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Abstract
Most parallel surrogate-based optimization algorithms focus only on the mecha-
nisms for generating multiple updating points in each cycle, and rather less atten-
tion has been paid to producing them through the cooperation of several algorithms. 
For this purpose, a surrogate-based cooperative optimization framework is here pro-
posed. Firstly, a class of parallel surrogate-based optimization algorithms is devel-
oped, based on the idea of viewing the infill sampling criterion as a bi-objective 
optimization problem. Each algorithm of this class is called a Sequential Multipoint 
Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing 
a surrogate model, an exploitation measure, an exploration measure and a multi-
objective optimization approach to its solution. SMISAs are the basic algorithms on 
which collaboration mechanisms are established. Many SMISAs can be defined, and 
the focus has been on scalar approaches for bi-objective problems such as the �-con-
strained method, revisiting the Parallel Constrained Optimization using Response 
Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo 
Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, 
a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given 
as a member within the SMISA class. Secondly, we propose a cooperative optimiza-
tion framework between the SMISAs. The cooperation between SMISAs occurs in 
two ways: (1) they share solutions and their objective function values to update their 
surrogate models and (2) they use the sampled points obtained from different SMI-
SAs to guide their own search process. Some convergence results for this coopera-
tive framework are given under weak conditions. A numerical comparison between 
EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, 
shows that CPEI improves the performance of the baseline algorithms. The numeri-
cal results were derived from 17 analytic tests and they show the reduction of wall-
clock time with respect to the increase in the number of processors.
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1 Introduction

In many engineering applications, such as thermodynamic analysis, engine 
design, structural analysis or reservoir simulation, computer simulations are used 
as models of real systems. The search of the optimal simulation parameters often 
involves optimizing such models. These applications are notable examples of 
black-box optimization in which the analytical expression of the objective func-
tion and/or the constraints are unknown. The challenges of handling black-box 
functions are: (1) they are computationally expensive, i.e., these simulations are 
time consuming and (2) no gradient-based methods can be used, and thus ana-
lytically-based stopping criteria are not available. For example, in problems with 
black-box functions such as those in Jakobsson et al. (2010), each engine simula-
tion takes around 48 h, or in Rezaveisi et al. (2014), the evaluation of a reservoir 
simulation may take several days.

Contemporary simulation-based optimization methods include heuristic 
methods, stochastic approximations and surrogate-based methods. Metaheuris-
tics are global optimization methods, but require a large number of iterations 
to achieve convergence, and are impractical for these problems. In order to deal 
with the high computational cost, surrogate models [also known as meta-models 
or Response Surface Methods (RSMs)] are commonly applied in the literature, 
mainly because they use a limited number of function evaluations.

This paper focuses on parallel surrogate-based optimization methods. The 
inclusion of multiple points per major iteration to update the surrogate model 
allows us to take advantage of parallel computing capabilities, and offers great 
potential for reducing the wall-clock time required to solve a global optimization 
problem.

Previous algorithms (Viana et  al. 2013; Liu et  al. 2017) have taken into 
account multiple surrogate models, working independently or via multi-objective 
optimization, to derive multi-point infill sampling criteria. This study proposes 
a complementary approach based on the cooperation of parallel surrogate-based 
optimization methods. To achieve this goal, first, we introduce a formal defini-
tion of the class of algorithms that can cooperate with each other. Each algorithm 
in the class is named Sequential Multi-point Infill Sampling Algorithm (SMISA). 
The definition of a SMISA requires the introduction of the so-called exploitation 
and exploration measures. A combination of both measures describes a bi-objec-
tive problem that, together with the solution method, defines the SMISA. The key 
point is that the exploration measures are independent of the surrogate model and 
this means that: (1) the SMISAs may generate sequentially q points per cycle 
by updating the exploration measure and (2) there is coordination between these 
SMISAs through exploration measures. This framework not only allows existing 
parallel infill criteria to be described but is also a way to generate new methods. 
This framework has been applied to derive a parallel version of the Lower Confi-
dence Bound-based algorithm given in Dennis and Torczon (1997).

The motivation of this cooperation is to create a more robust parallel infill cri-
terion by combining several with complementary features. For example, different 
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algorithms can be used, each of them suitable for certain problems depending 
on their dimensionality, the level of uncertainty, the grade of multimodality, etc. 
Through sharing their infill samples during the infill selection process, the perfor-
mance of the ensemble infill criterion could be better than its components.

The remainder of the paper is organized as follows. Section 2 describes the state-
of-the-art approaches. Section 3 introduces the proposed surrogate-based coopera-
tive optimization framework, and its theoretical properties are described in Sect. 4. 
Section 5 illustrates the performance of these algorithms on a number of benchmark 
functions. Finally, our concluding remarks are given in Sect. 6.

2  Prior research

We consider the following optimization problem:

where the objective function is not known in a closed form, i.e. it is a black-box 
function. We will assume that the value of the objective function can be calculated, 
for example, by doing a simulation or experiment in a laboratory (for instance, 
chemically) to give the value of f or at least to obtain an approximate value for f. 
This approximation can be caused by a truncation of the execution or to the intro-
duction of noise in the experiment, when it is not possible to control all the param-
eters involved.

We assume that the problem (1) has the following features: 

1. D is a compact set of ℝ�;
2. x ∈ D is a vector of continuous variables;
3. f is continuous on D;
4. there is a single objective function;
5. f is expensive to evaluate;
6. f is a black-box function and no analytical derivatives of f are available.

Surrogate-based optimization techniques are a successful strategy for solving this 
kind of computationally expensive optimization problem. A prototype scheme is 
shown in Algorithm 1.

(1)Minimize
x∈D

f (x)
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The procedure begins with an initialization phase in which a set of samples is 
chosen. In this phase, experimental design techniques such as Symmetric Latin 
Hypercube Designs (SLHD) (Ye et al. 2000), CORNER (Müller 2012) or Minimax 
and Maximin distance designs (Johnson et al. 1990) are usually used.

In Step 2, an approximation of the expensive objective function is built using the 
set of sampled points; this is the so-called surrogate model. Several surrogate mod-
els have been proposed for approximating the expensive objective function, such 
as polynomial response surface models, moving least squares, radial basis func-
tions (RBFs), kriging methods, artificial neural networks, support vector regression 
or combinations of these. A review of these methods is given in Vu et  al. (2017) 
and Forrester and Keane (2009). This approximation of the objective function may 
have a local character, such as polynomial response surfaces which are defined on 
a region of interest. In contrast, with global approximations such as artificial neu-
ral networks, radial basis functions or kriging methods, all the points for which the 
objective values are known are used to build the surrogate model for the expensive 
function.

In Step 3, an infill sampling criterion is designed using the surrogate model. The 
point selection criterion should balance the information from the unexplored fea-
sible region with the search in promising areas of the design space (according to 
the surrogate model). From a global optimization view, these issues are respectively 
known as exploration and exploitation stages. Depending on the weights of these 
factors, the search is driven more towards optimization or to filling of the feasible 
region.

This is a sequential scheme in which a single point is introduced at each major 
iteration. To enable the incorporation of multiple new samples at each updating 
cycle, parallel infill strategies have been proposed in recent years to reduce the opti-
mization wall-clock time. A taxonomy of these methods can be considered accord-
ing to two fundamental features: (1) the use of single/multiple infill criteria and (2) 
how they approach the exploration/exploitation stages. In essence, it is a bi-objective 
optimization problem and this can be approached through Pareto dominance or by 
weighting to balance exploration and exploitation. A rough taxonomy classifies par-
allel algorithms into three large groups:

• Single infill criterion These methods address the bi-objective nature of the explo-
ration/exploitation dilemma through scalarization methods in multi-objective 
optimization such as the weighting methods. This group of methods uses one 
optimization on one parametrized infill criterion to select a new point and leads 
to a sequential point generation scheme. Within these methods, a distinction 
should be made between those that employ an uncertainty-based criterion and a 
distance-based criterion. The algorithms q-points Expected Improvement (q-EI) 
(Ginsbourger et al. 2010), Kriging Believer (KB), Constant Liar (CL), Efficient 
Global Optimization with Pseudo Expected Improvement (EGO-PEI) (Zhan 
et al. 2017), Local Metric Stochastic RBF with Restart (LMSRBF-R) (Regis and 
Shoemaker 2009), Parallel Constrained Optimization using Response Surfaces 
(Parallel CORS-RBF) (Regis and Shoemaker 2007c) and parallel Gutmann-RBF 
(Regis and Shoemaker 2007b, c) fall into this category.
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• Multiple infill criteria addressed with a multi-objective approach The use of 
multiple infill criteria allows a multi-objective optimization problem to be stated. 
These methods select q points from the Pareto frontier as the new set of points to 
be sampled. Some examples in this category are Multi-Objective Infill criterion 
for Model-Based Optimization (MOI-MBO) (Bischl et al. 2014) and Surrogate 
Optimization with Pareto Selection (SOP) (Krityakierne et al. 2016).

• Multiple independent infill criteria. These techniques employ multiple infill cri-
teria, derived from multiple surrogate models and/or multiple measures, and get 
q points from q different criteria. The algorithms Multiple Surrogate Efficient 
Global Optimization (MSEGO) (Viana et al. 2013) and that given in Beaucaire 
et al. (2019) belong to this category.

We will now review the above methods starting with the first group for uncer-
tainty-based measures. The simplest infill criterion considers the addition of a single 
point at the current iteration. In Jones et  al. (1998) Efficient Global Optimization 
(EGO) is proposed, which is one of the most widespread methods. This method is 
based on kriging basis functions (Krige 1951), which provide the error in the esti-
mates of the surrogate model. EGO uses the Expected Improvement (EI) metric to 
define the infill criterion which balances the need for a surrogate objective value 
(exploitation) together with the uncertainty of the model (exploration).

The first parallelization strategy of EI was based on introducing all the maxima 
found in the EI by the search algorithm (Schonlau 1997; Sóbester et al. 2004). In 
Ginsbourger et  al. (2010) the EI approach is generalized to a multi-point optimi-
zation criterion, the so-called q-EI. Ginsbourger et al. (2010) analyzes the analytic 
formula for the case q = 2 , but solving for the case q > 2 requires expensive Monte 
Carlo simulations of Gaussian vectors. To reduce the corresponding computational 
burden, two heuristics, Kriging Believer (KB) and Constant Liar (CL), are intro-
duced to obtain approximately q-EI optimal designs. Parr et al. (2012) uses the q-EI 
criterion to handle constraints using a probabilistic approach. Zhan et  al. (2017) 
proposes a new infill criterion named Pseudo Expected Improvement (PEI) defined 
by the multiplication of the EI criterion by an influence function of the sampled 
points. This method selects sequentially the q candidate points by the optimization 
of the PEI criterion. The resulting algorithm is called EGO-PEI and numerically it is 
shown that EGO-PEI gains significant improvements when compared with CL.

The methods based on a single infill criterion that do not have an uncertainty 
structure use distance-based refinements. For general surrogate models, Regis and 
Shoemaker (2007a) introduces the Metric Stochastic Response Surface method 
(MSRS) to choose the candidate point as the best weighted score from two criteria: 
estimated function value obtained from the response surface model, and minimum 
distance from previously evaluated points. Regis and Shoemaker (2009) proposes 
a parallel extension of MSRS to reduce the total elapsed time required by response 
surface-based global optimization methods. The numerical experiments show that 
the so-called LMSRBF-R is competitive with the alternative parallel RBF methods.

The CORS-RBF algorithm was introduced in Regis and Shoemaker (2005, 
2007b). This method chooses the next point by optimizing the surrogate model but 
restricts the feasible region, requiring the new point to be away from the current 
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points by a certain threshold. This threshold is iterated between a set of values allow-
ing exploration stages for large values and, in other iterations, exploitation stages for 
small values. This sampling strategy is dense and converges to the global optimum. 
A parallel version of CORS-RBF is introduced in Regis and Shoemaker (2007c).

Gutmann (2001) proposes a radial basis function method for global optimization 
(Gutmann-RBF). The infill criterion used is simply to add a new single point and it 
is based on the “least bumpy” of the interpolation surface. This criterion requires an 
estimate of the optimal value of the problem. This value changes from iteration to 
iteration in order to balance the exploration and exploitation stages. Regis and Shoe-
maker (2007b, c) parallelize the Gutmann-RBF based on the parametrization of the 
Bumpiness Minimization Subproblem (BMS).

Under a multi-objective perspective, the multiple infill criteria are addressed 
simultaneously instead of aggregating them into a single criterion. These methods 
give an approximate Pareto frontier of q points. Bischl et  al. (2014) proposes the 
MOI-MBO method, which is based on kriging models and takes into account both 
the diversity and the expected improvement of the proposed points. The numerical 
experiments show that MOI-MBO outperforms single-step EGO. Horn and Bischl 
(2016) applies an extension of this algorithm to the hyperparameter tuning problems 
in machine-learning algorithms.

Krityakierne et  al. (2016) proposes a parallel surrogate-based algorithm where 
simultaneous candidate searches are performed around the Pareto centers, called 
SOP, which considers the trade-off between exploration and exploitation stages as a 
bi-objective optimization problem where the two objectives are the expensive func-
tion value of the point and the minimum distance of the point to previously evalu-
ated points. In SOP, unlike in LMSRBF-R, the new points are randomly obtained 
from the different centers.

An example of algorithms from the third group is the MSEGO algorithm, given 
in Viana et al. (2013). MSEGO uses q general surrogate models. MSEGO imports 
error estimates from different instances of kriging models and uses them with all 
other surrogates; as a result, a different EI is obtained for each surrogate, and maxi-
mizing EIs, provides up to q points per cycle. Liu et al. (2017) addresses the aero-
dynamic shape optimization of transonic wings by using a combination of multiple 
infill criteria, with each criterion choosing a different sample point. This method 
does not establish coordination mechanisms between criteria.

A class of parallel methods that can be seen as an adaptation of metaheuristic 
algorithms to expensive black-box optimization problems are parallel surrogate-
assisted evolutionary algorithms (Díaz-Manríquez et al. 2016).

Potter and Jong (1994) proposes a cooperative co-evolutionary framework for 
optimization. Its initial objective was to improve the performance of Genetic Algo-
rithms and other Evolutionary Algorithm-based optimizers. This seminal work has 
been extended and applied to large-scale black-box optimization by using surro-
gate models (Yi et al. 2016; Omidvar et al. 2017; Wang et al. 2018; Blanchard et al. 
2019, among others). These approaches divide the problem into several smaller 
subproblems and then solve them individually by using an evolutionary algorithm. 
The cooperative strategy is established between individuals from the different sub-
populations. Each individual is concatenated with the best candidates from the other 
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subpopulations, to form a complete candidate solution, which is then fed into the 
objective function. The cooperation strategy between the evolutionary algorithms 
leads to a partition of the search space and allows the so-called curse of dimension-
ality to be addressed.

In a situation of surrogate-based multiobjective evolutionary algorithms, Mar-
tinez Zapotecas and Coello Coello (2013) used cooperative RBF networks, with the 
aim of improving the prediction of the objective function values. The cooperative 
strategy used in evolutionary algorithms is a mechanism to improve the performance 
of the algorithm, but in this paper it is used to coordinate several infill sampling 
criteria.

We have not reviewed other types of parallel algorithms as they deviate from the 
methods proposed in this article and the interested readers can consult a more com-
prehensive review of the literature in Haftka et al. (2016).

3  A surrogate‑based cooperative optimization framework

The section is structured as follows. First, we define the class of algorithms that 
can be used to cooperate to find the optimal solution. Each algorithm of this class 
is named Sequential Multi-point Infill Sampling Algorithm (SMISA). The definition 
of a SMISA is based on bi-objective optimization to derive q-points infill sampling 
criteria using a single surrogate model. The algorithms of this class (the SMISAs) 
are those that may be chosen to work cooperatively.

We then describe a synchronous cooperative scheme for SMISAs in which paral-
lel computing capabilities are used to evaluate the expensive objective function.

3.1  SMISA: a type of q‑points infill sampling criterion based on a single surrogate 
model

In order to solve the optimization problem described in Sect. 2, we are interested in 
algorithms that have a general structure like that shown in Fig. 1. The essential char-
acteristic is that the sampling strategy does not generate a single point y per cycle 
but a set Yt = {y∗

1
,… , y∗

q
} of q points in each major iteration t.

In these algorithms, the number of retained points may be up to k. This is because, 
in the infill criterion with q points, the number of generated points can become large, 
thus taking more time to update the surrogate model. We propose a criterion called 
the pruning strategy to restrict the number of retained points to update the surrogate 
model. This is secondary in this research and is analyzed in “Appendix 2”.

The SMISAs exhibit the structure shown in Fig. 1. A first step in the formaliza-
tion of a SMISA is the stating of the infill sampling criterion, based on two essential 
criteria: 

1. reduction of the level of uncertainty in the region and
2. the sampled area is close to the most promising regions.
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Conditions (1) and (2) will define respectively the exploration and exploitation 
capacities of the resulting SMISA. Mathematically, it is bi-objective in nature and 
can be expressed as:

The formalization of the problem (2), in this paper called the sampling prob-
lem, requires the definition of indexes to measure criteria (1) and (2). In this paper, 
exploration measure means an index that allows us to evaluate the quality of a new 
solution with respect to the uncertainty of the whole search space, while exploita-
tion measure is an index that allows us to estimate the improvement of the objective 
function at a new point. These concepts will be formalized as follows.

Definition 1 (Exploration measure) An exploration measure of a set D sampled on 
the set Z ⊆ D is any function

where P(D) is the power set of D and for all x ∈ D and for all Z, Z′
⊆ D , the follow-

ing conditions are satisfied: 

(2)Maximization
x∈D

F = (Exploration(x), Exploitation(x))⊤.

d∶P(D) ×D ↦ ℝ

(Z, x) ⇝ dZ(x)

Fig. 1  Parallel surrogate-based optimization framework
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1. dZ∪Z� (x) ≤ dZ(x),
2 dZ(x) ≥ 0,
3. dZ(x) = 0 ⇒ x ∈ cl(Z) , where cl(Z) is the closure set of Z.

Condition (1) indicates that the uncertainty decreases if new points are added to 
the sampled set, Condition (2) expresses that there is always uncertainty and, when 
the cardinality of Z is finite, Condition (3) implies that if there is no uncertainty at a 
point x, i.e. dZ(x) = 0 , then it must have been sampled, i.e. x ∈ Z . Note that the car-
dinality of Z is finite in the practical application of the algorithms.

The exploitation measures estimate the objective function at a point x or alterna-
tively, the improvement in the objective function with respect to a set of previously 
sampled points. Several measures of this type have been defined in the literature. 
We have provided a definition of the exploitation measure using the lowest common 
denominator of all of them, to be able to accommodate them in a unified definition; 
the essential element is that they use a decreasing transformation of the surrogate 
model to do so.

Definition 2 (Exploitation measure) Let Z ⊆ D and let SZ(x) be a surrogate model 
of f(x), defined on the set Z, then an exploitation measure is a transformation of 
SZ(x) , i.e. wZ(x) ∶= �(SZ(x), x) , in which the function �(s, x) is decreasing on the 
variable s for all x ∈ D.

The infill sampling criterion has a bi-objective nature: (1) a goal defined by 
means of the exploration measure dX(y) to weigh the current uncertainty level of the 
different parts of the region D and (2) a second goal expressed by the exploitation 
measure wX(y) to assess the quality of y to be a minimum of the objective function. 
The infill sampling criterion, i.e the sampling problem, is stated as:

Bi-objective infill sampling criterion

The parallel infill criterion consists of the selection of q points of the Pareto fron-
tier of the bi-objective problem (3). A basic multi-objective optimization method is 
the �-constrained method, which maximizes one objective subject to the additional 
constraint derived from the other objective. One issue with this approach is that it is 
necessary to preselect which objective to maximize. We consider:

(3)
Maximize � =

(
dX(y),wX(y)

)
⊤

Subject to: y ∈ D

(4)
Maximize wX(y)

Subject to: dX(y) ≥ �

y ∈ D



1062 J. C. García-García et al.

1 3

where � represents the worst value dX that is allowed to be taken. It has been shown 
that if the solution to the problem (4) is unique, then it is a Pareto optimal solution.

Note that, unlike what happens with the exploitation measures, the exploration 
measures are independent of the function f(x). It allows the exploration measure to be 
updated each time a new point is obtained. In each major iteration, the surrogate model 
SX(x) is updated on the set of sampled points X, and it is necessary to know the value of 
the objective function f(x) at every point x ∈ X , but the exploration measure dX(y) can 
be updated each time in problem (4), which is solved without the need to evaluate the 
objective function at these new points. We now formalize this. Let {y∗

1
,… , y∗

j−1
} be the 

previously generated points and let Zj ⊆ X ∪ {y∗
1
,… , y∗

j−1
} , we define the jth point y∗

j
 to 

be added to the sampled points as an optimal solution of the problem:

Modified �-constrained method → Hard multi-point infill criterion

The selection of values of �j is problematic as for many values of �j there will be no 
feasible solution. A way of choosing �j to avoid this is to set �j = �j�j with 
�j = Maximize x∈DdZj(x) and 0 ≤ 𝛽j < 1.

The problem (5) may contain many local minima and optimizers such as metaheuris-
tics may be good choices to address it. These methods have been developed intensively 
for unconstrained optimization (García-Ródenas et al. 2019) leading to the considera-
tion of another way to scalarize a bi-objective optimization problem. Assuming that the 
exploitation measure satisfies wX(y) > 0 for all y ∈ D , the following sampling problem 
is stated:

Alternative scalarization approach → Soft multi-point infill criterion

If we compare the two problems (5) and (6), we observe that the problem (6) attempts 
to satisfy the constraints of the problem (5) in a soft way. For this reason, we refer to the 
approach (5) as hard and the criterion (6) as soft.

The sequential multi-point infill sampling criterion is summarized in Algorithm 2.

(5)

Maximize wX(yj)

Subject to: dZj(yj) ≥ �j

yj ∈ D

(6)
Maximize dZj(yj)wX(yj)

Subject to: yj ∈ D
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Once the above definitions have been introduced, we will formalize the following 
concept.

Definition 3 (SMISA) A Sequential Multi-point Infill Sampling Algorithm (SMISA) 
is any algorithm of the parallel surrogate-based optimization framework given in 
Fig. 1 in which the infill sampling criterion is defined by Algorithm 2.

The SMISA framework only includes sequential infill sampling processes. Other 
approaches, such as q-EI or multimodal optimization, do not belong to this algo-
rithmic class. The objective in formulating this class of algorithms is to determine 
which can be included in the cooperative scheme. Furthermore, this unified over-
view also allows the development of new algorithms by combining elements of the 
existing ones.

3.2  Instances of sequential multi‑point infill sampling algorithms

There are several algorithms described in the literature that fall within this frame-
work. Two noteworthy examples are: EGO-PEI, developed in Zhan et  al. (2017) 
and Parallel CORS-RBF, described in Regis and Shoemaker (2007c). This section 
outlines the realization of these algorithms as instances of SMISAs, and a new one 
is being proposed, which consists of a parallel version of the Lower Bound Confi-
dence-based algorithm (Dennis and Torczon 1997).

3.2.1  The Parallel CORS‑RBF

The Parallel CORS-RBF is a hard approach in which the exploitation measure wX(s) 
is chosen as

being SX(s) a radial basis function. In this example �(s, x) = −s , and 𝜕𝜓
𝜕s

= −1 < 0 
and it decreases for all x.

The Parallel CORS-RBF uses as exploration measure:

(7)wX(x) = −SX(x),
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where ‖ ⋅ ‖2 is the Euclidean norm. The measure dZ(x) calculates the shortest dis-
tance between x and the elements of the set Z. The infill problems for Parallel 
CORS-RBF become:

Parallel CORS-RBF

where the set Zj is defined by Zj = X ∪ {y∗
1
,… , y∗

j−1
} and the parameters �j are 

derived from the above parameters �j.

3.2.2  The EGO‑PEI

The EGO-PEI algorithm (Zhan et al. 2017) is based on kriging models. A simple 
kriging model can be built as follows:

where � is the mean of the Gaussian process, and �(x) is the noise term which is nor-
mally distributed with mean zero and variance �2 . The errors on two points x, z ∈ D , 
i.e. �(x) and �(z) , are correlated and the correlation depends on the distance between 
these points:

EGO-PEI uses a soft multi-point infill sampling criterion in which the explora-
tion measure is the product of correlations between the sampled points and the new 
point:

Note that, dEGO-PEI
Z

(x) satisfies the properties (1)–(3) of a exploration measure.
To define the exploitation measure the EGO-PEI algorithm chooses the expected 

improvement (Jones et al. 1998):

where fmin is the current best function value, i.e. fmin = minx∈Xf (x) ; � and � are the 
normal cumulative distribution and density functions, respectively.

(8)dZ(x) = minimize
z∈Z

‖z − x‖2,

(9)

Minimize SX(yj)

Subject to: dZj(yj) ≥ �j

yj ∈ D

(10)f (x) = � + �(x),

Corr[�(x), �(z)] = exp

(
−

�∑

k=1

�k|xk − zk|pk
)
.

(11)dEGO-PEI
Z

(x) =
∏

z∈Z

(1 − Corr[�(x), �(z)]).

(12)
wX(x) =EIX(x) = �

(
max{fmin − SX(x), 0}

)

= (fmin − SX(x))�

(
fmin − SX(x)

�X(x)

)
+ �X(x)�

(
fmin − SX(x)

�X(x)

)
,
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To demonstrate that the expected improvement is an exploitation measure, we 
express EIX(x) = �(SX(x), x) where �(s, z) = �

X
(x)

(
z�(z) + �(z)

)
and z(s, x) =

fmin−s

�X (x)
. 

Applying the chain rule, ��(s, x)

�s
=

��

�z
⋅

�z

�s
= �X(x)

(
�(z) + z�(z) + �

�(z)
)( −1

�X(x)

)
.  

From the definition of �(z) = 1√
2�
e
−

1

2
z2 , there holds that z�(z) + �

�(z) = 0 , and 

thus 
𝜕𝜓(s, x)

𝜕s
= −𝛷(z) < 0 because 0 < 𝛷(z) < 1 for all z. The condition 𝜕𝜓

𝜕s
< 0 is 

satisfied.
Finally, the sampling problem is stated:

EGO-PEI

where Zj = {y∗
1
,… , y∗

j−1
}.

3.2.3  The parallel lower confidence bound‑based algorithm

This section introduces a novel parallel surrogate-based optimization algorithm. 
This algorithm can be seen as a parallel version of the Lower Confidence Bound-
based (LCB) algorithm proposed by Dennis and Torczon (1997). This method is 
based on kriging models, and it employs the infill sampling criterion:

where 𝛼 > 0. A simple interpretation of this infill criterion within the SMISA con-
siders −SX(x) as the exploitation measure, the standard deviation �X(y) ≥ 0 as the 
exploration measure, and the weighted sum method as optimizer for multiobjective 
optimization of (2).

We now re-interpret it as a soft infill sampling criterion, highlighting the great 
degree of generality of the soft approach. We chose

where 𝜇 < minx∈DSX(x) . The exploitation measure is decreasing in the surrogate 
model and positive. The soft infill sampling criterion becomes:

(13)
Maximize dEGO-PEI

Zj
(yj)EIX(yj)

Subject to: yj ∈ D

(14)
Minimize SX(y) − ��X(y)

Subject to: y ∈ D

(15)wX(x) =
1

SX(x) − �

,

(16)dX(x) = �X(x);

(17)
Maximize

�X(y)

SX(y) − �

Subject to: y ∈ D
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We now show that problem (17) is equivalent to problem (14). We will apply a 
refinement of the arguments given in Jagannathan (1966) for fractional optimization. 
Both problems are parameterized, respectively by � and � . We will demonstrate that 
given an arbitrary value 𝛼 > 0 there is a parameter � so that the fractional problem 
has the same solutions. Let 𝛼 > 0 and let y∗ be an optimal solution to the problem 
(14) for this value of the parameter � , we define � = SX(y

∗) − ��X(y
∗) . From the 

optimality of y∗ for (14), the following holds:

From the definition of � , we express Eq. (18) as

Because −��X(y) ≤ 0 for all y, Eq. (19) leads to the inequality SX(y) − � ≥ 0 for all 
y ∈ D . Using this inequality to express Eq. (19) as

which, on the other hand, holds as an equality for y = y∗

and this in turn, proves the optimality of y∗ for the soft infill sampling criterion.
The identification of the exploration and exploitation measures in the infill sam-

pling criterion allows the introduction of the parallelization procedure for the algo-
rithm. The key point is that the standard deviation �X(y) does not depend on the 
values f(y) in kriging models. Both parametric infill sampling criteria are equivalent. 
The formulation (14) is computationally advantageous because some fractional opti-
mization techniques, such as Dinkelbach’s method (Ródenas et al. 1999), lead to the 
resolution of a sequence of optimization problems with the same structure as (14) 
instead of solving a single problem of this kind. Finally, the parallel sampling prob-
lem is stated:

Parallel-LCB

where Zj = X ∪ {y∗
1
,… , y∗

j−1
}.

The upper confidence bound-based algorithm (Srinivas et al. 2010) is obtained 
by replacing − � with + � in the infill sampling criterion. The interpretation of 

(18)SX(y
∗) − ��X(y

∗) ≤ SX(y) − ��X(y) for all y ∈ D

(19)� ≤ SX(y) − ��X(y) for all y ∈ D

(20)
�X(y)

SX(y) − �

≤
1

�

for all y ∈ D

(21)
�X(y

∗)

SX(y
∗) − �

=
1

�

Minimize SX(yj) − ��Zj
(yj)

Subject to: yj ∈ D
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this algorithm within SMISA supports the use of the lower bounds instead of 
upper bounds.

3.3  Coordination of the sequential multi‑point infill sampling algorithms

We assume the case shown in Fig. 2 in which multiple surrogate models and mul-
tiple exploitation/exploration measures are being used in the optimization. Cer-
tain combinations of these options, in conjunction with a soft or hard approach, 
provide the available SMISAs. In this section we have developed a synchronous 
scheme for multiple SMISAs. This scheme is a generalization of a single SMISA 
to the case of considering multiple SMISAs.

The cooperation mechanisms are established in two ways: the first is to share 
the points generated in the updating of the surrogate models, and the second is 
that each SMISA takes into account, in the sampling process, the regions that 
are being explored by the rest of the SMISAs to avoid over-emphasis on these 
regions. The aim is to derive ensemble infill sampling criterion in which the per-
formance will be better than their components SMISAs.

Algorithm  3 shows the cooperative scheme. In this approach, the infill sam-
pling problems (5) and (6) are still solved in a sequential manner. When updating 
the exploration measures, both the points generated by a given SMISA and the 
rest of the SMISAs are taken into account.

Fig. 2  Multiple sequential multi-point infill sampling algorithms
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4  Convergence analysis

In this section, we analyze the convergence of the cooperative algorithms using mul-
tiple SMISAs. We denote by x∗ ∈ D a solution of our optimization problem, i.e., 
f (x∗) = minimize x∈Df (x).

The starting point for our analysis is provided by the following theorem showing 
that it is sufficient for an algorithm to generate a dense set of points in the feasible 
region to demonstrate its convergence.

Theorem 1 (Torn and Zilinskas 1989) Let D be a compact set. Then an algorithm 
converges to the global minimum of every continuous function on D if and only if its 
sequence of iterations is everywhere dense in D.

Since every dense set has an infinite number of points, we will assume that 
the SMISAs do not perform the pruning operation and so retain all generated 
points (i.e k = +∞ ). We introduce the superscript (s) associated with the SMISA 
and the subscript n to refer to the nth internal iteration of the algorithm s. In this 
way, the following notation y(s)

n
for all n and for s = 1,… , p refers to the nth gen-

erated point by the SMISA s. We will begin our discussion on the convergence 
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of the cooperative approach assuming that a particular SMISA algorithm s′ 
employs the hard approach (Case a).

Theorem 2 (Convergence of the cooperative algorithm: Case a) Let f(x) be continu-
ous functions on a compact set D . Suppose that there exists a SMISA s′ , that employs 
a hard approach (5) satisfying the following assumptions: 

1. the exploration measure d(s
�)

Zn
(y) is given by (8),

2. the rule to select the parameters �(s�)
n

 is: 

3. the relationship {y(s
�)

1
,… , y

(s�)

n−1
} ⊆ Z(s�)

n
 is satisfied, and

4. it generates an infinite sequence {y(s
�)

1
, y

(s�)

2
,…};

  then the cooperative algorithm converges to the global minimum.

Proof See “Appendix 1”.   ◻

Next, we will analyze the convergence of another configuration of the coop-
erative algorithms, consisting in a particular SMISA using a soft approach (Case 
b).

Theorem 3 (Convergence of the cooperative algorithm: Case b) Let f(x) be a con-
tinuous function on a compact set D . Suppose that there exists a SMISA s′ that 
employs a soft approach (6), satisfying the following assumptions: 

1. the exploration measures d(s
�)

Zn
(y) are given by (8),

2. the exploitation measure satisfies

3. the relationship {y(s
�)

1
,… , y

(s�)

n−1
} ⊆ Z(s�)

n
 holds, and

4. it generates an infinite sequence {y(s
�)

1
, y

(s�)

2
,…};

  then this cooperative algorithm converges to a global minimum.

Proof See “Appendix 1”.   ◻

Theorems 2 and 3 can be applied to a single SMISA, obtaining as corollar-
ies two sufficient conditions of convergence for the algorithmic class SMISAs. 
In general, any sufficient condition of convergence of the cooperative algo-
rithm should be applicable to a single SMISA and therefore would establish the 
convergence of the sole SMISA. The convergence of a certain SMISA s′ is an 
implicit assumption for any sufficient condition of convergence of a cooperative 
algorithm.

𝜀
(s�)
n

= 𝛽
(s�)
n

𝛥
(s�)
n

where𝛥(s�)
n

= Maximize
x∈D

d
(s�)

Zn
(x) and 0 ≤ 𝛽

(s�)
n

< 1 and lim sup
n→∞

𝛽
(s�)
n

> 0,

(22)0 < m < wX(x) < M for all x ∈ D and for all X ⊂ D,
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5  Numerical experiments

5.1  Parallel surrogate‑based optimization algorithms

The algorithm proposed in this paper describes a cooperative strategy among a 
family of parallel surrogate-based optimization algorithms (defined in Sect. 3.1). 
As previously mentioned, each element of this algorithmic class is called a 
SMISA. They share the points sampled to update the surrogate models and their 
exploration measures enable them to be coordinated. It is therefore essential to 
define SMISAs that may be complementary in the search tasks.

In this numerical experiment the selection of the parallel surrogate optimiza-
tion algorithms has taken into account an important point found in the work of 
Díaz-Manríquez et al. (2011). Díaz-Manríquez et al. (2011) compared four meta-
modeling techniques, polynomial approximation, kriging, radial basis functions 
(RBF) and support vector regression (SVR), in order to select the most suitable 
technique to be combined with evolutionary optimization algorithms. They found 
that the best approach to be used in low dimensionality problems can be kriging 
or even SVR. In contrast, when trying to optimize a high dimensional problem, 
then, the best technique is RBF. For this reason, two types of surrogate models 
have been used in the numerical experiments: RBF Thin Plate Spline (TPS) and 
kriging models.

We have chosen the following radial-basis-based algorithm: CORS-RBF, intro-
duced in Regis and Shoemaker (2007c). Regis and Shoemaker reported good 
results for CORS-RBF compared to a parallel multistart derivative-based algo-
rithm, a parallel multistart derivative-free trust-region algorithm, and a parallel 
evolutionary algorithm. The CORS-RBF method has a comparable performance 
to the parallel Gutmann-RBF method. The CORS-RBF algorithm can be a good 
state-of-the-art exponent in algorithms based on radial basis.

A state-of-the-art parallel EGO algorithm is the Constant Liar approach. Zhan 
et al. (2017) proposed the EGO-PEI algorithm and conducted a numerical experi-
ment on 6 test problems, showing that the EGO-PEI algorithm performs signifi-
cantly better than the Constant Liar approach. This result is the motivation for 
choosing EGO-PEI as a representative of the parallel algorithms based on kriging 
models.

As shown in Sect. 3.2 CORS-RBF and EGO-PEI algorithms are instances of 
this family of parallel surrogate optimization algorithms and they have been cho-
sen as SMISAs; the resulting cooperative algorithm is named CPEI. A proper 
acronym for this algorithm could be CORS-RBF + EGO-PEI, but due to its exces-
sive length we have preferred to shorten it to CPEI. We are interested in creating 
a strategy that combines the advantages of CORS-RBF and EGO-PEI regarding 
the dimensionality of the problem.

We also conduct a numerical experiment on the performance of Parallel Lower 
Confidence Bound-based algorithm in “Appendix 3”. Parallel LCB is proposed 
as a new instance of the SMISA framework and it is also based on kriging mod-
els. For this reason, Parallel LCB is compared with EGO-PEI. This experiment 
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addresses the secondary objective of showing that SMISA contains novel algo-
rithms that can be considered as part of the state of the art.

5.2  Test problems

We use seven benchmark functions taken from Dixon–Szegö test bed (Dixon and 
Szegö 1978) and ten benchmark noiseless functions taken from the Real-Parame-
ter Black-Box Optimization Benchmarking (BBOB) test suite (Hansen et al. 2009), 
namely functions F15–F24. The first set of functions has been widely used in the 
literature and is composed of small-size problems (see Table 1 for descriptive sta-
tistics); these test functions have one global minimum. All test functions of the sec-
ond suite (see Table 2) have 10 dimensions and are multimodal, their actual search 
region is given as [−5, 5]10 . The test problems are analytic so we do not need to 
worry about the computational time.

5.3  Experimental setup

We use a thin plate spline RBF interpolation model for CORS-RBF and CPEI. 
The kriging models for EGO-PEI and CPEI are built using the DACE (Design and 

Table 1  The Dixon–Szegö test 
bed

Function Z∗
� # local min Domain D

Branin 0.3979 2 3 [−5, 10] × [0, 15]

Goldstein–Price 3.0000 2 4 [−2, 2]2

Hartman 3 − 3.8628 3 4 [0, 1]3

Hartman 6 − 3.3224 6 6 [0, 1]6

Shekel 5 − 10.1532 4 5 [0, 10]4

Shekel 7 − 10.4029 4 7 [0, 10]4

Shekel 10 − 10.5364 4 10 [0, 10]4

Table 2  The BBOB test suite Function Description

F15 Rastrigin function
F16 Weierstrass function
F17 Schaffers F7 function
F18 Schaffers F7 function, moderately ill-conditioned
F19 Composite Griewank–Rosenbrock function F8F2
F20 Schwefel function
F21 Gallagher’s Gaussian 101-me peaks function
F22 Gallagher’s Gaussian 21-hi peaks function
F23 Katsuura function
F24 Lunacek bi-Rastrigin function
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Analysis of Computer Experiments) toolbox (Lophaven et  al. 2002) with the fol-
lowing setting: Zero-order polynomial regression function (regpoly0), Gauss-
ian correlation function (corrgauss) and the initial guess on the hyperparam-
eter � is set to 1. Note that the CPEI is convergent by applying Theorem  2. The 
parameters �n of CORS-RBF have been taken by cycling their values in the list 
{0.9, 0.75, 0.25, 0.05, 0.03, 0} and therefore the CPEI meets the hypothesis (2) of 
Theorem 2. Hypotheses (1) and (3) are satisfied due to the CORS-RBF definition 
and therefore CPEI and CORS-RBF are convergent by Theorem 2.

We use a SLHD sampling (Ye et al. 2000) to generate the initial design for all 
three algorithms. The size of the initial experiment was set to 2(� + 1) points. All 
algorithms use the same initial experimental design in order to mitigate the effect of 
the initial experiment on the performance. We ran twenty trials for each algorithm, 
for each value of q and for each test problem.

The three algorithms are run with q = 4 , q = 8 and q = 12 function evaluations 
per cycle. Each algorithm requires solving q infill sampling problems per main itera-
tion. The pseudo-expected improvement function is optimized by Particle Swarm 
Optimization (PSO) (function particleswarm in MATLAB). The PSO algo-
rithm is executed with the following setting: 

1. Swarm size: 50
2. Maximum iterations: 100
3. Self adjustment weight ( c1 ): 1.49
4. Social adjustment weight ( c2 ): 1.49

The infill sampling criterion for CORS-RBF is a constrained optimization prob-
lem and we use the Interior Point (IP) algorithm (function fmincon in MATLAB). 
The interior point method is executed using the default values and setting: 

1. Maximum iterations: 1000
2. Maximum function evaluations: 3000

The experiments were done on a computer with the AMD Ryzen 5 1600X pro-
cessor of 3.6 GHz and 6 cores for parallelization. The RAM available was 16 GB 
and the version of MATLAB used was R2017b. Note that in carrying out the experi-
ments, a total of 244,784 points were generated by solving the corresponding sam-
pling problems (optimization problems) in Dixon–Szegö test and 1,432,800 points 
in BBOB test suite. The computational cost of carrying out these experiments was 
20 computing days.

5.4  Experiment 1: Analysis of the performance on a limited computational 
budget

Experiment 1 corresponds to the practical scenario in which computational 
resources limit the number of function evaluations that it is possible to perform. In 
this experiment that number has been set to a maximum of 100 principal iterations. 
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The goal was to test whether the proposed CPEI algorithm achieves an objective 
function value significantly better than EGO-PEI and CORS-RBF algorithms.

Tables  3 and 4 show respectively the mean and the standard deviation of the 
objective function values achieved in the 20 trials for the Dixon–Szegö and BBOB 
test suites. In addition, the Mann–Whitney–Wilcoxon signed rank test is used to 
identify whether or not two algorithms are significantly different. The algorithm in 
each row is compared to the CPEI method and the symbol “−” represents the fact 
that CPEI cannot be compared to itself. When the calculated p value is smaller than 
the significance level � = 0.05 , we reject the null hypothesis and both algorithms are 
significantly different with respect to the value of the objective function for a given 
number of cycles. In this case, we indicate with h = 1 that CPEI outperforms the 
other algorithm and with h = −1 , otherwise. We use the value h = 0 to indicate that 
the null hypothesis cannot be rejected.

When doing more function evaluations per iteration, it should be expected that 
the algorithm improves the objective function value in less wall-clock time. Zhan 
et al. (2017) has observed that when more points are included in one cycle, the best 
results are not necessarily obtained with the greatest q value. This phenomenon may 
come about because multi-point infill sampling problems [such as those defined in 
Eqs. (5) and (6)] are highly multi-modal and their optimization becomes increas-
ingly difficult.1 A highlight supported by the numerical results is that this phe-
nomenon is not present in our implementation of the CPEI algorithm, and the best 
results are obtained when q = 12 for all test problems. On the other hand, the best 
configuration of the EGO-PEI and CORS-RBF algorithms is reached respectively 
when q = 4 and q = 8 for problem F15. This is a relevant feature of the cooperative 
algorithms that makes it possible to take advantage of a larger number of processors.

The results confirm the initial assumption and agree with what is emphasized in 
the literature, that kriging models work well for low-dimensional problems such as 
the Dixon–Szegö test bed (fewer than 6 dimensions) while the radial basis models 
are a good alternative for the larger ones such as the BBOB test suite (10 dimen-
sions). It has been observed that EGO-PEI outperforms CORS-RBF in Dixon–Szegö 
test bed whereas the opposite occurs for BBOB test suite. CPEI has behaved as the 
best alternative between CORS-RBF and EGO-PEI. If we consider the total of the 
17 test problems and for q = 12 , it is observed that CPEI wins in 4 problems to 
CORS-RBF ( h = 1 ), behaves like it in 13 problems ( h = 0 ) and CPEI is never worse 
than CORS-RBF ( h = −1 ). If we analyze the results for the EGO-PEI we find that 
CPEI wins over EGO-PEI in 6 problems ( h = 1 ), ties in 10 ( h = 0 ) and loses in 1 
( h = −1).

If we consider all values of q and count which configurations achieve the best 
results, we find that CPEI is the best option for 9 problems, CORS-RBF for 7 prob-
lems and the EGO-PEI for 6 problems. When a tie occurs, all tied algorithms are 
considered the best option.

1 Zhan et al. (2017) shows that the performance of the EGO-PEI is sensitive to the quality of the opti-
mizer of the PEI function, defined in (6).
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If we observe which algorithm is the worst for q = 12 , we observe that CPEI 
is worst in only two of the total of 17 problems: F21 and Shekel7. The con-
clusion drawn from Experiment 1 is that the cooperation strategy improves the 
robustness of the resulting algorithm, showing that for the case analyzed and for 
the algorithms tested, CPEI is a good choice both for problems of small dimen-
sions and for larger.

5.5  Experiment 2: Analysis of performance to establish a predefined relative 
error

Experiment 1 compares the algorithms in terms of the objective function value for 
a given number of cycles; in Experiment 2, on the other hand, the number of itera-
tions is not fixed and what is set is the relative error to be reached. The comparison 
is carried out in terms of number of cycles. Due to the great diversity of dimension 
in the test problems, we have considered several stopping criteria. For Dixon–Szegö 
problems (with dimension less than 10) we have used the same criterion as that used 
in Jakobsson et al. (2010), that is, the procedure stops if this relative error is smaller 
than 1% or a maximum of 100 major iterations has been reached. The difficulty in 
solving the BBOB test suite is very diverse and has led us to apply several relative 
errors. We have used a relative error of 150% for problems F15 and F24, of 20% for 
F18, of 5% for F16, of 2% for F21 and F23 and for the rest of the problems we have 
considered a relative error of 15% . The algorithm also stops if a maximum of 100 
major iterations is reached. In order to evaluate the effect of the choice of the rela-
tive errors we have shown the progress of the algorithms on the BBOB test suite in 
Figs. 3 and 4. It can be observed that the algorithms maintain their ranking through-
out the optimization process. Therefore, the choice of a given error affects the rate of 
convergence but not the ranking between them.

The metrics compared are the number of cycles needed to find the optimum of 
the benchmark problems and the success convergence rate to achieve a near optimal 
solution. Both tests are solved 20 times with each algorithm and each function and 
the mean and standard deviation of the number of cycles required to achieve the 
given relative error are reported. In addition, the convergence success rate is calcu-
lated, i.e. the quotient between the number of times that a solution within the given 
relative error is reached and the number of attempts (in our case twenty), expressed 
as a percentage.

Tables  5 and 6 show the results for the Dixon–Szegö and BBOB test suites, 
respectively. In addition, the Mann–Whitney–Wilcoxon rank sum test is used to 
identify whether or not two algorithms are significantly different with respect to the 
number of cycles. For any algorithm A , we write h = 0 if A and CPEI are not sig-
nificantly different, we write h = 1 if CPEI is significantly better than A at the 5% 
level of significance, and we write h = −1 , otherwise. The difference between this 
test and the one used in the Experiment 1 is that in this case we consider independ-
ent samples instead of paired samples.

The first notable fact is that when the number of processors q is increased the 
three algorithms improve their performance. This result is essential for the efficient 
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parallelization of the optimization of computationally expensive black-box prob-
lems, allowing the use of a large number of processors. For this reason, we note the 
results obtained with q = 12 processors.
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Fig. 3  Average best objective function value found over twenty trials versus major iteration. Global opti-
mization methods on the test functions F15–F20 (taken from the BBOB test suite)
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Now we will analyze the best configuration of the algorithms, obtained when 
q = 12 . If we compare CPEI with CORS-RBF, we observe that CPEI is signif-
icantly better than CORS-RBF in 6 of the 17 problems, in the other 11 prob-
lems their differences are not significant. If we compare CPEI with EGO-PEI, we 
observe that in 4 problems CPEI is significantly better than EGO-PEI, in 3 prob-
lems CPEI is significantly worse than EGO-PEI and in the rest of the problems (a 
total of 10) there are no significant differences between them. The advantage of 
CPEI over EGO-PEI is seen in the convergence rate. Using a significance level 
of 5% and the McNemar test on paired proportions we find that CPEI has a sig-
nificantly better convergence rate than EGO-PEI on problems F15, F17, F18, F19 
and Hartman6. There are no significant differences for the rest of the problems.

To summarize, if we analyze which is the best algorithm to solve a given 
problem, whether or not this improvement is statistically significant, we observe 
that CPEI is the best at 9 problems, EGO-PEI at 6 and CORS-RBF at 2. This 
shows that cooperation between CORS-RBF and EGO-PEI improves the baseline 
algorithms.
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Fig. 4  Average best objective function value found over twenty trials versus major iteration. Global opti-
mization methods on the test functions F21–F24 (taken from the BBOB test suite)
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6  Conclusions and future research

Parallel surrogate-based optimization allows the wall-clock time needed for opti-
mizing expensive objective functions to be reduced. The performance of these 
techniques varies from one problem to another depending on their characteristics, 
such as their dimensionality, the existence of noise, and so on. As suggested by 
the “No Free Lunch Theorem” (Wolpert and Macready 1997) no algorithm is best 
for solving all types of optimization problem. An area that is presently the subject 
of intensive research is to combine the best features from different algorithms to 
come up with a more effective algorithm in a wider domain of applications.

This paper introduces a framework to develop surrogate-based cooperative 
optimization strategies to address computationally expensive black-box prob-
lems. The essential methodological contributions of this article are: (1) a formal 
definition of a class of parallel optimization algorithms based on a bi-objective 
approach; each algorithm of this class is called a Sequential Multi-point Infill 
Sampling Algorithm (SMISA); (2) a mechanism for the coordination of SMISAs 
and (3) a theoretical analysis on their convergence.

Within this framework, we have focused on the combination of a parallel RBF-
based algorithm, CORS-RBF, and a parallel kriging-based method, EGO-PEI. The 
former algorithm is called CPEI, and has been designed with the goal of obtaining a 
more robust convergence algorithm in a wider class of optimization problems.

In the numerical experiments, we compared CPEI with CORS-RBF and EGO-
PEI on the Dixon–Szegö test bed and the F15–F24 benchmark functions taken 
from the BBOB test suite. The results have two major highlight: (1) the reduction 
of wall-clock time with respect to the number of processors q and (2) the coop-
erative strategy improves the convergence properties of the baseline algorithms in 
terms of relative error achieved and successful convergence rate.

This is a generic algorithmic class and allows multiple instances not analyzed 
in this study. As evidence of this, we have proposed a parallel version of the 
Lower Confidence Bound-based algorithm (Dennis and Torczon 1997). Another 
notable example is that of homogeneous cooperative strategies (García-Ródenas 
et al. 2017) i.e. using the same surrogate-based optimization method with differ-
ent targets. The simplest example is to run different instances of an algorithm, for 
example CORS-RBF, but using different Latin hypercube designs and/or different 
hyperparameters for the RBF functions.

Emmerich et al. (2006) shows that the time complexity for the training of the 
kriging models is O(Nk3� + k2�) , where N is the number of iterations needed to 
adjust the metamodel parameters, � is the dimension of search space, and k is the 
number of training data points. The cooperative framework aims to implement 
massively parallelizable instances and this computational cost highlights the need 
to address the problem of restricting the number of points when updating the sur-
rogate model. This issue constitutes a future line of research. A pilot experiment 
is discussed in “Appendix 2”: Pruning strategy but it will be necessary to make 
a comparison with other methods proposed in the literature, such as Liu et  al. 
(2014) and Tian et al. (2019).
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Appendix 1

This appendix sets out the proofs of the mathematical propositions contained in the 
article.

Theorem 2.

Proof We will show that the set Y∞ =
⋃p

s=1

⋃
n≥1 y

(s)
n

 is dense in D and, by using 
Theorem 1, the cooperative algorithm is convergent.

By contradiction, we assume that the set Y∞ is not dense on D , thus the set 
Y (s�) ∪ X0 , where Y (s�) =

⋃
n≥1 y

(s�)
n

 , is not dense. We focus only on the SMISA s′ in 
the proof and we will delete the superscript (s�) associated with this SMISA to sim-
plify the notation.

As the set Y ∪ X0 is not dense on D , there exists a radius 𝛿1 > 0 and x1 ∈ D such 
as the open ball B(x1, �1) satisfying:

and Eq. (23) leads to:

From hypothesis (2), lim supn→∞ 𝛽n > 0 and thus there exists a parameter 
𝛿2 > 0 and a subsequence {nv} satisfying:

Using the Eqs. (24) and (25), we find:

(23)
(
Y ∪ X0

)
∩ B(x1, �1) = {�},

(24)�n = Maximize
x∈D

dZn(x) ≥ �1 for all n ≥ 1.

(25)𝛽nv
> 𝛿2 for all v.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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From here, we call 𝛿 = 𝛿1𝛿2 > 0 and we denote the subsequence nv simply by v.
If v < v′ , from assumptions (1) and (3), then:

The Eq. (27) guarantees that the open balls with centers yv and yv′ , and radius �
2
 

have an empty intersection, i.e

On the other hand, the following inclusion holds:

From the compactness of the set D , this covering has a finite sub-covering, i.e. 
there exist a finite set of centers z1,… , zm , such as:

The sequence {yv} contains an infinite number of distinct terms because 
d(yv, yv� ) > 𝛿 > 0 for all v < v′ . Thus, there exists a ball containing two or more 
terms of {yv} . Let v1 and v2 be two different terms belonging to the same ball, then:

The relationship (31) is contradicts the Eq. (27). This contradiction proves that 
the set Y∞ is dense and the proof is completed.   ◻

Theorem 3.

Proof Consider the case a by analogy. We will show that the set Y∞ =
⋃p

s=1
Y (s) , 

where Y (s) =
⋃

n≥1 y
(s)
n

 , is dense in D and, by using Theorem  1, the algorithm is 
convergent.

By contradiction, we assume that the set Y∞ is not dense on D , thus Y (s�) ∪ X0 is 
not a dense set and this implies that there exist a radius 𝛿 > 0 and a point x1 ∈ D 
satisfying, B(x�, 𝛿) ⊆ D and

(26)𝜀nv
= 𝛥nv

𝛽nv
> 𝛿1𝛿2 for all v.

(27)
yv ∈ Zv�

dZv� (yv� ) ≥ 𝜀v� > 𝛿

}
⇒ d(yv, yv� ) > 𝛿.

(28)B
(
yv,

𝛿

2

)
∩ B

(
yv� ,

𝛿

2

)
= {�}, for all v < v�.

(29)D ⊆

⋃

x∈D

B
(
x,
𝛿

4

)
.

(30)D ⊂ B
(
z1,

𝛿

4

)
∪⋯ ∪ B

(
zm,

𝛿

4

)
.

(31)d(yv1 , yv2 ) ≤
�

2
.

(32)B
(
x�, �

)
∩
(
Y (s�) ∪ X0

)
= {�}.
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The proof is exclusively based on the SMISA s′ and for this reason we will omit 
the superscript s′ to simplify the notation.

Since the sequence {yn} is contained in the compact set D , there is a subsequence 
ynv that converges to y∗ ∈ D . To simplify the notation we simply denote the subse-
quence by {yv} . Since it is a convergent sequence, then it is a Cauchy sequence, and 
if 𝜀 =

m

M
𝛿 > 0 there is a positive integer v0 such that:

From which we obtain:

Let v1 > v0 be a positive integer and let t be the main iteration for the SMISA s′ in 
which the point yv1 has been obtained, then given Eq. (34) and assumption (2) :

From Eq. (32), it follows that dZv1 (x
�) > 𝛿 , and using the assumption (2),

Finally, from the optimality of yv1 , we get:

which contradicts the Eq. (35) and the proof is completed.   ◻

Appendix 2: Pruning strategy

The multi-point infill sampling strategies, as they include points in groups of q, may 
have as result that even if the number of major iterations remains limited, the set of 
stored points will be of significant size.

Haftka et al. (2016) points out that the overhead cost of surrogate fitting and pre-
diction may become large when the number of samples increases. It will be shown 
in a computational experiment. In this appendix we introduce the so-called pruning 
strategy that limits the number of points stored to a maximum of k points. When this 
value is exceeded, the strategy is activated and those points that provide less sam-
pling information are deleted.

To define this strategy we introduce for each point x ∈ X the following index:

(33)d(yv, yv� ) <
m

M
𝛿, for all v, v� ≥ v0.

(34)dZv(yv) <
m

M
𝛿, for all v > v0.

(35)dZv1
(yv1 )wXt (yv1 ) <

m

M
𝛿M = m𝛿.

(36)dZv1
(x�)wXt (x�) > 𝛿m.

(37)dZv1
(yv1 )wXt (yv1 ) ≥ dZv1

(x�)wXt (x�) > 𝛿m,
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where ŵX(x) = �(f (x), x) ≥ 0 , i.e. it is obtained by replacing the definition of wX(x) 
in the surrogate model with the function f(x) itself. This index estimates the infor-
mation provided by the point x on the location of a solution to the optimization 
problem.

The problem to be solved is to find a subsample X′
⊆ X of cardinality k, denoted 

as |X�| = k , which contains the maximum information. Mathematically, we write:

We propose a greedy algorithm to solve the previous combinatorial optimiza-
tion problem. This algorithm removes the worst of the points x̃  and recalculates 
the index �  over the resulting set of points X�{x̃} . This procedure is repeated 
until a sample of cardinality k is obtained. Algorithm 4 shows a recursive coding 
of the greedy algorithm.

The overhead cost of surrogate fitting and prediction is cubic in the number 
of retained points and it may become considerable when the number of samples 
increase. This is the motivation to introduce the pruning strategy and due to this 
reason is recommendable to consider two set of samples, the first one obtained 
by the application of pruning rule, X′t , that is used to fit the surrogate models 
and the second one is the full samples Xt that act as a memory of the whole 
search process and it is only used in the definition of the exploration measures.

Figure  5 illustrates the pruning strategy used to minimize the function 
f (x, y) = xy on the region [0, 1] × [0, 1] . The set of optimal solutions is repre-
sented by the red segments (those solutions for which x = 0 or y = 0 ). On all 
the graphs, the contour lines are superimposed. Initially, the region [0, 1] × [0, 1] 

(38)�X(x) = dX�{x}(x)ŵX(x)

(39)maximize
X�
⊆X∶ |X�|=k

∑

x∈X�

𝛤X� (x).
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with 100 points is uniformly sampled. The circles are computed using as radius 
the value 1

2
dX�{x}(x) and they represent the areas of influence of each point x in 

the sample X. By chance, very close points exist in non-promising regions (small 
circles in the upper right corner). If we apply the pruning strategy to exclude 50 
points (figure k = 50 ) these points near to non-promising regions are eliminated. 
It is shown that the lower left corner contains more points in the sample than the 
upper right. If the pruning strategy is intensive (figure k = 10 ) the points try to 
approximate the set of optimal solutions.
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Fig. 5  Illustration of pruning strategy on the function f (x, y) = xy
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Figure 6 shows the mean efficiency and time required to update the surrogate 
kriging models within the EGO algorithm and when it is used in combination 
with the pruning strategy for k = 45 points. We have run 10 trials for both EGO 
versions and 400 main iterations have been applied to optimize the Hartman 
6 function. It can be seen how the computational cost of updating the kriging 
model increases and how the pruning strategy prevents this, whereas the effi-
ciency is similar in both versions.

Appendix 3: Comparative between EGO‑PEI and parallel lower 
confidence bound‑based algorithm

Section  3.2.3 defines a parallel version of the Lower Confidence Bound-based 
(LCB) algorithm through the SMISA framework. The purpose of this experiment is 
to compare the performance of this novel algorithm and the EGO-PEI. This experi-
ment is carried out on a BBOB test suite, setting q = 12 . Both approaches use the 
same experimental setup as in Sect. 5.3. i.e. the same kriging models and the same 
optimizer for the infill sampling criterion. The parameter � of the Eq. (14) is set to 2. 
Table 7 shows the mean and standard deviation for the best objective function value 
reached in 100 major iterations. The results show that Parallel LCB wins in 7 prob-
lems whereas EGO-PEI in 3. If we take into account the Wilcoxon signed rank test, 
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Fig. 6  Comparison between EGO and EGO with pruning strategy. a Objective function values versus 
iterations, b computational time versus iterations



1090 J. C. García-García et al.

1 3

we observe that the Parallel LCB outperforms EGO-PEI meaningfully in three test 
problems, and fails in one problem.
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