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Abstract
Parameter estimation problems of mathematical models can often be formulated as 
nonlinear least squares problems. Typically these problems are solved numerically 
using iterative methods. The local minimiser obtained using these iterative methods 
usually depends on the choice of the initial iterate. Thus, the estimated parameter 
and subsequent analyses using it depend on the choice of the initial iterate. One way 
to reduce the analysis bias due to the choice of the initial iterate is to repeat the 
algorithm from multiple initial iterates (i.e. use a multi-start method). However, the 
procedure can be computationally intensive and is not always used in practice. To 
overcome this problem, we propose the Cluster Gauss–Newton (CGN) method, an 
efficient algorithm for finding multiple approximate minimisers of nonlinear-least 
squares problems. CGN simultaneously solves the nonlinear least squares problem 
from multiple initial iterates. Then, CGN iteratively improves the approximations 
from these initial iterates similarly to the Gauss–Newton method. However, it uses 
a global linear approximation instead of the Jacobian. The global linear approxima-
tions are computed collectively among all the iterates to minimise the computational 
cost associated with the evaluation of the mathematical model. We use physiologi-
cally based pharmacokinetic (PBPK) models used in pharmaceutical drug develop-
ment to demonstrate its use and show that CGN is computationally more efficient 
and more robust against local minima compared to the standard Levenberg–Mar-
quardt method, as well as state-of-the art multi-start and derivative-free methods.
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1  Introduction

The parameter estimation of mathematical models often boils down to solving 
nonlinear least squares problems. Hence, algorithms for solving nonlinear least 
squares problems are widely used in many scientific fields.

The most traditional least squares solver is the Gauss–Newton method (Gauss 
1857; Björck 1996). In practice, the Gauss–Newton method with regularisation 
[i.e., Levenberg–Marquardt (LM) method  Marquardt 1963; Moré 1978] or with 
the Trust-Region method (Conn et al. 2000) is often used. Recently, derivative-
free methods, which do not explicitly use derivative information of the nonlinear 
function, have been developed. These methods are usually computationally more 
efficient as it avoids the costly computation of the derivatives of the nonlinear 
functions. Also, they can be applied even to problems where the mathematical 
models are ‘black box’. The state of the art derivative-free algorithms are DFO-
LS  (Cartis and Roberts 2019) and POUNDERS  (Wild 2017). A comprehensive 
review of the derivative-free methods can be found in Larson et al. (2019).

Another approach for obtaining a solution of nonlinear least squares problems 
is to directly minimise the sum of squared residuals (SSR) using generic optimi-
sation algorithms for the scalar objective function. The most classical approach 
is to obtain a minimiser where the gradient of the SSR becomes zero using the 
Newton method. As it is usually too costly to compute the Hessian of the SSR, 
Quasi-Newton methods which approximate the Hessian are used. The commonly 
used Quasi-Newton method is the BFGS method (Broyden 1970; Fletcher 1970; 
Goldfarb 1970; Shanno 1970; Shanno and Kettler 1970). Another approach 
which makes use of the Newton-type method for optimisation is Implicit Filter-
ing (Kelley 2011) which combines grid search and the Newton method. In addi-
tion to these optimisation algorithms, we can use numerous global optimisation 
algorithms when bound constraints are given. For example, Surrogate Optimi-
sation (Gutmann 2001), Genetic Algorithm (Goldberg and Holland 1988), Par-
ticle Swarm algorithm (Kennedy and Eberhart 1995; Mezura-Montes and Coe-
llo 2011), and DIRECT (Jones et  al. 1993) are well known global optimisation 
algorithms.

Although there are a variety of algorithms to solve the nonlinear least squares 
problems as listed above, they mostly focus on finding one minimiser. To the best 
of our knowledge, there is very limited methodological development on algo-
rithms for simultaneously finding multiple approximate minimisers of nonlin-
ear least squares problems. For instance, when using the Levenberg–Marquardt 
method, the local algorithm often gives a local minimiser which depends on the 
choice of the initial iterate. To reduce the analysis bias due to the initial iterate 
used for a local algorithm, it is a good practice to repeatedly use the local algo-
rithm with various initial iterates, as in multi-start methods (Boender et al. 1982). 
Similarly, for problems where bound constraints are given, one can use global 
optimisation algorithms to find one of the global minimisers. On the other hand, 
if there are multiple global minisers, the global minimiser found can depend on 
the algorithm setting, for example, the random seed. Hence, it is beneficial to use 



171

1 3

Cluster Gauss–Newton method﻿	

global optimisation algorithms with various settings repeatedly if the uniqueness 
of the global minimiser is not guaranteed. The trivial bottleneck of repeatedly 
using these algorithms is the computation cost. In this paper, we propose a new 
method addressing this computational challenge of finding multiple approximate 
minimisers of nonlinear least squares problems.

Our algorithm development for finding multiple local minimisers of nonlinear 
least squares problems was motivated by a mathematical model of pharmaceutical 
drug concentration in a human body called the physiologically based pharmacoki-
netic (PBPK) model (Watanabe et al. 2009). The PBPK model is typically a system 
of mildly nonlinear stiff ordinary differential equations (ODEs) with many param-
eters. This type of mathematical model is constructed based on the knowledge of 
the mechanism of how the drug is absorbed, distributed, metabolised and excreted. 
Given the complexity of this process and the limitation of the observations we can 
obtain from a live human subject, the model parameters cannot be uniquely identi-
fied from the observations, meaning that there are non-unique global minimisers to 
the nonlinear least squares problem. The estimated parameters of the PBPK model 
are used to simulate the drug concentration of the patient from whom we are often 
unable to test the drug on (e.g., children, pregnant person, a person with rare genetic 
anomaly) or to predict the experiment that is yet to be run (different amount of drug 
administration, multiple drugs used at the same time). As the simulated drug con-
centration is used to predict the safety of the drug in these different scenarios, it is 
essential to consider multiple predictions based on multiple possible parameters that 
are estimated from the available observations. A motivating example is presented in 
Sect. 3. Another reason why we want to obtain multiple sets of parameters is that we 
can understand which parameters cannot be estimated from the available data. This 
will motivate the pharmaceutical scientists to perform additional (e.g., in-vitro or in-
animal) experiments to determine these parameters that were not estimable from the 
available data.

In Aoki et al. (2011) and Aoki et al. (2014) we proposed the Cluster Newton (CN) 
method for obtaining multiple solutions of a system of underdetermined nonlin-
ear equations. In recent years CN has been used in the field of pharmaceutical sci-
ence (Yoshida et al. 2013; Fukuchi et al. 2017; Asami et al. 2017; Toshimoto et al. 
2017; Kim et al. 2017; Nakamura et al. 2018). For example, Toshimoto et al. (2017) 
used the parameters estimated by CN to predict the adverse drug effect, Nakamura 
et al. (2018) used the estimated parameters to predict the outcome of a clinical trial. 
However, based on these applications of CN, we observed the necessity to develop 
a new algorithm for finding multiple approximate minimisers of a nonlinear least 
squares problem which is more robust against noise in the observed data. This is 
mainly because actual pharmaceutical data may contain measurement error and 
inconsistency coming from an inadequate model.

1.1 � Nonlinear least squares problem of our interest

In this paper, we propose an algorithm for obtaining multiple approximate minimis-
ers of nonlinear least squares problems
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which do not have a unique solution (global minimiser), that is to say, there exist 
x(1) ≠ x(2) such that

Here, f  is a nonlinear function from ℝn to ℝm , x(1), x(2) ∈ ℝ
n and y∗ ∈ ℝ

m . The 
nonlinear function f  can be derived from a mathematical model, the vector x can 
be regarded as a set of model parameters which one wishes to estimate, and the vec-
tor y∗ can be regarded as a set of observations one wishes to fit the model to. In the 
motivating problem of estimating parameters of PBPK models, since there are usu-
ally insufficient observations, the corresponding nonlinear least squares problem has 
multiple global minimisers. Therefore, we are interested in finding multiple mini-
misers instead of just one minimiser.

We shall call the following quantity the sum of squared residuals (SSR):

and use it for the quantification of the goodness of x as the approximation of the 
solution of the least squares problem (1).

1.2 � Well known example in pharmacokinetics

In this subsection, we present a simple pharmacokinetics parameter estimation prob-
lems where the corresponding nonlinear least squares problems have non-unique 
global minimisers. This example is called ‘flip-flop kinetics’ and can be found in 
most standard textbooks in pharmacokinetics (e.g. Gibaldi and Perrier 1982). Flip-
flop kinetics occurs when estimating the pharmacokinetic parameters of the drug 
that is orally given (e.g., as a pill or a tablet) to patients based on the observation of 
the drug concentration in the blood plasma. The simplest mathematical model for 
this pharmacokinetics can be written as follows:

where

For this problem u2 corresponds to the drug concentration in the blood plasma, 
which is observable (i.e., u2(ti) is the model simulation corresponding to the obser-
vation y∗

i
 , where ti is the ith observation time.). It can be shown analytically that 

there are two distinct parameter sets that realise the same drug concentration time-
course curve. Figure 1 shows the surface plot of the sum of squared residuals of the 

(1)min
x

||f (x) − y∗|| 2
2

(2)min
x

||f (x) − y∗|| 2
2
= ||f (x(1)) − y∗|| 2

2
= ||f (x(2)) − y∗|| 2

2
.

(3)||f (x) − y∗|| 2
2
,

(4)
du1

dt
= −Ka u1

du2

dt
=

Ka u1 − CL u2

V

(5)u1(t = 0) = 100 u2(t = 0) = 0

(6)CL = 10x1 Ka = 10x2 V = 10x3 .
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corresponding nonlinear least squares problem. As can be seen, there are two global 
minimisers for this nonlinear least squares problem.

In this subsection, we have shown the simplest possible form of this issue of non-
unique global minimisers in pharmacokinetics. Thus, we would like to point out that 
one cannot assume the uniqueness of the global minimiser for more complex phar-
macokinetic models, for example, the PBPK model of our interest.

2 � Method: Algorithm

In this section we describe the proposed algorithm. We first introduce a rough con-
cept using a toy example in Sect. 2.1 and then introduce the full algorithm in detail 
in Sect. 2.2.

2.1 � Brief explanation of the algorithm

The aim of the proposed Cluster Gauss–Newton (CGN) algorithm is to efficiently 
find multiple approximate minimisers of the nonlinear least squares problem (1). 
We do so by first creating a collection of initial guesses which we call the ‘cluster’. 
Then, we move the cluster iteratively using linear approximations of the nonlinear 
function f  , similarly to the Gauss–Newton method (Björck 1996).

The unique idea in the CGN method is that the linear approximation is constructed 
collectively throughout the points in the cluster instead of using the Jacobian matrix 
which approximates the nonlinear function linearly at a point as in the Gauss–Newton 

Fig. 1   Surface plots of the sum of squared residuals for pharmacokinetics model parameter estimation 
problems with non-unique global minimisers (Flip-flop kinetics)
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or LM. By using points in the cluster to construct a linear approximation, instead of 
explicitly approximating the Jacobian, we minimise the computational cost associ-
ated with the nonlinear function (i.e., mathematical model) for each iteration. In addi-
tion, by constructing linear approximation using non-local information, CGN is more 
likely to converge to approximate minimisers with smaller SSR than methods using the 
Jacobian.

In order to visualise the key differences between the proposed linear approxima-
tion (CGN) and the Jacobian (i.e., derivative) approaches, we consider the nonlinear 
function

(7)f =

⎧
⎪⎨⎪⎩

(x + 1)2 − 2 cos(10(x + 1)) + 5 if x < −1

3 if − 1 ≤ x ≤ 1

(x − 1)2 − 2 cos(10(x − 1)) + 5 if x > 1

CGN method LM method
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Fig. 2   Schematic comparison of CGN and LM. Dots represent the iterates with their function values in 
each iteration and the lines represent linear approximations used to update the iterates. As can be seen 
in this figure, the linear approximation used in CGN follows the global trend of the function, while the 
slope used in LM captures the local feature of the function. As a result, when using CGN all the iterates 
converge to the minimisers with the smallest residual (in this case global minimisers), while all the iter-
ates of LM converge to local minimisere whose residuals are not the minimum. In addition, for the 10 
iterations presented in the figure, CGN required only 50 function evaluations while LM required 121 
function evaluations since the slope is approximated using finite differences
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(see Fig.  2) and aim to find global minimisers. Any point x ∈ [−1, 1] is a global 
minimiser of this problem. Hence, this problem has nonunique global minimisers. 
Let the points of the initial iterates be:

We now compute the linear approximations used to move these points in the cluster 
to minimise the function f.

Gradient (LM)
For this nonlinear function, since the function is given in analytic form, we can obtain 

the gradient explicitly. In, practice, when f is given as a “black box”, we can approxi-
mate the derivative by a finite difference scheme, for example, f �(xi) ≈

f (xi+�)−f (xi)

�
 . 

Then, the linear approximation at xi can be written as f (x) ≈ f (xi+�)−f (xi)

�
(x − xi) + f (xi) . 

Notice that it requires one extra evaluation of f at xi + � for each xi . This number of 
extra function evaluation is, when evaluating a full gradient estimate, equal to the num-
ber of independent variables of f. (This is not the case if a directional derivative esti-
mate is used.) If f is given by a system of ODEs, one may use the adjoint method to 
obtain the derivatives more efficiently. However, it requires solving an additional sys-
tem of ODEs (the adjoint equation). More importantly, iterates of methods based on the 
gradient may converge to local minimisers, since they use local gradient information.

Cluster Gauss–Newton (CGN) method (proposed method)
In the proposed method, we construct a linear approximation for each point in the 

cluster while using the value of f at other points in the cluster to globally approximate 
the nonlinear function with a linear function. The influence of another point in the clus-
ter to the linear approximation is weighted according to how close the point is to the 
point of approximation, i.e.,

where a(i) is the slope of the linear approximation at xi and the linear approxima-
tion at xi can be written as f (x) ≈ a(i)(x − xi) + f (xi) . There are many possibilities for 
the weight dj(i) . In this paper, we choose dj(i) = (xj − xi)

−2� where � ≥ 0 ( � = 0 cor-
responds to uniform weight). Note that Eq. (9) can also be regarded as a weighted 
least squares solution of a system of linear equations where the weight is chosen to 
be dj(i) . The weight is motivated by the fact that we weight the information from the 
neighbouring points in the cluster more than the ones further away when construct-
ing the linear approximation. Note that we do not require any extra evaluation of f 
for obtaining these linear approximations.

For the multi-dimensional nonlinear function f ∶ ℝ
n
→ ℝ

m , when we have N points 
in the cluster, we solve the following linear least squares problem:

(8)
x1 = −6.3797853, x2 = −4.1656025, x3 = −3.6145728,

x4 = 2.0755468, x5 = 4.1540421.

(9)min
a(i)

∑
j≠i

(
dj(i)

(
(xj − xi)a(i) −

(
f (xj) − f (xi)

))) 2

(10)min
A(i)∈ℝ

m×n

||||
||||D(i)

(
�XT

(i)
AT
(i)
− �YT

(i)

)||||
||||
2

F
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where D(i) = diag(d1i,… , dNi) is a diagonal matrix defining the weights, 
�X(i) ∈ ℝ

N×n is the difference between all the cluster points and xi , and �Y(i) ∈ ℝ
N×m 

is the difference between the nonlinear function f  evaluated at all the cluster points 
and at xi . The precise definition of these quantities and derivation of (10) is given in 
the next subsection.

For the one dimensional case (i.e., m = n = 1 ), the linear approximations at each 
point for the first ten iterations for both CGN and LM are shown in Fig. 2. As can 
be seen, the gradient used in LM captures the local behaviour of the nonlinear func-
tion. The linear approximation used in CGN, on the other hand, captures the global 
behaviour of the nonlinear function. After nine iterations of the CGN, all the points 
reached the minimisers with smallest SSR. On the other hand, the LM converges to 
local minimisers whose SSR are not necessarily the minimum.

2.2 � Detailed description of the algorithm

Next, we describe the proposed CGN algorithm in detail. In this subsection, we 
denote a scalar quantity by a lower case letter e.g., a, c, a matrix by a capital letter, 
e.g., A, or M, and a column vector by a bold symbol of a lower case letter, e.g., v , a , 
unless otherwise specifically stated. Super script T indicates the transpose. Hence, 
vT and aT are row vectors.

(1) Pre-iteration process
(1-1) Create initial cluster
The initial iterates of CGN, a set of vectors {x(0)

i
}N
i=1

 are genrated using uniform 
random numbers in each component within the domain of initial estimate of the 
plausible location of global minimisers given by the user. The unique point of the 
CGN is that the user specifies the domain of the initial estimates instead of a point. 
In this paper, we assume that the domain of initial guess is given by the user by two 
sets of vectors xL , xU , and the value x(0)

ji
 is sampled from the uniform distribution 

between xL
j
 and xU

j
 , where x(0)

ji
 is the j th element of vector x(0)

i
.

Note that this does not mean that all the following iterates 
x
(k)

i
(k ≥ 1, i = 1, 2,… ,N) must satisfy xL ≤ x

(k)

i
≤ xU . Also note that here we 

have used uniform distribution; however, other choices of initial distributions are 
possible. A brief numerical experiments using different initial distributions can be 
found in “Appendix C”.

Store the initial set of vectors in a matrix X(0) , i.e.,

where the super script (0) indicates the initial iterate.
Evaluate the nonlinear function f  at each x(0)

i
 as y(0)

i
= f (x

(0)

i
) (i = 1, 2,… ,N) 

and store in matrix Y (0) , i.e.,

(11)X(0) = [x
(0)

1
, x

(0)

2
,… , x

(0)

N
]

(12)Y (0) =
[
y
(0)

1
, y

(0)

2
,… , y

(0)

N

]
.
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If the function f  cannot be evaluated at x(0)
i

 , then re-sample x(0)
i

 until f  can be 
evaluated.

Compute the sum of squared residuals vector r(0) i.e.,

The concise pseudo-code for the creation of the initial cluster can be found in 
Algorithm 1.

(1-2) Initialise regularisation parameter vector
Fill the regularisation parameter vector �(0) ∈ ℝ

N , with the user-specified initial reg-
ularisation parameter �init .i.e.,

(2) Main iteration
Repeat the following procedure until the user specified stopping criteria are met. We 

denote the iteration number as k, which starts from 0 and is incremented by 1 after each 
iteration.

(2-1) Construct weighted linear approximations of the nonlinear function
We first construct a linear approximation around the point x(k)

i
 , s.t.,

Here, A(k)

(i)
∈ ℝ

m×n describes the slope of the linear approximation around x(k)
i

.

(13)r0
i
= ||y0

i
− y∗||2

2
(i = 1, 2,… ,N)

(14)r(0) =
[
r
(0)

1
, r0

2
,… , r0

N

]T
.

(15)�
(0) = [�init, �init, ..., �init]

T

(16)f (x) ≈ A
(k)

(i)
(x − x

(k)

i
) + f (x

(k)

i
) ,
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The key difference of our algorithm compared to others is that we construct a 
Jacobian like matrix A(k)

(i)
 collectively using all the function evaluations of f  in the 

previous iteration, i.e., we solve

for i = 1, ...,N , where d
(k)

j(i)
≥ 0 , j = 1, ...,N are weights. Here, 

�y
(k)

j(i)
= f (x

(k)

j
) − f (x

(k)

i
) ∈ ℝ

m and �x(k)
j(i)

= x
(k)

j
− x

(k)

i
∈ ℝ

n . (Note that �y(k)
i(i)

= 0 , 
�x

(k)

i(i)
= 0 .) Also, let

Note that f (x(k)
i
) are always computed at the previous iteration [e.g., as Eq.  (12) 

when k = 0 and in Step 2–3 when k > 0 ]. Hence, no new evaluation of f  is required 
at this step.

The key idea here is that we weight the information of the function evaluation 
near x(k)

i
 more than the function evaluation further away. That is to say, d(k)

j(i)
> d

(k)

j�(i)
 if 

||x(k)
j

− x
(k)

i
|| < ||x(k)

j�
− x

(k)

i
|| . The importance of this idea can be seen in the numeri-

cal experiment presented in “Appendix A”.
Noting that

we can rewrite Eq. (17) as

where

where d(k)
l(i)

≥ 0 . In this paper, we choose the weights as

(17)

min
A
(k)

(i)
∈ℝm×n

N∑
j=1

[
d
(k)

j(i)

||||
||||f (x

(k)

j
) −

{
A
(k)

(i)

(
x
(k)

j
− x

(k)

i

)
+ f (x

(k)

i
)
}||||

||||2
]2

= min
A
(k)

(i)
∈ℝm×n

N∑
j=1

(
d
(k)

j(i)

|||
|||�y

(k)

j(i)
− A

(k)

(i)
�x

(k)

j(i)

|||
|||2
)2

(18)�Y
(k)

(i)
=
[
�y

(k)

1(i)
,�y

(k)

2(i)
,…�y

(k)

N(i)

]
∈ ℝ

m×N

(19)�X
(k)

(i)
=
[
�x

(k)

1(i)
,�x

(k)

2(i)
,…�x

(k)

N(i)

]
∈ ℝ

n×N .

(20)

N∑
j=1

(
d
(k)

j(i)

|||
|||A

(k)

(i)
�x

(k)

j(i)
− �y

(k)

j(i)

|||
|||2
)2

=
||||
||||
(
A
(k)

(i)
�X

(k)

(i)
− �Y

(k)

(i)

)
D

(k)

(i)

||||
||||
2

F

=
||||
||||D

(k)

(i)

(
�X

(k)

(i)

T
A
(k)T

(i)
− �Y

(k)

(i)

T
)||||
||||
2

F

,

(21)min
A
(k)

(i)
∈ℝm×n

||||
||||D

(k)

(i)

(
�X

(k)

(i)

T
A
(k)T

(i)
− �Y

(k)

(i)

T
)||||
||||
2

F

(22)D
(k)

(i)
=diag

(
d
(k)

1(i)
, d

(k)

2(i)
, ..., d

(k)

N(i)

)
,



179

1 3

Cluster Gauss–Newton method﻿	

where x(k)
lj
, xU

l
, xL

l
 are the l th element of the vectors x(k)

j
, xU, xL , respectively 

( l = 1, ..., n ), and � ≥ 0 is a constant. We use this weighting scheme so that the 
“information” from the nonlinear function evaluation from the point closer to the 
point of approximation is more influential when constructing the linear approxima-
tion. The distance between xi and xj are normalised by the size of the domain of ini-
tial guess (i.e., xU and xL ). The effect of the weight d(k)

j(i)
 and the parameter � and its 

necessity is analysed in “Appendix A”. The minimum norm solution of Eq. (21) is 
given by

where † denotes the Moore–Penrose inverse.
If rank�X (k)(i)D

(k)

(i)
= n,

Generically, rank�X
(k)

(i)
D

(k)

(i)
= n. rank𝛥X

(k)

(i)
< n can happen when 

x
(k)

li
= c (i = 1, 2,… ,N) , i.e. when x(k)

i
 lie in the same hyperplane xl = c . This hap-

pens when the l-th component of x(k)
i

(i = 1, 2,… ,N) are all equal.
The concise pseudo-code for the weighted linear approximation can be found 

in Algorithm 2.

(2-2) Solve for x that minimises ||y∗ − (A
(k)

(i)
(x − x

(k)

i
) + f (x

(k)

i
))|| 2

2

(23)d
(k)

j(i)
=

⎧
⎪⎨⎪⎩

�
1∑n

l=1
((x

(k)

lj
−x
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We now compute the next iterate X(k+1) using the matrices {A(k)

(i)
}N
i=1

 similarly to 
the Gauss–Newton method with Tikhonov regularisation (e.g., Hansen 2005; 
Björck 1996), i.e.,

for i = 1, ...,N , where y∗ is the set of observations one wishes to fit the nonlinear 
function f  to [cf. (1)], and y(k)

i
≡ f (x

(k)

i
) . For CGN, we require 𝜆(k)

i
> 0 . The neces-

sity of the regularisation can be seen in the numerical experiment presented in 
“Appendix B”.

(2-3) Update matrices X and Y and vectors r and �
Evaluate the nonlinear function f  for each x

(k+1)

i
 as y

(k+1)

i
= f (x

(k+1)

i
) 

(i = 1, 2,… , n) , and store as Y (k+1) = [y
(k+1)

1
, y

(k+1)

2
,… , y

(k+1)

N
]. Compute the 

sum of squared residuals vector as r(k+1) = [r
(k+1)

1
, r

(k+1)

2
, … , r

(k+1)

N
]T where 

r
(k+1)

i
= ‖y(k+1)

i
− y∗‖ 2

2
(i = 1, 2,… ,N) . Note that this process can be imple-

mented in an embarrassingly parallel way.
If the residual ri increases, we replace x(k+1)

i
 by x(k)

i
 and increase the regularisa-

tion parameter i.e.,
if r(k)

i
< r

(k+1)

i
 or f (x(k+1)

i
) can not be evaluated, then let

else decrease the regularisation parameter, i.e.,

for each i = 1, ...,N.
There are various ways to update the regularisation parameter � . In this paper 

we followed the strategy used in the Matlab’s implementation of the Leven-
berg–Marquardt method.

In addition, in this step, we impose the stopping criteria for each point in the 
iteration. As can be seen in Eq. (26), x(k+1)

i
≈ x

(k)

i
 for large �i , so that we can 

expect very small update in x(k+1)
i

 . Hence, in order to mimic the minimum step 
size stopping criteria, we stop the update for i where 𝜆i > 𝜆max.

The concise pseudo-code for updating matrices X and Y and vectors r and � is 
given in Algorithm 3.

The influence of the choice of the initial value �init of the regularization param-
eter in Eq. (15) is studied in “Appendix B”.
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We present a concise description of the CGN as a pseudo-code in Algorithm 4.
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3 � Motivating example

In this section, we introduce a motivating example to illustrate how the proposed 
method could be used in practice. We consider a scenario where a newly developed 
drug is tested for the first time in a human. Before the drug is given to a human, the 
biochemical properties of the drug are studied in-test-tube (in-vitro) and in-animal 

Fig. 3   A schematic diagram of a physiologically based pharmacokinetic model. (Arrows represent 
the movement of the drug to a different part of the body. Variables u

i
 are the drug concentration or the 

amount of the drug in each compartment. The body is divided into Blood, Muscle, Skin, Adipose, Liver 
and Intestine. The liver is further divided into ten compartments to model the complex drug behaviour in 
the liver. The intestine is divided into four compartments, three transit compartments and one intestine 
compartment, to model the time it takes for the drug to reach the intestine)
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experiments. However, how the drug behaves in the human body is still uncertain. 
Based on the results of in-vitro and in-animal experiments, the team decides that 
100mg is a safe amount of the drug to be given to a human and the experiment is 
conducted with a healthy normal volunteer, and the drug concentration in the blood 
plasma is measured at points in time. Using these measurements, we estimate the 
multiple possible model parameters which can be used to simulate various scenar-
ios. The following workflow can be envisioned:

1: Construct a mathematical model based on the understanding of the physi-
ology and biochemical properties of the drug.

In this example, we use the model presented in Watanabe et al. (2009). The math-
ematical model is depicted in Fig. 3, and it can be written as a system of nonlinear 
ordinary differential equations with 20 variables. We refer the readers to the sup-
plementary material for the complete description of the model. There are two types 
of model parameters in this model: physiological parameters and kinetic parameters. 
Examples of the physiological parameters are the sizes of the organs or the blood 
flow rates between the organs. As the human physiology is well studied and these 
parameters usually do not depend on the drugs, we can assume these parameters 
to be known. The kinetic parameters, such as, how fast the drug gets excreted from 
the body or how easily it binds to tissues are the parameters that depend on the drug 
and usually are not very well known. Before the first in-human experiment, the drug 
development team characterises these parameters using an organ in test-tubes or 
by administering the drug to an animal. However, these parameters can differ from 
animal to human, so we do not have a very accurate estimate of these parameters. 
The differences in these parameters between a human and an animal can be sev-
eral orders of magnitude. Figure  4 depicts plots of the drug concentration simu-
lation where the kinetic parameters are sampled within a reasonable range of the 

Fig. 4   Simulation of the drug concentration in the blood plasma using the parameters that are naively 
sampled from the range of possible kinetic parameters. Note that these simulations do not give any useful 
information
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parameters. As can be seen in Fig. 4, we cannot obtain any useful information just 
by randomly sampling the kinetic parameters from the feasible range.

2: Sample multiple possible model parameter sets that fit the model predic-
tion of the drug concentration to the observed data from the 100mg experi-
ment. We now use the observed data from the experiment where 100mg of the drug 
was given to a human. The red dots in Fig. 5 depict the observed data. The left panel 
of Fig. 5 shows some of the simulation results using the parameter sets of the ini-
tial iterate of CGN. The right panel of Fig. 5 shows some of the simulation results 
after 20 iterations of CGN. As can be seen in Fig. 5, CGN can find multiple sets of 
parameters that fit the observed data. The parameter values are depicted in the box 
plots in Fig. 6. As can be seen in Fig. 6, after 20 iterations of CGN, the distribution 
of some of the parameters shrinks significantly suggesting these parameters can be 
identified from the observations while the distribution of some of the parameters are 
unchanged indicating that these parameters cannot be identified from the observa-
tion. In Fig. 7, we show scatter plots of the parameters found by CGN. As can be 
seen in Fig. 7, even if the parameter cannot be identified from the observation, some 
nonlinear relationships can occasionally be identified between the parameters.

4 � Numerical experiments

In this section we illustrate the advantages of the proposed CGN algorithm by 
numerical experiments on three PBPK models.
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Fig. 5   Plot of the simulation of drug concentration (black solid line) with observations (red dot). Simula-
tion results are based on the parameters for the initial iterate for CGN and the parameters found after 20 
iterations of CGN. In the left panel, the simulation results based on the top 100 sets of the parameters 
(out of 1000 parameter sets in the cluster) from the initial cluster are shown. In the right panel, the simu-
lations results based on the top 100 sets of the parameters (out of 1000 parameter sets in the cluster) after 
20 iterations of CGN are shown. Hence, top 100 means the 100 smallest sum of squared residuals (SSR) 
between the simulation and observed data
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4.1 � Numerical experiment setup

In this subsection we specify the details of the numerical experiment set-up.

4.1.1 � Mathematical models

For the numerical experiments, we used the following three published mathemati-
cal models of drug concentration in the blood of a human body (PBPK model) 
(Fukuchi et  al. 2017; Yao et  al. 2018; Yoshikado et  al. 2016). The time course 
drug concentration was simulated using the model, and random noise was added 
to mimic the observation uncertainties. The random noise was generated by a 
normal distribution with a standard deviation of 10% of the simulated concentra-
tion value. The simulated drug concentration was used as the test dataset, and 
multiple possible parameters were estimated from the test dataset using CGN 
and conventional methods. The mathematical description of each PBPK model 
used for the numerical experiments is summarised in Table 1. Also the detailed 

Fig. 6   Box plots of top 100 parameters (the same parameter sets as the one used to plot Fig.  5) from 
the initial cluster (left) and the cluster after 20 iterations of CGN (right). Note the distributions of 
x5, x8, x9, x10 clearly shrunk after 20 iterations while the distribution of x4 did not change noticeably. 
(Box plot: The edges of the boxes are the 75th and 25th percentiles. The line in the box is the median, 
and the whiskers extend to the largest and the smallest value within the 1.5 times the inter-quartile range. 
Dots are the outliers outside the whiskers)
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Fig. 7   Scatter plots of parameters. As can be seen in this example, we can find parameter-parameter cor-
relations of some of the parameters found by CGN. (parameters whose corresponding SSR is the least 
100 within the cluster of 1,000, i.e., the same parameter sets as the one used to plot the right hand side of 
Fig. 5)

Table 1   Summary of the mathematical description of the PBPK models used for the numerical experi-
ments

Model structure Parameters Simulated
To be estimated Observations

Model 1 Three systems of nonlinear ODEs 11 parameters 30 observations
with 20 variables

Model 2 Two systems of linear ODEs 11 parameters 22 observations
with 20 variables

Model 3 Two systems of nonlinear ODEs 19 parameters 24 observations
with 20 and 33 variables
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description of the model and implementations of all the examples are available as 
the supplementary material.

4.1.2 � Computation environment

All computational experiments were performed using Matlab 2019a on 3.1 GHz 
Intel Core i5 processors with MacOS version 10.13.6. When using the algorithms 
implemented in Python we used Python version 3.7. All results of the numerical 
experiments were summarised and visualised using ggplot2 version 2.2.1 (Wick-
ham 2016) in R version 3.3.2.

4.1.3 � The initial set of vectors {x (0)
i
}N
i=1

We generated the initial set of vectors {x(0)
i
}N
i=1

 randomly based on Algorithm 1. The 
range of the initial cluster was set by the pharmacologically likely parameter range 
based on a priori knowledge defined by domain specialists (e.g., from the values 
obtained from the animal experiments or lab experiments).

We stored and used this initial set of vectors as the initial cluster for the CGN and 
also as initial iterates for the other nonlinear least squares solvers and optimisation 
algorithms which were compared.

Notice that this range of the initial cluster does not necessary contain the global 
minimiser as many pharmacokinetics parameter can be few order of magnitudes dif-
ferent between species. For the sake of comparison with the constrained optimisa-
tion algorithms, we constructed Example 2 so that the initial range contains the set 
of parameters that we used to create the dataset. This ensures that a global minimiser 
is in the domain where the initial cluster is made. When comparing with the con-
strained optimisation algorithms, we used this domain as the bound constraint for 
the parameter search for these algorithms.

4.1.4 � ODE solver

For Examples 1 and 3 the nonlinear function evaluations require the numerical solu-
tion of stiff systems of ODEs. We used the ODE15s solver ( Shampine and Reichelt 
1997) with the default settings to solve these ODEs (relative tolerance 10−3 , absolute 
tolerance 10−6 ). We observed that for some set of parameters, the ODE solver can 
get stuck in an infinite loop. Here, we set the timeout, where if the ODE evaluation 
takes longer than 5 seconds, it terminates the ODE evaluation process and returns a 
not-a-number vector.

4.1.5 � Setting for the cluster Gauss–Newton (CGN) method:

We used the following parameters unless stated otherwise:

(31)N = 250



188	 Y. Aoki et al.

1 3

Here kmax is the maximum number of iterations of the method. We used the ini-
tial set of vectors {x(0)

i
}N
i=1

 described in Sect.  4.1.3 as the initial cluster. Note that 
we chose �init to be consistent with the default setting of the LM implementation 
(lsqnonlin in Matlab.) In “Appendicies A, B, and C”, we have presented the numeri-
cal experiments on the influence of the user-defined algorithm parameters.

4.2 � Algorithms compared

Here, we list the conventional and recently developed algorithms that we compared 
our proposed algorithm with. We used the default setting of the algorithms unless 
stated otherwise.

4.2.1 � Nonlinear least squares solvers

We compare the proposed algorithm against gradient-based and gradient-free non-
linear least squares algorithm s. We used these algorithms to find multiple approxi-
mate minimisers of the nonlinear least square problem of our interest by repeatedly 
applying these algorithms with various initial iterates. Namely; we used each param-
eter vector in {x(0)

i
}N
i=1

 , which were randomly generated in the CGN method as the 
initial iterate, and excecuted each algorithm repeatedly to obtain N sets of estimated 
parameter vectors.

Levenberg–Marquardt (LM) method The conventional gradient-based nonlin-
ear least squares solver, Levenberg–Marquardt method (Björck 1996) implemented 
in the lsqcurvefit function in Matlab.

We use LM with the default setting as well as setting ‘FiniteDifferenceS-
tepSize’ to be the square root of the default accuracy of the ODE solve (e.g., 
FiniteDifferenceStepSize =

√
AbsTol =

√
10−6 ). Note that the FiniteDifferenceS-

tepSize of the default setting is 10−6.
Trust-Region (TR) method The conventional gradient-based nonlinear least 

squares solver, Trust-Region method (Conn et al. 2000) implemented in the lsqcur-
vefit function in Matlab.

DFO–LS method A gradient-free nonlinear least squares solver DFO-LS 
method (Cartis et al. 2019). We obtained the Python code of DFO-LS Version 1.0.2 
from http://peopl​e.maths​.ox.ac.uk/rober​tsl/dfols​/ (last accessed on June 6th 2019). 
To make the numerical method for solving the model ODEs exactly the same, we 

(32)�init = 0.01

(33)�max = 1010

(34)� = 1

(35)kmax = 100.

http://people.maths.ox.ac.uk/robertsl/dfols/
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called the Matlab implementation of the nonlinear function through MATLAB 
Engine API for Python.

Libensemble with POUNDERS We used the libensemble algorithm (Hudson 
et al. 2019) that was available at the developer branch of https​://githu​b.com/Liben​
sembl​e/liben​sembl​e (last accessed April 25th 2019) together with petsc version 
3.10.4 available as https​://www.mcs.anl.gov/petsc​/index​.html. We used POUND-
ERS as the nonlinear least squares solver. As libensemble was implemented in 
Python, we used the MATLAB Engine API to call the nonlinear function. POUND-
ERS algorithm utilises bound constraints for the search domain, and we tested this 
algorithm only for Example 2.

4.2.2 � Optimisation algorithms

We compared the proposed method against the optimisation algorithms that are 
designed to minimise a function which takes a vector quantity as an input and scalar 
quantity as output. We applied these algorithms to our nonlinear least squares prob-
lem by minimising SSR defined in Eq. (3)

Quasi-Newton method We used the Quasi-Newton method implemented in Mat-
lab’s Optimisation toolbox as the fminunc function. This implementation uses the 
BFGS formula to update the approximate Hessian.

The following algorithms require bound constraints, and they were tested only for 
Example 2.

Implicit filter method This is another gradient-free optimisation algorithm. The 
code was downloaded from https​://archi​ve.siam.org/books​/se23/ (last accessed June 
7th 2019). We used the ‘least-squares’ option with a budget of 200.

Surrogate optimisation method We used the Surrogate optimisation algorithm 
implemented in Matlab’s Global Optimisation Toolbox as the surrogateopt func-
tion. We repeated this algorithm 250 times with distinct random-seed to obtain 250 
global minimisers of the nonlinear-least squares problem of our interest.

Particle Swarm We used the Particle Swarm optimisation algorithm imple-
mented in Matlab’s Global Optimisation Toolbox as the particleswarm function. We 
repeated this algorithm 250 times with distinct random seeds to obtain 250 global 
minimisers of the nonlinear least squares problem of our interest.

Genetic Algorithm We used the Genetic algorithm implemented in Matlab’s 
Global Optimisation Toolbox as the ga function. As one run of this algorithm 
required over 100,000 function evaluations for our examples, we did not repeat this 
algorithm to obtain multiple global minimisers.

DIRECT A sampling algorithm DIRECT (Jones et al. 1993). The Matlab imple-
mentation was obtained from https​://searc​hcode​.com/codes​earch​/view/12449​743/ 
(last accessed July 30th 2019). As one run of this algorithm required over 100,000 
function evaluations for our examples, we did not repeat this algorithm to obtain 
multiple global minimisers.

https://github.com/Libensemble/libensemble
https://github.com/Libensemble/libensemble
https://www.mcs.anl.gov/petsc/index.html
https://archive.siam.org/books/se23/
https://searchcode.com/codesearch/view/12449743/
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4.3 � Results

We compared the proposed CGN method with various existing algorithms. We 
compared the ‘speed’ of the algorithm by the number of function evaluations 
required and we compared the ‘quality’ of the minimisers found by the SSR 
(smaller the SSR the better minimiser). As we can see in Table 2, the dominant 
part of the computation time was spent by the nonlinear function evaluations in 
CGN. Hence, we claim that the number of function evaluations is a fair way to 
compare the computation cost.

We compared the speed for finding acceptable minimisers. We define the 
acceptable minimisers as the minimisers with SSR less than the SSR of the 
parameter that was used to generate the test dataset. In Fig. 8, we show the num-
ber of acceptable minimisers found given the total number of function evalua-
tions. As can be seen, CGN is significantly faster than any other method for find-
ing acceptable minimisers. In general, the nonlinear least squares solvers were 
faster than using optimisation algorithms to minimise SSR. Also, some optimi-
sation methods could not find or could only find a few acceptable minimisers. 
Among the various least squares solvers, the derivative-free methods (CGN, DFO 
LS, and libensemble POUNDERS) were usually faster than the derivative-based 
methods.

As this analysis depends on how we define acceptable minimisers, we plot-
ted the number of minimisers found for a given SSR threshold in Fig.  9. For 
this analysis each algorithm was run until its default stopping criterion (given in 
the reference of each method) was met. We summarised the number of function 
evaluations that each algorithm required to meet its default stopping criterion in 
Table 3.

As can be seen in Fig. 9, for Examples 1 and 3, CGN finds more approximate 
minimsers with small SSR than all the conventional algorithms. For Example 2, as 
we know that at least one global minimiser is enclosed in the domain defined by 
xU and xL , we were able to apply optimisation algorithms with bound constraints 
(libsensemble with POUNDERS, implicit filter, surrogate optimisation, and parti-
cle swarm). For this problem, particle swarm obtained slightly more approximate 
minimisers with small SSR than CGN. However, as can be seen in Table 3, parti-
cle swarm required significantly more function evaluations than the CGN (particle 
swarm: 3,646,900 v.s. CGN: 6768). Aside from the particle swarm, CGN outper-
formed all the other methods in the number of acceptable minimisers found.

Table 2   Ingredients of the computation time for CGN (seconds)

Example 1 Example 2 Example 3

Nonlinear function evaluation 1890.598 852.116 1779.362
Computation of linear approximation 3.610 6.929 11.021
Output results as csv files 3.647 3.663 4.129
Total computation 1898.393 863.172 1795.192
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In addition to above rigorous comparison, we applied two global optimisa-
tion algorithms, Genetic algorithm (GA) and DIRECT to Example  2. GA and 
DIRECT required 120,600 and 100,063 nonlinear function evaluations, respec-
tively, to obtain one minimiser each. The SSR of the minimisers found by GA 
and DIRECTwere 0.0197 and 0.244, respectively, while the minimum SSR found 
by the CGN is 0.0188. Hence, even to find just one minimiser, CGN is faster and 
more accurate than these two methods.

Fig. 8   Number of acceptable minimisers (out of 250) found by each method for given total number 
of function evaluations. Acceptable minimisers are defined by the minimisers with SSR less than the 
SSR of the parameter that was used to generate the test dataset. (Example1: SSR < 0.0592 , Example2: 
SSR < 0.0444 , Example3: SSR < 0.0915)
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5 � Concluding remarks

We proposed the Cluster Gauss–Newton (CGN) method, a new derivative free 
method specifically designed for finding multiple approximate minimisers of a 
nonlinear least squares problem. The development of this algorithm was moti-
vated by the parameter estimation of physiologically based pharmacokinetic 

Fig. 9   Number of minimisers (out of 250) found by each method for given accuracy threshold (tSSR). 
Smaller SSR indicates more accurate solution to the nonlinear-least squares problem
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(PBPK) models that appears in pharmaceutical drug development. The particular 
nature of the model, where the model is over-parameterised, and consideration 
of multiple possible parameters is necessary, motivated us to develop the new 
method. The fact that our algorithm obtains multiple approximate minimisers col-
lectively makes it significantly more computationally efficient compared to exist-
ing nonlinear least squares solvers or optimisation algorithms. In addition, we 
observed that in general, CGN obtains minimisers with smaller sum of squared 
residuals (SSR) than existing algorithms. We demonstrated these advantages 
using three examples that come from real world drug development projects.

By minimising the assumption on the nonlinear function, where it can be a “black 
box”, we have ensured the ease of use and implementation for those who may not 
have a substantial background in mathematics or scientific computing. We believe 
this advantage of the proposed method will be appreciated by potential users of the 
algorithm in industry. In this paper, we used the pharmacokinetics models as exam-
ples. However, as we do not assume any particular form of the nonlinear function, 
we believe the proposed method can be used for many other mathematical models in 
various scientific fields.

CGN performs sufficiently well for the current use in pharmacokinetic model 
analyses. However, we believe there are various possible extensions of CGN. First, 
CGN only makes use of the function evaluations from the one previous iteration. On 
the other hand, we can consider using the function evaluations from all the previ-
ous iterations similarly to the multi-secant method (Eyert 1996; Bierlaire and Crittin 
2006; Hicken et al. 2017). CGN and multi-secant methods already share similarities; 
both methods construct global linear approximations from previously conducted 
nonlinear function evaluations; this gives an error-tolerant nature and computa-
tional efficiency. The error-tolerant nature of the CGN can be seen in “Appendix D”, 
where the CGN converges even if the nonlinear function is evaluated only up to the 
first decimal place. Given the similarity, combining these two methods may lead to 
significant improvement. Second, currently, the CGN does not detect if two or more 
points in the cluster converge to the same points; hence the computation becomes 
redundant. We may be able to save computational cost even further by introducing 

Table 3   Number of total 
function evaluations

Algorithm Example 1 Example 2 Example 3

CGN method 7782 6768 8452
DFO LS method 57,577 36,804 70,854
LM method 72,400 43,359 153,184
libensemble POUNDERS – 19,068 –
LM Def method 49,822 43,359 81,710
Imp Filter method – 51,559 –
Trues-Region method 94,308 62,136 103,260
Quasi-Newton method 124,762 63,316 151,774
Surrogate Opt method – 137,500 –
Particle Swarm method – 3,646,900 –
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the measure where we consider the point in the cluster is similar enough so that to 
stop the redundant calculation.

Matlab code is available at https​://www.mathw​orks.com/matla​bcent​ral/filee​xchan​
ge/68798​.
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Appendix A

Numerical experiments on the influence of the weight of the linear 
approximation

To illustrate the influence of the weight d(k)
j(i)

 of the weighted linear approximation in 
(2-1) of the algorithm [Eqs. (17) and (23)], we conducted numerical experiments 
using Example 1 of Sect. 4. For this numerical experiment, we varied the parameter 
� ≥ 0 in Eq. (23):

Fig. 10   Number of minimisers found for given accuracy threshold (tSSR) using various weights for the 
linear approximation (i.e., various � ). Smaller SSR indicates more accurate solution to the nonlinear-least 
squares problem

https://www.mathworks.com/matlabcentral/fileexchange/68798
https://www.mathworks.com/matlabcentral/fileexchange/68798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In Fig. 10, we show the number of minimisers found by CGN for given accuracy 
threshold. As can be seen from the figure , the weight for the linear approximation 
improves the accuracy and the speed of CGN. Note that � = 0 , which corresponds 
to giving equal weights to all the cluster points is not optimal. In this example, � ≥ 1 
gave good results.

Appendix B

Numerical experiments on the influence of the regularisation

To illustrate the necessity and the influence of the regularisation in (2-2) of the algo-
rithm [Eq. (26)], we conducted numerical experiments using Example 1 of Sect. 4. 
We varied the initial value of the regularisation coefficient �init and tested CGN. Fig-
ure 11 shows the number of minimisers found by CGN for given accuracy threshold. 
As can be seen from the figure, regularisation is necessary for CGN to perform well. 
For this example, �init = 0.1 gave a good result.

Appendix C

Numerical experiments on the influence of the initial distribution

To investigate the influence of the distribution of the points in the initial cluster, we 
have conducted numerical experiments using Example 1 with varying the number of 
points in the cluster (N = 50, 250, 1000) and type of distribution(Latin hypercube 
sampling, Sobol sequence, Halton sequence and uniform random sampling). We 
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Fig. 11   Number of minimisers found for given accuracy threshold (tSSR) using various initial lambda 
( �init ). Smaller SSR indicates more accurate solution to the nonlinear-least squares problem
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have used chaospy (Feinberg and Langtangen 2015) and pyDOE (https​://pytho​nhost​
ed.org/pyDOE​/) modules on Python version 3.7.1 to generate initial distributions. 
As can be seen in Fig. 12, when there is a sufficient number of points in the cluster 
(e.g., N = 1000), then quasi-random sampling technique such as Latin hypercube or 
Sobol sequence outperformed the uniform random sampling. On the other hand, the 
uniform random sampling performed consistently well across all numbers of points 
in the cluster we have tested.

Fig. 12   Number of minimisers found for Example 1 given accuracy threshold (tSSR) using various num-
ber of points in the cluster and initial distributions. Smaller SSR indicates more accurate solution to the 
nonlinear-least squares problem

Fig. 13   Example 1 when the nonlinear function is rounded to one decimal place: Number of solutions 
(out of 250) found by the various methods for given accuracy threshold (tSSR). Smaller SSR indicates 
more accurate solution to the nonlinear-least squares problem

https://pythonhosted.org/pyDOE/
https://pythonhosted.org/pyDOE/
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Appendix D

Application to discontinuous nonlinear functions

The Jacobian based local optimisation methods cannot solve nonlinear least squares 
problems if the nonlinear function is discontinuous. On the other hand, the Cluster 
Gauss–Newton (CGN) method uses the linear approximation of the nonlinear func-
tion to capture the global behaviour of the function. Hence, it does not require the 
nonlinear function to be continuous.

For the following numerical experiment, we consider the case where the nonlin-
ear function is not continuous. This example is constructed to show that CGN can 
solve nonlinear least squares problems that the conventional Jacobian based method 
cannot solve. We create such a nonlinear function by rounding the nonlinear func-
tion of Example 1 [i.e., Eqs. (1)–(3) in the supplementary document] to the first 
decimal place.

As can be seen in Fig. 13, the CGN method was able to find many accurate solu-
tions. On the other hand, the LM failed to find any reasonable solution. Unlike 
derivative based LM, a derivative-free method (DFO LS method) occasionally finds 
reasonable solutions.
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