
Vol.:(0123456789)

Optimization and Engineering (2022) 23:169–199
https://doi.org/10.1007/s11081-020-09571-2

1 3

RESEARCH ARTICLE

Cluster Gauss–Newton method

An algorithm for finding multiple approximate minimisers of
nonlinear least squares problems with applications to parameter
estimation of pharmacokinetic models

Yasunori Aoki1,2,4 · Ken Hayami3 · Kota Toshimoto2 · Yuichi Sugiyama2

Received: 21 April 2020 / Revised: 28 July 2020 / Accepted: 23 September 2020 /
Published online: 28 October 2020
© The Author(s) 2020

Abstract
Parameter estimation problems of mathematical models can often be formulated as
nonlinear least squares problems. Typically these problems are solved numerically
using iterative methods. The local minimiser obtained using these iterative methods
usually depends on the choice of the initial iterate. Thus, the estimated parameter
and subsequent analyses using it depend on the choice of the initial iterate. One way
to reduce the analysis bias due to the choice of the initial iterate is to repeat the
algorithm from multiple initial iterates (i.e. use a multi-start method). However, the
procedure can be computationally intensive and is not always used in practice. To
overcome this problem, we propose the Cluster Gauss–Newton (CGN) method, an
efficient algorithm for finding multiple approximate minimisers of nonlinear-least
squares problems. CGN simultaneously solves the nonlinear least squares problem
from multiple initial iterates. Then, CGN iteratively improves the approximations
from these initial iterates similarly to the Gauss–Newton method. However, it uses
a global linear approximation instead of the Jacobian. The global linear approxima-
tions are computed collectively among all the iterates to minimise the computational
cost associated with the evaluation of the mathematical model. We use physiologi-
cally based pharmacokinetic (PBPK) models used in pharmaceutical drug develop-
ment to demonstrate its use and show that CGN is computationally more efficient
and more robust against local minima compared to the standard Levenberg–Mar-
quardt method, as well as state-of-the art multi-start and derivative-free methods.

Keywords Nonlinear least squares problem · Multi-start method · Cluster Newton
method · Derivative-free method · Physiologically based pharmacokinetic (PBPK)
model · Parameter estimation

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1108
1-020-09571 -2) contains supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09571-2&domain=pdf
https://doi.org/10.1007/s11081-020-09571-2
https://doi.org/10.1007/s11081-020-09571-2

170 Y. Aoki et al.

1 3

1 Introduction

The parameter estimation of mathematical models often boils down to solving
nonlinear least squares problems. Hence, algorithms for solving nonlinear least
squares problems are widely used in many scientific fields.

The most traditional least squares solver is the Gauss–Newton method (Gauss
1857; Björck 1996). In practice, the Gauss–Newton method with regularisation
[i.e., Levenberg–Marquardt (LM) method Marquardt 1963; Moré 1978] or with
the Trust-Region method (Conn et al. 2000) is often used. Recently, derivative-
free methods, which do not explicitly use derivative information of the nonlinear
function, have been developed. These methods are usually computationally more
efficient as it avoids the costly computation of the derivatives of the nonlinear
functions. Also, they can be applied even to problems where the mathematical
models are ‘black box’. The state of the art derivative-free algorithms are DFO-
LS (Cartis and Roberts 2019) and POUNDERS (Wild 2017). A comprehensive
review of the derivative-free methods can be found in Larson et al. (2019).

Another approach for obtaining a solution of nonlinear least squares problems
is to directly minimise the sum of squared residuals (SSR) using generic optimi-
sation algorithms for the scalar objective function. The most classical approach
is to obtain a minimiser where the gradient of the SSR becomes zero using the
Newton method. As it is usually too costly to compute the Hessian of the SSR,
Quasi-Newton methods which approximate the Hessian are used. The commonly
used Quasi-Newton method is the BFGS method (Broyden 1970; Fletcher 1970;
Goldfarb 1970; Shanno 1970; Shanno and Kettler 1970). Another approach
which makes use of the Newton-type method for optimisation is Implicit Filter-
ing (Kelley 2011) which combines grid search and the Newton method. In addi-
tion to these optimisation algorithms, we can use numerous global optimisation
algorithms when bound constraints are given. For example, Surrogate Optimi-
sation (Gutmann 2001), Genetic Algorithm (Goldberg and Holland 1988), Par-
ticle Swarm algorithm (Kennedy and Eberhart 1995; Mezura-Montes and Coe-
llo 2011), and DIRECT (Jones et al. 1993) are well known global optimisation
algorithms.

Although there are a variety of algorithms to solve the nonlinear least squares
problems as listed above, they mostly focus on finding one minimiser. To the best
of our knowledge, there is very limited methodological development on algo-
rithms for simultaneously finding multiple approximate minimisers of nonlin-
ear least squares problems. For instance, when using the Levenberg–Marquardt
method, the local algorithm often gives a local minimiser which depends on the
choice of the initial iterate. To reduce the analysis bias due to the initial iterate
used for a local algorithm, it is a good practice to repeatedly use the local algo-
rithm with various initial iterates, as in multi-start methods (Boender et al. 1982).
Similarly, for problems where bound constraints are given, one can use global
optimisation algorithms to find one of the global minimisers. On the other hand,
if there are multiple global minisers, the global minimiser found can depend on
the algorithm setting, for example, the random seed. Hence, it is beneficial to use

171

1 3

Cluster Gauss–Newton method

global optimisation algorithms with various settings repeatedly if the uniqueness
of the global minimiser is not guaranteed. The trivial bottleneck of repeatedly
using these algorithms is the computation cost. In this paper, we propose a new
method addressing this computational challenge of finding multiple approximate
minimisers of nonlinear least squares problems.

Our algorithm development for finding multiple local minimisers of nonlinear
least squares problems was motivated by a mathematical model of pharmaceutical
drug concentration in a human body called the physiologically based pharmacoki-
netic (PBPK) model (Watanabe et al. 2009). The PBPK model is typically a system
of mildly nonlinear stiff ordinary differential equations (ODEs) with many param-
eters. This type of mathematical model is constructed based on the knowledge of
the mechanism of how the drug is absorbed, distributed, metabolised and excreted.
Given the complexity of this process and the limitation of the observations we can
obtain from a live human subject, the model parameters cannot be uniquely identi-
fied from the observations, meaning that there are non-unique global minimisers to
the nonlinear least squares problem. The estimated parameters of the PBPK model
are used to simulate the drug concentration of the patient from whom we are often
unable to test the drug on (e.g., children, pregnant person, a person with rare genetic
anomaly) or to predict the experiment that is yet to be run (different amount of drug
administration, multiple drugs used at the same time). As the simulated drug con-
centration is used to predict the safety of the drug in these different scenarios, it is
essential to consider multiple predictions based on multiple possible parameters that
are estimated from the available observations. A motivating example is presented in
Sect. 3. Another reason why we want to obtain multiple sets of parameters is that we
can understand which parameters cannot be estimated from the available data. This
will motivate the pharmaceutical scientists to perform additional (e.g., in-vitro or in-
animal) experiments to determine these parameters that were not estimable from the
available data.

In Aoki et al. (2011) and Aoki et al. (2014) we proposed the Cluster Newton (CN)
method for obtaining multiple solutions of a system of underdetermined nonlin-
ear equations. In recent years CN has been used in the field of pharmaceutical sci-
ence (Yoshida et al. 2013; Fukuchi et al. 2017; Asami et al. 2017; Toshimoto et al.
2017; Kim et al. 2017; Nakamura et al. 2018). For example, Toshimoto et al. (2017)
used the parameters estimated by CN to predict the adverse drug effect, Nakamura
et al. (2018) used the estimated parameters to predict the outcome of a clinical trial.
However, based on these applications of CN, we observed the necessity to develop
a new algorithm for finding multiple approximate minimisers of a nonlinear least
squares problem which is more robust against noise in the observed data. This is
mainly because actual pharmaceutical data may contain measurement error and
inconsistency coming from an inadequate model.

1.1 Nonlinear least squares problem of our interest

In this paper, we propose an algorithm for obtaining multiple approximate minimis-
ers of nonlinear least squares problems

172 Y. Aoki et al.

1 3

which do not have a unique solution (global minimiser), that is to say, there exist
x(1) ≠ x(2) such that

Here, f is a nonlinear function from ℝn to ℝm , x(1), x(2) ∈ ℝ
n and y∗ ∈ ℝ

m . The
nonlinear function f can be derived from a mathematical model, the vector x can
be regarded as a set of model parameters which one wishes to estimate, and the vec-
tor y∗ can be regarded as a set of observations one wishes to fit the model to. In the
motivating problem of estimating parameters of PBPK models, since there are usu-
ally insufficient observations, the corresponding nonlinear least squares problem has
multiple global minimisers. Therefore, we are interested in finding multiple mini-
misers instead of just one minimiser.

We shall call the following quantity the sum of squared residuals (SSR):

and use it for the quantification of the goodness of x as the approximation of the
solution of the least squares problem (1).

1.2 Well known example in pharmacokinetics

In this subsection, we present a simple pharmacokinetics parameter estimation prob-
lems where the corresponding nonlinear least squares problems have non-unique
global minimisers. This example is called ‘flip-flop kinetics’ and can be found in
most standard textbooks in pharmacokinetics (e.g. Gibaldi and Perrier 1982). Flip-
flop kinetics occurs when estimating the pharmacokinetic parameters of the drug
that is orally given (e.g., as a pill or a tablet) to patients based on the observation of
the drug concentration in the blood plasma. The simplest mathematical model for
this pharmacokinetics can be written as follows:

where

For this problem u2 corresponds to the drug concentration in the blood plasma,
which is observable (i.e., u2(ti) is the model simulation corresponding to the obser-
vation y∗

i
 , where ti is the ith observation time.). It can be shown analytically that

there are two distinct parameter sets that realise the same drug concentration time-
course curve. Figure 1 shows the surface plot of the sum of squared residuals of the

(1)min
x

||f (x) − y∗|| 2
2

(2)min
x

||f (x) − y∗|| 2
2
= ||f (x(1)) − y∗|| 2

2
= ||f (x(2)) − y∗|| 2

2
.

(3)||f (x) − y∗|| 2
2
,

(4)
du1

dt
= −Ka u1

du2

dt
=

Ka u1 − CL u2

V

(5)u1(t = 0) = 100 u2(t = 0) = 0

(6)CL = 10x1 Ka = 10x2 V = 10x3 .

173

1 3

Cluster Gauss–Newton method

corresponding nonlinear least squares problem. As can be seen, there are two global
minimisers for this nonlinear least squares problem.

In this subsection, we have shown the simplest possible form of this issue of non-
unique global minimisers in pharmacokinetics. Thus, we would like to point out that
one cannot assume the uniqueness of the global minimiser for more complex phar-
macokinetic models, for example, the PBPK model of our interest.

2 Method: Algorithm

In this section we describe the proposed algorithm. We first introduce a rough con-
cept using a toy example in Sect. 2.1 and then introduce the full algorithm in detail
in Sect. 2.2.

2.1 Brief explanation of the algorithm

The aim of the proposed Cluster Gauss–Newton (CGN) algorithm is to efficiently
find multiple approximate minimisers of the nonlinear least squares problem (1).
We do so by first creating a collection of initial guesses which we call the ‘cluster’.
Then, we move the cluster iteratively using linear approximations of the nonlinear
function f , similarly to the Gauss–Newton method (Björck 1996).

The unique idea in the CGN method is that the linear approximation is constructed
collectively throughout the points in the cluster instead of using the Jacobian matrix
which approximates the nonlinear function linearly at a point as in the Gauss–Newton

Fig. 1 Surface plots of the sum of squared residuals for pharmacokinetics model parameter estimation
problems with non-unique global minimisers (Flip-flop kinetics)

174 Y. Aoki et al.

1 3

or LM. By using points in the cluster to construct a linear approximation, instead of
explicitly approximating the Jacobian, we minimise the computational cost associ-
ated with the nonlinear function (i.e., mathematical model) for each iteration. In addi-
tion, by constructing linear approximation using non-local information, CGN is more
likely to converge to approximate minimisers with smaller SSR than methods using the
Jacobian.

In order to visualise the key differences between the proposed linear approxima-
tion (CGN) and the Jacobian (i.e., derivative) approaches, we consider the nonlinear
function

(7)f =

⎧
⎪⎨⎪⎩

(x + 1)2 − 2 cos(10(x + 1)) + 5 if x < −1

3 if − 1 ≤ x ≤ 1

(x − 1)2 − 2 cos(10(x − 1)) + 5 if x > 1

CGN method LM method

Iteration 1
Iteration 2

Iteration 3
Iteration 4

Iteration 5
Iteration 10

40−440−4

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

x

y

Fig. 2 Schematic comparison of CGN and LM. Dots represent the iterates with their function values in
each iteration and the lines represent linear approximations used to update the iterates. As can be seen
in this figure, the linear approximation used in CGN follows the global trend of the function, while the
slope used in LM captures the local feature of the function. As a result, when using CGN all the iterates
converge to the minimisers with the smallest residual (in this case global minimisers), while all the iter-
ates of LM converge to local minimisere whose residuals are not the minimum. In addition, for the 10
iterations presented in the figure, CGN required only 50 function evaluations while LM required 121
function evaluations since the slope is approximated using finite differences

175

1 3

Cluster Gauss–Newton method

(see Fig. 2) and aim to find global minimisers. Any point x ∈ [−1, 1] is a global
minimiser of this problem. Hence, this problem has nonunique global minimisers.
Let the points of the initial iterates be:

We now compute the linear approximations used to move these points in the cluster
to minimise the function f.

Gradient (LM)
For this nonlinear function, since the function is given in analytic form, we can obtain

the gradient explicitly. In, practice, when f is given as a “black box”, we can approxi-
mate the derivative by a finite difference scheme, for example, f �(xi) ≈

f (xi+�)−f (xi)

�
 .

Then, the linear approximation at xi can be written as f (x) ≈ f (xi+�)−f (xi)

�
(x − xi) + f (xi) .

Notice that it requires one extra evaluation of f at xi + � for each xi . This number of
extra function evaluation is, when evaluating a full gradient estimate, equal to the num-
ber of independent variables of f. (This is not the case if a directional derivative esti-
mate is used.) If f is given by a system of ODEs, one may use the adjoint method to
obtain the derivatives more efficiently. However, it requires solving an additional sys-
tem of ODEs (the adjoint equation). More importantly, iterates of methods based on the
gradient may converge to local minimisers, since they use local gradient information.

Cluster Gauss–Newton (CGN) method (proposed method)
In the proposed method, we construct a linear approximation for each point in the

cluster while using the value of f at other points in the cluster to globally approximate
the nonlinear function with a linear function. The influence of another point in the clus-
ter to the linear approximation is weighted according to how close the point is to the
point of approximation, i.e.,

where a(i) is the slope of the linear approximation at xi and the linear approxima-
tion at xi can be written as f (x) ≈ a(i)(x − xi) + f (xi) . There are many possibilities for
the weight dj(i) . In this paper, we choose dj(i) = (xj − xi)

−2� where � ≥ 0 (� = 0 cor-
responds to uniform weight). Note that Eq. (9) can also be regarded as a weighted
least squares solution of a system of linear equations where the weight is chosen to
be dj(i) . The weight is motivated by the fact that we weight the information from the
neighbouring points in the cluster more than the ones further away when construct-
ing the linear approximation. Note that we do not require any extra evaluation of f
for obtaining these linear approximations.

For the multi-dimensional nonlinear function f ∶ ℝ
n
→ ℝ

m , when we have N points
in the cluster, we solve the following linear least squares problem:

(8)
x1 = −6.3797853, x2 = −4.1656025, x3 = −3.6145728,

x4 = 2.0755468, x5 = 4.1540421.

(9)min
a(i)

∑
j≠i

(
dj(i)

(
(xj − xi)a(i) −

(
f (xj) − f (xi)

))) 2

(10)min
A(i)∈ℝ

m×n

||||
||||D(i)

(
�XT

(i)
AT
(i)
− �YT

(i)

)||||
||||
2

F

176 Y. Aoki et al.

1 3

where D(i) = diag(d1i,… , dNi) is a diagonal matrix defining the weights,
�X(i) ∈ ℝ

N×n is the difference between all the cluster points and xi , and �Y(i) ∈ ℝ
N×m

is the difference between the nonlinear function f evaluated at all the cluster points
and at xi . The precise definition of these quantities and derivation of (10) is given in
the next subsection.

For the one dimensional case (i.e., m = n = 1), the linear approximations at each
point for the first ten iterations for both CGN and LM are shown in Fig. 2. As can
be seen, the gradient used in LM captures the local behaviour of the nonlinear func-
tion. The linear approximation used in CGN, on the other hand, captures the global
behaviour of the nonlinear function. After nine iterations of the CGN, all the points
reached the minimisers with smallest SSR. On the other hand, the LM converges to
local minimisers whose SSR are not necessarily the minimum.

2.2 Detailed description of the algorithm

Next, we describe the proposed CGN algorithm in detail. In this subsection, we
denote a scalar quantity by a lower case letter e.g., a, c, a matrix by a capital letter,
e.g., A, or M, and a column vector by a bold symbol of a lower case letter, e.g., v , a ,
unless otherwise specifically stated. Super script T indicates the transpose. Hence,
vT and aT are row vectors.

(1) Pre-iteration process
(1-1) Create initial cluster
The initial iterates of CGN, a set of vectors {x(0)

i
}N
i=1

 are genrated using uniform
random numbers in each component within the domain of initial estimate of the
plausible location of global minimisers given by the user. The unique point of the
CGN is that the user specifies the domain of the initial estimates instead of a point.
In this paper, we assume that the domain of initial guess is given by the user by two
sets of vectors xL , xU , and the value x(0)

ji
 is sampled from the uniform distribution

between xL
j
 and xU

j
 , where x(0)

ji
 is the j th element of vector x(0)

i
.

Note that this does not mean that all the following iterates
x
(k)

i
(k ≥ 1, i = 1, 2,… ,N) must satisfy xL ≤ x

(k)

i
≤ xU . Also note that here we

have used uniform distribution; however, other choices of initial distributions are
possible. A brief numerical experiments using different initial distributions can be
found in “Appendix C”.

Store the initial set of vectors in a matrix X(0) , i.e.,

where the super script (0) indicates the initial iterate.
Evaluate the nonlinear function f at each x(0)

i
 as y(0)

i
= f (x

(0)

i
) (i = 1, 2,… ,N)

and store in matrix Y (0) , i.e.,

(11)X(0) = [x
(0)

1
, x

(0)

2
,… , x

(0)

N
]

(12)Y (0) =
[
y
(0)

1
, y

(0)

2
,… , y

(0)

N

]
.

177

1 3

Cluster Gauss–Newton method

If the function f cannot be evaluated at x(0)
i

 , then re-sample x(0)
i

 until f can be
evaluated.

Compute the sum of squared residuals vector r(0) i.e.,

The concise pseudo-code for the creation of the initial cluster can be found in
Algorithm 1.

(1-2) Initialise regularisation parameter vector
Fill the regularisation parameter vector �(0) ∈ ℝ

N , with the user-specified initial reg-
ularisation parameter �init .i.e.,

(2) Main iteration
Repeat the following procedure until the user specified stopping criteria are met. We

denote the iteration number as k, which starts from 0 and is incremented by 1 after each
iteration.

(2-1) Construct weighted linear approximations of the nonlinear function
We first construct a linear approximation around the point x(k)

i
 , s.t.,

Here, A(k)

(i)
∈ ℝ

m×n describes the slope of the linear approximation around x(k)
i

.

(13)r0
i
= ||y0

i
− y∗||2

2
(i = 1, 2,… ,N)

(14)r(0) =
[
r
(0)

1
, r0

2
,… , r0

N

]T
.

(15)�
(0) = [�init, �init, ..., �init]

T

(16)f (x) ≈ A
(k)

(i)
(x − x

(k)

i
) + f (x

(k)

i
) ,

178 Y. Aoki et al.

1 3

The key difference of our algorithm compared to others is that we construct a
Jacobian like matrix A(k)

(i)
 collectively using all the function evaluations of f in the

previous iteration, i.e., we solve

for i = 1, ...,N , where d
(k)

j(i)
≥ 0 , j = 1, ...,N are weights. Here,

�y
(k)

j(i)
= f (x

(k)

j
) − f (x

(k)

i
) ∈ ℝ

m and �x(k)
j(i)

= x
(k)

j
− x

(k)

i
∈ ℝ

n . (Note that �y(k)
i(i)

= 0 ,
�x

(k)

i(i)
= 0 .) Also, let

Note that f (x(k)
i
) are always computed at the previous iteration [e.g., as Eq. (12)

when k = 0 and in Step 2–3 when k > 0]. Hence, no new evaluation of f is required
at this step.

The key idea here is that we weight the information of the function evaluation
near x(k)

i
 more than the function evaluation further away. That is to say, d(k)

j(i)
> d

(k)

j�(i)
 if

||x(k)
j

− x
(k)

i
|| < ||x(k)

j�
− x

(k)

i
|| . The importance of this idea can be seen in the numeri-

cal experiment presented in “Appendix A”.
Noting that

we can rewrite Eq. (17) as

where

where d(k)
l(i)

≥ 0 . In this paper, we choose the weights as

(17)

min
A
(k)

(i)
∈ℝm×n

N∑
j=1

[
d
(k)

j(i)

||||
||||f (x

(k)

j
) −

{
A
(k)

(i)

(
x
(k)

j
− x

(k)

i

)
+ f (x

(k)

i
)
}||||

||||2
]2

= min
A
(k)

(i)
∈ℝm×n

N∑
j=1

(
d
(k)

j(i)

|||
|||�y

(k)

j(i)
− A

(k)

(i)
�x

(k)

j(i)

|||
|||2
)2

(18)�Y
(k)

(i)
=
[
�y

(k)

1(i)
,�y

(k)

2(i)
,…�y

(k)

N(i)

]
∈ ℝ

m×N

(19)�X
(k)

(i)
=
[
�x

(k)

1(i)
,�x

(k)

2(i)
,…�x

(k)

N(i)

]
∈ ℝ

n×N .

(20)

N∑
j=1

(
d
(k)

j(i)

|||
|||A

(k)

(i)
�x

(k)

j(i)
− �y

(k)

j(i)

|||
|||2
)2

=
||||
||||
(
A
(k)

(i)
�X

(k)

(i)
− �Y

(k)

(i)

)
D

(k)

(i)

||||
||||
2

F

=
||||
||||D

(k)

(i)

(
�X

(k)

(i)

T
A
(k)T

(i)
− �Y

(k)

(i)

T
)||||
||||
2

F

,

(21)min
A
(k)

(i)
∈ℝm×n

||||
||||D

(k)

(i)

(
�X

(k)

(i)

T
A
(k)T

(i)
− �Y

(k)

(i)

T
)||||
||||
2

F

(22)D
(k)

(i)
=diag

(
d
(k)

1(i)
, d

(k)

2(i)
, ..., d

(k)

N(i)

)
,

179

1 3

Cluster Gauss–Newton method

where x(k)
lj
, xU

l
, xL

l
 are the l th element of the vectors x(k)

j
, xU, xL , respectively

(l = 1, ..., n), and � ≥ 0 is a constant. We use this weighting scheme so that the
“information” from the nonlinear function evaluation from the point closer to the
point of approximation is more influential when constructing the linear approxima-
tion. The distance between xi and xj are normalised by the size of the domain of ini-
tial guess (i.e., xU and xL). The effect of the weight d(k)

j(i)
 and the parameter � and its

necessity is analysed in “Appendix A”. The minimum norm solution of Eq. (21) is
given by

where † denotes the Moore–Penrose inverse.
If rank�X (k)(i)D

(k)

(i)
= n,

Generically, rank�X
(k)

(i)
D

(k)

(i)
= n. rank𝛥X

(k)

(i)
< n can happen when

x
(k)

li
= c (i = 1, 2,… ,N) , i.e. when x(k)

i
 lie in the same hyperplane xl = c . This hap-

pens when the l-th component of x(k)
i

(i = 1, 2,… ,N) are all equal.
The concise pseudo-code for the weighted linear approximation can be found

in Algorithm 2.

(2-2) Solve for x that minimises ||y∗ − (A
(k)

(i)
(x − x

(k)

i
) + f (x

(k)

i
))|| 2

2

(23)d
(k)

j(i)
=

⎧
⎪⎨⎪⎩

�
1∑n

l=1
((x

(k)

lj
−x

(k)

li
)∕(xU

l
−xL

l
))2

��

if j ≠ i

0 if j = i

,

(24)A
(k)

(i)
= �Y

(k)

(i)
D

(k)

(i)

(
�X

(k)

(i)
D

(k)

(i)

)†

.

(25)A
(k)

(i)
= �Y

(k)

(i)
D

(k)

(i)

(
�X

(k)

(i)
D

(k)

(i)

)T
{(

�X
(k)

(i)
D

(k)

(i)

)(
�X

(k)

(i)
D

(k)

(i)

)T
}−1

.

180 Y. Aoki et al.

1 3

We now compute the next iterate X(k+1) using the matrices {A(k)

(i)
}N
i=1

 similarly to
the Gauss–Newton method with Tikhonov regularisation (e.g., Hansen 2005;
Björck 1996), i.e.,

for i = 1, ...,N , where y∗ is the set of observations one wishes to fit the nonlinear
function f to [cf. (1)], and y(k)

i
≡ f (x

(k)

i
) . For CGN, we require 𝜆(k)

i
> 0 . The neces-

sity of the regularisation can be seen in the numerical experiment presented in
“Appendix B”.

(2-3) Update matrices X and Y and vectors r and �
Evaluate the nonlinear function f for each x

(k+1)

i
 as y

(k+1)

i
= f (x

(k+1)

i
)

(i = 1, 2,… , n) , and store as Y (k+1) = [y
(k+1)

1
, y

(k+1)

2
,… , y

(k+1)

N
]. Compute the

sum of squared residuals vector as r(k+1) = [r
(k+1)

1
, r

(k+1)

2
, … , r

(k+1)

N
]T where

r
(k+1)

i
= ‖y(k+1)

i
− y∗‖ 2

2
(i = 1, 2,… ,N) . Note that this process can be imple-

mented in an embarrassingly parallel way.
If the residual ri increases, we replace x(k+1)

i
 by x(k)

i
 and increase the regularisa-

tion parameter i.e.,
if r(k)

i
< r

(k+1)

i
 or f (x(k+1)

i
) can not be evaluated, then let

else decrease the regularisation parameter, i.e.,

for each i = 1, ...,N.
There are various ways to update the regularisation parameter � . In this paper

we followed the strategy used in the Matlab’s implementation of the Leven-
berg–Marquardt method.

In addition, in this step, we impose the stopping criteria for each point in the
iteration. As can be seen in Eq. (26), x(k+1)

i
≈ x

(k)

i
 for large �i , so that we can

expect very small update in x(k+1)
i

 . Hence, in order to mimic the minimum step
size stopping criteria, we stop the update for i where 𝜆i > 𝜆max.

The concise pseudo-code for updating matrices X and Y and vectors r and � is
given in Algorithm 3.

The influence of the choice of the initial value �init of the regularization param-
eter in Eq. (15) is studied in “Appendix B”.

(26)x
(k+1)

i
= x

(k)

i
+
(
A
(k)T

(i)
A
(k)

(i)
+ �

(k)

i
I
)−1

A
(k)T

(i)
(y∗ − y

(k)

i
)

(27)x
(k+1)

i
= x

(k)

i

(28)y
(k+1)

i
= y

(k)

i

(29)�
(k+1)

i
= 10 �

(k)

i

(30)�
(k+1)

i
=

1

10
�
(k)

i
,

181

1 3

Cluster Gauss–Newton method

We present a concise description of the CGN as a pseudo-code in Algorithm 4.

182 Y. Aoki et al.

1 3

3 Motivating example

In this section, we introduce a motivating example to illustrate how the proposed
method could be used in practice. We consider a scenario where a newly developed
drug is tested for the first time in a human. Before the drug is given to a human, the
biochemical properties of the drug are studied in-test-tube (in-vitro) and in-animal

Fig. 3 A schematic diagram of a physiologically based pharmacokinetic model. (Arrows represent
the movement of the drug to a different part of the body. Variables u

i
 are the drug concentration or the

amount of the drug in each compartment. The body is divided into Blood, Muscle, Skin, Adipose, Liver
and Intestine. The liver is further divided into ten compartments to model the complex drug behaviour in
the liver. The intestine is divided into four compartments, three transit compartments and one intestine
compartment, to model the time it takes for the drug to reach the intestine)

183

1 3

Cluster Gauss–Newton method

experiments. However, how the drug behaves in the human body is still uncertain.
Based on the results of in-vitro and in-animal experiments, the team decides that
100mg is a safe amount of the drug to be given to a human and the experiment is
conducted with a healthy normal volunteer, and the drug concentration in the blood
plasma is measured at points in time. Using these measurements, we estimate the
multiple possible model parameters which can be used to simulate various scenar-
ios. The following workflow can be envisioned:

1: Construct a mathematical model based on the understanding of the physi-
ology and biochemical properties of the drug.

In this example, we use the model presented in Watanabe et al. (2009). The math-
ematical model is depicted in Fig. 3, and it can be written as a system of nonlinear
ordinary differential equations with 20 variables. We refer the readers to the sup-
plementary material for the complete description of the model. There are two types
of model parameters in this model: physiological parameters and kinetic parameters.
Examples of the physiological parameters are the sizes of the organs or the blood
flow rates between the organs. As the human physiology is well studied and these
parameters usually do not depend on the drugs, we can assume these parameters
to be known. The kinetic parameters, such as, how fast the drug gets excreted from
the body or how easily it binds to tissues are the parameters that depend on the drug
and usually are not very well known. Before the first in-human experiment, the drug
development team characterises these parameters using an organ in test-tubes or
by administering the drug to an animal. However, these parameters can differ from
animal to human, so we do not have a very accurate estimate of these parameters.
The differences in these parameters between a human and an animal can be sev-
eral orders of magnitude. Figure 4 depicts plots of the drug concentration simu-
lation where the kinetic parameters are sampled within a reasonable range of the

Fig. 4 Simulation of the drug concentration in the blood plasma using the parameters that are naively
sampled from the range of possible kinetic parameters. Note that these simulations do not give any useful
information

184 Y. Aoki et al.

1 3

parameters. As can be seen in Fig. 4, we cannot obtain any useful information just
by randomly sampling the kinetic parameters from the feasible range.

2: Sample multiple possible model parameter sets that fit the model predic-
tion of the drug concentration to the observed data from the 100mg experi-
ment. We now use the observed data from the experiment where 100mg of the drug
was given to a human. The red dots in Fig. 5 depict the observed data. The left panel
of Fig. 5 shows some of the simulation results using the parameter sets of the ini-
tial iterate of CGN. The right panel of Fig. 5 shows some of the simulation results
after 20 iterations of CGN. As can be seen in Fig. 5, CGN can find multiple sets of
parameters that fit the observed data. The parameter values are depicted in the box
plots in Fig. 6. As can be seen in Fig. 6, after 20 iterations of CGN, the distribution
of some of the parameters shrinks significantly suggesting these parameters can be
identified from the observations while the distribution of some of the parameters are
unchanged indicating that these parameters cannot be identified from the observa-
tion. In Fig. 7, we show scatter plots of the parameters found by CGN. As can be
seen in Fig. 7, even if the parameter cannot be identified from the observation, some
nonlinear relationships can occasionally be identified between the parameters.

4 Numerical experiments

In this section we illustrate the advantages of the proposed CGN algorithm by
numerical experiments on three PBPK models.

0

1

100

Time

D
ru

g
co

nc
en

tr
at

io
n

in
 b

lo
od

 (u
1(

t)
)

010 20 30 40 50 10 20 30 40 50

Fig. 5 Plot of the simulation of drug concentration (black solid line) with observations (red dot). Simula-
tion results are based on the parameters for the initial iterate for CGN and the parameters found after 20
iterations of CGN. In the left panel, the simulation results based on the top 100 sets of the parameters
(out of 1000 parameter sets in the cluster) from the initial cluster are shown. In the right panel, the simu-
lations results based on the top 100 sets of the parameters (out of 1000 parameter sets in the cluster) after
20 iterations of CGN are shown. Hence, top 100 means the 100 smallest sum of squared residuals (SSR)
between the simulation and observed data

185

1 3

Cluster Gauss–Newton method

4.1 Numerical experiment setup

In this subsection we specify the details of the numerical experiment set-up.

4.1.1 Mathematical models

For the numerical experiments, we used the following three published mathemati-
cal models of drug concentration in the blood of a human body (PBPK model)
(Fukuchi et al. 2017; Yao et al. 2018; Yoshikado et al. 2016). The time course
drug concentration was simulated using the model, and random noise was added
to mimic the observation uncertainties. The random noise was generated by a
normal distribution with a standard deviation of 10% of the simulated concentra-
tion value. The simulated drug concentration was used as the test dataset, and
multiple possible parameters were estimated from the test dataset using CGN
and conventional methods. The mathematical description of each PBPK model
used for the numerical experiments is summarised in Table 1. Also the detailed

Fig. 6 Box plots of top 100 parameters (the same parameter sets as the one used to plot Fig. 5) from
the initial cluster (left) and the cluster after 20 iterations of CGN (right). Note the distributions of
x5, x8, x9, x10 clearly shrunk after 20 iterations while the distribution of x4 did not change noticeably.
(Box plot: The edges of the boxes are the 75th and 25th percentiles. The line in the box is the median,
and the whiskers extend to the largest and the smallest value within the 1.5 times the inter-quartile range.
Dots are the outliers outside the whiskers)

186 Y. Aoki et al.

1 3

Fig. 7 Scatter plots of parameters. As can be seen in this example, we can find parameter-parameter cor-
relations of some of the parameters found by CGN. (parameters whose corresponding SSR is the least
100 within the cluster of 1,000, i.e., the same parameter sets as the one used to plot the right hand side of
Fig. 5)

Table 1 Summary of the mathematical description of the PBPK models used for the numerical experi-
ments

Model structure Parameters Simulated
To be estimated Observations

Model 1 Three systems of nonlinear ODEs 11 parameters 30 observations
with 20 variables

Model 2 Two systems of linear ODEs 11 parameters 22 observations
with 20 variables

Model 3 Two systems of nonlinear ODEs 19 parameters 24 observations
with 20 and 33 variables

187

1 3

Cluster Gauss–Newton method

description of the model and implementations of all the examples are available as
the supplementary material.

4.1.2 Computation environment

All computational experiments were performed using Matlab 2019a on 3.1 GHz
Intel Core i5 processors with MacOS version 10.13.6. When using the algorithms
implemented in Python we used Python version 3.7. All results of the numerical
experiments were summarised and visualised using ggplot2 version 2.2.1 (Wick-
ham 2016) in R version 3.3.2.

4.1.3 The initial set of vectors {x (0)
i
}N
i=1

We generated the initial set of vectors {x(0)
i
}N
i=1

 randomly based on Algorithm 1. The
range of the initial cluster was set by the pharmacologically likely parameter range
based on a priori knowledge defined by domain specialists (e.g., from the values
obtained from the animal experiments or lab experiments).

We stored and used this initial set of vectors as the initial cluster for the CGN and
also as initial iterates for the other nonlinear least squares solvers and optimisation
algorithms which were compared.

Notice that this range of the initial cluster does not necessary contain the global
minimiser as many pharmacokinetics parameter can be few order of magnitudes dif-
ferent between species. For the sake of comparison with the constrained optimisa-
tion algorithms, we constructed Example 2 so that the initial range contains the set
of parameters that we used to create the dataset. This ensures that a global minimiser
is in the domain where the initial cluster is made. When comparing with the con-
strained optimisation algorithms, we used this domain as the bound constraint for
the parameter search for these algorithms.

4.1.4 ODE solver

For Examples 1 and 3 the nonlinear function evaluations require the numerical solu-
tion of stiff systems of ODEs. We used the ODE15s solver (Shampine and Reichelt
1997) with the default settings to solve these ODEs (relative tolerance 10−3 , absolute
tolerance 10−6). We observed that for some set of parameters, the ODE solver can
get stuck in an infinite loop. Here, we set the timeout, where if the ODE evaluation
takes longer than 5 seconds, it terminates the ODE evaluation process and returns a
not-a-number vector.

4.1.5 Setting for the cluster Gauss–Newton (CGN) method:

We used the following parameters unless stated otherwise:

(31)N = 250

188 Y. Aoki et al.

1 3

Here kmax is the maximum number of iterations of the method. We used the ini-
tial set of vectors {x(0)

i
}N
i=1

 described in Sect. 4.1.3 as the initial cluster. Note that
we chose �init to be consistent with the default setting of the LM implementation
(lsqnonlin in Matlab.) In “Appendicies A, B, and C”, we have presented the numeri-
cal experiments on the influence of the user-defined algorithm parameters.

4.2 Algorithms compared

Here, we list the conventional and recently developed algorithms that we compared
our proposed algorithm with. We used the default setting of the algorithms unless
stated otherwise.

4.2.1 Nonlinear least squares solvers

We compare the proposed algorithm against gradient-based and gradient-free non-
linear least squares algorithm s. We used these algorithms to find multiple approxi-
mate minimisers of the nonlinear least square problem of our interest by repeatedly
applying these algorithms with various initial iterates. Namely; we used each param-
eter vector in {x(0)

i
}N
i=1

 , which were randomly generated in the CGN method as the
initial iterate, and excecuted each algorithm repeatedly to obtain N sets of estimated
parameter vectors.

Levenberg–Marquardt (LM) method The conventional gradient-based nonlin-
ear least squares solver, Levenberg–Marquardt method (Björck 1996) implemented
in the lsqcurvefit function in Matlab.

We use LM with the default setting as well as setting ‘FiniteDifferenceS-
tepSize’ to be the square root of the default accuracy of the ODE solve (e.g.,
FiniteDifferenceStepSize =

√
AbsTol =

√
10−6). Note that the FiniteDifferenceS-

tepSize of the default setting is 10−6.
Trust-Region (TR) method The conventional gradient-based nonlinear least

squares solver, Trust-Region method (Conn et al. 2000) implemented in the lsqcur-
vefit function in Matlab.

DFO–LS method A gradient-free nonlinear least squares solver DFO-LS
method (Cartis et al. 2019). We obtained the Python code of DFO-LS Version 1.0.2
from http://peopl e.maths .ox.ac.uk/rober tsl/dfols / (last accessed on June 6th 2019).
To make the numerical method for solving the model ODEs exactly the same, we

(32)�init = 0.01

(33)�max = 1010

(34)� = 1

(35)kmax = 100.

http://people.maths.ox.ac.uk/robertsl/dfols/

189

1 3

Cluster Gauss–Newton method

called the Matlab implementation of the nonlinear function through MATLAB
Engine API for Python.

Libensemble with POUNDERS We used the libensemble algorithm (Hudson
et al. 2019) that was available at the developer branch of https ://githu b.com/Liben
sembl e/liben sembl e (last accessed April 25th 2019) together with petsc version
3.10.4 available as https ://www.mcs.anl.gov/petsc /index .html. We used POUND-
ERS as the nonlinear least squares solver. As libensemble was implemented in
Python, we used the MATLAB Engine API to call the nonlinear function. POUND-
ERS algorithm utilises bound constraints for the search domain, and we tested this
algorithm only for Example 2.

4.2.2 Optimisation algorithms

We compared the proposed method against the optimisation algorithms that are
designed to minimise a function which takes a vector quantity as an input and scalar
quantity as output. We applied these algorithms to our nonlinear least squares prob-
lem by minimising SSR defined in Eq. (3)

Quasi-Newton method We used the Quasi-Newton method implemented in Mat-
lab’s Optimisation toolbox as the fminunc function. This implementation uses the
BFGS formula to update the approximate Hessian.

The following algorithms require bound constraints, and they were tested only for
Example 2.

Implicit filter method This is another gradient-free optimisation algorithm. The
code was downloaded from https ://archi ve.siam.org/books /se23/ (last accessed June
7th 2019). We used the ‘least-squares’ option with a budget of 200.

Surrogate optimisation method We used the Surrogate optimisation algorithm
implemented in Matlab’s Global Optimisation Toolbox as the surrogateopt func-
tion. We repeated this algorithm 250 times with distinct random-seed to obtain 250
global minimisers of the nonlinear-least squares problem of our interest.

Particle Swarm We used the Particle Swarm optimisation algorithm imple-
mented in Matlab’s Global Optimisation Toolbox as the particleswarm function. We
repeated this algorithm 250 times with distinct random seeds to obtain 250 global
minimisers of the nonlinear least squares problem of our interest.

Genetic Algorithm We used the Genetic algorithm implemented in Matlab’s
Global Optimisation Toolbox as the ga function. As one run of this algorithm
required over 100,000 function evaluations for our examples, we did not repeat this
algorithm to obtain multiple global minimisers.

DIRECT A sampling algorithm DIRECT (Jones et al. 1993). The Matlab imple-
mentation was obtained from https ://searc hcode .com/codes earch /view/12449 743/
(last accessed July 30th 2019). As one run of this algorithm required over 100,000
function evaluations for our examples, we did not repeat this algorithm to obtain
multiple global minimisers.

https://github.com/Libensemble/libensemble
https://github.com/Libensemble/libensemble
https://www.mcs.anl.gov/petsc/index.html
https://archive.siam.org/books/se23/
https://searchcode.com/codesearch/view/12449743/

190 Y. Aoki et al.

1 3

4.3 Results

We compared the proposed CGN method with various existing algorithms. We
compared the ‘speed’ of the algorithm by the number of function evaluations
required and we compared the ‘quality’ of the minimisers found by the SSR
(smaller the SSR the better minimiser). As we can see in Table 2, the dominant
part of the computation time was spent by the nonlinear function evaluations in
CGN. Hence, we claim that the number of function evaluations is a fair way to
compare the computation cost.

We compared the speed for finding acceptable minimisers. We define the
acceptable minimisers as the minimisers with SSR less than the SSR of the
parameter that was used to generate the test dataset. In Fig. 8, we show the num-
ber of acceptable minimisers found given the total number of function evalua-
tions. As can be seen, CGN is significantly faster than any other method for find-
ing acceptable minimisers. In general, the nonlinear least squares solvers were
faster than using optimisation algorithms to minimise SSR. Also, some optimi-
sation methods could not find or could only find a few acceptable minimisers.
Among the various least squares solvers, the derivative-free methods (CGN, DFO
LS, and libensemble POUNDERS) were usually faster than the derivative-based
methods.

As this analysis depends on how we define acceptable minimisers, we plot-
ted the number of minimisers found for a given SSR threshold in Fig. 9. For
this analysis each algorithm was run until its default stopping criterion (given in
the reference of each method) was met. We summarised the number of function
evaluations that each algorithm required to meet its default stopping criterion in
Table 3.

As can be seen in Fig. 9, for Examples 1 and 3, CGN finds more approximate
minimsers with small SSR than all the conventional algorithms. For Example 2, as
we know that at least one global minimiser is enclosed in the domain defined by
xU and xL , we were able to apply optimisation algorithms with bound constraints
(libsensemble with POUNDERS, implicit filter, surrogate optimisation, and parti-
cle swarm). For this problem, particle swarm obtained slightly more approximate
minimisers with small SSR than CGN. However, as can be seen in Table 3, parti-
cle swarm required significantly more function evaluations than the CGN (particle
swarm: 3,646,900 v.s. CGN: 6768). Aside from the particle swarm, CGN outper-
formed all the other methods in the number of acceptable minimisers found.

Table 2 Ingredients of the computation time for CGN (seconds)

Example 1 Example 2 Example 3

Nonlinear function evaluation 1890.598 852.116 1779.362
Computation of linear approximation 3.610 6.929 11.021
Output results as csv files 3.647 3.663 4.129
Total computation 1898.393 863.172 1795.192

191

1 3

Cluster Gauss–Newton method

In addition to above rigorous comparison, we applied two global optimisa-
tion algorithms, Genetic algorithm (GA) and DIRECT to Example 2. GA and
DIRECT required 120,600 and 100,063 nonlinear function evaluations, respec-
tively, to obtain one minimiser each. The SSR of the minimisers found by GA
and DIRECTwere 0.0197 and 0.244, respectively, while the minimum SSR found
by the CGN is 0.0188. Hence, even to find just one minimiser, CGN is faster and
more accurate than these two methods.

Fig. 8 Number of acceptable minimisers (out of 250) found by each method for given total number
of function evaluations. Acceptable minimisers are defined by the minimisers with SSR less than the
SSR of the parameter that was used to generate the test dataset. (Example1: SSR < 0.0592 , Example2:
SSR < 0.0444 , Example3: SSR < 0.0915)

192 Y. Aoki et al.

1 3

5 Concluding remarks

We proposed the Cluster Gauss–Newton (CGN) method, a new derivative free
method specifically designed for finding multiple approximate minimisers of a
nonlinear least squares problem. The development of this algorithm was moti-
vated by the parameter estimation of physiologically based pharmacokinetic

Fig. 9 Number of minimisers (out of 250) found by each method for given accuracy threshold (tSSR).
Smaller SSR indicates more accurate solution to the nonlinear-least squares problem

193

1 3

Cluster Gauss–Newton method

(PBPK) models that appears in pharmaceutical drug development. The particular
nature of the model, where the model is over-parameterised, and consideration
of multiple possible parameters is necessary, motivated us to develop the new
method. The fact that our algorithm obtains multiple approximate minimisers col-
lectively makes it significantly more computationally efficient compared to exist-
ing nonlinear least squares solvers or optimisation algorithms. In addition, we
observed that in general, CGN obtains minimisers with smaller sum of squared
residuals (SSR) than existing algorithms. We demonstrated these advantages
using three examples that come from real world drug development projects.

By minimising the assumption on the nonlinear function, where it can be a “black
box”, we have ensured the ease of use and implementation for those who may not
have a substantial background in mathematics or scientific computing. We believe
this advantage of the proposed method will be appreciated by potential users of the
algorithm in industry. In this paper, we used the pharmacokinetics models as exam-
ples. However, as we do not assume any particular form of the nonlinear function,
we believe the proposed method can be used for many other mathematical models in
various scientific fields.

CGN performs sufficiently well for the current use in pharmacokinetic model
analyses. However, we believe there are various possible extensions of CGN. First,
CGN only makes use of the function evaluations from the one previous iteration. On
the other hand, we can consider using the function evaluations from all the previ-
ous iterations similarly to the multi-secant method (Eyert 1996; Bierlaire and Crittin
2006; Hicken et al. 2017). CGN and multi-secant methods already share similarities;
both methods construct global linear approximations from previously conducted
nonlinear function evaluations; this gives an error-tolerant nature and computa-
tional efficiency. The error-tolerant nature of the CGN can be seen in “Appendix D”,
where the CGN converges even if the nonlinear function is evaluated only up to the
first decimal place. Given the similarity, combining these two methods may lead to
significant improvement. Second, currently, the CGN does not detect if two or more
points in the cluster converge to the same points; hence the computation becomes
redundant. We may be able to save computational cost even further by introducing

Table 3 Number of total
function evaluations

Algorithm Example 1 Example 2 Example 3

CGN method 7782 6768 8452
DFO LS method 57,577 36,804 70,854
LM method 72,400 43,359 153,184
libensemble POUNDERS – 19,068 –
LM Def method 49,822 43,359 81,710
Imp Filter method – 51,559 –
Trues-Region method 94,308 62,136 103,260
Quasi-Newton method 124,762 63,316 151,774
Surrogate Opt method – 137,500 –
Particle Swarm method – 3,646,900 –

194 Y. Aoki et al.

1 3

the measure where we consider the point in the cluster is similar enough so that to
stop the redundant calculation.

Matlab code is available at https ://www.mathw orks.com/matla bcent ral/filee xchan
ge/68798 .

Acknowledgements We would like to thank Professor Akihiko Konagaya for giving us the opportunity
to initiate this research. We would like to thank Dr. Jeffrey Larson for his help on numerical experiment
using libensemble. We would like to thank Professor Hiroshi Yabe and Dr. Ryota Kobayashi for useful
discussions. In addition, we wish to thank the reviewers of this paper, especially for the ideas for the fur-
ther improvement of the algorithm. Ken Hayami was supported in part by JSPS KAKENHI Grant Num-
ber 15K04768 and 19H03392. Yasunori Aoki is currently employed by AstraZeneca.

Funding Open access funding provided by Uppsala University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendix A

Numerical experiments on the influence of the weight of the linear
approximation

To illustrate the influence of the weight d(k)
j(i)

 of the weighted linear approximation in
(2-1) of the algorithm [Eqs. (17) and (23)], we conducted numerical experiments
using Example 1 of Sect. 4. For this numerical experiment, we varied the parameter
� ≥ 0 in Eq. (23):

Fig. 10 Number of minimisers found for given accuracy threshold (tSSR) using various weights for the
linear approximation (i.e., various �). Smaller SSR indicates more accurate solution to the nonlinear-least
squares problem

https://www.mathworks.com/matlabcentral/fileexchange/68798
https://www.mathworks.com/matlabcentral/fileexchange/68798
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

195

1 3

Cluster Gauss–Newton method

In Fig. 10, we show the number of minimisers found by CGN for given accuracy
threshold. As can be seen from the figure , the weight for the linear approximation
improves the accuracy and the speed of CGN. Note that � = 0 , which corresponds
to giving equal weights to all the cluster points is not optimal. In this example, � ≥ 1
gave good results.

Appendix B

Numerical experiments on the influence of the regularisation

To illustrate the necessity and the influence of the regularisation in (2-2) of the algo-
rithm [Eq. (26)], we conducted numerical experiments using Example 1 of Sect. 4.
We varied the initial value of the regularisation coefficient �init and tested CGN. Fig-
ure 11 shows the number of minimisers found by CGN for given accuracy threshold.
As can be seen from the figure, regularisation is necessary for CGN to perform well.
For this example, �init = 0.1 gave a good result.

Appendix C

Numerical experiments on the influence of the initial distribution

To investigate the influence of the distribution of the points in the initial cluster, we
have conducted numerical experiments using Example 1 with varying the number of
points in the cluster (N = 50, 250, 1000) and type of distribution(Latin hypercube
sampling, Sobol sequence, Halton sequence and uniform random sampling). We

(36)d
(k)

j(i)
=

⎧
⎪⎨⎪⎩

�
1∑n

l=1
((x

(k)

lj
−x

(k)

li
)∕(xU

l
−xL

l
))2

��

if j ≠ i

0 if j = i

.

Fig. 11 Number of minimisers found for given accuracy threshold (tSSR) using various initial lambda
(�init). Smaller SSR indicates more accurate solution to the nonlinear-least squares problem

196 Y. Aoki et al.

1 3

have used chaospy (Feinberg and Langtangen 2015) and pyDOE (https ://pytho nhost
ed.org/pyDOE /) modules on Python version 3.7.1 to generate initial distributions.
As can be seen in Fig. 12, when there is a sufficient number of points in the cluster
(e.g., N = 1000), then quasi-random sampling technique such as Latin hypercube or
Sobol sequence outperformed the uniform random sampling. On the other hand, the
uniform random sampling performed consistently well across all numbers of points
in the cluster we have tested.

Fig. 12 Number of minimisers found for Example 1 given accuracy threshold (tSSR) using various num-
ber of points in the cluster and initial distributions. Smaller SSR indicates more accurate solution to the
nonlinear-least squares problem

Fig. 13 Example 1 when the nonlinear function is rounded to one decimal place: Number of solutions
(out of 250) found by the various methods for given accuracy threshold (tSSR). Smaller SSR indicates
more accurate solution to the nonlinear-least squares problem

https://pythonhosted.org/pyDOE/
https://pythonhosted.org/pyDOE/

197

1 3

Cluster Gauss–Newton method

Appendix D

Application to discontinuous nonlinear functions

The Jacobian based local optimisation methods cannot solve nonlinear least squares
problems if the nonlinear function is discontinuous. On the other hand, the Cluster
Gauss–Newton (CGN) method uses the linear approximation of the nonlinear func-
tion to capture the global behaviour of the function. Hence, it does not require the
nonlinear function to be continuous.

For the following numerical experiment, we consider the case where the nonlin-
ear function is not continuous. This example is constructed to show that CGN can
solve nonlinear least squares problems that the conventional Jacobian based method
cannot solve. We create such a nonlinear function by rounding the nonlinear func-
tion of Example 1 [i.e., Eqs. (1)–(3) in the supplementary document] to the first
decimal place.

As can be seen in Fig. 13, the CGN method was able to find many accurate solu-
tions. On the other hand, the LM failed to find any reasonable solution. Unlike
derivative based LM, a derivative-free method (DFO LS method) occasionally finds
reasonable solutions.

References

Aoki Y, Hayami K, De Sterck H, Konagaya A (2011) Cluster Newton method for sampling multiple
solutions of an underdetermined inverse problem: parameter identification for pharmacokinetics.
NII Tech Rep 2:1–38

Aoki Y, Hayami K, De Sterck H, Konagaya A (2014) Cluster Newton method for sampling multiple
solutions of underdetermined inverse problems: application to a parameter identification problem
in pharmacokinetics. SIAM J Sci Comput 36(1):B14–B44. https ://doi.org/10.1137/12088 5462

Asami S, Kiga D, Konagaya A (2017) Constraint-based perturbation analysis with cluster New-
ton method: a case study of personalized parameter estimations with irinotecan whole-body
physiologically based pharmacokinetic model. BMC Syst Biol. https ://doi.org/10.1186/s1291
8-017-0513-2

Bierlaire M, Crittin F (2006) Solving noisy, large-scale fixed-point problems and systems of nonlinear
equations. Transp Sci 40(1):44–63

Björck Å (1996) Numerical mthods for least squares roblems. SIAM, Philadelphia. https ://doi.
org/10.1137/1.97816 11971 484

Boender CGE, Kan AR, Timmer G, Stougie L (1982) A stochastic method for global optimization. Math
Program 22(1):125–140

Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General con-
siderations. IMA J Appl Math 6(1):76–90

Cartis C, Roberts L (2019) A derivative-free Gauss–Newton method. Math Program Comput
11(4):631–674

Cartis C, Fiala J, Marteau B, Roberts L (2019) Improving the flexibility and robustness of model-based
derivative-free optimization solvers. ACM Transp Math Softw. 3(32):1–41

Conn AR, Gould NI, Toint PL (2000) Trust Region Methods. SIAM, Philadelphia
Eyert V (1996) A comparative study on methods for convergence acceleration of iterative vector

sequences. J Comput Phys 124(2):271–285
Feinberg J, Langtangen HP (2015) Chaospy: an open source tool for designing methods of uncertainty

quantification. J Comput Sci 11:46–57
Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

https://doi.org/10.1137/120885462
https://doi.org/10.1186/s12918-017-0513-2
https://doi.org/10.1186/s12918-017-0513-2
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1137/1.9781611971484

198 Y. Aoki et al.

1 3

Fukuchi Y, Toshimoto K, Mori T, Kakimoto K, Tobe Y, Sawada T, Asaumi R, Iwata T, Hashimoto Y,
Nunoya KI, Imawaka H, Miyauchi S, Sugiyam Y (2017) Analysis of nonlinear pharmacokinetics of
a highly Albumin-bound compound: contribution of Albumin-mediated hepatic uptake mechanism.
J Pharm Sci. https ://doi.org/10.1016/j.xphs.2017.04.052

Gauss CF (1857) Theory of the motion of the heavenly bodies moving about the Sun in conic sections:
A translation of Gauss’s“ Theoria Motus’. With an Appendix. Little, Brown and Company, Boston

Gibaldi M, Perrier D (1982) Drugs and the pharmaceutical sciences. In: Pharmacokinetics, vol. 15, pp.
445–449. Marcel Dekker New York

Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99
Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comp

24(109):23–26
Gutmann HM (2001) A radial basis function method for global optimization. J Global Optim

19(3):201–227
Hansen PC (2005) Rank-deficient and discrete Ill-posed problems: numerical aspects of linear nversion,

vol 4. SIAM, Philadelphia
Hicken JE, Meng P, Dener A (2017) Error-tolerant multisecant method for nonlinearly constrained opti-

mization. arXiv preprint arXiv :1709.06985
Hudson S, Larson J, Wild SM, Bindel D, Navarro JL (2019) libEnsemble user manual. Tech. Rep. Revi-

sion 0.5.1, Argonne National Laboratory. https ://build media .readt hedoc s.org/media /pdf/liben sembl
e/lates t/liben sembl e.pdf

Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant.
J Optim Theory Appl 79(1):157–181

Kelley CT (2011) Implicit Filtering, vol. 23 in Software Environments and Tools. SIAM, Philadelphia
Kennedy J, Eberhart R (1995) Particle swarm optimization (PSO). In: Procedings of IEEE international

conference on neural networks, Perth, Australia, pp. 1942–1948
Kim SJ, Toshimoto K, Yao Y, Yoshikado T, Sugiyama Y (2017) Quantitative analysis of complex drug-

drug interactions between Repaglinide and Cyclosporin A /Gemfibrozil using physiologically based
pharmacokinetic models with in vitro transporter/enzyme inhibition data. J Pharm Sci. https ://doi.
org/10.1016/j.xphs.2017.04.063

Larson J, Menickelly M, Wild SM (2019) Derivative-free optimization methods. Acta Numer 28:287–404
Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Indus

Appl Math 11(2):431–441
Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization:

past, present and future. Swarm Evolut Comput 1(4):173–194
Moré JJ (1978) The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA

(ed) Numerical analysis. Lecture notes in mathematics, vol 630. Springer, Berlin, Heidelberg, pp
105–116

Nakamura T, Toshimoto K, Lee W, Imamura CK, Tanigawara Y, Sugiyama Y (2018) Application of
PBPK modeling and virtual clinical study approaches to predict the outcomes of CYP2D6 geno-
type-guided dosing of tamoxifen. CPT Pharm Syst Pharmacol. https ://doi.org/10.1002/psp4.12307

Shampine LF, Reichelt MW (1997) The MATLAB ODE suite. SIAM J Sci Comput 41(3):1–22. https ://
doi.org/10.1137/S1064 82759 42764 24

Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput
24(111):647–656

Shanno DF, Kettler PC (1970) Optimal conditioning of quasi-Newton methods. Math Comput
24(111):657–664

Toshimoto K, Tomaru A, Hosokawa M, Sugiyama Y (2017) Virtual clinical studies to examine the prob-
ability distribution of the AUC at target tissues using physiologically-based pharmacokinetic mod-
eling: Application to analyses of the effect of genetic polymorphism of enzymes and transporters on
Irinotecan Ind. Pharm Res 34(8):1584–1600. https ://doi.org/10.1007/s1109 5-017-2153-z

Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y (2009) Physiologically based pharmacoki-
netic modeling to predict transporter-mediated clearance and distribution of Pravastatin in humans. J
Pharmacol Exp Ther. https ://doi.org/10.1124/jpet.108.14664 7

Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York. http://ggplo
t2.org

Wild SM (2017) Chapter 40, POUNDERS in TAO: solving derivative-free nonlinear least-squares prob-
lems with POUNDERS. Advances and trends in optimization with engineering applications. SIAM,
Philadelphia, pp 529–539

https://doi.org/10.1016/j.xphs.2017.04.052
http://arxiv.org/abs/1709.06985
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://doi.org/10.1016/j.xphs.2017.04.063
https://doi.org/10.1016/j.xphs.2017.04.063
https://doi.org/10.1002/psp4.12307
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1007/s11095-017-2153-z
https://doi.org/10.1124/jpet.108.146647
http://ggplot2.org
http://ggplot2.org

199

1 3

Cluster Gauss–Newton method

Yao Y, Toshimoto K, Kim SJ, Yoshikado T, Sugiyama Y (2018) Quantitative analysis of complex drug-
drug interactions between Cerivastatin and metabolism/transport inhibitors using physiologically
based pharmacokinetic modeling. Drug Metab Dispos 46(7):924–933

Yoshida K, Maeda K, Kusuhara H, Konagaya A (2013) Estimation of feasible solution space using Cluster
Newton Method: application to pharmacokinetic analysis of irinotecan with physiologically-based
pharmacokinetic models. BMC Syst Biol 7(Suppl 3):S3. https ://doi.org/10.1186/1752-0509-7-S3-S3

Yoshikado T, Yoshida K, Kotani N, Nakada T, Asaumi R, Toshimoto K, Maeda K, Kusuhara H, Sugi-
yama Y (2016) Quantitative analyses of hepatic OATP-mediated interactions between statins and
inhibitors using PBPK modeling with a parameter optimization method. Clin Pharmacol Ther
100(5):513–523

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Yasunori Aoki1,2,4 · Ken Hayami3 · Kota Toshimoto2 · Yuichi Sugiyama2

 * Yasunori Aoki
 yaoki@uwaterloo.ca

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
2 Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku,

Yokohama, Kanagawa 230-0045, Japan
3 National Institute of Informatics, The Graduate University for Advanced Studies (SOKENDAI),

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
4 Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591,

751 24 Uppsala, Sweden

https://doi.org/10.1186/1752-0509-7-S3-S3

	Cluster Gauss–Newton method
	Abstract
	1 Introduction
	1.1 Nonlinear least squares problem of our interest
	1.2 Well known example in pharmacokinetics

	2 Method: Algorithm
	2.1 Brief explanation of the algorithm
	2.2 Detailed description of the algorithm

	3 Motivating example
	4 Numerical experiments
	4.1 Numerical experiment setup
	4.1.1 Mathematical models
	4.1.2 Computation environment
	4.1.3 The initial set of vectors
	4.1.4 ODE solver
	4.1.5 Setting for the cluster Gauss–Newton (CGN) method:

	4.2 Algorithms compared
	4.2.1 Nonlinear least squares solvers
	4.2.2 Optimisation algorithms

	4.3 Results

	5 Concluding remarks
	Acknowledgements
	References

