members 13 to 20 is added as shown in Fig. 11. All ground 

Fig. 10  Convergence history of 2‑story 2‑bay frame of the first run (just 250 iterations are shown)

Fig. 11  Schematic of the 2‑story 2‑bay frame and the applied blast load
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supports are fixed. Youngs modulus, E=29000 ksi (200 GPa), yield stress, Fy=50 
ksi (344.7 MPa), ultimate stresses, Fu=65 ksi (448.16 MPa) and poisons ratio, 
� = 0.3 . Due to the dynamic effects resulting from the rapid strain rates, the dynamic 
increase factors (DIF) for yield and ultimate stresses of 1.19 and 1.05, respectively, 
are used (Gilsanz et  al. 2013). Since the average yield stress for structural steels 
having a specified minimum yield stress of 50 ksi or less is generally higher than 
the specified minimum, it is recommended that the minimum design yield stress, as 
specified by the AISC (AISC 2017) specification, be increased by 10 percent. This 
factor is called the strength increase factor (SIF). Also, for all modes of failure, it is 
permissible to use a strength reduction factor ( � ) of 1.0 (ASCE 2011). The reader 
is referred to ASCE (2010), Dusenberry (2010), Gilsanz et al. Gilsanz et al. (2013), 
and DoD (2008) for more details. Therefore, the new yield stress Fdy and new ulti‑
mate stress Fdu values are as follows:

(36)Fdy =(SIF)(DIF)Fy = (1.1)(1.19)(50) = 65.45 ksi

(37)Fdu =(DIF)Fu = (1.05)(65) = 68.25 ksi

Fig. 12  Convergence history of 2‑story 2‑bay frame subjected to blast load of the first run (just 250 itera‑
tions are shown)
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Considering the blast load duration and the peaks of the response, the time range 
from the analysis is set from 0 to 1.25 s with a time step of 0.0025. This gives 500 
loading conditions for static response optimization with the ESLM. Each load‑
ing condition vector has 48 elements since there are 48 degrees of freedom for the 
frame.

This example was also solved without the intermediate nodes in the members. 
Similar to the previous example, it was shown that increasing the degrees of free‑
dom makes the algorithm converge to better designs for the same reasons as noted 
earlier. Table 10 gives the best initial and final designs for the first run of the prob‑
lem. For the same initial population, MOESL found a lighter design of 11280 lb 
(5116.5 kg). After 6 ESL cycles, the total structure mass becomes 14964 lb (6787.6 
kg). The best design is 32.6% lighter. As shown in Fig. 12, MOESL converges faster 
than ECBO without ESL cycles. That is, when ECBO without ESL cycles obtains 
the total weight of 12504 lb (5671.7 kg) at iteration 135, MOESL needs 64 iterations 
to reach a similar structural weight. That is, with a population of 40 designs, ECBO 
without ESL cycles needs 71 more iterations (2756 dynamic analyses) than ECBO 
with ESLs. Table 11 summarizes results for 10 different runs for ECBO without the 
ESL cycles and for MOESL. The average of the final weights and the total num‑
ber of dynamic analyses show that MOESL obtains not only better average but also 
needs a smaller number of dynamic analyses compared to ECBO without the ESL 
cycles. Unlike the previous study case, the average of CPU time of MOESL is less 
than ECBO with ESL step (Table 11). This is because the numerical solver takes 
more time to solve the nonlinear problems. It was noticed that for some designs the 
numerical solver needs several minutes to converge and sometimes the solver stops 
converging. That is, for bigger problems with material and geomatical nonlinearity, 
the numerical solver might need very long time to solve one design which makes 
metaheuristic algorithms inefficient to use. ESL step, however, takes shorter CPU 
time (in compression with total CPU time as shown in Table 11) and it gives a good 
start to ECBO with full dynamic analysis.

9  Concluding remarks

Optimizing transient problems using metaheuristic algorithms is computationally 
expensive because every simulation requires solving a system of differential equa‑
tions. In the search for a more efficient method for dynamic response structural 
optimization, the Equivalent Static Load Method (ESLM) with gradient‑free algo‑
rithms was examined in this study. In the proposed method, the transient problem 
was transformed to ESL sets that generated the same displacement field as with the 
transient analysis for a given design. Then, the sets of generated ESLs were used as 
multiple loading conditions in the static response structural optimization process. 
Since it was not clear which design should be used at the end of each ESL cycle to 
generate ESLs in metaheuristic algorithms, three approaches were studied: the best 
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design from static analysis (ESL1), the best design from dynamic analysis (ESL2), 
and the heaviest feasible design from dynamic analysis (ESL3).

Based on the analysis of the results of four numerical examples (2 linear and 2 
nonlinear), the following conclusions are drawn: 

1.  ESLM with metaheuristic algorithms is not able to obtain the best design 
because the ESLs calculated for the chosen member of the population are not 
suitable for the remaining members of the population. Also, a small change in 
design variables is not guaranteed in metaheuristic algorithms from one ESL 
cycle to the next. This violates the assumption of small changes in design from 
one ESL cycles to the next with the gradient‑based methods (at least near the 
local minimum point). At the end of ESL cycles, improved designs are obtained 
although not the best design.

2.  At the end of ESL cycles, the better designs and the improved population should 
be passed on to the metaheuristic method without the ESL cycles to improve 
these designs further.

3.  In most cases, it is shown that the proposed method can reach the best design 
with a smaller number of dynamic analyses than with the metaheuristic algo‑
rithm without the ESL cycles as shown in Table 12. However, many static anal‑
yses of the structure must be performed. Table 13 shows a comparison of CPU 
time needed by ECBO without ESL and MOESL (ESL2). It is seen that in most 
cases, the CPU effort is smaller with MOSEL compared to the approach with‑
out ESL cycles.

4.  Better final designs are obtained with MOSEL since the method explores lot 
more designs without increasing the total computational effort.

5.  Among the three ESLMs investigated, ESL2 ranked first, ESL1 was close sec‑
ond and ESL3 was third based on the reliability of obtaining the best design.

6.  Two additional procedures based on the nonlinear stiffness matrix are investi‑
gated in the ESLM to solve the nonlinear truss problem. In the first one, ESLs 
are calculated using the nonlinear stiffness matrix, but the linear static struc‑
tural analysis is used during the ESL cycles. In the second one, nonlinear static 
structural analysis is used during the ESL cycles. The results showed no advan‑
tages over the method that used linear stiffness matrix for calculating ESLs and 

Table 13  Comparative of average CPU time for designs examples

1 lb = 0.453 kg

Study case Mass or weight CPU time

ECBO without ESL MOESL (ESL2)

18‑bar truss (linear dynamic) 2526.32 kg 51.35 min 29.04 min (1.88 min)
10‑bar truss (nonlinear dynamic) 26.8 kg 14.87 min 8.61 min (1.49 min)
2‑story 2 bay frame (linear dynamic) 9466.8 lb 12.44 h 12.32 h (2.77 h)
2‑story 2 bay frame (nonlinear dynamic) 12,355.2 lb 28.93 h 19.98 h (2.65 h)
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during the ESL cycles (Sect.  7) in term of the quality of the final solution or the 
CPU time.
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