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Abstract
Based on the theoretical framework recently proposed byBonifacius andNeitzel (Math
Control Relat Fields 8(1):1–34, 2018. https://doi.org/10.3934/mcrf.2018001) we dis-
cuss the sequential quadratic programming (SQP) method for the numerical solution
of an optimal control problem governed by a quasilinear parabolic partial differential
equation. Following well-known techniques, convergence of the method in appropri-
ate function spaces is proven under some common technical restrictions. Particular
attention is payed to how the second order sufficient conditions for the optimal control
problem and the resulting L2-local quadratic growth condition influence the notion
of “locality” in the SQP method. Further, a new regularity result for the adjoint state,
which is required during the convergence analysis, is proven. Numerical examples
illustrate the theoretical results.

Keywords Optimal control · Quasilinear parabolic partial differential equation ·
Sequential quadratic programming · Convergence analysis

Mathematics Subject Classification 35K59 · 49K20 · 90C48 · 49N60 · 65K10 ·
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1 Overview

Optimal control problems governed by linear and semilinear parabolic partial dif-
ferential equations (PDEs) have been subject to intense research for several years.
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Existence- and regularity of their solutions is well understood, first order necessary
and second order sufficient optimality conditions have been proven, and discretization
errors for different types of discretization are available, see e.g. the pioneering work of
Lions (1971) concerned with linear PDEs and Hinze et al. (2009), or Tröltzsch (2010)
for a recent overview covering theoretical and numerical aspects of both linear and
nonlinear problems.

Recently, optimal control of quasilinear parabolic equationswas addressed byBoni-
facius and Neitzel (2018), Casas and Chrysafinos (2018), and Meinlschmidt et al.
(2017a, b), Meinlschmidt and Rehberg (2016). The functional analytic framework for
the analysis of the state equation is provided by the concept of maximal parabolic
regularity of nonautonomous operators, see e.g. the work of Amann (2004, 2003,
2005), Meinlschmidt and Rehberg (2016), Haller-Dintelmann and Rehberg (2009), or
further references in Bonifacius and Neitzel (2018). The highly non-trivial existence
and regularity theory for solutions of the underlying PDE poses the main difficulty
in the theoretical analysis of such problems. For a discussion of previous literature
concerning optimal control of quasilinear PDEs see the introduction of Bonifacius and
Neitzel (2018) and Casas and Chrysafinos (2018), respectively. In particular, optimal
control of quasilinear elliptic equations has been considered by Casas and Tröltzsch
(2009, 2011, 2012), Casas and Dhamo (2011) and Yousept (2013), de Los Reyes and
Dhamo (2016), Nicaise and Tröltzsch (2017). Several physical models lead to quasi-
linear PDEs (e.g. temperature-dependent thermal conductivity), which motivates the
analysis of this challenging class of problems from the applied point of view, see e.g.
the so-called thermistor problem (Meinlschmidt et al. 2017a, b).

For the efficient numerical solution of nonlinear optimal control problems sequen-
tial quadratic programming (SQP) methods form a prominent class of state of the art
algorithms: The nonlinear optimization problem is approximated by a sequence of lin-
ear quadratic subproblems that can be solved e.g. by application of thewell-understood
primal dual active set strategy. The analysis of such SQPmethods for nonlinear optimal
control problems has been addressed by several researchers, see e.g. Tröltzsch (1999),
Goldberg and Tröltzsch (1998) for semilinear parabolic equations, Hintermüller and
Hinze (2006), Hinze and Kunisch (2001), Wachsmuth (2007) for optimal control of
time-dependent Navier–Stokes equation, Griesse et al. (2010), Griesse et al. (2008) for
semilinear elliptic problemswithmixed constraints, andHeinkenschloss andTröltzsch
(1999) for optimal control of a phase field equation. For an overview concerning the
origins of SQP methods in the context of PDE-constrained optimization we also refer
to the introduction of Goldberg and Tröltzsch (1998). As further second order methods
for the solution of nonlinear optimal control problems we mention the semismooth
Newton method and versions of the primal dual active set strategy, respectively, see
e.g. Hinze and Kunisch (2001), Hintermüller et al. (2007), Ito and Kunisch (2004).

In the present paper, we focus on the numerical solution of quasilinear parabolic
optimal control problems by the SQP method. To our best knowledge, a correspond-
ing convergence analysis in function space has not been carried out in the existing
literature. The most closely related existing publications are those by Ulbrich and
Ziems (Ulbrich and Ziems 2017; Ziems 2013; Ziems and Ulbrich 2011) and chapter
8 in the thesis of Feldhordt (2017), respectively. Ulbrich and Ziems consider trust-
region and trust-region SQP methods for optimal control of general nonlinear PDE.

123



Convergence of the SQP method for quasilinear parabolic… 2041

The main difference to our result is that they include discretization in their work and
prove convergence of adaptive multilevel algorithms whereas we stick to the function
space setting. In return, we are able to prove locally superlinear convergence around
local minima fulfilling certain second order conditions avoiding the two norm gap
(Ioffe 1979; Casas and Tröltzsch 2012), whereas Ulbrich and Ziems establish global
convergence to a point fulfilling first order optimality conditions, but without explicit
rate. Feldhordt (2017) considers optimal control of the so-called chemotaxis system
and proves convergence of the SQP method assuming a rather strong second order
sufficient condition. This corresponds to our interim result in Section6.1, whereas our
main focus during the rest of the paper is on the interplay of weaker second order con-
ditions and the notation of “locality” in the SQP method. The second order sufficient
conditions we refer to in the present paper are due to Bonifacius and Neitzel (2018).
For the topic of second order conditions in PDE-constrained optimization in general
we refer to Goldberg and Tröltzsch (1989), Bonnans (1998), or the recent survey by
Casas and Tröltzsch (2015) and the references therein.

Many of our arguments in the present paper are similar to those known from earlier
publications. However, we believe that our consideration is of interest for three main
reasons:

First, we demonstrate that the results on optimal control of quasilinear parabolic
PDE obtained by Bonifacius and Neitzel (2018) allow to derive convergence of the
SQP method. In particular, existence and regularity theory of quasilinear parabolic
PDE is muchmore involved than the corresponding treatment of semilinear PDE. This
makes the choice of the correct function spaces more complicated than in previous
work on SQPmethods and we believe that it is not clear a-priori that—in the end—the
arguments from the existing literature apply to the present model problem as well.

Second, we show a new regularity result for the adjoint state in Sect. 7. The proof
relies on maximal parabolic regularity arguments and is based on the work of Boni-
facius and Neitzel (2018) and Haller-Dintelmann and Rehberg (2009). The result is
crucial for our further analysis, because the improved regularity allows us to estimate
the second derivative of the nonlinearity of the state equation in an appropriate way.

Finally, most proofs concerning convergence of the SQP method have been pub-
lished before the introduction of a framework for second order sufficient conditions
without two norm gap by Casas and Tröltzsch (2012). As shown by Bonifacius and
Neitzel (2018) our model problem fits into this framework and hence it is natural
to revisit convergence theory—and in particular, the question of localization of the
quadratic subproblems—of the SQP method under the aspect of absence of the two
norm gap: Since quadratic growth of the reduced objective functional holds L2-locally
(instead of L∞-locally) around the optimal control, onemaywonder, whether it is pos-
sible to replace L∞-neighbourhoods from previous convergence proofs for the SQP
method by L2-neighbourhoods. The answer of this question is not straightforward,
due to the fact that convergence of the SQP method is—as usual—established by
showing convergence of a generalized Newton method for a certain generalized (set-
valued) equation: In order to obtain a differentiable map in this generalized equation
we still need to measure controls in a norm stronger than the L2-norm. In contrast,
the regularity property (analogous to the invertibility of the Hessian in the classical
Newtonmethod) relies on the L2-coercivity property due to the second order sufficient

123



2042 F. Hoppe, I. Neitzel

conditions. —For our model problem, we give an answer to this question in Sect. 6.3,
which is our main result.

The rest of this paper is organized as follows and keeps the main structure of
previous results concerning the analysis of SQP methods, cf. in particular the work of
Tröltzsch (1999), Wachsmuth (2007) and Goldberg and Tröltzsch (1998):

In Sects. 2 and3 we briefly recall the assumptions and the model problem as well
as its first order optimality conditions from Bonifacius and Neitzel (2018). The idea
of the SQP method is outlined together with appropriate second order sufficient con-
ditions. To prepare the analysis of the convergence properties of the SQP method, we
provide some auxiliary results that are specifically related to our quasilinear parabolic
model problem in Sect. 4. The proof of a new regularity result for the adjoint state is
postponed to Sect. 7. After that, we follow the standard argument to prove convergence
of the SQP method in Sects. 5 and6: We utilize the connection to the Josephy-Newton
method for a generalized equation originating from the first order optimality condi-
tions. Convergence of this Newton method is proven in Sect. 5 and the interpretation
of the iterates as the solutions of certain quadratic optimization problems is topic of
Sect. 6. Assuming strong second order sufficient conditionswe formulate our firstmain
result in Sect. 6.1. The remaining two theoretical Sects. 6.2 and6.3 of the paper are
devoted to the analysis of the generalized Newton and the SQP method under weaker
second order assumptions. In particular we are able to replace the L∞-neighbourhoods
in the results of Tröltzsch (1999) and Wachsmuth (2007) by L2-neighbourhoods in
our final result in Sect. 6.3. For a detailed overview of this part of the paper we refer
to the introduction of Sect. 6. Finally, we give short numerical examples that illustrate
our theoretical findings in Sect. 8.
Notation For a Lipschitz domain Ω and θ ∈ (0, 1], k ∈ N, p ∈ [1,∞] we denote
by L p = L p(Ω), H θ,p = H θ,p(Ω) and W k,p = W k,p(Ω) the usual Lebesgue-,
Bessel-potential- andSobolev-spaces, respectively. For the two latter families of spaces
a subscript D denotes incorporation of previously defined homogeneous Dirichlet

boundary conditions. With H−θ,p′
D and W −1,p′

D we refer to the topological dual spaces

of H θ,p
D and W 1,p

D , where 〈·, ·〉 stands for the duality pairing and—in case of Hilbert
spaces—the scalar product. Norms ‖·‖ are indexed by the space they refer to. For
some integrability exponent r ∈ [1,∞], we define the conjugate exponent r ′ by 1/r +
1/r ′ = 1. Spaces of countinuously differentiable resp. Hölder continuous functions
are denoted as usual by C α .

The open and closed balls of radius r > 0 around x0 in a Banach space X are
denoted by

B
X
r (x0) := {x ∈ X: ‖x − x0‖X < r} and BX

r (x0) := {x ∈ X: ‖x − x0‖X ≤ r}.

With (X , Y )r ,s or [X , Y ]r we refer to real or complex interpolation spaces of two
normed spaces X , Y , respectively. Given I ⊂ R, a Banach space X , and a function
φ: I → X , we denote by trtφ, t ∈ I , the trace φ(t) ∈ X , if such a pointwise evaluation
is well-defined.
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The notation “. . . � . . .” will be used in order to express that “. . . ≤ C · . . .” holds
with a generic constant C > 0, whose dependencies are not relevant for the present
context. We use double arrows “⇒” to indicate set-valued maps.

2 Model problem and assumptions

2.1 Themodel problem

Our model problem is the same as the one in Example 2.5 of Bonifacius and Neitzel
(2018), and reads as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
y,u

J (y, u) := 1

2
‖y − yd‖2L2(I×Ω)

+ γ

2
‖u‖2L2(Λ)

,

subject to u ∈ Uad and

{
∂t y + A (y)y = Bu

y(0) = y0.

(OCP)

Here, the quasilinear part A of the state equation is defined by

A (y) · := −div(ξ(y)μ∇ · ),

The control operator B,Λ, and the admissible setUad will be specified in the following
section.

2.2 Assumptions

We rely on the following assumptions that we repeat from Bonifacius and Neitzel
(2018) with minor changes, cf. the following remark.

Assumption 2.1 Ω ⊂ R
d , d ∈ {2, 3}, is a bounded domain with boundary ∂Ω . ΓN ⊂

∂Ω is relatively open and denotes theNeumann boundary part whereasΓD = ∂Ω\ΓN

denotes the Dirichlet boundary part equipped with homogeneous Dirichlet boundary
conditions. We assume that Ω ∪ΓN is Gröger regular such that every chart map in the
Definition of Gröger regularity can be chosen volume preserving. The time interval
I = (0, T ) with T > 0 is fixed.

For the definition of Gröger regularity we refer to the work of Gröger (1989). It
has been used in a notation similiar to this work e.g. in Bonifacius and Neitzel (2018,
Definition A.1). In Section 5 of Haller-Dintelmann et al. (2009) an alternative charac-
terization can be found. The additional requirement of volume preserving chart maps
is satisfied in particular by all domains with Lipschitz boundary (“strong Lipschitz
domain”), but also e.g. by two crossing beams in dimension three (Haller-Dintelmann
and Rehberg 2009, Remark 3.3 and section 7.3).
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Assumption 2.2 The function ξ: R → R is twice differentiable with ξ ′′ being Lips-
chitz continuous on bounded subsets ofR. Letμ: Ω → R

d×d ,μ = μT , bemeasurable
and uniformly bounded and coercive in the following sense:

0 < μ• := inf
x∈Ω

inf
z∈Rd\{0}

zT μ(x)z

zT z
, μ• := sup

x∈Ω

sup
1≤i, j≤d

|μi, j (x)| < ∞

We assume a coercivity condition 0 < ξ• ≤ ξ ≤ ξ• for ξ as well. With this we define
as above

〈A (y)ϕ, ψ〉L2(I ,W 1,2
D )

:=
∫

I

∫

Ω

ξ(y)μ∇ϕ∇ψdxdt, ϕ, ψ ∈ L2(I , W 1,2
D ),

whenever y is a measurable function on Ω .

Assumption 2.3 We assume that there is p ∈ (d, 4) such that

−div(μ∇·) + 1: W 1,p
D → W −1,p

D

is a topological isomorphism and fix this choice of p.

Assumption 2.4 Let ζ ∈ (0, 1) and s > 2 be fixed such that

max

{

1 − 1

p
,

d

p

}

< ζ and max

{
2

ζ − d/p
,

2

1 − ζ

}

< s

holds. By D we denote the domain of the unbounded operator −div(μ∇·) + 1 in the
Bessel potential space H−ζ,p

D . The desired state yd ∈ L∞(I , L p/2), the initial condi-

tion for the state equation y0 ∈ (H−ζ,p
D ,D)1−1/s,s and the regularization parameter

γ > 0 are fixed.
We introduce the measure space (Λ, ρ) by Λ = {•}m × I equipped with measure

ρ being the product of the counting measure on the m−element set {•}m with the
Lebesgue measure on I . Within the control space U := Ls(Λ, ρ) = Ls(I ,Rm) the
set of admissible controls is given by

Uad := {u ∈ U: ua ≤ u ≤ ub ρ-a.e. on Λ}

with fixed control bounds ua, ub ∈ L∞(Λ). Finally, for fixed control basis functions
b1, . . . , bm ∈ H−ζ,p

D we define the bounded linear control operator by

B: U → Ls(I , H−ζ,p
D ), (Bu)(t) :=

m∑

i=1

ui (t)bi .

Remark 2.5 The choice of control space and operator (“purely time-dependent con-
trols”) corresponds to Example 2.5 of Bonifacius andNeitzel (2018), where the control
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space is chosen as L∞(Λ) instead of Ls(Λ). We will make use of measuring con-
trols in Ls instead of L∞ when applying the Riesz-Thorin interpolation theorem,
see the remark concluding Sect. 6.1. The reason for choosing purely time-dependent
controls—apart from practical motivation, see e.g. de Los Reyes et al. (2008)—is out-
lined in the remark at the end of Sect. 5.1. The symmetry property μ = μT as well as
the slightly higher spatial integrability of the desired state yd (L p/2 instead of L2) are
required to derive improved regularity for the adjoint state in Sect. 7.

3 Optimality conditions and SQPmethod

We followGoldberg and Tröltzsch (1998), Tröltzsch (1999),Wachsmuth (2007). From
Bonifacius and Neitzel (2018), Section 4.1, recall the following notation:

A ′(y)v := −div
(
ξ ′(y)vμ∇ y

)
,

A ′′(y)[v1, v2] := −div
(
ξ ′(y)(v1μ∇v2 + v2μ∇v1) + ξ ′′(y)v1v2μ∇ y

)

for v, v1, v2 ∈ W 1,r (I , W −1,p
D )∩ Lr (I , W 1,p

D ), r ∈ (1,∞) and a measurable function
y on I ×Ω . The divergence operators have to be understood in weak form, of course.

3.1 First order necessary optimality conditions

In Bonifacius and Neitzel (2018), Lemma 4.1, the existence of a global solution to
(OCP) is established. Further, any local solution to (OCP) fulfills the following system
of equations, cf. Bonifacius and Neitzel (2018, Lemmas 4.6-4.8):

∂t y + A (y)y = Bu, y(0) = y0 (SE)

− ∂t p + A (y)∗ p + A ′(y)∗ p = y − yd , (AE)

p(T ) = 0

(γ u + B∗ p, v − u)L2(Λ) ≥ 0 for all v ∈ Uad , (FON)

This optimality systemconsists of the state equation (SE), the adjoint equation (AE),
and the variational inequality (FON). The underlying function spaces are introduced
in the next section. For reasons of shortness we will sometimes write the state equation
as

e(y, u) := (∂t y + A (y)y − Bu, tr0y − y0) = 0 (1)

with the C 2-map

e: (W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D )) × Ls(Λ) → Ls(I , W −1,p
D ) × (W −1,p

D , W 1,p
D )1−1/s,s .
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2046 F. Hoppe, I. Neitzel

By L OC P (y, u, p) := J (y, u) − 〈p, e1(y, u)〉 we denote the Lagrangian of (OCP).

3.2 Generalized equation and SQPmethod

We reformulate the optimality system as the generalized equation

0 ∈ F(y, u, p) + N (y, u, p) (GE)

with the maps

F(y, u, p) :=

⎛

⎜
⎜
⎜
⎜
⎝

∂t y + A (y)y − Bu
tr0y − y0

−∂t p + A (y)∗ p + A ′(y)∗ p − (y − yd)

trT p
γ u + B∗ p

⎞

⎟
⎟
⎟
⎟
⎠

and N (y, u, p) := ({0} , {0} , {0} , {0} , NUad (u)
)T

,

where NUad (u) denotes the normal cone of the closed convex set Uad at the point
u ∈ Ls(Λ), i.e. NUad (u) = {

v ∈ Ls(Λ): (v,w − u)L2(Λ) ≤ 0 for all w ∈ Uad
}
. To

make the definition of F and N precise, F is understood as map F: Xs → Zs with

Xs :=
(

W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D )
)

× Ls(Λ)

×
(

W 1,s(I , W −1,p′
D ) ∩ Ls(I , W 1,p′

D )
)

and

Zs := Ls(I , W −1,p
D ) × (W −1,p

D , W 1,p
D )1−1/s,s × Ls(I , W −1,p′

D )

× (W −1,p′
D , W 1,p′

D )1−1/s,s × Ls(Λ).

Accordingly, N is understood as set valued map Xs ⇒ Zs . We equip Xs and Zs with
the canonical norms

‖(y, u, p)‖Xs := ‖y‖
W 1,s (I ,W−1,p

D )∩Ls (I ,W 1,p
D )

+ ‖u‖Ls (Λ)

+ ‖p‖
W 1,s (I ,W−1,p′

D )∩Ls (I ,W 1,p′
D )

,

‖( f , y0, g, pT , r)‖Zs := ‖ f ‖
Ls (I ,W−1,p

D )
+ ‖y0‖(W−1,p

D ,W 1,p
D )1−1/s,s

+ ‖g‖
Ls (I ,W−1,p′

D )

+ ‖pT ‖
(W−1,p′

D ,W 1,p′
D )1−1/s,s

+ ‖r‖Ls (Λ).

Having chosen these spaces, the following result holds:

Lemma 3.1 F: Xs → Zs is continuously Fréchet differentiable and N: Xs ⇒ Zs has
closed graph.
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Proof Differentiability has been used implicitely by (Bonifacius and Neitzel 2018,
Lemma 4.5) where the differentiability of the control to state map is shown by the
implicit function theorem. The closed graph property is standard. ��
Remark 3.2 Note that we require time integrability s � 1 as in Assumption 2.4 for
the y-component in order to have the embedding

W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D ) ↪→ L∞(I × Ω),

cf. Bonifacius and Neitzel (2018, Proposition 3.3). The latter is needed to ensure
differentiability of the superposition operators associated with ξ and ξ ′, and hence
differentiability of F . In return, this implies by the definition of F that we have to
consider Ls-integrable control functions u, i.e. (GE) cannot be stated with controls
measured in L2.

Sometimes we will need the following subspaces X∞ and Z∞ of Xs , Zs :

X∞ :=
(

W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D )
)

× L∞(Λ)

×
(

W 1,s(I , W −1,p′
D ) ∩ Ls(I , W 1,p′

D )
)

,

Z∞ := Ls(I , W −1,p
D ) × (W −1,p

D , W 1,p
D )1−1/s,s × Ls(I , W −1,p′

D )

× (W −1,p′
D , W 1,p′

D )1−1/s,s × L∞(Λ),

equippedwith the canonical norms similarly as above. Note that changing from Xs, Zs

to X∞, Z∞ means nothing more than replacing the Ls(Λ)-factors by L∞(Λ)-factors,
i.e. considering controls in the L∞- instead of the Ls-norm. The same result as before
holds:

Lemma 3.3 F: X∞ → Z∞ is continuously Fréchet differentiable and N: X∞ ⇒ Z∞
has closed graph.

Due to Lemma3.1 we can formulate the ansatz of the SQP method in its abstract
form as the Josephy-Newton method for generalized equations, see Josephy (1979),
Dontchev (1996), Alt (1990), or Hinze et al. (2009, chapter 2): Given an iterate
(yk, uk, pk) ∈ Xs , solve

0 ∈ F(yk, uk, pk) + F ′(yk, uk, pk)(y − yk, u − uk, p − pk) + N (y, u, p) (2)

to obtain the new iterate (yk+1, uk+1, pk+1) ∈ Xs . Writing down the full system of
equations for (2) we find:

∂t y + A (yk)y + A ′(yk)y = Bu + A ′(yk)yk

tr0y = y0 (3)

−∂t p + A (yk)
∗ p + A ′(yk)

∗ p = y − yd − A ′′(yk)[y − yk, ·]∗ pk

trT p = 0 (4)

0 ∈ γ u + B∗ p + NUad (u). (5)
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Obviously, the current u-iterate uk has canceled out, which implies that the next iterate
(y, u, p) depends on yk and pk but not on uk . This is due to the structure of our model
problem. Note that the first two equations (3) are equivalent to the linearized state
equation

0 = e(yk, uk) + ey(yk, uk)(y − yk) + eu(yk, uk)(u − uk). (6)

A standard computation shows that

1

2
L ′′

OC P (yk, uk, pk)[(y − yk, u − uk)]2 + J ′(yk, uk)(y − yk, u − uk) (7)

is equal (up to addition of constants) to the expression

Jk(y, u) := 1

2
‖y − yd‖2 + γ

2
‖u‖2 − 1

2
〈pk,A

′′(yk)[y − yk, y − yk]〉, (8)

that finally fulfills: The system of equations (3),(4),(5) is the formal optimality system
of the following optimal control problem:

{
min
y,u

Jk(y, u)

subject to u ∈ Uad and equation (3).
(QP)

This is the classical formulation of the SQPmethod as sequence of quadratic problems
to solve. Note that these computations were completely formal in the sense that we
do not know whether (QP) is convex or not. Hence, we cannot say whether there
is a unique minimizer or whether the optimality system (3),(4),(5) is a sufficient
characterization for this minimizer. This issue will be addressed in the following
section utilizing the assumption of second order sufficient conditions.

3.3 Second order sufficient conditions and SQP

Depending on second order sufficient conditions (SSCs) for (OCP) based on those
derived in Bonifacius and Neitzel (2018) we have to restrict the admissible set for
(QP) to ensure convexity.

Assumption 3.4 From now on let ū ∈ Uad be a fixed L2-local minimizer for (OCP),
i.e. there is r > 0 such that

u ∈ Uad and ‖u − ū‖L2(I ,Rm ) < r �⇒ j(u) ≥ j(ū).

Let ȳ and p̄ the state and adjoint state associated with ū. For σ ∈ [0,∞] we define
the σ -active set of ū as

Aσ (ū) := {x ∈ Λ: |γ ū + B∗ p̄|(x) > σ }
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and the corresponding subspace

Cσ (ū) := {v ∈ L2(Λ): v = 0 on Aσ (ū)}

of directions vanishing on Aσ (ū).We assume that the following second order sufficient
condition for (OCP) is satisfied at ū: There is a fixed σ ∈ [0,∞] (whether we allow
the case σ = 0 or not will be stated in our further results) such that there exists δ > 0
such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L ′′
OC P (ȳ, ū, p̄)[(y, u)]2 ≥ δ‖u‖2L2(Λ)

for all (y, u) ∈ W 1,2(I , W −1,p
D ) ∩ L2(I , W 1,p

D ) × L2(Λ) s.t.

u ∈ Cσ (ū),

ey(ȳ, ū)y + eu(ȳ, ū)u = 0.

(SSC-σ )

Condition (SSC-σ ) is stronger than the second order sufficient condition derived
by Bonifacius and Neitzel (2018, Theorem 4.14) which has smallest possible gap to
the corresponding necessary condition. However we conclude from the cited result:

Theorem 3.5 Let Assumption3.4 hold with some σ ∈ [0,∞]. Then there are ε, η > 0
such that the quadratic growth condition

j(u) ≥ j(ū) + η‖u − ū‖2L2(Λ)

holds for all u ∈ Uad ∩ BL2
ε (ū).

We also mention the work of Casas and Chrysafinos (2018) in which second order
optimality conditions analogous to those of Bonifacius and Neitzel (2018), but for a
slightly different setting w.r.t. the domain, the boundary conditions and the bound-
edness properties of the nonlinearity, were derived. Casas and Chrysafinos deal with
C1,1-smooth domains, homogeneous Dirichlet boundary conditions and locally Lip-
schitz continuous coefficients for the state equation, which enables them to consider
W 2-regularity of the states.

Given σ ∈ [0,∞] that will become clear from the context, we introduce the mod-
ified admissible set as

Uσ
ad := Uad ∩ (ū + Cσ (ū)) = {u ∈ Uad: u = ū on Aσ (ū)} (9)

and define the corresponding restricted quadratic problem as follows:

{
min
y,u

Jk(y, u)

subject to u ∈ Uσ
ad and Equation (3)

(QP-σ )

Using the relation of Jk to the second derivative of the Lagrangian of (OCP) (see
(7) and (8)) it is clear that (QP-σ ) is a linear quadratic and under Assumption3.4

123



2050 F. Hoppe, I. Neitzel

strictly coercive and therefore strictly convex optimal control problem, at least for
(yk, uk, pk) = (ȳ, ū, p̄). This will be crucial for the convergence analysis of the SQP
method.

Remark 3.6 Second order sufficient conditions related to strongly active sets turned
out to be suitable assumptions for the analysis of SQP methods, see e.g. Tröltzsch
(1999), Goldberg and Tröltzsch (1998),Wachsmuth (2007), whichworkwith the same
assumption aswe do. Thatwe do notworkwith the SSCs formulated byBonifacius and
Neitzel (2018) directly has two reasons: First, we require the coercivity condition in
(SSC-σ ) to hold on a vector space instead of just a cone in the proof of the L2-stability
result in Sect. 5.1. Second, in Sect. 6.2 we will make use of the fact that strongly active
sets behave well under small perturbations for σ > 0.

Remark 3.7 Strongest possible second order conditions, i.e. coercivity of L ′′
OC P on

the whole space L2(Λ) will be refered to by σ = ∞. In this case it holds C∞(ū) =
L2(Λ) and U∞

ad = Uad . See e.g. Griesse et al. (2010, 2008), Feldhordt (2017) or
Heinkenschloss and Tröltzsch (1999) for such an assumption in the context of SQP
methods. In Sect. 6.1 we state our main theorem for this special case.

4 Auxiliary results

Before going into the details of the convergence analysis for the SQP method we
collect some auxiliary results in the following section.

4.1 Regularity of the adjoint state

For our further analysis we will heavily rely on L∞(I , W 1,p′
)-regularity of the adjoint

state p̄ associated with the optimal control ū, cf. the remarks in Sect. 4.3. For better
readability we postpone the proof of the corresponding regularity theorem to Sect. 7
and state here only

Lemma 4.1 It holds p̄ ∈ L∞(I , W 1,p′
D ).

Proof Set r = s, y = ȳ, w = ȳ − yd and wT = 0 in Theorem7.2 of Sect. 7. Due
to yd ∈ L∞(I , L p/2) and L p/2 ↪→ H−ζ,p all requirements are fulfilled. It follows
p̄ ∈ W 1,s(I , H−ζ,p

D ) ∩ Ls(I ,D), i.e. even p̄ ∈ L∞(I , W 1,p
D ) by Theorem7.1 (b). ��

4.2 A property of the control operator

Recall from Assumption2.4 the definition of the control operator that refers to the
case of purely time-dependent controls. Obviously, B is continuous from L2(Λ) to

L2(I , W −1,p
D ) and therefore its adjoint B∗ is defined on L2(I , W 1,p′

D ) with values in
L2(Λ). To derive the L∞-stability result from the L2-stability result in Sect. 5.1, we
need to perform a bootstrapping argument that requires us to know how B∗ behaves
restricted to a space of more regular functions.
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To simplify notation, let B: Ls(I ,R) → Ls(I , H−ζ,p) be defined by u �→ u · b1
with only a single fixed control function b1 ∈ H−ζ,p

D . Of course, this yields

(B∗v)(t) = 〈b1, v(t)〉
W−1,p

D ,W 1,p′
D

for every v ∈ L2(I , W 1,p′
D ).

It is obvious that B maps Lr (Λ) into Lr (I , H−ζ,p
D ) for r ∈ [2,∞]. To obtain B∗v ∈

Lq(Λ), we have to ensure that v ∈ Lq(I , H ζ,p′
D ) holds. We need the following lemma:

Lemma 4.2 It holds

(W −1,q
D , W 1,q

D )θ,1 ↪→ H2θ−1,q
D

for 0 < θ < 1 and q ∈ (1,∞) as long as 2θ − 1 /∈ {1/q,−1/q ′}.
Proof This is a direct consequence of Griepentrog et al. (2002, Theorem 3.5). ��

Now, set θ := (ζ +1)/2. For r ∈ (1,∞) there are two possibilities: If θ < 1−1/r ,
then it holds for 0 ≤ ρ < 1 − 1/r − θ

W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) ↪→ C ρ(I , (W −1,p′
D , W 1,p′

D )θ,1) ↪→ C ρ(I , H ζ,p′
D ),

i.e. B∗ is continuous from W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) to L∞(Λ). Otherwise, if
θ > 1 − 1/r , we obtain q ≥ 1 such that 1/q > θ − (1 − 1/r) > 0 and

W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) ↪→ Lq(I , (W −1,p′
D , W 1,p′

D )θ,1) ↪→ Lq(I , H ζ,p′
D ),

which means that B∗ maps W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) to Lq(Λ). For the
two embeddings we refer e.g. to Amann (2003, formula (1.2)). We will come
back to this in Sect. 5.1: Given an estimate on the control in Lr , we have esti-
mates for linearized state and adjoint state in W 1,r (I , W −1,p

D ) ∩ Lr (I , W 1,p
D ) and

W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) respectively. Application of B∗ either yields an esti-
mates for the control in Lq with some q > r or in L∞ if r already was large enough.

4.3 Some properties ofA ′′

Recall the definition of A ′′ from the beginning of Sect. 3. For the proof of the L2-
and L∞-stability results in Sect. 5.1 we need the following

Lemma 4.3 It holds

‖A ′′(y)[v, ·]∗ p‖
Lr (I ,W−1,p′

D )
≤C(ξ, μ, y)‖p‖

L∞(I ,W 1,p′
D )

‖y‖
L∞(I ,W 1,p

D )
‖v‖

Lr (I ,W 1,p
D )

.

The constant C can be chosen uniformly with respect to y for y’s coming from a
bounded subset of W 1,s(I , W −1,p

D ) ∩ Ls(I , W 1,p
D ).
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Proof Estimate 〈A ′′(y)[v, ·]∗ p, w〉 = 〈A ′′(y)[v,w], p〉 for an arbitrary testfunction
w ∈ Lr ′

(I , W 1,p
D ) utilizing Hölders inequality. ��

In Lemma4.3 we bounded the norm of A ′′(ȳ)[v, ·]∗ p̄ in the space Lr (I , W −1,p′
D )

against the norm of v in the space W 1,r (I , W 1,p
D ) ∩ Lr (I , W 1,p

D ) for each r ∈
[2, s] by estimating 〈A ′′(y)[v,w], p〉 with arguments v ∈ Lr (I , W 1,p

D ) resp. w ∈
Lr ′

(I , W 1,p
D ). This generality will be necessary in the bootstrapping argument in the

proof of the L∞-stability, which was already mentioned in the previous Sect. 4.2. As
explained in the remark after Lemma4.4, this requires bounds for y in L∞(I , W 1,p

D )

and p in L∞(I , W 1,p′
). However, in the next section we will require an estimate of

〈A ′′(y)[v,w], p〉 directly (and not ofA (y)′′[v, ·]∗ p) which allows us to use the argu-
ments v and w from the space W 1,2(I , W −1,p

D ) ∩ L2(I , W 1,p
D ) in Lemma4.4. In that

case we can exploit more regularity of v,w, which allows to relax the assumptions on
y and p.

Lemma 4.4 It holds

|〈A ′′(y)[v,w], p〉| ≤ C(ξ, μ, y)‖y‖
Ls (I ,W 1,p

D )
‖p‖

Ls (I ,W 1,p′
D )

·‖v‖
W 1,2(I ,W 1,p

D )∩L2(I ,W 1,p
D )

‖w‖
W 1,2(I ,W 1,p

D )∩L2(I ,W 1,p
D )

.

The constant C can be chosen uniformly with respect to y for y’s coming from a
bounded subset of W 1,s(I , W −1,p

D ) ∩ Ls(I , W 1,p
D ).

Proof The proof works similar as for Lemma4.3, but now we try to exploit more
regularity of v and w. Using embeddings due to Amann (2003, formula (1.2)) and
Griepentrog et al. (2002, Theorem 3.5) we find

W 1,2(I , W −1,p
D ) ∩ L2(I , W 1,p

D ) ↪→ Lq(I , L∞),

with some q ∈ (2,∞) satisfying

2

q
+ 2

s
≤ 1 and

1

q
+ 1

2
+ 1

s
≤ 1. (10)

Now, an application of Hölders inequality (the temporal integrability exponents
match due to (10)) yields the desired result. The uniform choice of the constant
with respect to y follows from the boundedness of ξ and its derivatives on bounded
sets of R and the compactness of the embedding W 1,s(I , W −1,p

D ) ∩ Ls(I , W 1,p
D ) ↪→

C 0(I × Ω). ��
Remark 4.5 The difference in the regularities assumed for y and p in the two lemmas
is essential: Lemma4.3 will be applied in Sect. 5.1 only for y = ȳ and p = p̄, i.e. the
required regularity is guaranteed by Lemma4.1 for p̄ and Theorem7.1 (1), (2b) for ȳ,
respectively. In Sect. 4.4 we will have to apply Lemma4.4 for y = yk , p = pk with
yk, pk being iterates of the SQP method, i.e. yk and pk are solutions of the linearized
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state and adjoint equation. Hence, the regularity requirements for Lemma4.4 are met,
but not immediately those of Lemma4.3.

Remark 4.6 (Necessity of higher regularity for the adjoint state) Note that Lemma4.3
cannot be improved: The limiting factor is the summand

∫

I×Ω

ξ ′(y)w∇ p∇v,

which has to be estimated for v ∈ W 1,r (I , W −1,p
D ) ∩ Lr (I , W 1,p

D ) and w ∈
Lr ′

(I , W 1,p
D ), r ∈ [2, s]. The function w has temporal integrability r ′ and spatial

integrability ∞, whereas ∇v has temporal integrability r and spatial integrability p,
which is the best we can expect from the assumptions each. This implies that we

require p ∈ L∞(I , W 1,p′
D ) in order to be able to estimate the above integral.

4.4 Derivatives associated to (QP)

In this section we provide results on the first and second derivatives of the reduced
objective functionals associated to the quadratic subproblems (QP). We will apply
them in Sect. 6.3 briefly before obtaining our main result.

Recall the definition of the space Xs from Sect. 3.2 and denote by jk: L2(Λ) → R

the reduced functional associated with the linear quadratic optimal control problem
(QP) at (yk, uk, pk) ∈ Xs . In particular note that j ′′k is constant, because jk is a
quadratic functional, which makes us write j ′′k instead of j ′′k (v) for some v, because
v �→ j ′′k (v)[·, ·] is constant and hence independent of such v.

Proposition 4.7 Let Assumptions2.1–2.4 and3.4 be satisfied. Then, it holds uniformly
in u ∈ L2(Λ)

|( j ′′k − j ′′(ū))u2| �
(
‖yk − ȳ‖

W 1,s (I ,W−1,p
D )∩Ls (I ,W 1,p

D )

+ ‖pk − p̄‖
W 1,s (I ,W−1,p′

D )∩Ls (I ,W 1,p′
D )

)

‖u‖2L2

as yk → ȳ, pk → p̄ in the above norms.

Proof Recall by (7) that j ′′k · u2 = L ′′
OC P (yk, uk, pk)(y, u)2 with

ey(yk, uk)y + eu(yk, uk)u = 0, (11)
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holds. We expand this as

L ′′
OC P (yk, uk, pk)(y, u)2 = L ′′

OC P (ȳ, ū, p̄)(ỹ, u)2
︸ ︷︷ ︸

=:(I )

−
(

L ′′
OC P (ȳ, ū, p̄)(ỹ, u)2 − L ′′

OC P (ȳ, ū, p̄)(y, u)2
)

︸ ︷︷ ︸
=:(I I )

− (
L ′′

OC P (ȳ, ū, p̄) − L ′′
OC P (yk, uk, pk)

)
(y, u)2

︸ ︷︷ ︸
=:(I I I )

(12)

with ỹ ∈ W 1,2(I , W −1,p
D ) ∩ L2(I , W 1,p

D ) defined by

ey(ȳ, ū)ỹ + eu(ȳ, ū)u = 0. (13)

From the definition of the Lagrangian we know (I ) = j ′′(ū)u2. Hence it remains to
show that the contribution of (I I ) and (I I I ) gets uniformly small as claimed above.
By definition we have

(I I ) = ‖ỹ‖2 − ‖y‖2
︸ ︷︷ ︸

=:(I I a)

−〈 p̄,A ′′(ȳ)ỹ2 − A ′′(ȳ)y2〉
︸ ︷︷ ︸

=:(I I b)

,

(I I I ) = 〈pk,A
′′(yk)y2〉 − 〈 p̄,A ′′(ȳ)y2〉

= 〈pk − p̄,A ′′(yk)y2〉
︸ ︷︷ ︸

=:(I I I a)

+〈 p̄, (A ′′(yk) − A ′′(ȳ))y2〉
︸ ︷︷ ︸

=:(I I I b)

,

wherein the summands

(I I a) = 〈ỹ + y, ỹ − y〉 and (I I b) = 〈 p̄,A ′′(ȳ)[ỹ + y, ỹ − y]〉 (14)

can be estimated using the boundedness of the solution operator of the linearized state
equation (Bonifacius and Neitzel 2018, Proposition 4.4) and applying Lemma 4.4 and
a similar argument as in the proof of Lemma 4.4. In particular recall Remark 4.5. In
the same way one can treat (I I I ) as well. ��

For the gradient of jk we find:

Proposition 4.8 If (yk, uk, pk) → (ȳ, ū, p̄) in Xs, vk → ū in Ls , it holds

∇ jk(vk) → ∇ j(ū), strongly in L2(Λ).

Proof We split

∇ jk(vk) − ∇ j(ū) = ∇ jk(vk) − ∇ j(vk)︸ ︷︷ ︸
=:(A)

+∇ j(vk) − ∇ j(ū)
︸ ︷︷ ︸

=:(B)
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and estimate both summands. For somev ∈ Uad , e.g.v = vk , introducing the following
quantities will be helpful:

y(v) state associated to v w.r.t. (OCP),

p(v) adjoint state associated to v w.r.t. (OCP),

yk(v) state associated to v w.r.t. (QP)

pk(v) adjoint state associated to v w.r.t. (QP).

Regarding (B) we know from (Bonifacius and Neitzel 2018, Proposition 4.9) that

‖∇ j(vk) − ∇ j(ū)‖L2(Λ) ≤ γ ‖vk − ū‖L2 + ‖B∗(p(vk)

−p(ū))‖L2 → 0 as vk → ū in Ls,

holds, because the adjoint states p(vk) converge in Ls(I , W 1,p′
D ) to p̄. To estimate

(A) first note that the states yk(vk) of the quadratic problem converge to ȳ = y(ū) in
W 1,2(I , W −1,p

D ) ∩ L2(I , W 1,p
D ). This is shown using the convergence of the solution

operators of the linearized state equation (Bonifacius and Neitzel 2018, Proposition
4.9).Utilizing similar techniques as before the desired result follows after some straight
forward computations. We omit the details. ��

5 Generalized Newtonmethod on U�
ad

Following the standard arguments, see e.g. Tröltzsch (2000, 1999), Goldberg and
Tröltzsch (1998), Alt et al. (2010), Griesse et al. (2010, 2008), Wachsmuth (2007)
andHintermüller andHinze (2006),we show that theNewton–Josephymethod applied
to a modified version of the generalized equation (GE), see Sect. 3.2, converges. Our
own contribution here is to verify that—under the correct choice of spaces and with
help of suitable auxiliary results that have been achieved in the previous section—
existing arguments apply to the quasilinear case as well. Proving convergence of this
generalized Newton method is a central step towards showing convergence of the SQP
method: The iterates of the generalized Newton method will be interpreted as iterates
of the SQP method in Sect. 6.

From formula (9) in Sect. 3.3 recall the definition of the modified admissible set
Uσ

ad for some σ ∈ [0,∞]. We consider the generalized equation with this modified
admissible set, i.e. we replace (GE) by

0 ∈ F(y, u, p) + Nσ (y, u, p), (GE-σ )

where Uad is replaced by Uσ
ad in the definition of the normal cone map N , i.e.

Nσ (y, u, p) := ({0} , {0} , {0} , {0} , NUσ
ad

(u)
)T

,
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where NUσ
ad

(u) denotes the normal cone of Uσ
ad at u. The map F: Xs → Zs as well

as the spaces Xs, Zs , see Sect. 3.2 for the definitions, do not change.
To prove convergence of the generalized Newton method strong regularity in the

sense of Robinson has to be shown at an optimal point (ȳ, ū, p̄) ∈ Xs , i.e. for every
perturbation d ∈ Zs sufficiently close to 0 the generalized equation

d ∈ F(ȳ, ū, p̄) + F ′(ȳ, ū, p̄)(y − ȳ, u − ū, p − p̄) + Nσ (y, u, p) (GE-σ -D)

needs to have a unique solution that depends Lipschitz continuous on d ∈ Zs . For
the definition of strong regularity we refer e.g. to Robinson (1980), (Hinze et al. 2009,
Definition 2.5).

Translating back this generalized equation for (y, u, p) into an optimal control
problem yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
y,u

1

2
‖y − yd‖2 + γ

2
‖u‖2 − 1

2
〈 p̄,A ′′(ȳ)[y − ȳ]2〉

+ 〈dT , trT y〉 − 〈du, u〉 + 〈dp, y〉
subject to u ∈ Uσ

ad

and

(
dy

d0

)

= ey(ȳ, ū)(y − ȳ) + eu(ȳ, ū)(u − ū)

(QP-σ -D)

for a givenperturbationvectord = (dy, d0, dp, dT , du) ∈ Zs with components coming
from the corresponding spaces. Note that (GE-σ -D) is indeed the first order neces-
sary and (due to convexity) sufficient optimality condition for (QP-σ -D), because
(QP-σ -D) is convex since only linear perturbation terms have been added to the con-
vex objective function from (QP-σ ). The perturbation in the corresponding affine
linear state equation is only a constant and does not destroy convexity as well.

5.1 Stability of the quadratic problems (QP-�)

We fix d0 = 0 and dT = 0, i.e. we assume that initial and final conditions are
met exactly during the application of the SQP method, which is reasonable from the
numerical point of view.

Proposition 5.1 Let Assumptions2.1–2.4 and3.4 with some σ ∈ [0,∞] hold. Denote
with (yi , ui , pi ) ∈ Xs, i = 1, 2, the solution of (QP-σ -D) for arbitrary perturbation
vectors di ∈ Zs. Then it holds

‖u2 − u1‖2L2 � ‖d2
u − d1

u‖2L2 + ‖d2
y − d1

y‖2L2(I ,W−1,p)
+ ‖d2

p − d1
p‖2L2(I ,W−1,p′

)
.

The hidden constant depends on the data of (OCP) and (ȳ, ū, p̄), but not on di .

123



Convergence of the SQP method for quasilinear parabolic… 2057

To enhance clarity we state the KKT-system of the perturbed problems, that can
easily be derived from (GE-σ -D) using (2) and (3)–(5), before starting the proof:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t yi + A (ȳ)yi + A ′(ȳ)yi = Bui + A ′(ȳ)ȳ + di
y

yi (0) = y0

−∂t pi + A (ȳ)∗ pi + A ′(ȳ)∗ pi = yi − yd − A ′′(ȳ)[yi − ȳ, ·]∗ p̄ + di
p

pi (T ) = 0

di
u ∈ γ ui + B∗ pi + NUσ

ad
(ui ).

(15)

In the following we use the short notation Δy := y2 − y1, Δu := u2 − u1,
Δp := p2 − p1 (and similarly for dy, du, dp). From (15) we derive:

∂tΔy + A (ȳ)Δy + A ′(ȳ)Δy = BΔu + Δdy , (16)

−∂tΔp + A (ȳ)∗Δp + A ′(ȳ)∗Δp = Δy − A ′′(ȳ)[Δy, ·]∗ p̄ + Δdp , (17)

with vanishing initial and final condition, respectively: Δy(0) = 0 and Δp(T ) = 0.

Proof The proof relies on the linear quadratic structure of (QP-σ -D) and regularity
results for the linearized state equation resp. the adjoint equation.

Hence itworks completely analogous toGoldberg andTröltzsch (1998) andweomit
the details and only mention the required regularity results (Bonifacius and Neitzel
2018, Propositions 4.4 resp. 4.7) and that terms containingA ′′ are estimated with help
of Lemma4.3. ��

This shows L2-stability of the quadratic problems (QP-σ ) with respect to perturba-
tions measured in corresponding norms. Utilizing a standard bootstrapping argument
as e.g. in Tröltzsch (2000) we can show the corresponding Ls- resp. L∞-stability
result:

Theorem 5.2 Let Assumptions2.1–2.4 and3.4 with some σ ∈ [0,∞] hold. Then, for
the (yi , ui , pi ), i = 1, 2, from the previous proposition we have

‖u2 − u1‖Ls � ‖d2
u − d1

u‖Ls + ‖d2
y − d1

y‖Ls (I ,W−1,p) + ‖d2
p − d1

p‖Ls (I ,W−1,p′
)
,

‖u2 − u1‖L∞ � ‖d2
u − d1

u‖L∞ + ‖d2
y − d1

y‖Ls (I ,W−1,p) + ‖d2
p − d1

p‖Ls (I ,W−1,p′
)

and

‖(y1, u1, p1) − (y2, u2, p2)‖Xs � ‖d1 − d2‖Zs ,

‖(y1, u1, p1) − (y2, u2, p2)‖X∞ � ‖d1 − d2‖Z∞ .

In particular, the generalized equation (GE-σ ) is strongly regular at its solution
(ȳ, ū, p̄) with respect to the spaces Xs, Zs and X∞, Z∞.
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Proof Again, the proof follows the techniques from Goldberg and Tröltzsch (1998);

Tröltzsch (2000). From the projection formula ui = ProjUσ
ad

(
− 1

γ
(B∗ pi − di

u)
)
, i =

1, 2, we infer that

|Δu | ≤ 1

γ

(|B∗Δp| + |Δdu |
)

holds pointwise on Λ. Thus, we can bound Δu in the Lq(Λ)-norm, if we can bound
B∗Δp and Δdu in the Lq(Λ)-norm. We apply a bootstrapping argument that relies on
the property of B∗ from Sect. 4.2: Assume that we already know

‖Δu‖Lr � ‖Δdu ‖Lr + ‖Δdy ‖Lr (I ,W−1,p) + ‖Δdp‖Lr (I ,W−1,p′
)

for some r ∈ [2, s). Using the regularity theory of the linearized state resp. adjoint
equation for (16) resp. (17) we conclude

‖Δp‖Lr (I ,W−1,p′
D )

� ‖Δdu ‖Lr + ‖Δdy ‖Lr (I ,W−1,p) + ‖Δdp‖Lr (I ,W−1,p′
)
.

At this point we need the full strength of Lemma4.3 to estimate the A ′′-terms for
different r ∈ [2, s]. Note that p̄ ∈ L∞(I , W 1,p′

) holds due to Lemma 4.1. Our
discussion of B∗ from Sect. 4.2 shows that either

(ζ + 1)/2 < 1 − 1/r , which implies ‖B∗Δp‖L∞ � ‖Δp‖Lr (I ,W−1,p′
)

or

(ζ + 1)/2 > 1 − 1/r , which implies ‖B∗Δp‖Lq � ‖Δp‖Lr (I ,W−1,p′
)

with some q fulfilling 1/q > 1/r + (ζ − 1)/2 holds. In the first case it follows

‖Δu‖L∞ � ‖Δdu ‖L∞ + ‖Δdy ‖Ls (I ,W−1,p
D )

+ ‖Δdp‖Ls (I ,W−1,p′
D )

and we are done. In the second case we have

‖Δu‖Lq � ‖Δdu ‖Lq + ‖Δdy ‖Lq (I ,W−1,p) + ‖Δdp‖Lq (I ,W−1,p′
)

and we repeat the procedure with r = q as long as the first holds, which is clearly
the case due to Assumption2.4 if r = s is reached. Note that (ζ − 1)/2 < 0 is fixed
and that we can avoid q being equal to the exceptional cases of Lemma 4.2 due to the
strict inequality that allows small perturbations. ��
Remark 5.3 In addition to the case of purely time-dependent control Bonifacius and
Neitzel (2018) discuss the case of distributed control, i.e.U = Ls(I ×Ω) in Assump-
tion2.4 and B is the embedding Ls(I × Ω) ↪→ Ls(I , H−ζ,p

D ).
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Themain difficultywhen generalizing our results to the setting of distributed control
lies in keeping the arguments for Proposition 5.1 and Theorem5.2 working. In that
case, B∗ is the embedding Ls′

(I , W 1,p′
) ↪→ Ls′

(I × Ω) and a similar discussion
as in Sect. 4.2 has to be done. Sufficiently good estimates for Δp could be obtained
using the regularity theorem from Sect. 7, whereas the corresponding estimates forΔy

would require an analogous analysis of the linearized state equation on H−ζ,p-spaces,
which is beyond scope and focus of this paper.

5.2 Convergence of the generalized Newtonmethod

Invoking a general result on the convergence of generalized Newton methods, e.g.
Hinze et al. (2009), Theorem 2.19, our previous results allow to derive the following

Theorem 5.4 Let Assumptions2.1–2.4 and3.4 with some σ ∈ [0,∞] hold.

1. Then there is a radius rNewton > 0 such that for any triple (y0, u0, p0) ∈ Xs

fulfilling

(y0, u0, p0) ∈ B
Xs
rNewton

((ȳ, ū, p̄))

the sequence of iterates generated by the Newton–Josephy method for equation
(GE-σ ) with (y0, u0, p0) as start is well-defined, stays in the ballBXs

rNewton((ȳ, ū, p̄))

and converges q-superlinearly to (ȳ, ū, p̄) in Xs.
2. The same result as in (1) holds with X∞ instead of Xs.

Proof The proof is standard, see e.g. Tröltzsch (1999), Goldberg and Tröltzsch (1998),
Wachsmuth (2007), Hintermüller and Hinze (2006), Griesse et al. (2008, 2010). ��

6 Convergence of the SQPmethod

The well-definedness of the iterates in Theorem 5.4 is so far only ensured by some
generalized implicit function theorem and the strong regularity of (GE-σ ) at (ȳ, ū, p̄).
Convexity of the quadratic subproblems (QP-σ ) is so far only known in the case
(yk, uk, pk) = (ȳ, ū, p̄), i.e. the relation of possible minimizers of (QP-σ ) and solu-
tions of (GE-σ ) is unclear at the moment.

Therefore, this final section is devoted to an extended analysis of the generalized
Newton method for (GE) and the interpretation of the Newton iterates as solutions
of some linear quadratic optimal control problems. In order to make the flow of the
argumentation more clear, we give a short summary of this section:

In a first step (Sect. 6.1)we consider the quadratic problems restricted toUσ
ad , i.e. the

set of those controls from Uad that coincide with the optimal control ū on the σ -active
set of ū. Themain argument here is that the quadratic problems sufficiently close to the
trueKKT-triple get strictly convexwhen restricted toUσ

ad . Hence, their unique solution
is characterized by the corresponding first order necessary optimality condition, which
coincideswith the generalized equation originating from theNewtonmethod discussed
in Sect. 5. The assumption to restrict toUσ

ad can be slightly relaxed in case that (SSC-σ )
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holds for a positive σ : The quadratic subproblems have to be restricted to Uad ∩
BL2

ρ (ū) with some radius ρ > 0, as shown in Sect. 6.3, and the generalized Newton
method for (GE) converges locally, even without further restrictions, see Sect. 6.2.
That the restriction of the quadratic subproblems can be done in terms of L2-balls
around ū (instead of L∞-balls as in previous results) is—to our best knowledge—a
new result that we obtain by careful application of the SSCs. The main steps of the
argument are as follows: First, we establish convergence of the generalized Newton
method for the corresponding set valued equation (GE) in Sect. 6.2, Theorem6.10.
Thereby the proof of strong regularity is the crucial part and essentially relies on
the observation that L2-local quadratic growth and L2-local uniqueness of critical
points implied by SSCs for certain quadratic problems also stays valid uniformly
under perturbation (Proposition6.7). This and the fact that the set of strongly active
points behaves sufficiently well under perturbation (Lemma6.6) allows to carry over

results on Uσ
ad to Uad ∩ BL2

ρ (ū) in Corollary6.8. Finally, in Sect. 6.3 the iterates of
the generalized Newton method are identified with the solutions of the quadratic
subproblems, see Proposition6.14. We start with the iterates of the SQP method with
subproblems restricted toUσ

ad from Sect. 6.1. Using perturbation arguments analogous
to those from Sect. 6.2 it is shown that sufficiently close to the true KKT-triple these
iterates can also be obtained as unique solution of the quadratic subproblems on

Uad ∩ BL2
ρ (ū) with appropriate ρ > 0, or as the unique local solution of the global

quadratic subproblem that is contained in the aforementioned set, see Proposition6.14.
Note that for theoretical reasons it is not possible to avoid technical restrictions as the

above ones completely, even in finite dimensions, cf. the example given by Goldberg
andTröltzsch (1998, Section 6). In the infinite dimensional case an additional difficulty
arises as pointed out by Tröltzsch (1999, final Remark): Unlike in finite dimensions we
cannot assume that the possibly infinite set of active constraints is correctly identified
after the first iteration, and therefore technical restrictions encoding some a-priori
knowledge on the correct active set have to be imposed.

6.1 SQPmethod on U�
ad

In this section we relate the iterates of the Newton method from Sect. 5 to solutions
of (QP-σ ), see Sect. 3.3 for the definition of Uσ

ad and (QP-σ ). To do so we will show
that the formal optimality conditions for (QP-σ ) encoded in the Newton equations for
(GE-σ ) are indeed sufficient optimality conditions for (QP-σ ). Following again the
work of Tröltzsch (1999), Goldberg and Tröltzsch (1998), andWachsmuth (2007) this
is done by showing strict convexity for (QP-σ ) for (yk, uk, pk) sufficiently close to
(ȳ, ū, p̄). We prove convergence of the SQP method under the technical restriction to
replace Uad by Uσ

ad . Assuming strongest possible SSCs, i.e. Uad = Uσ
ad , this yields

our first main result.
Recall the definition of the space Xs from Sect. 3.2. The following result corre-

sponds to Lemma 6.2, Corollary 6.3 by Tröltzsch (1999).
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Proposition 6.1 Let Assumptions2.1–2.4 and3.4 with some σ ∈ [0,∞] be satisfied.
Then, the linear quadratic SQP problem (QP-σ ) is a strictly convex optimization
problem as long as (yk, uk, pk) is sufficiently close to (ȳ, ū, p̄) in Xs.

Proof The optimization problems (QP-σ ) are of linear quadratic type. To show strict
convexity it suffices to show coercivity, but the latter is an immediate consequence of
the second order sufficient condition (SSC-σ ) and the uniform estimate from Propo-
sition4.7. ��

Nowwe are ready to show locally superlinear convergence of the SQPmethod with
quadratic problems on Uσ

ad :

Theorem 6.2 Let the assumptions of Theorem5.4 be fulfilled.

1. There is a radius rSQP−σ > 0 such that for any start triple (y0, u0, p0) ∈ Xs

fulfilling

(y0, u0, p0) ∈ B
Xs
rSQP−σ

((ȳ, ū, p̄))

the sequences of iterates generated by the generalized Newton method applied to
(GE-σ ) resp. generated by the SQP method with quadratic subproblems (QP-σ )
are both well-defined, coincide, stay in the ball BXs

rSQPσ
((ȳ, ū, p̄)) and converge

superlinearly to (ȳ, ū, p̄) in Xs.
2. The statement analogous to (1) with Xs replaced by X∞ is true, too.
3. There is a radius r̃SQP−σ > 0 such that the SQP method with quadratic subprob-

lems (QP-σ ) and initial iterate (y0, u0, p0) with

‖y0 − ȳ‖
W 1,s (I ,W−1,p

D )∩Ls (I ,W 1,p
D )

+ ‖p0 − p̄‖
W 1,s (I ,W−1,p′

D )∩Ls (I ,W 1,p′
D )

≤ r̃SQP−σ

converges superlinearly in Xs and X∞ to (ȳ, ū, p̄). In particular we can choose

u0 ∈ Uad , ‖u0 − ū‖L2(Λ) sufficiently small,

y0, p0 state and adjoint state associated to u0.

Proof For (1) and (2) the proof works analogous to that of Theorem 6.4 in Tröltzsch
(1999). For (3) note that (QP-σ ) is actually independent of the current control iterate
uk , cf. also the remark after (5), which shows the first statement in (3). Since Uad is
bounded in L∞ and s > 2 by Assumption2.4 it holds

‖u0 − ū‖Ls ≤ C‖u0 − ū‖2/s
L2 ∀u0 ∈ Uad

by the Riesz-Thorin interpolation theorem, cf. also the remark after the next theorem.
Here, C > 0 is a constant depending only on the L∞-bound of Uad , i.e. on ua and ub.
From this we conclude by continuity

‖(y0, u0, p0) − (ȳ, ū, p̄)‖Xs � ‖u0 − ū‖2/s
L2 ,

which shows the second statement of (3). ��
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Assuming strongest possible second order sufficient conditions, i.e. coercivity of
the second derivative of the Lagrangian on the whole space instead of only on a
subspace, we are able to state our first main result. Note that it is possible to formulate
all “closeness” required for convergence of the SQPmethod with respect to L2-norms.

Theorem 6.3 Let the Assumptions2.1–2.4 be fulfilled and let the second order suf-
ficient condition (SSC-σ ) from Assumption3.4 hold on the whole space L2(Λ) (i.e.
σ = ∞). Then the SQP method for (OCP) started in (y0, u0, p0) ∈ Xs,

u0 ∈ Uad , ‖u0 − ū‖L2(Λ) sufficiently small,

y0, p0 state and adjoint state associated to u0,

converges superlinearly in Xs and X∞ to (ȳ, ū, p̄).

Proof Use Theorem6.2 (3) together with Uσ
ad = Uad . ��

Remark 6.4 That the topologies generated by the L2- and the Ls-norm (s > 2), respec-
tively, coincide on an L∞-bounded set by the Riesz-Thorin interpolation theorem, is a
well known fact. However, this observation is a key argument formany proofs concern-
ing second order conditions without two norm gap, see e.g. (Casas and Tröltzsch 2012,
Proposition 3.4) or (Bonifacius and Neitzel 2018, Theorem 4.14). Here, we made use
of this technique in Theorem6.2 (3) and6.3 to tighten the unsatisfying gap between
the quadratic growth condition for j implied by (SSC-σ )—this growth condition holds
L2-locally—and the Ls-local convergence of the SQP method.

For the rest of Sect. 6 we will be concerned with relaxing this rather abstract and
technical condition towards a more natural restriction.

6.2 Generalized Newtonmethod on Uad resp. Uad ∩ B
L2
� (ū)

Before showing convergence of the SQP method restricted to Uad ∩ BL2
ρ (ū) we con-

sider convergence of the Newton method for the associated generalized equation first.
Our arguments follow in particular the presentation by Wachsmuth (2007), but sim-
ilar results are also due to Goldberg and Tröltzsch (1998) and Tröltzsch (1999). To
replace L∞-locality by L2-locality in the statements of Proposition6.7 is—to our
best knowledge—a new result. An analogous technique will be utilized afterwards
in Sect. 6.3 to prove also convergence of the SQP method under certain localization
conditions.

In the following we consider the perturbed generalized equation

d ∈ F(ȳ, ū, p̄) + F ′(ȳ, ū, p̄)(y − ȳ, u − ū, p − p̄) + N (y, u, p). (GE-D)

Note that we now use the normal cone map N associated with the true set of
admissible controls Uad instead of the normal cone map Nσ associated with the
modified admissible set Uσ

ad that was used for the definition of (GE-σ -D) in the
previous sections. Furthermore, note that (GE-σ -D) can be understood as generalized
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equation in the spaces Xs, Zs resp. X∞, Z∞ both. For the definition of these spaces
see Sect. 3.2. As before, the generalized equation (GE-σ -D) is the formal optimality
system of the following perturbed optimal control problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
y,u

1

2
‖y − yd‖2 + γ

2
‖u‖2 − 1

2
〈 p̄,A ′′(ȳ)[y − ȳ]2〉 − 〈du, u〉 + 〈dp, y〉

subject to u ∈ Uad

and

(
dy

0

)

= ey(ȳ, ū)(y − ȳ) + eu(ȳ, ū)(u − ū)

(QP-D)

The reduced objective function for (QP-D) will be denoted by jd . Note that we did
not discuss properties of this optimization problem so far. Further, we introduce the
following notation for the strongly active sets:

Aσ
d (u) := {

x ∈ Λ: |∇ jd(u)|(x) = |B∗ p + γ u − du |(x) > σ
}
,

Aσ (u) := Aσ
0 (u), i.e. d = 0 in the definition above.

Here, p denotes the adjoint state associated with u with respect to (QP-D) with per-
turbation vector d, see (15). Note that Aσ

0 (ū) coincides with the strongly active set for
ū defined in Assumption 3.4.

In Sect. 5we observed that underAssumptions2.1–2.4 and3.4 the restricted optimal
control problem (QP-σ -D), i.e. problem (QP-D) restricted to Uσ

ad , is strictly convex
and admits a unique solution (ȳd , ūd , p̄d). This holds true for arbitrarily large pertur-
bation vectors d. In particular, the map d = (dy, dp, du) �→ (ȳd , ūd , p̄d) was shown
to be Lipschitz from Z∞ to X∞ in Theorem 5.2, say with modulus L ′ > 0. It follows
that the mapping

Z∞ → L∞(Λ),

d �→ γ ūd + B∗ p̄d − du = ∇ jd(ūd)
(18)

is Lipschitz as well, say with modulus L > 0.

Remark 6.5 Of course, even the map Zs → Xs , d �→ (ȳd , ūd , p̄d) is Lipschitz con-
tinuous as shown in Theorem5.2, which implies that d �→ γ ūd + B∗ p̄d − du is
Lipschitz continuous from Zs to Ls(Λ). Unfortunately, we rely on L∞-estimates in
the following.

Assuming that (SSC-σ ) holds for some σ ∈ (0,∞) we can draw some immedi-
ate conclusions from the Lipschitz continuity of (18) as done by Wachsmuth (2007,
Corollaries 5.3 and 5.4):

Lemma 6.6 Let Assumptions2.1–2.4 and3.4 with some σ ∈ (0,∞) hold and suppose
that ‖d‖Z∞ < σ

2L .

1. It holds Aσ (ū) ⊂ Aσ/2
d (ūd) and the signs of ∇ jd(ūd) and ∇ j0(ū) coincide on

Aσ (ū).
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2. The solution (ȳd , ūd , p̄d) of (QP-σ -D) is a solution of (GE-D) as well, i.e. it holds

〈γ ūd + B∗ p̄d − du, u − ūd〉L2(Λ) ≥ 0, ∀u ∈ Uad .

Proof Completely analogous to Wachsmuth (2007). ��
Lemma6.6 shows that our solution of (QP-σ -D) that depends Z∞-X∞-Lipschitz

on d is a solution of (GE-D) as well, if the perturbation d is small enough in Z∞. To
establish strong regularity of (GE) (with spaces X∞, Z∞) from this result we have to
show that this solution is locally unique. This is done by proving that (ȳd , ūd , p̄d) is
not only a global solution of (QP-σ -D) but even a local solution of (QP-D) fulfilling
a quadratic growth condition on a ball around (ȳd , ūd , p̄d) with radius independent of
d.

Proposition 6.7 Let the assumptions of Lemma6.6 be satisfied.

1. Then there exist 0 < ε̃ < σ
2L and ρ̃, η > 0, such that (ȳd , ūd , p̄d), i.e. the solution

of (QP-σ -D), is also a L2-local solution of (QP-D) and satisfies the quadratic
growth condition

jd(u) ≥ jd(ūd) + η‖u − ūd‖2L2

for ‖u − ūd‖L2(Λ) ≤ ρ̃, u ∈ Uad, as long as ‖d‖Z∞ < ε̃.
2. There are 0 < ε̂ ≤ ε̃, 0 < ρ̂ ≤ ρ̃ such that (ȳd , ūd , p̄d) is the only stationary1

point for (QP-D) in B
L2

ρ̂
(ūd).

The first statement of this proposition corresponds to Theorem 5.5 (Wachsmuth
2007) with the L∞-ball around ūd replaced by an L2-ball. To establish quadratic
growth L∞-locally around ūd , one could follow the direct proof of Theorem 5.17
(Tröltzsch 2010). Avoiding the two norm gap—which is our aim—can be done fol-
lowing ideas due to Casas and Tröltzsch (2012, Theorem 2.3), see also Tröltzsch and
Wachsmuth (2006, Theorem 3.22), utilizing a proof by contradiction.Wemention that
similar arguments were also used by Casas and Tröltzsch Casas and Tröltzsch (2012)
in the context of abstract finite element errors.

Note that for every single perturbation d ∈ Z∞, both properties in the proposition
are directly implied by Theorem 2.3 resp. Corollary 2.6 from Casas and Tröltzsch
(2012). The crucial point here is to guarantee that the radii of the respective balls can
be chosen independently of the choice of d as long as ‖d‖Z∞ is small enough.

Proof For the proof of (1)we extended the technique presented by (Casas andTröltzsch
2012, Theorem 2.3) to our needs. First, note that due to the quadratic structure of
(QP-D) it holds j ′′d (ūd)[v1, v2] = j ′′(ū)[v1, v2]. In particular, j ′′d is independent of d.

We are going to argue by contradiction and assume the contrary of our claim: There
are sequences (dn)n ⊂ Z∞, (hn)n ⊂ L2(Λ) with

‖dn‖Z∞ <
1

n
, ‖hn‖L2 <

1

n
and ūdn + hn ∈ Uad

1 We call (y, u, p) stationary for (QP-D) if (y, u, p) fulfills the first order necessary conditions for (QP-D).
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such that

jdn (ūdn + hn) − jdn (ūdn ) <
1

n
‖hn‖2L2 . (19)

Define vn := hn‖hn‖L2
and ρn := ‖hn‖L2 . It holds dn = (dy,n, dp,n, du,n) → 0 strongly

in Z∞, which implies ūdn → ū and ∇ jdn (ūdn ) → ∇ j(ū) strongly in L∞(Λ). Due to
‖vn‖L2 = 1 for all n ∈ N we can w.l.o.g. assume that vn⇀v∗ weakly in L2(Λ) for
some v∗ ∈ L2(Λ).
Step 1: We prove j ′(ū)v∗ = 0. We have

j ′(ū)v∗ = 〈strong- lim
n→∞ ∇ jdn (udn ),weak- lim

n→∞ vn〉L2

= lim
n→∞〈∇ jdn (udn ), vn〉L2 ≥ 0,

(20)

because 〈∇ jdn (udn ), vn〉L2 = 1
ρn

〈∇ jdn (udn ), hn〉L2 ≥ 0 holds for every n due to
ūdn + hn ∈ Uad and Lemma6.6 (2), for which we can assume w.l.o.g. that ‖dn‖Z∞ <
σ
2L . Further, using the mean value theorem there are θn ∈ (0, 1) such that

jdn (udn + ρnvn) − jdn (ūdn )

ρn
= 〈∇ jdn (ūdn + θnρnvn), vn〉L2 .

Due to the structure of (QP-D)—see e.g. (16), (17) and use regularity results as in
the proof of Theorem 5.2—we know that ∇ jdn (ūdn + θnρnvn) → ∇ j(ū) strongly in
L2(Λ), which implies

jdn (udn + ρnvn) − jdn (ūdn )

ρn
→ j ′(ū)v∗ as n → ∞. (21)

On the other hand it holds by assumption (19):

jdn (udn + ρnvn) − jdn (ūdn )

ρn
<

1

ρn
· 1

n
‖hn‖2L2 = ρn

n
→ 0,

which together with (21) yields j ′(ū)v∗ ≤ 0 first and then together with (20):

j ′(ū)v∗ = 0. (22)

Step 2:Wewant to show v∗ = 0 if |∇ j(ū)| > 0. To do sowe show v∗ ≥ 0 if∇ j(ū) > 0
and v∗ ≤ 0 if ∇ j(ū) < 0, which implies together with Step 1 the desired property:
For σ ′ > 0 arbitrary define Aσ ′,a(ū) := {x ∈ Λ : ∇ j(ū) > σ ′}. As in the proof
of Lemma6.6 we conclude that ∇ jdn (ūdn ) > 0 on Aσ ′,a(ū) for all sufficiently large
n, which implies hn, vn ≥ 0 on Aσ ′,a(ū) for all such n. Because weak convergence
preserves signs we conclude v∗ ≥ 0 on Aσ ′,a(ū). Since σ ′ > 0 was arbitrary it follows
v∗ ≥ 0 whenever ∇ j(ū) > 0, as stated. The case ∇ j(ū) < 0 is shown in the same
way.
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Step 3: In Step 2 we have shown that v∗ ∈ C0(ū) ⊂ Cσ (ū) holds. For the definition
of C0(ū) and Cσ (ū) see Assumption3.4. In the present step we will arrive at the final
contradiction. First observe that by our assumption

ρ2
n

n
= 1

n
‖hn‖2L2 > jdn (ūdn + hn) − jdn (ūdn )

(�)= j ′dn
(ūdn )hn + 1

2
j ′′(ū)hn

(�)≥ ρ2
n

2
j ′′(ū)v2n,

where we used the linear quadratic structure of (QP-D) at (�) and the first order
optimality condition at (�). It follows

j ′′(ū)v2∗ ≤ lim inf
n→∞ j ′′(ū)v2n ≤ lim inf

n→∞
2

n
= 0, (23)

where the first inequality comes from the weak lower semicontinuity of j ′′(ū), see
Proposition 4.10 (Bonifacius and Neitzel 2018). Since v∗ ∈ Cσ (ū) we can apply
(SSC-σ ) and conclude from (23) that v∗ = 0. Using property (4.11) by Bonifacius
and Neitzel (2018) at (�) we obtain

γ = γ lim inf
n→ ‖vn‖2L2

(�)≤ lim inf
n→∞ j ′′(ū)v2n

(23)= 0,

which is the desired contradiction. ��
The secondpart of the proposition is shown similarly adapting the proof ofCorollary

2.6 by Casas and Tröltzsch (2012). We leave the details to the reader. ��
Given a radius ρ > 0 we introduce another modification of the perturbed linear

quadratic problem (QP-D)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
y,u

1

2
‖y − yd‖2 + γ

2
‖u‖2 − 1

2
〈 p̄,A ′′(ȳ)[y − ȳ]2〉 − 〈du, u〉 + 〈dp, y〉

subject to u ∈ Uad ∩ BL2
ρ (ū)

and

(
dy

0

)

= ey(ȳ, ū)(y − ȳ) + eu(ȳ, ū)(u − ū)

(QP-D-ρ)

for which the following result holds:

Corollary 6.8 Let the assumptions of Lemma6.6 be satisfied.

1. There are ε, ρ > 0, such that the triple (ȳd , ūd , p̄d), i.e. the unique solution of
(QP-σ -D), is also the unique solution of (QP-D-ρ) if ‖d‖Z∞ < ε.

2. There are ε, τ > 0, such that for ‖d‖Z∞ < ε the control ūd is the unique solution

of (GE-D) that is contained in the set Uad ∩ BL2
τ (ū).
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Aresult similar to (2)—butwith L∞- instead of L2-balls—was proven by (Goldberg
and Tröltzsch 1998, Theorem 5.4) using a different argument that relies on strongly
active sets and continuity of (18).

Proof 1. Chooseρ = 2ρ̃
3 and ε < min

(
ε̃,

ρ̃
3C

)
, whereC > 0 is the Z∞-L2-Lipschitz

constant for the map d �→ ūd , cf. Theorem5.2 for the Lipschitz continuity. Then,
it holds in particular ‖d‖Z∞ < ε̃, i.e. the previous Proposition applies, and

ūd ∈ Uad ∩ BL2
ρ (ū) ⊂ Uad ∩ B

L2

ρ̃
(ūd)

for all ‖d‖Z∞ < ε. Since ūd is the unique minimizer of (QP-D) restricted to

Uad ∩ B
L2

ρ̃
(ūd) by quadratic growth (Proposition6.7 (1)) and this minimizer is

contained in the smaller set Uad ∩BL2
ρ (ū), we finally proved that ūd is the unique

minimizer of (QP-D) restricted to Uad ∩ BL2
ρ (ū), i.e. the unique minimizer of

(QP-D-ρ).
2. Similarly as for (1). Now make use of Proposition 6.7 (2).

��
We introduce another variation of (GE):

0 ∈ F(y, u, p) + Nρ(y, u, p), (GE-ρ)

with the set valuedmap Nρ(y, u, p) := {{0} , {0} , {0} , {0} , N
Uad∩BL2

ρ (ū)
(u)}T , where

N
Uad∩BL2

ρ (ū)
(u) denotes the normal cone of the closed convex setUad ∩BL2

ρ (ū) at some

point u. The first part of the following result is similar to Corollary 5.6 (Wachsmuth
2007), the second part to the observation on top of p. 240 by Goldberg and Tröltzsch
(1998).

Theorem 6.9 Let the assumptions of Lemma6.6 be fulfilled. It holds:

1. The generalized equation (GE) in the spaces X∞, Z∞ is strongly regular at
(ȳ, ū, p̄).

2. There is a ρ > 0 such that the generalized equation (GE-ρ) in the spaces X∞, Z∞
is strongly regular at (ȳ, ū, p̄).

Proof Both statements are consequences of Corollary6.8 resp. Theorem5.2. The first
part is proven in the same way as in Wachsmuth (2007). We have to use that the
L∞-norm is stronger than the L2-norm. For the second part note that for all u in the

L2-interior of the ball BL2
ρ (ū), i.e. in particular for all u sufficiently close to ū in the

L∞-norm, the equality N
Uad∩BL2

ρ (ū)
(u) = NUad (u) holds, as already mentioned by

Goldberg and Tröltzsch (1998). ��
The following result is an immediate consequence of an abstract result (Hinze et al.

2009, Theorem 2.19) and Theorem6.9. The closed graph property for the normal cone
map Nρ is standard.
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Theorem 6.10 Let Assumptions2.1–2.4 and3.4 with some σ ∈ (0,∞) hold. For any
(y0, p0) sufficiently close to (ȳ, p̄) in the space

W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D ) × W 1,s(I , W −1,p′
D ) ∩ Ls(I , W 1,p′

D )

it holds:

1. The sequence of iterates generated by the Newton–Josephy method for (GE) with
initial iterate (y0, u0, p0) is well-defined and converges superlinearly in X∞ to
(ȳ, ū, p̄).

2. The same holds true for the sequence of iterates generated by the Newton–Josephy
method for (GE-ρ) with ρ from Theorem 6.9 (2).

FromLemma6.6 on we had to consider perturbations in Z∞, i.e. we had to measure
the control in L∞(Λ). This is the reason why have to show strong regularity only in
Z∞, X∞ and not in Zs, Xs as well as we did before. That we impose no condition
on u0 is due to the fact that the Newton update equations for (GE) resp. (GE-ρ) are
independent of the current u-iterate uk , see the comment after equation (5).

6.3 SQPmethod on Uad ∩ B
L2
� (ū)

Finally, we investigate how the iterates of the generalized Newton method from The-
orem6.10 can be computed by solving linear quadratic optimal control problems

restricted on Uad ∩ BL2
ρ (ū). For analogous results in the case of semilinear equations

(but with L∞- instead of L2-balls) we refer to Tröltzsch (1999) and Goldberg and
Tröltzsch (1998).

Lemma 6.11 Let the assumptions of Theorem6.10 hold. Let (yk, uk, pk) ∈ X∞ be a
given triple and consider the restricted quadratic subproblem (QP-σ ) associated with
this triple. There exists an X∞-neighbourhood V1 of (ȳ, ū, p̄) such that the map

(yk, uk, pk) �→ (yσ
k+1, uσ

k+1, pσ
k+1)

is well-defined on V1 and Lipschitz continuous, where (yσ
k+1, uσ

k+1, pσ
k+1) denotes the

unique solution of (QP-σ ).

Proof Existence and uniqueness of a solution to (QP-σ ) is established in Pro-
position6.1 for (yk, uk, pk) sufficiently close to (ȳ, ū, p̄). Define Ṽ to be such a
neighbourhood of (ȳ, ū, p̄). To see Lipschitz continuity, note that (yσ

k+1, uσ
k+1, pσ

k+1)

is solution of the parametrized generalized equation

0 ∈ G((yk, uk, pk), (y, u, p)) + Nσ (y, u, p)

:= F(yk, uk, pk) + F ′(yk, uk, pk)(y − yk, u − uk, p − pk) + Nσ (y, u, p)
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–with (yk, uk, pk) being the parameter—and that

0 ∈ G((ȳ, ū, p̄), (y, u, p)) + Nσ (y, u, p)

= F(ȳ, ū, p̄) + F ′(ȳ, ū, p̄)(y − ȳ, u − ū, p − p̄) + Nσ (y, u, p)

is strongly regular at its solution (ȳ, ū, p̄) according to Theorem5.2. Further, G and
G ′, i.e. F and F ′, depend continuously on (yk, uk, pk), because F: X∞ → Z∞ is
continuously differentiable (Lemma3.3). Hence, Theorem 2.18 (Hinze et al. 2009)
implies the desired Lipschitz continuity of (yk, uk, pk) �→ (yσ

k+1, uσ
k+1, pσ

k+1) from

X∞ to X∞ on a sufficiently small neighbourhood V̂ of (ȳ, ū, p̄). Now, V1 := Ṽ ∩ V̂
yields the desired neighbourhood. ��

With the previous lemma we have shown in particular that

X∞ → L∞(Λ)

(yk, uk, pk) �→ ∇ jk(u
σ
k+1) = γ uσ

k+1 + B∗ pσ
k+1

(24)

is Lipschitz continuous on the X∞-neighbourhood V1 of (ȳ, ū, p̄).With jk we denoted
the reduced functional of (QP-σ ) and pσ

k+1 is the adjoint state (w.r.t. (QP-σ )) asso-
ciated with the control uσ

k+1, see Eqs. (3), (4). The same argument as for Lemma6.6
now shows

Lemma 6.12 Let the assumptions of Theorem6.10 hold. There is an X∞-neigh-
bourhood V2 of (ȳ, ū, p̄) such that for all (yk, uk, pk) ∈ V2 the solution
(yσ

k+1, uσ
k+1, pσ

k+1) of (QP-σ ) satisfies the first order necessary optimality conditions
of (QP).

Proof State- and adjoint equation of (QP) and (QP-σ ) coincide. We only have to
show that (yσ

k+1, uσ
k+1, pσ

k+1) fulfills the variational inequality of (QP) as well and
this works completely analogous to Lemma6.6 replacing (18) with (24). ��

Now, we can show the following result that is similar to Proposition 6.7:

Proposition 6.13 Let the assumptions of Theorem6.10 hold. There is an X∞-neigh-
bourhood V3 of (ȳ, ū, p̄) and there are ρ, η > 0 such that for all triples (yk, uk, pk) ∈
V3 the unique solution (yk+1, uk+1, pk+1) := (yσ

k+1, uσ
k+1, pσ

k+1) of (QP-σ )

1. is a L2-local solution of (QP) satisfying the quadratic growth condition

jk(u) ≥ jk(uk+1) + η‖u − uk+1‖2L2

for u ∈ Uad such that ‖u − uk+1‖L2(Λ) ≤ ρ.

2. is the only stationary point for (QP) in BL2
ρ (uk+1).

Proof We proceed as in the proofs of Proposition6.7 (1) and (2) and argue by contra-
diction. Instead of jdn and ūdn we have to consider jk and uk+1. We only mention the
essential ingredients that keep all the previous arguments working:
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(i) For any sequence (wk) ⊂ Uad such that wk → ū in L2(Λ) it holds

∇ jk(wk) → ∇ j(ū), strongly in L2(Λ).

This was shown in Proposition4.8; use the Riesz-Thorin interpolation theorem
(see Remark 6.4) to obtain the required Ls-convergence wk → ū from the given
L2-convergence.

(ii) If uk → ū strongly in L2 and vk⇀v∗ weakly in L2 we have:

j ′′(ū)v2∗ ≤ lim inf
k→∞ j ′′k (uk)v

2
k .

Using the boundedness of (vk)k , this is a consequence of Proposition4.7 and the
weak lower semicontinuity of j ′′, see Bonifacius and Neitzel (2018), (4.10):

lim inf
k

j ′′k (uk)v
2
k ≥ lim inf

k

(
j ′′k (uk) − j ′′(uk)

)
v2k

︸ ︷︷ ︸
→0 uniformly in vk

+ lim inf
k

j ′′(uk)v
2
k ≥ j ′′(ū)v2∗

(iii) If v∗ = 0 in (2), then γ lim infk→∞‖vk‖2L2 ≤ lim infk→∞ j ′′k (uk)v
2
k : This is

shown by the same argument as above.

��
Next, we obtain with the same argument as for Corollary 6.8:

Proposition 6.14 Let the assumptions of Theorem6.10 hold.

1. There is an X∞-neighbourhood V4 of (ȳ, ū, p̄) and a radius ρ > 0 such that
for all (yk, uk, pk) ∈ V4 the next SQP iterate (yk+1, uk+1, pk+1) given by the
unique solution of (QP-σ ) is also the unique solution of (QP) with admissible set

Uad ∩ BL2
ρ (ū).

2. There is an X∞-neighbourhood V5 of (ȳ, ū, p̄) and a radius ρ > 0, such that for
all (yk, uk, pk) ∈ V5 the next SQP iterate (yk+1, uk+1, pk+1) given by the unique
solution of (QP-σ ) is also the unique L2-local solution of the global quadratic

problem (QP) that is contained in Uad ∩ BL2
ρ (ū).

For convenience of the reader we write down the quadratic problem which we will
refer to in our final theorem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
y,u

Jk(y, u) := 1

2
‖y − yd‖2 + γ

2
‖u‖2 − 1

2
〈pk,A

′′(yk)[y − yk]2〉

subject to u ∈ Uad ∩ BL2
ρ (ū),

and

{
∂t y + A (yk)y + A ′(yk)y = Bu + A ′(yk)yk

y(0) = y0
(QP(ρ, yk, pk))
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Theorem 6.15 Let Assumptions2.1–2.4 and3.4 with some σ ∈ (0,∞) hold. Then
there are radii ρ > 0, rSQ P > 0 such that for any initial guess

(y0, p0) ∈ W 1,s(I , W −1,p
D ) ∩ Ls(I , W 1,p

D ) × W 1,s(I , W −1,p′
D ) ∩ Ls(I , W 1,p′

D )

fulfilling

‖y0 − ȳ‖
W 1,s (I ,W−1,p

D )∩Ls (I ,W 1,p
D )

+ ‖p0 − p̄‖
W 1,s (I ,W−1,p′

D )∩Ls (I ,W 1,p′
D )

≤ rSQ P

the sequence of iterates generated by the successive solution of the SQP subproblems
(QP(ρ, yk, pk)) converges superlinearly in X∞ to (ȳ, ū, p̄).

A possible choice of y0, p0 are state y0 and adjoint state p0 associated to some
control u0 ∈ Uad w.r.t. (OCP) if ‖u0 − ū‖L2 is chosen small enough.

Proof Combine Proposition6.14 with Theorem 5.4. ��
This theorem is ourmain result. Note in particular that we tightened the gap between

the L2-local growth condition originating from the second order sufficient conditions
and the “closeness”-conditions in the SQP method. The latter had been formulated
with respect to L∞ in the existing literature. Now, in Theorem6.15 above all required
“closeness” can be formulated with respect to the L2-norm.

7 Regularity of the adjoint state

In this section we prove the regularity required for the adjoint state in our analysis. In
(Bonifacius and Neitzel 2018, Proposition 4.7) it was shown that

p̄ ∈ W 1,r (I , W −1,p′
D ) ∩ Lr (I , W 1,p′

D ) ∀r ∈ [s′,∞),

whereas we need additional regularity p̄ ∈ L∞(I , W 1,p′
) as explained in Remark4.6.

In fact, we will show even higher regularity for p̄ in the theorem below than necessary.
To improve readability of our arguments, we start with a collection of results from

Bonifacius and Neitzel (2018). As further reference for maximal parabolic regularity
on H−ζ,p-spaces we mention the work of Haller-Dintelmann and Rehberg (2009).
Some of the results cited below are originally due to them.

Theorem 7.1 1. For every right hand side f ∈ Ls(I , H−ζ,p
D ) there is a unique solu-

tion y ∈ W 1,s(I , H−ζ,p
D ) ∩ Ls(I ,D) to the nonlinear state equation

∂t y + A (y)y = f , y(0) = y0. (E)

2. The following embeddings hold true:

(a) D ↪→ W 1,p
D ↪→c L p ↪→ H−ζ,p

D

(b) W 1,s(I , H−ζ,p
D ) ∩ Ls(I ,D) ↪→c C α(I , W 1,p

D ) for some α > 0.
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3. The linear map W 1,p
D → L (D, H−ζ,p

D ), ξ �→ −div(ξμ∇·) is continuous.
4. Let y be a solution of (E). Then it holds:

(a) A (y) has maximal parabolic regularity on Lr (I , H−ζ,p
D ) for r ∈ (1,∞).

(b) A (y) + A ′(y) has maximal parabolic regularity on Lr (I , W −1,p
D ) for every

r ∈ (1, s].
(c) A (y)• + A ′(y)• (where • indicates taking adjoints and reversing time) has

maximal parabolic regularity on Lr ′
(I , W −1,p′

D ) for every r ′ ∈ [s′,∞).

(d) A (y)∗+A ′(y)∗ has maximal parabolic regularity on Lr ′
(I , W −1,p′

D ) for every
r ′ ∈ [s′,∞).

5. For τ ∈ (
1+ζ
2 , 1) it holds (H−ζ,p

D ,D)τ,1 ↪→ W 1,p
D .

Proof 1. Bonifacius and Neitzel (2018, Theorem 3.20 for regularity, Proposition 3.5
for existence)

2. Bonifacius and Neitzel (2018, (a) below Proposition 3.6, (b) Corollary 3.7)
3. Bonifacius and Neitzel (2018) Proposition 3.6(ii).
4. See Bonifacius and Neitzel (2018, Theorem 3.20 for (a), Proposition 4.4 is comp

(resp. text between formulas (4.4) and (4.5)) for (b), Proposition 4.7 for (c)).
For (d): Bonifacius and Neitzel (2018, proof of Proposition 4.7) state that every
autonomous operator A (y(t))∗ + A ′(y(t))∗ has maximal parabolic regularity

on W −1,p′
D . Since the map t �→ A (y(t))∗ + A ′(y(t))∗ is continuous from I to

L (W 1,p′
D , W −1,p′

D ) the nonautonomous operator inherits maximal parabolic regu-
larity, see Amann (2004, Theorem 7.2)

5. Bonifacius and Neitzel (2018, Proposition 3.6(i)).
��

Now, we fix y ∈ W 1,s(I , H−ζ,p
D ) ∩ Ls(I ,D). In particular, y can be a solution of

(E) for some right hand side f ∈ Ls(I , H−ζ,p
D ). It was shown, see Theorem 7.1 (4c)

and Amann (2004, Proposition 3.1) resp. Amann (2003, formula (6.2)), that

(−∂t + A (y)∗ + A ′(y)∗, trT
) : W 1,r (I , W −1,p′

D ) ∩ Lr (I , W 1,p′
D )

→ Lr (I , W −1,p′
D ) × (W −1,p′

D , W 1,p′
D )1−1/r ,r (25)

is a topological isomorphism for r ∈ [s′,∞). In fact, this also holds for every r ∈
(1,∞) due to continuity of t �→ A (y)∗ + A ′(y)∗ as map I → L (W 1,p′

, W −1,p′
)

by Amann (2004, Proposition 7.1 and Theorem 7.1). The required continuity with
respect to time is shown by Bonifacius and Neitzel (2018) in the proof of Proposition
4.7.

We want to obtain more regularity for the adjoint state and to do so we consider
restrictions of the above isomorphism onto smaller spaces of more regular functions.
First, note that a short computation shows A (y)∗|

Lr (I ,W 1,p
D )

= A (y)|
Lr (I ,W 1,p

D )
and

similarly we can express A ′(y)∗ restricted to Lr (I , W 1,p
D ) as first order differential

operator A ′(y)∗ϕ = ξ ′(y)μ∇ y∇ϕ. Standard Sobolev embeddings imply that under
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Assumption2.4 it holds

L p/2 ↪→ H−ζ,p
D . (26)

We already know by Theorem7.1 (4a) that −div(ξ(y)μ∇·) has maximal parabolic
regularity on Lr (I , H−ζ,p

D ) and that t �→ −div(ξ(y)μ∇·) is continuous as map I →
L (D, H−ζ,p

D ), which follows from Theorem7.1 (2a) and (3). As above, we infer from
Amann (2004) that

(−∂t − div(ξ(y)μ∇·), trT ): W 1,r (I , H−ζ,p
D ) ∩ Lr (I ,D)

→ Lr (I , H−ζ,p
D ) × (H−ζ,p

D ,D)1−1/r ,r

is a topological isomorphism. Now, choose 1+ζ
2 < θ < 1 such that 1

r > 1 − θ . It
follows by (Amann 2003, formula (1.2)) and Theorem7.1 (2a), (5) that

W 1,r (I , H−ζ,p
D ) ∩ Lr (I ,D) ↪→c Lr (I , (H−ζ,p

D ,D)θ,1) ↪→ Lr (I , W 1,p
D )

holds. Hence, the operator

A ′(y)∗: W 1,r (I , H−ζ,p
D ) ∩ Lr (I ,D) ↪→c Lr (I , W 1,p

D )

→ Lr (I , L p/2) ↪→ Lr (I , H−ζ,p
D ),

z �→ ξ ′(y)μ∇ y∇z

is compact as it can be expressed as composition of linear operators of which one is a
compact embedding. We conclude that the sum

(−∂t − div(ξ(y)μ∇·) + ξ ′(y)μ∇ y∇·, trT ): W 1,r (I , H−ζ,p
D )

∩Lr (I ,D)

→ Lr (I , H−ζ,p
D ) × (H−ζ,p

D ,D)1−1/r ,r

is a Fredholm-operator of index 0 for every r ∈ (1,∞). Since it is the restriction of
the isomorphism (25) above, its kernel is trivial and therefore we actually have an
isomorphism. To sum this up we have shown the following regularity result:

Theorem 7.2 Given y ∈ W 1,s(I , H−ζ,p
D ) ∩ Ls(I ,D) the map

(−∂t − div(ξ(y)μ∇·) + ξ ′(y)μ∇ y∇·, trT ): W 1,r (I , H−ζ,p
D ) ∩ Lr (I ,D)

→ Lr (I , H−ζ,p
D ) × (H−ζ,p

D ,D)1−1/r ,r

is a topological isomorphism for every r ∈ (1,∞), i.e. the adjoint equation

−∂t z − div(ξ(y)μ∇z) + ξ ′(y)μ∇ y∇z = w,

z(T ) = wT
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admits a unique solution z ∈ W 1,r (I , H−ζ,p
D ) ∩ Lr (I ,D) provided that w ∈

Lr (I , H−ζ,p
D ) and wT ∈ (H−ζ,p

D ,D)1−1/r ,r .

Remark 7.3 Note that we did not need more assumptions than Bonifacius and Neitzel
(2018) except for the slightly higher integrability of yd . In the framework of maximal
parabolic regularity on W −1,p

D -spaces they discuss first order necessary and second
order sufficient optimality conditions, but in order to deal with the adjoint equation
in the maximal parabolic regularity context (Bonifacius and Neitzel 2018, Lemma
4.6, Proposition 4.7) they required states in C α(I , W 1,p

D ) which was achieved by

consideration of the state equation on H−ζ,p
D spaces. Since we aim at SQP methods

having an adjoint equation with corresponding regularity theory is necessary anyway
and therefore restriction to the H−ζ,p

D -setting is not superfluous.

Remark 7.4 Sinceμwas assumed to be symmetricwe could identifyA (y)∗ withA (y)

etc. directly. In fact, all arguments go through if we postulate the same assumptions
for μT as already done for μ.

8 Numerical Examples

In this final section we present numerical examples in order to illustrate our theoretical
results. To do so we have constructed so-called manufactured solution examples, i.e.
an optimal control problem with analytically known solution, see (Tröltzsch 2010,
Section 2.9) for the construction of such examples. Further, we test with an example
based on real-world parameters, cf. Sect. 8.2.

We implemented the SQP algorithm in python using an optimize-then-discretize
approach and FEniCS (Alnæs et al. 2015; Logg et al. 2012) for the finite element dis-
cretization of the problem. Following the approach of Hintermüller and Hinze (2006)
the algorithm implemented consists of three nested loops: The outermost iteration is
given by the SQP method. The quadratic subproblem of each SQP iteration is solved
iteratively by application of the semismooth Newton method (SSN), see e.g. Ulbrich
(2011). Finally, the innermost loop consists of the iterative solution of the Newton-
update equation by the CG method in every semismooth Newton iteration.

In order to solve the quadratic subproblems accurately enough we choose the rela-
tive tolerance for SSN to be 10−5, i.e. the solver of the quadratic subproblems either
terminates when the L2-norm of projection residual (of the subproblem) is reduced
by at least 10−5 or the maximum of 20 SSN iterations is reached. To avoid prob-
lems in case of already very small initial residual norms, the SSN iteration also ends
when the residual norm gets smaller than 10−12 (absolute tolerance). Similarly, the
CGmethod terminates if the intial CG-residual is decreased by factor at least 10−2. To
enhance stability, SSN is combined with Armijo linesearch with the squared L2-norm
of projection residual (of the subproblem) as merit function.

As observed in the existing literature the restriction of the quadratic subproblems
to L∞- or—in our case—L2-balls is only required to prove convergence of the algo-
rithm in function space. Fortunately, we can omit this additional constraint in practice
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and solve the quadratic subproblems on Uad without loosing convergence, i.e. the
subproblems in our implementation are given by (QP), cf. the end of Sect. 3.2.

Initial guess for the SQP method is in all three examples (y0, u0, p0) := (0, 0, 0).
To measure optimality of some iterate uk we compute the L2-norm of the residual of
the projection formula

resk :=
∥
∥
∥uk − ProjUad

(
−γ −1B∗ p(uk)

)∥
∥
∥

L2
,

where the adjoint state p(uk) associated to uk is computed using the implicit Euler
scheme. The nonlinear equations appearing at each timestep during the solution of the
state equation are solved by the built-in nonlinear solver of FEniCS. Convergence of
the SQP-Algorithm is measured by the increments

incr∞k := ‖yk+1 − yk‖L∞ + ‖uk+1 − uk‖L∞ + ‖pk+1 − pk‖L∞ ,

incr2k := ‖yk+1 − yk‖L2(I ,H1
D) + ‖yk+1 − yk‖W 1,2(I ,H−1

D )
+ ‖uk+1 − uk‖L∞

+ ‖pk+1 − pk‖L2(I ,H1
D) + ‖pk+1 − pk‖W 1,2(I ,H−1

D )
.

Note that we do not compute the norm of the increments with respect to the norms
appearing in Theorem6.15 because we do not have the abstract exponents p, s at hand
in a practical context. To illustrate our theoretical results, we show for all examples
both increments and residuals for different discretizations. Convergence behaviour
of the SQP method uniform with respect to sufficiently fine discretization strongly
indicates convergence in function space.

8.1 Manufactured solution examples

8.1.1 Example 1

For I = [0, 1] and Ω = [0, 1] we consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y,u

J (y, u) := 1

2
‖y − yd‖2L2(I×Ω)

+ 10−3 · ‖u‖2L2([0,1])

subject to u ∈
{

v ∈ L2([0, 1]) : − 9

10
≤ v(x) ≤

√
2

2
a.e.

}

,

and

⎧
⎪⎨

⎪⎩

∂t y − div(ξ(y)∇ y) = b · u + f on I × Ω,

y = 0 on I × ∂Ω,

y(0) = sin(πx1),

(27)
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and choose

ȳ(t, x) = cos(2π t) sin(πx),

p̄(t, x) = 1

100
sin(2π t) sin(πx),

b(x) = 1[1/3,2/3](x),

ξ(z) = 1

2
+ 1

1 + exp(−5z)
.

With help of Wolfram Mathematica we compute the remaining quantities yd ,
f , ū such that the optimality system for (27) is fulfilled. In particular it holds

ū(t) = min

(√
2

2
,max

(

− 9

10
,−10

π
sin(2π t)

))

.

Note that all our theoretical results remain true for a problemof type (27) since addition
of the term f to the model problem (OCP) does not change its structural properties.

Discretization of spatial functions is done with piecewise linear finite elements on
a equidistant partition of Ω = [0, 1] into Nh subintervals. For time discretization we
apply an implicit Euler discretization with Nt = N 2

h timesteps, whereby the number
of timesteps is chosen in order to roughly balance spatial and temporal discretization
errors, cf. Casas and Chrysafinos (2019). The behaviour of the increments incr∞k
and incr2k during the SQP iteration is shown in Table1, whereas L2-residuals and
errors of the SQP-iterates with respect to the interpolated true KKT-triple are shown
in Table2. Note that increments (Table1a, b) and their decrease factors (Table 1c,
d) indicate superlinear convergence and behave uniform with respect to the different
discretization levels, which illustrates superlinear convergence in function space. Also,
the residuals (Table2a) and errors (Table2b–f) seem to behave uniformly, at least until
their convergence stagnates due to the limited accuracy given by discretization.

8.1.2 Example 2

For I = [0, 1] and Ω = [0, 1]2 we consider a problem of the same structure as the
1D manufactured solution example (27), but now with

y0(x) = sin(πx1) sin(πx2),

ȳ(t, x) = cos(2π t) sin(πx1) sin(πx2),

p̄(t, x) = 1

100
sin(2π t) sin(πx1) sin(πx2),

b(x) = π2 · 1[1/3,2/3]2(x)

and the regularization parameter γ = 2 · 10−3 in (27) replaced by γ = 10−2. As
before, the remaining quantities are computed utilizing Wolfram Mathematica
and the optimal control is given by
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Table 1 Increments during the SQPmethod applied toExample 1 (ManufacturedSolution in 1D, Sect. 8.1.1)

k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

(a) Increments incr∞k (b) Increments incr2k
0 2.15e+00 2.15e+00 2.15e+00 3.54e+00 3.54e+00 3.54e+00

1 1.89e+00 1.89e+00 1.89e+00 2.22e+00 2.22e+00 2.22e+00

2 1.46e−01 1.46e−01 1.46e−01 1.54e−01 1.54e−01 1.54e−01

3 9.00e−05 9.29e−05 9.16e−05 9.81e−05 1.01e−04 1.00e−04

4 4.96e−10 4.98e−10 5.15e−10 5.13e−10 5.17e−10 5.33e−10

5 1.52e−15 2.73e−15 4.75e−15 9.27e−15 1.82e−14 3.64e−14

(c) Decrease of increments
incr∞k+1
incr∞k

(d) Decrease of increments
incr2k+1
incr2k

0 8.79e−01 8.79e−01 8.79e−01 6.27e−01 6.28e−01 6.27e−01

1 7.74e−02 7.71e−02 7.73e−02 6.96e−02 6.93e−02 6.94e−02

2 6.15e−04 6.37e−04 6.27e−04 6.36e−04 6.58e−04 6.48e−04

3 5.51e−06 5.36e−06 5.62e−06 5.23e−06 5.10e−06 5.33e−06

4 3.06e−06 5.47e−06 9.22e−06 1.81e−05 3.52e−05 6.82e−05

ū(t) = min

(√
2

2
,max

(

− 9

10
,− sin(2π t)

))

.

Discretization of spatial functions is now done with piecewise linear finite elements
on a triangular mesh generated by mshr, the mesh-generation tool of FEniCS, with
maximum element diameter hmax. For time discretization we apply an implicit Euler
discretization with Nt timesteps, whereby the size of timesteps τ = N−1

t ≈ h2
max is

chosen in order to roughly balance spatial and temporal discretization errors, cf. Casas
and Chrysafinos (2019). Maximum element diameter and number of timesteps of the
four different discretization levels used in our numerical experiments can be found
in Table3. In Table 4 we display increments and their decrease rates during the SQP
iteration. Similarly to the 1D manufactured solution example these quantities behave
uniformwith respect to different discretization levels, which illustrates convergence in
function space. Moreover, residuals (Table5a) and errors of the iterates with respect to
the interpolated true KKT-triple (Table 5b–f) show uniform behaviour until stagnation
due to the respective discretization occurs.

8.2 Example 3

This final example is chosen to demonstrate that our assumptions also cover an exam-
ple with real-world parameters. We consider the following problem related to heat
conduction in a block of silicon modelled according to Selberherr (1984):
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ȳ‖

W

0
1.
00
e+

00
1.
00
e+

00
1.
00
e+

00
2.
61
e+

00
2.
61
e+

00
2.
61
e+

00

1
2.
56
e−

01
2.
57
e−

01
2.
56
e−

01
5.
63
e−

01
5.
69
e−

01
5.
68
e−

01

2
6.
11
e−

03
6.
68
e−

03
6.
65
e−

03
1.
50
e−

02
1.
40
e−

02
1.
40
e−

02

3
1.
85
e−

03
6.
31
e−

04
2.
06
e−

04
4.
73
e−

03
1.
23
e−

03
4.
29
e−

04

4
1.
85
e−

03
6.
32
e−

04
2.
05
e−

04
4.
73
e−

03
1.
23
e−

03
4.
28
e−

04

5
1.
85
e−

03
6.
32
e−

04
2.
05
e−

04
4.
73
e−

03
1.
23
e−

03
4.
28
e−

04

6
1.
85
e−

03
6.
32
e−

04
2.
05
e−

04
4.
73
e−

03
1.
23
e−

03
4.
28
e−

04

(e
)

E
rr

or
in

th
e

ad
jo

in
ts

ta
te

‖p
k

−
p̄‖

L
∞

(f
)

E
rr

or
in

th
e

ad
jo

in
ts

ta
te

‖p
k

−
p̄‖

W

0
1.
00
e−

02
1.
00
e−

02
1.
00
e−

02
2.
61
e−

02
2.
61
e−

02
2.
61
e−

02

1
2.
15
e−

02
2.
16
e−

02
2.
15
e−

02
4.
42
e−

02
4.
47
e−

02
4.
46
e−

02

2
1.
10
e−

03
1.
09
e−

03
1.
07
e−

03
2.
28
e−

03
2.
22
e−

03
2.
15
e−

03

3
1.
32
e−

04
4.
29
e−

05
1.
12
e−

05
3.
36
e−

04
9.
45
e−

05
2.
50
e−

05

4
1.
31
e−

04
4.
27
e−

05
1.
15
e−

05
3.
36
e−

04
9.
41
e−

05
2.
48
e−

05

5
1.
31
e−

04
4.
27
e−

05
1.
15
e−

05
3.
36
e−

04
9.
41
e−

05
2.
48
e−

05

6
1.
31
e−

04
4.
27
e−

05
1.
15
e−

05
3.
36
e−

04
9.
41
e−

05
2.
48
e−

05

123



Convergence of the SQP method for quasilinear parabolic… 2079

Table 3 Discretization levels for
Example 2 (Manufactured
Solution in 2D, Sect. 8.1.2)

Level 1 Level 2 Level 3

hmax 7.95 · 10−2 3.98 · 10−2 1.99 · 10−2

Nt 158 632 2529

Table 4 Increments during the SQPmethod applied toExample 2 (ManufacturedSolution in 2D, Sect. 8.1.2)

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

(a) Increments incr∞k (b) Increments incr2k
0 2.15e+00 2.16e+00 2.16e+00 2.75e+00 2.67e+00 2.61e+00

1 1.04e+00 1.05e+00 1.06e+00 1.10e+00 1.11e+00 1.11e+00

2 2.57e−02 2.38e−02 2.22e−02 2.70e−02 2.52e−02 2.35e−02

3 6.32e−06 7.45e−06 7.99e−06 6.09e−06 7.21e−06 7.86e−06

4 1.84e−11 2.03e−12 1.93e−12 1.90e−11 1.10e−12 1.04e−12

(c) Decrease of increments
incr∞k+1
incr∞k

(d) Decrease of increments
incr2k+1
incr2k

0 4.82e−01 4.88e−01 4.89e−011 4.00e−01 4.17e−01 4.26e−01

1 2.49e−02 2.26e−02 2.10e−02 2.46e−02 2.26e−02 2.11e−02

2 2.45e−04 3.13e−04 3.60e−04 2.25e−04 2.87e−04 3.34e−04

3 2.91e−06 2.72e−07 2.42e−07 3.13e−06 1.53e−07 1.32e−07

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y,u

J (y, u) := 1

2
‖y − yd‖2L2(I×Ω)

+ 10−2 · ‖u‖2L2(I )

subject to u ∈
{
v ∈ L2(I ) : 2.9 ≤ v(t) ≤ 10

}

and

⎧
⎪⎨

⎪⎩

∂t y − div(ξ(y)∇ y) = 0 on I × Ω,

ξ(y)∂nΩ y + αy = αu on I × ∂Ω,

y(0) = 10.

(28)

The spatial domain is

Ω = [−2, 2] × [−0.5, 0.5] × [−1, 0] ∪ [−0.5, 0.5] × [−2, 2] × [0, 1] ⊂ R
3,

consisting of two crossed beams, the time interval I = [0, T ] = [0, 40], the desired
state

yd(t, x) = 10 − 71

400
t,

the nonlinearity given by

ξ(y) := 1

a + by + cy2
, a = 0.0818292, b = 0.4255118, c = 0.0450061,
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(a) (b)

Fig. 1 Example 3 (Sect. 8.2) on the finest discretization level: a Optimal control and optimal state yopt
evaluated at the points xcorner = (−0, 5, 2, 0) and xmiddle = (0, 0, 0) (left hand side plot). As comparison
we also display the state ynaive associated with the “naive” first guess unaive(t) := 10 − 71

400 t at the same
points and the desired trajectory yd . b Control iterates during the SQP method on a certain subinterval of I

Table 6 Discretization levels for
Example 3 (Sect. 8.2)

Level 1 Level 2 Level 3

hmax 5.90 · 10−1 2.84 · 10−1 1.84 · 10−1

Nt 115 495 1182

and α = 0.0146647. In order to make ξ formally fulfill Assumption2.2 we can choose
a C2-continuous uniformly bounded from below and above continuation of the above
ξ outside the relevant values of y.

Measuring temperature in units of 100K, length in 0.1m and time in 60s, the state
equation of (28) describes the evolution of the temperature y of a block Ω of silicon
with initial temperature 1000K when the temperature of the surrounding air is given
by the control variable u. Hence, the optimal control problems aims at finding the
optimal temperature trajectory for the ambient air in order to cool down the block
Ω following the desired temperature trajectory yd from 1000K to room temperature
290K. Density, specific heat, and temperature-dependent thermal conductivity are
taken from Selberherr (1984, Chapters 2.5 and 4.3) and rescaled according to the
abovementioned units. For the heat transfer coefficient between silicon and air (forced
convection) we guess the value 40Wm−2K−1 which results in the value given for α.

As pointed out after Assumption2.1 the domain under consideration fulfills our
assumptions although not being a domain with Lipschitz boundary. The Robin bound-
ary condition in (28) is not covered by our assumptions, but since it differs from
Neumann boundary conditions only by a linear term, this can be tackled by straight-
forward modifications of our arguments, cf. also Meinlschmidt et al. (2017a, b).

123



2082 F. Hoppe, I. Neitzel

Table 7 Increments during the SQP method applied to Example 3 (Sect. 8.2)

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

(a) Increments incr∞k (b) Increments incr2k
0 1.71e+01 1.72e+01 1.72e+01 1.91e+02 1.85e+02 1.75e+02

1 1.16e+00 1.15e+00 1.17e+00 1.08e+01 1.09e+01 1.07e+01

2 2.24e−02 2.52e−02 2.58e−02 1.42e−01 1.50e−01 1.49e−01

3 5.23e−06 1.15e−05 6.77e−06 3.78e−05 4.51e−05 4.01e−05

4 2.78e−11 2.40e−10 3.37e−10 4.05e−11 2.69e−10 3.74e−10

5 – 1.03e−13 2.80e−13 - 1.29e−12 2.12e−12

(c) Decrease of increments
incr∞k+1
incr∞k

(d) Decrease of increments
incr2k+1
incr2k

0 6.79e−02 6.70e−02 6.80e−02 5.68e−02 5.88e−02 6.10e−02

1 1.93e−02 2.19e−02 2.21e−02 1.31e−02 1.38e−02 1.40e−02

2 2.33e−04 4.57e−04 2.62e−04 2.65e−04 3.01e−04 2.68e−04

3 5.31e−06 2.09e−05 4.98e−05 1.07e−06 5.96e−06 9.33e−06

4 – 4.30e−04 8.31e−04 – 4.81e−03 5.67e−03

Table 8 Residuals during the
SQP-method applied to Example
3 (Sect. 8.2)

Residuals resk
k Level 1 Level 2 Level 3

0 2.58e+01 2.59e+01 2.59e+01

1 1.15e+01 1.16e+01 1.16e+01

2 1.69e+00 1.72e+00 1.72e+00

3 4.23e−04 4.28e−04 4.28e−04

4 2.09e−08 1.10e−09 1.44e−08

5 2.09e−08 1.06e−09 1.45e−08

6 – 1.06e−09 1.45e−08

All computations were performed on tetrahedral meshes generated by mshr with
maximal cell diameter hmax and Nt implicit Euler timesteps, see Table6 for the differ-
ent discretization levels. The numerically determined optimal control and associated
optimal state are shown in Figure1 a). Due to the three-dimensionality of the problem
wewere not able to choose discretization as fine as in the previous examples and there-
fore the behaviour the increments (Table7) and residuals (Table8) is not as illustrative
as in 1D or 2D.

Figure1 b) shows an enlarged section of the control iterates near the change from
inactive to active set at t ≈ 17.1: It can be seen that once the correct active set
is identified after the third iteration, convergence is so fast that there is no visible
difference between the further iterates. This might be seen as an illustration of the
importance of detection of the correct active sets in infinite dimensions that has been
discussed at the beginning of Sect. 6. The small kinks in the plots at the border between
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active and inactive set are due to the fact that time discretization (size of timesteps
τ ≈ 3.38 · 10−2) does not resolve the active/inactive sets exactly.
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