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Abstract
Manufacturing remains one of the most energy intensive sectors, additionally, the 
energy used within buildings for heating, ventilation and air conditioning (HVAC) 
is responsible for almost half of the UK’s energy demand. Commonly, these are 
analysed in isolation from one another. Use of machine learning is gaining popu-
larity due to its ability to solve non-linear problems with large data sets and little 
knowledge about relationships between parameters. Such models use relationships 
between inputs and outputs to make further predictions on unseen data, without 
requiring any understanding regarding the system, making them highly suited to 
dealing with the stochastic data sets found in a manufacturing environment. This 
has been seen in literature for determining electrical energy demand for residen-
tial or commercial buildings, rather than manufacturing environments. This study 
proposes a novel method of coupling simulation with machine learning to predict 
indoor workshop conditions and building energy demand, in response to produc-
tion schedules, outdoor conditions, building behaviour and use. Such predictions can 
subsequently allow for more efficient management of HVAC systems. Based upon 
predicted energy consumption, potential spikes were identified and manufacturing 
schedules subsequently optimised to reduce peak energy demand. Coupling simu-
lation techniques with machine learning algorithms eliminates the requirement for 
costly and intrusive methods of data collection, providing a method of predicting 
and optimising building energy consumption in the manufacturing sector.
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1 Introduction

With increased industrial demand, rising material and energy prices, along with 
need to ensure product quality and productivity, manufacturing companies are 
required to develop strategies to reduce the energy consumption of their facility, 
or face potential penalties from governments for  C02 emissions as well as conse-
quences on company image. Facilities also have complex high energy consuming 
heating, ventilation and air conditioning (HVAC) systems to regulate workshop 
conditions as well as the high-powered machining equipment. Buildings and the 
manufacturing industry are responsible for 40% and 42% of the world’s energy 
consumption respectively (Harish and Kumar 2016; Agency IE 2017).

HVAC systems have a reactive based control system, based upon  CO2 lev-
els and air temperature, aiming to provide thermal comfort to occupants. Such 
systems react to combat changes in environmental conditions as and when they 
occur, and are ideal for office and domestic environments.

Manufacturing facility environmental conditions however, are heavily influ-
enced by fluctuating heat and moisture gains from machinery, impacting thermal 
comfort of occupants and influencing quality control of condition sensitive pro-
duction. HVAC control can therefore be vital for production quality control, and 
manufacturing processes should be considered in control of HVAC systems.

Quantification and prediction of waste heat within a facility poses the oppor-
tunity for heat recovery, however in the case of highly fluctuating and stochastic 
thermal energy flows within manufacturing facilities, such heat recovery is dif-
ficult and the resulting waste heat is distributed to the surrounding environment, 
affecting indoor climatic conditions.

Heat gain from equipment is dependent upon production demand, and how 
this influences indoor conditions is dependent upon facility operation and design. 
Indoor climatic conditions are influenced by thermal emissions from machinery, 
radiation from windows in the facility, solar gains on the surrounding walls of 
the facility, HVAC operation and occupant behaviour, as well as required opti-
mal HVAC set points. Furthermore, building standards and regulations such as 
ASHRAE 55 do not give climate sensitive guidelines or recommendations for 
HVAC set points (ASHRAE 2017) in manufacturing facilities.

This study aims to provide a method of predicting indoor climatic conditions, 
such as air temperature and relative humidity, as well as building energy demand, 
in response to production schedules, outdoor conditions, building behaviour and 
use, to allow for more efficient management of HVAC systems. Predicted energy 
consumption and indoor conditions were used to optimise a manufacturing sched-
ule in order to reduce spikes in energy consumption.

Prediction of building energy demand allows shift managers to understand the 
impact of machining on facility energy consumption and the surrounding produc-
tion environment, and allow for better decision-making and shift pattern man-
agement in order to reduce spikes in energy consumption, of which can make 
up 30% of the monthly utility cost in manufacturing facilities (Gazprom 2017). 
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Furthermore, increased efficiency in the management of HVAC systems ensures 
production conditions are constantly met for optimum product quality.

1.1  Artificial neural networks

Due to the increased size of data sets requiring analysis, the convergence of simula-
tion and machine learning is gaining popularity due to its potential for improved 
data consolidation and ability to identify and observe new theories and connections 
between parameters.

Manufacturing and energy management systems can generate a large amount of 
data, of which is often stochastic, noisy and difficult to analyse and understand with-
out suitable data management systems or algorithms. Such data is therefore highly 
suited to further analysis with Artificial Neural Networks (ANN’s). ANN’s are a 
common tool in the energy sector due to their ability to handle large datasets and 
determine complex relationships between variables.

There is an increase in the use of data simulators and simulation models together 
with ANN’s due to the increase in size of data sets. Tolk (2015) discusses the poten-
tial for improvements in data evaluation and analysis in both life and engineering 
sciences that the collaboration of modelling and simulation with big data and deep 
neural networks can bring (Fig. 1).

The use of simulation can provide a methodology of generating datasets for ANN 
model training, avoiding the use of costly sensor system implementation, as well as 
providing a more flexible method of data collection. Parameters and data streams 
can be grouped to reduce parameters numbers, with the ability to specify data col-
lection intervals based upon the problem specification.

This study couples machine learning with simulation of manufacturing facilities 
to determine impacts of production schedules on workshop environmental condi-
tions, along with the prediction of HVAC and building energy consumption. With 
this energy and indoor environmental condition prediction, there is the potential 

Fig. 1  Collaboration of Big 
Data, Deep Learning and simu-
lation (Tolk 2015)



106 V. J. Mawson, B. R. Hughes 

1 3

to operate HVAC systems in a more efficient manner with a ‘soft start’ approach 
to heating and cooling systems, based on production demand, occupant behaviour 
and outdoor weather conditions, all of which will impact the thermal energy flows 
within the building.

2  Previous related work

Machine learning techniques, most commonly ANN’s, are being adopted in the 
building sector for prediction of electrical energy consumption (Nasr et  al. 2001; 
González and Zamarreño 2005). These studies have focused primarily on using vari-
ables such as weather and occupancy as input variables to determine energy con-
sumption and to ensure thermal comfort.

The first found study using ANN’s in the building sector for forecasting energy 
demand was by in NIzami and Al-Garni (1995), who used ANN’s to forecast elec-
trical energy consumption based on weather data and population. The study used 
7 years’ worth of data for model training and validation, and was considered ade-
quate for energy forecasting based on the Chi square statistic. Authors also high-
lighted the ability of ANN’s to provide predictions with little information on rela-
tionships between input variables.

Studies found focus predominantly on energy analysis of office and residential 
spaces with only two studies found which forecast electricity energy use of an indus-
trial location, one of which uses ANN’s.

Azadeh and Sohrabkhani (2006) adopted an ANN model for long term energy 
prediction, using a feed forward model approach along with back propagation. 
Metered energy data was used to both train and test the model for a period of 2 
and 3 years respectively. The study highlighted the advantage of using ANN models 
over conventional regression techniques. A study was found in the area of un-super-
vised machine learning by Cupek et al. (2017) who used a k-means clustering algo-
rithm for energy monitoring and fault detection of compressed air systems within a 
manufacturing environment. Using energy consumption measurements and machine 
behaviour observations, system state specific energy profiles were determined. No 
research was found on the use of machine learning for HVAC control within indus-
trial facilities.

The convergence of simulation and machine learning is gaining popularity due to 
its potential for improved data consolidation and ability to identify and observe new 
theories and connections between parameters. This method is not widely adopted in 
the field of manufacturing facility energy analysis due to required implementation of 
sensors and actuators for constant monitoring and data collection, which may not be 
available for all building infrastructure. A large number of input variables are also 
often required.

Petri et al. (2014) looked at maintaining thermal comfort whilst reducing energy 
consumption though the coupling of an ANN based optimisation module with simu-
lation. The optimisation module functions both independently and embedded within 
generic algorithm optimisation based modules (Fig. 2).
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The module was able to generate optimised values to specified outputs according 
to which set points within the building were altered. The method achieved a reduc-
tion in electrical and thermal energy consumption, along with additional system 
control over a 42-day period.

With enough training and based upon constant monitoring, data collection and 
sensor implementation, the ANN module was able to replace the simulation module 
in order to reduce computation time.

Neto and Fiorelli (2008) also coupled an energy simulation with a ANN model, 
comparing results from the analysis of a university building when forecasting build-
ing energy consumption due to external weather conditions. External dry bulb tem-
perature, humidity and solar radiation were specified as input parameters to the 
ANN.

For a simulation period of 7 months, it was found that the simulation model pro-
duced a higher error of 13%, in comparison to the 10% error of the ANN. However a 
large number of assumptions were made in model development due to a lack of data, 
and is therefore a pilot study and the method is to be developed further.

Nakayama et al. (2002) utilised simulation as an optimisation tool, using radial 
basis function networks to predict objective functions, with genetic algorithms used 
to search for the optimal value of the predicted objective function.

Peak energy demand shaving is a common theme in literature, with studies adopt-
ing the concept of energy storage, (Baeten et al. 2017), use of renewable technology, 

Fig. 2  Energy optimisation module workflow (reproduced from (Petri et al. 2014))
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(Jurasz and Campana 2019), and use reducing energy intensive equipment start up 
times (Voet et al. 2018). Where electricity prices are uncertain or variable, optimisa-
tion tools have been adopted in order to maximise profits (Zhang and Ponnambalam 
2006).

Very few found studies address the coupling of manufacturing production require-
ments with the HVAC system, with no studies found adopting the use of predictive 
techniques to determine energy requirements of the facility and improve HVAC sys-
tem efficiency and control.

This paper discusses the prediction of facility energy requirements based on pro-
duction environmental condition and thermal comfort requirements, manufacturing 
scheduling and weather conditions, allowing for more effective energy management 
of production environments and HVAC systems.

3  Proposed method

In this study, a dynamic time-based thermal and building energy modelling soft-
ware, IES-VE (2018), was used to build a manufacturing facility environment in 
order to obtain energy profiles and workshop conditions. The modelling software 
accounted for occupant and lighting schedules, production schedules, weather data, 
HVAC and building regulations.

Heat sources can be simulated, defined by heat gain or surface temperature, 
which allows for the modelling of manufacturing equipment and their heat gain pro-
files. Thus IES-VE allows for modelling of manufacturing equipment alongside the 
HVAC system and building. This model was validated using a DES (discrete event 
simulation) model and metered data from the manufacturing facility prior to gen-
erating data required to train the ANN. Based upon predicted energy consumption, 
spikes in energy consumption were identified. Thus, manufacturing schedules were 
optimised in order to reduce such spikes in energy consumption and provide a lev-
elized energy profile for the facility.

Figure 3 displays the modelling method.

3.1  Artificial neural network for energy predictions

In order to predict future building environment conditions and energy consumption, 
an ANN was built, using results from the simulation study as training data.

Inputs to the model included outdoor conditions, such as air temperature, wind 
speed, cloud cover and humidity, which will all influence the thermal profile of the 
building. Machine use for all equipment on the shop floor were also provided as an 
input, with data intervals of 30 min.

This latter input was provided through the use of machine power profiles, with 
specific energy consumption in kilowatts at 30-minute intervals used to create the 
profiles.

Outputs from the models were predictions on building energy consumption, as 
well as predictions on internal conditions in order to provide the data required to 
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make decisions regarding HVAC control. The main outputs of interest were internal 
humidity of the workshop environment, air temperature and electricity consumption. 
Waste heat from manufacturing processes was also predicted.

The neural network models were written in Python, adopting the use of libraries 
such as scikit-learn (2020) which provided machine learning tools and frameworks.

Feed forward multi-layer perceptron regression model were created, as this super-
vised model can learn a non-linear approximator given a set of x features, and a 
target y.

The models used in this study featured one hidden layer. A study on energy fore-
casting models reviewed the use of ANN’s for forecasted electrical load, renewable 
energy use and energy demand and highlighted that out of the 194 models reviewed, 
83% of these utilised one hidden layer in the model, with 17% using 2 hidden layers 
(Debnath and Mourshed 2018). The number of neurons in the input layer was equal 
to that of the number of inputs, the number in the output layer equal to the number 
of target variables, however the number of neurons in the hidden layer used a trial 
and error approach.

The hyperbolic tan function (tanh), logistic and rectified linear unit function 
(ReLu) activation functions were tested for suitability. The ReLu function (1) was 
chosen as the best activation function for the models purpose, based on accuracy 
results, and the applicability of the function to the model.

(1)f (x) =
1

(1 + exp (−x))

Fig. 3  Modelling Method
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The ReLu model is non-linear and can easily back propagate the errors as well as 
holding the advantage of not activating all the neurons at the same time, allowing for 
quicker computation. Furthermore, ReLu does not activate negative inputs.

The data required standardisation in order to ensure model convergence. The aim 
of data standardisation and scaling is to ensure features more or less represent nor-
mally distributed data. Data before and after standardisation were visually analysed 
in order to determine the distribution of the data and therefore the most appropriate 
method for the model.

Parameters utilised in the neural network model can be found in Appendix A.

4  Case study

A thermal energy simulation of a 6400 sq.m manufacturing facility in Yorkshire, 
UK, which focuses machining research, was run in IES-VE, utilising the manufac-
turing view component tool to account for energy as well as heat and moisture gains 
to the environment due to manufacturing processes. For this facility, manufacturing 
equipment is predominantly manually controlled with production schedules vary-
ing according to customer demand. The model was split into 59 thermal zones cor-
responding to rooms within the building. Individual thermal profiles and internal 
gains were specified for each room dependant on use and required thermal comfort 
thresholds. Machining schedules, worker schedules and facility usage patterns were 
also specified in the model.

4.1  Data acquisition

Data for the simulation was obtained through interviews and discussions with facil-
ity staff, machine bookings, schedule databases and manufacturing data booklets. 
Data regarding facility use was obtained through observation and interviews with 
staff. Historical electricity consumption data was obtained from a pre-installed sen-
sor system. Data was available at 30 min intervals.

Building floor plans were obtained from management, and energy use for the 
building was obtained from pre-installed sensor systems. Weather data was obtained 
from the Met Office as part of the IES VE ApLocate weather and location module.

Construction material properties and building fabrics can be found in Appendix 
B. Boundary conditions such as HVAC system control and schedules, occupancy 
density and internal gains are displayed in Appendix C. Model assumptions follow 
manager guidelines at the site, as well as industry guidelines (CIBSE 2016).

The facility location and orientation was specified in order to determine solar 
gains and weather conditions.
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4.2  Building model validation

The IES-VE software used to build the simulation model is predominantly used 
for building analysis rather than manufacturing process analysis. The tool has the 
ability to model equipment and respective heat flows, as well as specify machine 
position and schedule, however it was unknown if machining schedules and 
power profiles could model behaviour to the same level of accuracy as DES soft-
ware. Therefore, a feasibility manufacturing energy study was run in DES soft-
ware to validate the IES-VE model, which was also compared with metered data 
from the case study facility. Lanners WITNESS (2017) software was utilised to 
build the DES model of the manufacturing processes. All machining equipment 
with respective scheduling profiles were simulated, with data regarding idle time, 
standby, busy and fixed machining use specified.

The IES-VE model was found to underestimate manufacturing energy con-
sumption by 17% in comparison to the WITNESS DES model. Trends in energy 
consumption from manufacturing processes for individual machines were consist-
ent between the IES-VE and WITNESS manufacturing process models.

Due to the focus on integration of manufacturing energy flows with that of the 
building, rather than analysis of machining power, the manufacturing equipment 
modelling tool in IES-VE was used to model the machines on the shop floor. Fur-
thermore, the DES tool did not provide detail on thermal energy flows and waste 
heat from equipment of which is a key variable in this study.

The second part of model validation involved a simulation of the facility with 
and without manufacturing equipment, and comparison of these models with 
metered data. Metered data was not available at component level, and therefore 
the total energy consumption of the facility was used for model comparison.

The building energy analysis in IES-VE, both with and without manufacturing 
equipment, was compared with the metered data (with equipment present) for a 
period of 1 year (Table 1).

The IES-VE model underestimated energy consumption by 6%, when com-
pared to the metered data. From the validation study, it was concluded that the 
model was sufficient for further use, and as a training tool for neural networks.

Table 1  Building Energy Analysis-IES-VE and Metered data

With manufactur-
ing equipment 
(MWh)

Without manufac-
turing equipment 
(MWh)

Metered data (MWh)

Total System Energy (HVAC and 
chillers)

482.27 330.98 –

Lighting 58.24 58.24
Misc Equipment (e.g. computers) 261.34 261.34
Fan and Pumps Energy 370.56 370.56 –
Manufacturing Energy 279.61 – –
Total Energy 1452.23 1021.12 1544.18
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5  Results

Thermal calculations of the building and workshop were calculated at 30-min inter-
vals for a period of 2 months. During this time of manufacturing production, sig-
nificant heat and moisture gains entered the surrounding environment, resulting in 
spikes in humidity, temperature and therefore energy consumption from HVAC sys-
tems due to the requirement of fans and pumps to remove moisture and heat from 
the air during times of high machining activity. Indoor conditions such as tempera-
ture and humidity were monitored, as well as energy consumption from all manufac-
turing processes (Fig. 4).

Manufacturing facilities are often charged for their spike in consumption, rather 
than the energy that they use, and therefore spikes in consumption can have a con-
siderable effect on the facilities energy bill, and thus should be avoided in order 
to avoid additional charges for energy which is not utilised. Such a spike can be 
identified and avoided by determining the relationship between HVAC systems and 
machining schedules and processes, in order to more effectively and efficiently con-
trol the building energy management system.

To assess the accuracy of the model,  R2 and the root mean squared error (RMSE) 
were used. RMSE was used to compare individual models throughout the optimisa-
tion process. K-fold cross validation resampling method was used to evaluate the 
model on the data available. For the final model, an  R2 value of 0.925 and RMSE 
value of 5.05 was obtained.

A sensitivity analysis was performed on the data in order to determine the impor-
tance of input parameters on the outputs (Table 2). Although manufacturing demand 
and dry bulb temperature were found to be of higher importance than humidity, 

0

10

20

30

40

50

60

70

80

90

20

21

22

23

24

25

26

27

28

29

30

0

10

20

30

40

50

60

70

80

90

03
-0

2-
20

18
 0

0:
00

04
-0

2-
20

18
 0

0:
00

05
-0

2-
20

18
 0

0:
00

06
-0

2-
20

18
 0

0:
00

07
-0

2-
20

18
 0

0:
00

08
-0

2-
20

18
 0

0:
00

Te
m

pe
ra

tu
re

 (°
C)

En
er

gy
 (k

W
h)

H
um

id
ity

 (%
)

Fig. 4  Manufacturing equipment energy consumption, effective temperature and humidity plotted for a 
5 day working period



113

1 3

Coupling simulation with artificial neural networks for the…

wind speed and cloud cover, these features remained within the dataset. It was con-
cluded that these climatic features were required in order to determine the impact of 
seasonal variations on building energy demand and determine the impact of solar 
gain.

The model predicted workshop air temperature and building energy consumption 
with errors of 2.07 and 5.90% accuracy respectively, when presented with a new 
unseen dataset. This is comparable with the 10% model accuracy achieved for cou-
pling of simulation with machine learning to forecast energy consumption based on 
meteorological data by Neto and Fiorelli (2008). Figure 5 displays both predicted 
and observed values for a period of 7 days.

A larger error of 26.8% was obtained in the prediction of relative humidity within 
the workshop. It was concluded that such a result was obtained as the model was 

Table 2  Sensitivity analysis Importance

Manufacturing Demand
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not able to determine downtime of machines, and thus predicted process waste heat 
overnight, resulting in high predicted relative humidity overnight. The data used in 
the predictions was based on analysis of a 7-day period (8 h machining over 5 work-
ing days plus a 2-day weekend), and therefore contained data from variables over-
night. Due to no machining activity overnight, collected process waste heat values 
were zero. The neural network model predicted non-zero negligible values, however 
due to the zero value, all these negligible data values obtained a percentage error of 
100%. It was determined that as these values were obtained overnight, and are there-
fore not of interest, these would be excluded from further analysis. The resulting 
error for process waste heat during times of machining was 3.20%.

Table 3 summarises the errors for output parameters for the model.
On analysis of data, it was concluded that the time of day should be included as 

an input in order to determine the impact of machine downtime overnight.
Such large fluctuations in data results in higher errors in predictions, and high-

lights the need for further data collection in order to provide the network with more 
training data.

Using energy predictions based on upcoming production requirements, machin-
ing schedules were optimised in order to reduce spikes in energy consumption, and 
produce a smoother consumption profile to avoid the significant costs associated 

Table 3  summarises the errors for output parameters for the model

Air temp (% error) Humidity (% error) Energy (% error) Process waste heat (% error)

2.07 26.8 5.90 3.20

Fig. 6  Total building energy consumption based on optimised production schedules



115

1 3

Coupling simulation with artificial neural networks for the…

with energy fluctuations (Fig.  6). Machining output was monitored to ensure suf-
ficient production output (Fig. 7).

Through the use of energy consumption prediction, spikes in energy consumption 
could be identified. Upon identification of these spikes, manufacturing schedules 
were optimised based upon process waste heat and external weather conditions, as 
well as job requirements. Energy intensive machining was scheduled to avoid peak 
mid-day temperatures in order to avoid excessive demand on HVAC systems for 
the removal of both excess machine waste heat and solar gains. Spikes in consump-
tion were avoided by varying resource allocation, and ensuring jobs for a specific 
machine were performed in the same time slot to avoid excessive machine utilisa-
tion. The neural networks were used to predict indoor conditions associated with the 
optimised schedules to ensure that thermal comfort for occupants was maintained.

6  Conclusion

This study has demonstrated the importance of accounting for manufacturing equip-
ment and demand in the analysis of building energy consumption in order to capture 
all interacting thermal and energy flows. The use of simulation in energy analysis is 
an effective tool at developing a model that is cost effective, non-intrusive, easy to 
modify and allows multiple scenarios to be tested.

ANNs have been used extensively for energy prediction in commercial build-
ings, with this study highlighting their potential in manufacturing environments to 
predict indoor conditions. Whilst considerable error was obtained for the prediction 
of relative humidity in the workshop, the power profiles model was able to predict 

Fig. 7  Machining output utilising optimised production schedules
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workshop air temperature and building energy consumption to accuracies of 2.07 
and 5.90% respectively.

Larger errors were obtained for parameters predicted overnight, with waste heat 
from machining being generated in predictions overnight, which impacted errors for 
the model. This suggests that the inclusion of time of day as an input parameter 
would increase the accuracy of predictions.

Using energy predictions based on upcoming production requirements, machin-
ing schedules were optimised to reduce spikes in energy consumption, and produced 
a smoother consumption profile to avoid the significant costs associated with energy 
fluctuations.

This is a preliminary study and further work includes model modification with 
additional time based input parameters, along with larger datasets to predict energy 
consumption to a higher accuracy. Further work is being carried out using recurrent 
neural networks, which are used to process sequences and are therefore commonly 
used for sensor measurement analysis. The production of a framework for the reduc-
tion of energy demand from HVAC systems within manufacturing is the next step in 
this study.
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Appendix 1

See Table 4.

Table 4  Parameters used 
in machine schedule neural 
network

Activation Function ReLu

Data Transformer MinMax Scaler
Number of neurons in input layer 15
Number of neurons in hidden layer 20
Number of neurons in output layer 4

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


117

1 3

Coupling simulation with artificial neural networks for the…

Ta
bl

e 
5 

 - 
B

ui
ld

in
g 

co
ns

tru
ct

io
n 

m
at

er
ia

ls

Pa
ra

m
et

er
s

Sp
ec

ifi
ca

tio
n

U
-V

al
ue

 
(W

/m
2  

K
)

Ro
of

15
4.

4 
m

m
 in

su
la

tio
n–

0.
1 

m
m

 m
em

br
an

e–
10

0 
m

m
 c

on
cr

et
e 

de
ck

–5
0 

m
m

 c
av

ity
–1

2.
5 

m
m

 p
la

ste
rb

oa
rd

0.
18

In
te

rn
al

 C
ei

lin
g/

Fl
oo

r
20

 m
m

 c
hi

pb
oa

rd
–5

0 
m

m
 c

av
ity

–5
0 

m
m

 sc
re

ed
–1

00
 m

m
 re

in
fo

rc
ed

 c
on

cr
et

e–
50

 m
m

 c
av

ity
–1

2.
5 

m
m

 p
la

ste
rb

oa
rd

1.
09

Ex
te

rn
al

 W
al

l
3 

m
m

 ra
in

sc
re

en
–5

0 
m

m
 c

av
ity

–8
1 

m
m

 in
su

la
tio

n–
12

 m
m

 c
em

en
t b

on
de

d 
pa

rti
cl

e 
bo

ar
d–

50
 m

m
 c

av
ity

–1
2.

5 
m

m
 

pl
as

te
rb

oa
rd

0.
26

In
te

rn
al

 P
ar

tit
io

n
12

.5
 m

m
 p

la
ste

rb
oa

rd
–5

0 
m

m
 c

av
ity

–1
2.

5 
m

m
 p

la
ste

rb
oa

rd
1.

79
G

ro
un

d 
Fl

oo
r

98
 m

m
 in

su
la

tio
n–

10
0 

m
m

 re
in

fo
rc

ed
 c

on
cr

et
e–

50
 m

m
 c

av
ity

–2
0 

m
m

 c
hi

pb
oa

rd
 fl

oo
rin

g
0.

22
W

in
do

w
 E

xt
er

na
l

8 
m

m
 o

ut
er

 p
an

e–
12

 m
m

 c
av

ity
–8

 m
m

 in
ne

r p
an

e
1.

59
W

in
do

w
 In

te
rn

al
10

 m
m

 g
la

zi
ng

3.
85

D
oo

rs
 In

te
rn

al
30

 m
m

 p
ly

w
oo

d
2.

20
D

oo
rs

 E
xt

er
na

l
8 

m
m

 o
ut

er
 p

an
e–

12
 m

m
 c

av
ity

–8
 m

m
 in

ne
r p

an
e

1.
59

A
pp

en
di

x 
2

Se
e 

Ta
bl

e 
5.



118 V. J. Mawson, B. R. Hughes 

1 3

Appendix

See Table 6.
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