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Abstract

Most parallel surrogate-based optimization algorithms focus only on the mecha-
nisms for generating multiple updating points in each cycle, and rather less atten-
tion has been paid to producing them through the cooperation of several algorithms.
For this purpose, a surrogate-based cooperative optimization framework is here pro-
posed. Firstly, a class of parallel surrogate-based optimization algorithms is devel-
oped, based on the idea of viewing the infill sampling criterion as a bi-objective
optimization problem. Each algorithm of this class is called a Sequential Multipoint
Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing
a surrogate model, an exploitation measure, an exploration measure and a multi-
objective optimization approach to its solution. SMISAs are the basic algorithms on
which collaboration mechanisms are established. Many SMISAs can be defined, and
the focus has been on scalar approaches for bi-objective problems such as the e-con-
strained method, revisiting the Parallel Constrained Optimization using Response
Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo
Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition,
a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given
as a member within the SMISA class. Secondly, we propose a cooperative optimiza-
tion framework between the SMISAs. The cooperation between SMISAs occurs in
two ways: (1) they share solutions and their objective function values to update their
surrogate models and (2) they use the sampled points obtained from different SMI-
SAs to guide their own search process. Some convergence results for this coopera-
tive framework are given under weak conditions. A numerical comparison between
EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI,
shows that CPEI improves the performance of the baseline algorithms. The numeri-
cal results were derived from 17 analytic tests and they show the reduction of wall-
clock time with respect to the increase in the number of processors.
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1 Introduction

In many engineering applications, such as thermodynamic analysis, engine
design, structural analysis or reservoir simulation, computer simulations are used
as models of real systems. The search of the optimal simulation parameters often
involves optimizing such models. These applications are notable examples of
black-box optimization in which the analytical expression of the objective func-
tion and/or the constraints are unknown. The challenges of handling black-box
functions are: (1) they are computationally expensive, i.e., these simulations are
time consuming and (2) no gradient-based methods can be used, and thus ana-
lytically-based stopping criteria are not available. For example, in problems with
black-box functions such as those in Jakobsson et al. (2010), each engine simula-
tion takes around 48 h, or in Rezaveisi et al. (2014), the evaluation of a reservoir
simulation may take several days.

Contemporary simulation-based optimization methods include heuristic
methods, stochastic approximations and surrogate-based methods. Metaheuris-
tics are global optimization methods, but require a large number of iterations
to achieve convergence, and are impractical for these problems. In order to deal
with the high computational cost, surrogate models [also known as meta-models
or Response Surface Methods (RSMs)] are commonly applied in the literature,
mainly because they use a limited number of function evaluations.

This paper focuses on parallel surrogate-based optimization methods. The
inclusion of multiple points per major iteration to update the surrogate model
allows us to take advantage of parallel computing capabilities, and offers great
potential for reducing the wall-clock time required to solve a global optimization
problem.

Previous algorithms (Viana et al. 2013; Liu et al. 2017) have taken into
account multiple surrogate models, working independently or via multi-objective
optimization, to derive multi-point infill sampling criteria. This study proposes
a complementary approach based on the cooperation of parallel surrogate-based
optimization methods. To achieve this goal, first, we introduce a formal defini-
tion of the class of algorithms that can cooperate with each other. Each algorithm
in the class is named Sequential Multi-point Infill Sampling Algorithm (SMISA).
The definition of a SMISA requires the introduction of the so-called exploitation
and exploration measures. A combination of both measures describes a bi-objec-
tive problem that, together with the solution method, defines the SMISA. The key
point is that the exploration measures are independent of the surrogate model and
this means that: (1) the SMISAs may generate sequentially g points per cycle
by updating the exploration measure and (2) there is coordination between these
SMISAs through exploration measures. This framework not only allows existing
parallel infill criteria to be described but is also a way to generate new methods.
This framework has been applied to derive a parallel version of the Lower Confi-
dence Bound-based algorithm given in Dennis and Torczon (1997).

The motivation of this cooperation is to create a more robust parallel infill cri-
terion by combining several with complementary features. For example, different
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algorithms can be used, each of them suitable for certain problems depending
on their dimensionality, the level of uncertainty, the grade of multimodality, etc.
Through sharing their infill samples during the infill selection process, the perfor-
mance of the ensemble infill criterion could be better than its components.

The remainder of the paper is organized as follows. Section 2 describes the state-
of-the-art approaches. Section 3 introduces the proposed surrogate-based coopera-
tive optimization framework, and its theoretical properties are described in Sect. 4.
Section 5 illustrates the performance of these algorithms on a number of benchmark
functions. Finally, our concluding remarks are given in Sect. 6.

2 Priorresearch

We consider the following optimization problem:
er)lclerglze fx) (1)

where the objective function is not known in a closed form, i.e. it is a black-box
function. We will assume that the value of the objective function can be calculated,
for example, by doing a simulation or experiment in a laboratory (for instance,
chemically) to give the value of f or at least to obtain an approximate value for f.
This approximation can be caused by a truncation of the execution or to the intro-
duction of noise in the experiment, when it is not possible to control all the param-
eters involved.
We assume that the problem (1) has the following features:

D is a compact set of R";

x € D is a vector of continuous variables;

fis continuous on D;

there is a single objective function;

fis expensive to evaluate;

fis a black-box function and no analytical derivatives of f are available.

AN

Surrogate-based optimization techniques are a successful strategy for solving this
kind of computationally expensive optimization problem. A prototype scheme is
shown in Algorithm 1.

Algorithm 1 Sequential surrogate-based optimization framework

1: (Sample selection) Let t = 0. Select and evaluate a set X of starting points.

2: (Construct a surrogate model) From the data {(x, flz))|z € Xt}, construct a surrogate
model Sx:(-) that approximates the black-box function f(x).

3: (Infill sampling criterion) Select a new point y using the surrogate model S« (-) and
evaluate it in the expensive black-box objective function f(x). Update the data set
Xt = Xt U {y}. Set t:=t + 1.

4: (Stopping criterion) Go to step 2, unless a stopping criterion is met.
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The procedure begins with an initialization phase in which a set of samples is
chosen. In this phase, experimental design techniques such as Symmetric Latin
Hypercube Designs (SLHD) (Ye et al. 2000), CORNER (Miiller 2012) or Minimax
and Maximin distance designs (Johnson et al. 1990) are usually used.

In Step 2, an approximation of the expensive objective function is built using the
set of sampled points; this is the so-called surrogate model. Several surrogate mod-
els have been proposed for approximating the expensive objective function, such
as polynomial response surface models, moving least squares, radial basis func-
tions (RBFs), kriging methods, artificial neural networks, support vector regression
or combinations of these. A review of these methods is given in Vu et al. (2017)
and Forrester and Keane (2009). This approximation of the objective function may
have a local character, such as polynomial response surfaces which are defined on
a region of interest. In contrast, with global approximations such as artificial neu-
ral networks, radial basis functions or kriging methods, all the points for which the
objective values are known are used to build the surrogate model for the expensive
function.

In Step 3, an infill sampling criterion is designed using the surrogate model. The
point selection criterion should balance the information from the unexplored fea-
sible region with the search in promising areas of the design space (according to
the surrogate model). From a global optimization view, these issues are respectively
known as exploration and exploitation stages. Depending on the weights of these
factors, the search is driven more towards optimization or to filling of the feasible
region.

This is a sequential scheme in which a single point is introduced at each major
iteration. To enable the incorporation of multiple new samples at each updating
cycle, parallel infill strategies have been proposed in recent years to reduce the opti-
mization wall-clock time. A taxonomy of these methods can be considered accord-
ing to two fundamental features: (1) the use of single/multiple infill criteria and (2)
how they approach the exploration/exploitation stages. In essence, it is a bi-objective
optimization problem and this can be approached through Pareto dominance or by
weighting to balance exploration and exploitation. A rough taxonomy classifies par-
allel algorithms into three large groups:

e Single infill criterion These methods address the bi-objective nature of the explo-
ration/exploitation dilemma through scalarization methods in multi-objective
optimization such as the weighting methods. This group of methods uses one
optimization on one parametrized infill criterion to select a new point and leads
to a sequential point generation scheme. Within these methods, a distinction
should be made between those that employ an uncertainty-based criterion and a
distance-based criterion. The algorithms g-points Expected Improvement (q-EI)
(Ginsbourger et al. 2010), Kriging Believer (KB), Constant Liar (CL), Efficient
Global Optimization with Pseudo Expected Improvement (EGO-PEI) (Zhan
et al. 2017), Local Metric Stochastic RBF with Restart (LMSRBF-R) (Regis and
Shoemaker 2009), Parallel Constrained Optimization using Response Surfaces
(Parallel CORS-RBF) (Regis and Shoemaker 2007¢) and parallel Gutmann-RBF
(Regis and Shoemaker 2007b, c) fall into this category.
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e  Multiple infill criteria addressed with a multi-objective approach The use of
multiple infill criteria allows a multi-objective optimization problem to be stated.
These methods select g points from the Pareto frontier as the new set of points to
be sampled. Some examples in this category are Multi-Objective Infill criterion
for Model-Based Optimization (MOI-MBO) (Bischl et al. 2014) and Surrogate
Optimization with Pareto Selection (SOP) (Krityakierne et al. 2016).

e  Multiple independent infill criteria. These techniques employ multiple infill cri-
teria, derived from multiple surrogate models and/or multiple measures, and get
q points from ¢ different criteria. The algorithms Multiple Surrogate Efficient
Global Optimization (MSEGO) (Viana et al. 2013) and that given in Beaucaire
et al. (2019) belong to this category.

We will now review the above methods starting with the first group for uncer-
tainty-based measures. The simplest infill criterion considers the addition of a single
point at the current iteration. In Jones et al. (1998) Efficient Global Optimization
(EGO) is proposed, which is one of the most widespread methods. This method is
based on kriging basis functions (Krige 1951), which provide the error in the esti-
mates of the surrogate model. EGO uses the Expected Improvement (EI) metric to
define the infill criterion which balances the need for a surrogate objective value
(exploitation) together with the uncertainty of the model (exploration).

The first parallelization strategy of EI was based on introducing all the maxima
found in the EI by the search algorithm (Schonlau 1997; Sébester et al. 2004). In
Ginsbourger et al. (2010) the EI approach is generalized to a multi-point optimi-
zation criterion, the so-called g-EI. Ginsbourger et al. (2010) analyzes the analytic
formula for the case g = 2, but solving for the case g > 2 requires expensive Monte
Carlo simulations of Gaussian vectors. To reduce the corresponding computational
burden, two heuristics, Kriging Believer (KB) and Constant Liar (CL), are intro-
duced to obtain approximately q-EI optimal designs. Parr et al. (2012) uses the q-EI
criterion to handle constraints using a probabilistic approach. Zhan et al. (2017)
proposes a new infill criterion named Pseudo Expected Improvement (PEI) defined
by the multiplication of the EI criterion by an influence function of the sampled
points. This method selects sequentially the ¢ candidate points by the optimization
of the PEI criterion. The resulting algorithm is called EGO-PEI and numerically it is
shown that EGO-PEI gains significant improvements when compared with CL.

The methods based on a single infill criterion that do not have an uncertainty
structure use distance-based refinements. For general surrogate models, Regis and
Shoemaker (2007a) introduces the Metric Stochastic Response Surface method
(MSRS) to choose the candidate point as the best weighted score from two criteria:
estimated function value obtained from the response surface model, and minimum
distance from previously evaluated points. Regis and Shoemaker (2009) proposes
a parallel extension of MSRS to reduce the total elapsed time required by response
surface-based global optimization methods. The numerical experiments show that
the so-called LMSRBF-R is competitive with the alternative parallel RBF methods.

The CORS-RBF algorithm was introduced in Regis and Shoemaker (2005,
2007b). This method chooses the next point by optimizing the surrogate model but
restricts the feasible region, requiring the new point to be away from the current
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points by a certain threshold. This threshold is iterated between a set of values allow-
ing exploration stages for large values and, in other iterations, exploitation stages for
small values. This sampling strategy is dense and converges to the global optimum.
A parallel version of CORS-RBF is introduced in Regis and Shoemaker (2007c¢).

Gutmann (2001) proposes a radial basis function method for global optimization
(Gutmann-RBF). The infill criterion used is simply to add a new single point and it
is based on the “least bumpy” of the interpolation surface. This criterion requires an
estimate of the optimal value of the problem. This value changes from iteration to
iteration in order to balance the exploration and exploitation stages. Regis and Shoe-
maker (2007b, c¢) parallelize the Gutmann-RBF based on the parametrization of the
Bumpiness Minimization Subproblem (BMS).

Under a multi-objective perspective, the multiple infill criteria are addressed
simultaneously instead of aggregating them into a single criterion. These methods
give an approximate Pareto frontier of g points. Bischl et al. (2014) proposes the
MOI-MBO method, which is based on kriging models and takes into account both
the diversity and the expected improvement of the proposed points. The numerical
experiments show that MOI-MBO outperforms single-step EGO. Horn and Bischl
(2016) applies an extension of this algorithm to the hyperparameter tuning problems
in machine-learning algorithms.

Krityakierne et al. (2016) proposes a parallel surrogate-based algorithm where
simultaneous candidate searches are performed around the Pareto centers, called
SOP, which considers the trade-off between exploration and exploitation stages as a
bi-objective optimization problem where the two objectives are the expensive func-
tion value of the point and the minimum distance of the point to previously evalu-
ated points. In SOP, unlike in LMSRBF-R, the new points are randomly obtained
from the different centers.

An example of algorithms from the third group is the MSEGO algorithm, given
in Viana et al. (2013). MSEGO uses g general surrogate models. MSEGO imports
error estimates from different instances of kriging models and uses them with all
other surrogates; as a result, a different EI is obtained for each surrogate, and maxi-
mizing EIs, provides up to g points per cycle. Liu et al. (2017) addresses the aero-
dynamic shape optimization of transonic wings by using a combination of multiple
infill criteria, with each criterion choosing a different sample point. This method
does not establish coordination mechanisms between criteria.

A class of parallel methods that can be seen as an adaptation of metaheuristic
algorithms to expensive black-box optimization problems are parallel surrogate-
assisted evolutionary algorithms (Diaz-Manriquez et al. 2016).

Potter and Jong (1994) proposes a cooperative co-evolutionary framework for
optimization. Its initial objective was to improve the performance of Genetic Algo-
rithms and other Evolutionary Algorithm-based optimizers. This seminal work has
been extended and applied to large-scale black-box optimization by using surro-
gate models (Yi et al. 2016; Omidvar et al. 2017; Wang et al. 2018; Blanchard et al.
2019, among others). These approaches divide the problem into several smaller
subproblems and then solve them individually by using an evolutionary algorithm.
The cooperative strategy is established between individuals from the different sub-
populations. Each individual is concatenated with the best candidates from the other
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subpopulations, to form a complete candidate solution, which is then fed into the
objective function. The cooperation strategy between the evolutionary algorithms
leads to a partition of the search space and allows the so-called curse of dimension-
ality to be addressed.

In a situation of surrogate-based multiobjective evolutionary algorithms, Mar-
tinez Zapotecas and Coello Coello (2013) used cooperative RBF networks, with the
aim of improving the prediction of the objective function values. The cooperative
strategy used in evolutionary algorithms is a mechanism to improve the performance
of the algorithm, but in this paper it is used to coordinate several infill sampling
criteria.

We have not reviewed other types of parallel algorithms as they deviate from the
methods proposed in this article and the interested readers can consult a more com-
prehensive review of the literature in Haftka et al. (2016).

3 A surrogate-based cooperative optimization framework

The section is structured as follows. First, we define the class of algorithms that
can be used to cooperate to find the optimal solution. Each algorithm of this class
is named Sequential Multi-point Infill Sampling Algorithm (SMISA). The definition
of a SMISA is based on bi-objective optimization to derive g-points infill sampling
criteria using a single surrogate model. The algorithms of this class (the SMISAs)
are those that may be chosen to work cooperatively.

We then describe a synchronous cooperative scheme for SMISAs in which paral-
lel computing capabilities are used to evaluate the expensive objective function.

3.1 SMISA: a type of g-points infill sampling criterion based on a single surrogate
model

In order to solve the optimization problem described in Sect. 2, we are interested in
algorithms that have a general structure like that shown in Fig. 1. The essential char-
acteristic is that the sampling strategy does not generate a single point y per cycle
butasetY' = {y],..., y;} of g points in each major iteration z.

In these algorithms, the number of retained points may be up to k. This is because,
in the infill criterion with g points, the number of generated points can become large,
thus taking more time to update the surrogate model. We propose a criterion called
the pruning strategy to restrict the number of retained points to update the surrogate
model. This is secondary in this research and is analyzed in “Appendix 2”.

The SMISAs exhibit the structure shown in Fig. 1. A first step in the formaliza-
tion of a SMISA is the stating of the infill sampling criterion, based on two essential
criteria:

1. reduction of the level of uncertainty in the region and
2. the sampled area is close to the most promising regions.
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Intialization

Sample selection:
Design of experiments

Xl = {xla"'vxm};

1= {fe), o fm)}

Update surrogate model
}Sg o) X = X U Y| e -y
g- points infill sampling Prur)pinq [strategy
criterion X cxury
|-
es
Y = {yT,...,y;’;%\ y
[4 Y X
[t | [ ] [fra

t 3
Evaluate objective [ XU Y| < k>—no

function in parallel

Fig. 1 Parallel surrogate-based optimization framework

Conditions (1) and (2) will define respectively the exploration and exploitation
capacities of the resulting SMISA. Mathematically, it is bi-objective in nature and
can be expressed as:

MaximiDzationF = (Exploration(x), Exploitation(x))T. )
XE€

The formalization of the problem (2), in this paper called the sampling prob-
lem, requires the definition of indexes to measure criteria (1) and (2). In this paper,
exploration measure means an index that allows us to evaluate the quality of a new
solution with respect to the uncertainty of the whole search space, while exploita-
tion measure is an index that allows us to estimate the improvement of the objective
function at a new point. These concepts will be formalized as follows.

Definition 1 (Exploration measure) An exploration measure of a set D sampled on
the set Z C D is any function
d: PD)XD R
(Z,x) w dy(x)

where P(D) is the power set of D and for all x € D and for all Z,Z’' C D, the follow-
ing conditions are satisfied:
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1. dy(x) <d (),
2 dyx) 20,
3. dy;(x) =0= x € cl(Z), where cl(Z) is the closure set of Z.

Condition (1) indicates that the uncertainty decreases if new points are added to
the sampled set, Condition (2) expresses that there is always uncertainty and, when
the cardinality of Z is finite, Condition (3) implies that if there is no uncertainty at a
point x, i.e. d,(x) = 0, then it must have been sampled, i.e. x € Z. Note that the car-
dinality of Z is finite in the practical application of the algorithms.

The exploitation measures estimate the objective function at a point x or alterna-
tively, the improvement in the objective function with respect to a set of previously
sampled points. Several measures of this type have been defined in the literature.
We have provided a definition of the exploitation measure using the lowest common
denominator of all of them, to be able to accommodate them in a unified definition;
the essential element is that they use a decreasing transformation of the surrogate
model to do so.

Definition 2 (Exploitation measure) Let Z C D and let S,(x) be a surrogate model
of f(x), defined on the set Z, then an exploitation measure is a transformation of
S;(x), i.e. wy(x) 1= w(S;(x),x), in which the function y (s, x) is decreasing on the
variable s for all x € D.

The infill sampling criterion has a bi-objective nature: (1) a goal defined by
means of the exploration measure dy(y) to weigh the current uncertainty level of the
different parts of the region D and (2) a second goal expressed by the exploitation
measure wy(y) to assess the quality of y to be a minimum of the objective function.
The infill sampling criterion, i.e the sampling problem, is stated as:

Bi-objective infill sampling criterion

Maximize F = (dy(y), WX(}’))T 3)
Subjectto: y €D

The parallel infill criterion consists of the selection of g points of the Pareto fron-
tier of the bi-objective problem (3). A basic multi-objective optimization method is
the e-constrained method, which maximizes one objective subject to the additional
constraint derived from the other objective. One issue with this approach is that it is
necessary to preselect which objective to maximize. We consider:

Maximize wy(y)
Subjectto:  dy(y) > € 4)
yeD
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where € represents the worst value dy that is allowed to be taken. It has been shown
that if the solution to the problem (4) is unique, then it is a Pareto optimal solution.

Note that, unlike what happens with the exploitation measures, the exploration
measures are independent of the function f{(x). It allows the exploration measure to be
updated each time a new point is obtained. In each major iteration, the surrogate model
Sy(x) is updated on the set of sampled points X, and it is necessary to know the value of
the objective function f{(x) at every point x € X, but the exploration measure dy(y) can
be updated each time in problem (4), which is solved without the need to evaluate the
objective function at these new points. We now formalize this. Let {y7, ... ,yj’.‘_1 } be the
previously generated points and let Z, C X U {y7, ... ,y]’f_] }, we define the jth point y;.‘ to
be added to the sampled points as an optimal solution of the problem:

Modified e-constrained method — Hard multi-point infill criterion
Maximize = wy(y;)
Subject to: dzj(yj) > g (5)
;€D

The selection of values of ¢; is problematic as for many values of ¢; there will be no
feasible solution. A way of choosing ¢; to avoid this is to set ¢; = f;4; with
4; = Maximize ,cpd, (x)and 0 < f; < 1.

The problem (5) may contain many local minima and optimizers such as metaheuris-
tics may be good choices to address it. These methods have been developed intensively
for unconstrained optimization (Garcia-Rddenas et al. 2019) leading to the considera-
tion of another way to scalarize a bi-objective optimization problem. Assuming that the
exploitation measure satisfies wy(y) > 0 for all y € D, the following sampling problem
is stated:

Alternative scalarization approach — Soft multi-point infill criterion

Maximize  dy (y)wx(y;)

Subjectto:  y; € D ©

If we compare the two problems (5) and (6), we observe that the problem (6) attempts
to satisfy the constraints of the problem (5) in a soft way. For this reason, we refer to the
approach (5) as hard and the criterion (6) as soft.

The sequential multi-point infill sampling criterion is summarized in Algorithm 2.

@ Springer



A surrogate-based cooperative optimization framework for. .. 1063

Algorithm 2 Sequential multi-point infill sampling criterion

Require: Set of sampled points X

Ensure: New set of sampled points Y = {y7,...,y;}

1: function ¢-POINTS INFILL CRITERION(X)

2 forallj=1,...,q do

3: Update Z; QXU{yi‘,...,y;il}

4 Let y* be the optimal solution obtained from (hard or soft) infill sampling crite-
rion given in (5) or (6).

5: end for

6: end function

Once the above definitions have been introduced, we will formalize the following
concept.

Definition 3 (SMISA) A Sequential Multi-point Infill Sampling Algorithm (SMISA)
is any algorithm of the parallel surrogate-based optimization framework given in
Fig. 1 in which the infill sampling criterion is defined by Algorithm 2.

The SMISA framework only includes sequential infill sampling processes. Other
approaches, such as g-EI or multimodal optimization, do not belong to this algo-
rithmic class. The objective in formulating this class of algorithms is to determine
which can be included in the cooperative scheme. Furthermore, this unified over-
view also allows the development of new algorithms by combining elements of the
existing ones.

3.2 Instances of sequential multi-point infill sampling algorithms

There are several algorithms described in the literature that fall within this frame-
work. Two noteworthy examples are: EGO-PEI, developed in Zhan et al. (2017)
and Parallel CORS-RBF, described in Regis and Shoemaker (2007c). This section
outlines the realization of these algorithms as instances of SMISAs, and a new one
is being proposed, which consists of a parallel version of the Lower Bound Confi-
dence-based algorithm (Dennis and Torczon 1997).

3.2.1 The Parallel CORS-RBF

The Parallel CORS-RBEF is a hard approach in which the exploitation measure wy(s)
is chosen as

wx(x) = =Sy (x), 7

being Sy(s) a radial basis function. In this example y(s,x) = —s, and ‘;—": =-1<0
and it decreases for all x. ‘
The Parallel CORS-RBF uses as exploration measure:
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dy(x) = mingér%ize Iz = xll,, ®)

where || - ||, is the Euclidean norm. The measure d,(x) calculates the shortest dis-
tance between x and the elements of the set Z. The infill problems for Parallel
CORS-RBF become:

Parallel CORS-RBF
Minimize Sy (y;)
Subject to:  d (y) 2 ¢; )
Y €D

where the set Z; is defined by Z, =X U {y], ... ,y;‘_l} and the parameters ¢; are

derived from the above parameters f;.
3.2.2 The EGO-PEI

The EGO-PEI algorithm (Zhan et al. 2017) is based on kriging models. A simple
kriging model can be built as follows:

f@) = p+ekx), (10)

where u is the mean of the Gaussian process, and £(x) is the noise term which is nor-
mally distributed with mean zero and variance ¢2. The errors on two points x,z € D,
i.e. £(x) and &(z), are correlated and the correlation depends on the distance between
these points:

Corr[e(x), e(z)] = exp <_ Z 0%, — Zkl[’k>.
k=1

EGO-PEI uses a soft multi-point infill sampling criterion in which the explora-
tion measure is the product of correlations between the sampled points and the new
point:

d55OPE () = [T (1 = Corrle(x), 2)D). (11
€Z

Note that, d559FF(x) satisfies the properties (1)—(3) of a exploration measure.
To define the exploitation measure the EGO-PEI algorithm chooses the expected
improvement (Jones et al. 1998):

wy(x) =Ely(x) = E(max{f,, — Sx(x),0})
= Sy 0 2N ) g g L) (1

ox(x) ox(x)

where f,,., is the current best function value, i.e. f,,;,, = min cyf(x) ; @ and ¢ are the

normal cumulative distribution and density functions, respectively.
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To demonstrate that the expected improvement is an exploitation measure, we
express Ely(x) = w(Sy(x),x) where w(s,z) = O'X(x)(z¢(z) + (l)(z)) and z(s,x) = fx—(‘)
oy(s,x) Oy 9z ’ -1

== .%= @ .

- o o %@(@+@@+¢@)%m

From the definition of ¢(z) = #e—#, there holds that z¢(z) + ¢'(z) = 0, and

LOvGs) _ i
s

Applying the chain rule,

thu

satisfied.
Finally, the sampling problem is stated:

—®(z) < 0 because 0 < @(z) < 1 for all z. The condition (Z—"; <0is

EGO-PEI

Maximize  d, P (y)EIL(y))
’ 13
Subjectto:  y; € D (13

where Zj = {y’;‘, e ;f_l I3

3.2.3 The parallel lower confidence bound-based algorithm

This section introduces a novel parallel surrogate-based optimization algorithm.
This algorithm can be seen as a parallel version of the Lower Confidence Bound-
based (LCB) algorithm proposed by Dennis and Torczon (1997). This method is
based on kriging models, and it employs the infill sampling criterion:

Minimize Sy () — aox(y)

Subjectto: yeD 14)

where a > 0. A simple interpretation of this infill criterion within the SMISA con-
siders —Sy(x) as the exploitation measure, the standard deviation oy (y) > 0 as the
exploration measure, and the weighted sum method as optimizer for multiobjective
optimization of (2).

We now re-interpret it as a soft infill sampling criterion, highlighting the great
degree of generality of the soft approach. We chose

1

wx(x) = —Sx(x) Y s

5)
dy(x) = ox(x); (16)
where y < min .pSy(x). The exploitation measure is decreasing in the surrogate

model and positive. The soft infill sampling criterion becomes:

ox(y)

Sx() = u a7
Subject to: yeD

Maximize
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We now show that problem (17) is equivalent to problem (14). We will apply a
refinement of the arguments given in Jagannathan (1966) for fractional optimization.
Both problems are parameterized, respectively by u and a. We will demonstrate that
given an arbitrary value a > O there is a parameter u so that the fractional problem
has the same solutions. Let @ > 0 and let y* be an optimal solution to the problem
(14) for this value of the parameter a, we define u = Sy(y*) — aoy(y*). From the
optimality of y* for (14), the following holds:

Sx(") — aoy(y*) < Sx(y) — acy(y) forally € D (18)
From the definition of u, we express Eq. (18) as
u < Sy(y) — acy(y) forally € D (19)

Because —aoy(y) < 0 for all y, Eq. (19) leads to the inequality Sy(y) — u > 0 for all
y € D. Using this inequality to express Eq. (19) as

ox(y)

1
——— < —forallyeD 20
SxO)—u " a 0

which, on the other hand, holds as an equality for y = y*

ox(y") _1 21
SO ) —u o«
and this in turn, proves the optimality of y* for the soft infill sampling criterion.

The identification of the exploration and exploitation measures in the infill sam-
pling criterion allows the introduction of the parallelization procedure for the algo-
rithm. The key point is that the standard deviation oy(y) does not depend on the
values f(y) in kriging models. Both parametric infill sampling criteria are equivalent.
The formulation (14) is computationally advantageous because some fractional opti-
mization techniques, such as Dinkelbach’s method (Rédenas et al. 1999), lead to the
resolution of a sequence of optimization problems with the same structure as (14)
instead of solving a single problem of this kind. Finally, the parallel sampling prob-
lem is stated:

Parallel-LCB
Minimize ~ Sy(y;) — (lO'Z/.(yj-)
Subjectto:  y; €D

where Z; = X U {y7], ..., ;—1 }.
The upper confidence bound-based algorithm (Srinivas et al. 2010) is obtained
by replacing —a with + « in the infill sampling criterion. The interpretation of

@ Springer



A surrogate-based cooperative optimization framework for. .. 1067

Surrogate 1 Exploitation Exploration
measure 1 measure 1
Surrogate 2

Exploitation Exploration | [Mutli-objective]
measure 2 measure 2 approach 2

/

Exploitation
measure S
/ Exploration
/ measure D
Infill Infill Infill
sampling sampling sampling
criterion 1 criterion 2 criterion P
SMISA SMISA SMISA
1) ) (P)
TR BT EEEET

Fig.2 Multiple sequential multi-point infill sampling algorithms

this algorithm within SMISA supports the use of the lower bounds instead of
upper bounds.

3.3 Coordination of the sequential multi-point infill sampling algorithms

We assume the case shown in Fig. 2 in which multiple surrogate models and mul-
tiple exploitation/exploration measures are being used in the optimization. Cer-
tain combinations of these options, in conjunction with a soft or hard approach,
provide the available SMISAs. In this section we have developed a synchronous
scheme for multiple SMISAs. This scheme is a generalization of a single SMISA
to the case of considering multiple SMISAs.

The cooperation mechanisms are established in two ways: the first is to share
the points generated in the updating of the surrogate models, and the second is
that each SMISA takes into account, in the sampling process, the regions that
are being explored by the rest of the SMISAs to avoid over-emphasis on these
regions. The aim is to derive ensemble infill sampling criterion in which the per-
formance will be better than their components SMISAs.

Algorithm 3 shows the cooperative scheme. In this approach, the infill sam-
pling problems (5) and (6) are still solved in a sequential manner. When updating
the exploration measures, both the points generated by a given SMISA and the
rest of the SMISAs are taken into account.
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Algorithm 3 Surrogate-based cooperative optimization

Require: Initial design set X©; number of updating points ¢; number of parallel infill
criteria p; and let r = ¢/p be an integer.
Ensure: The best observation (Zmin, fmin)-
Let t = 0.
while the stop condition is not met do
Build the surrogate models Sg(lt) (Y), .- ngt) (y) from the current data
{(ac,f(ac))\ac € Xi}.
Update the exploitation measures wg(lt) (€ wgft) ().
Set YO = {0}.
forallj=1,...,r do
for alls=1,...,pdo
Update Z; C XtJYd-1.

; (s)
Update the exploration measure dzj .

Obtain one sample point yj(-s> from the parallel infill criterion given in (5) or
(6). Add the sample point to define the set Y7~ = yJi—1 U{y](.s)}.
end for
Set Y7 =Yi—L
end for

Evaluate the total ¢ infill samples in parallel with the real function f(z), i.e. Evaluate
fly) forally e Y".

Update the design set Xt+! = Xt JY7". Set t =t + 1.
end while

4 Convergence analysis

In this section, we analyze the convergence of the cooperative algorithms using mul-
tiple SMISAs. We denote by x* € D a solution of our optimization problem, i.e.,
f(x*) = minimize . pf (x).

The starting point for our analysis is provided by the following theorem showing
that it is sufficient for an algorithm to generate a dense set of points in the feasible
region to demonstrate its convergence.

Theorem 1 (Torn and Zilinskas 1989) Let D be a compact set. Then an algorithm
converges to the global minimum of every continuous function on D if and only if its
sequence of iterations is everywhere dense in D.

Since every dense set has an infinite number of points, we will assume that
the SMISAs do not perform the pruning operation and so retain all generated
points (i.e k = +00). We introduce the superscript (s) associated with the SMISA
and the subscript n to refer to the nth internal iteration of the algorithm s. In this
way, the following notation yfj) for all n and for s = 1, ..., p refers to the nth gen-
erated point by the SMISA s. We will begin our discussion on the convergence
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of the cooperative approach assuming that a particular SMISA algorithm s’
employs the hard approach (Case a).

Theorem 2 (Convergence of the cooperative algorithm: Case a) Let f(x) be continu-
ous functions on a compact set D. Suppose that there exists a SMISA s', that employs
a hard approach (5) satisfying the following assumptions:

1. the exploration measure a’( )(y) is given by (8),
2. the rule to select the pammeters e is:

ﬂ(* )A(A where A(A ) = Maxmpnze d( )(x) and 0 < ﬁ(b ) < 1 andlim Supﬂ(A > 0,

n—oo

bt

the relationship {y(s ) ... ,yils )1 } C Z(Y ) is satisfied, and
4. it generates an mﬁmte sequence {y( ),y2 ) b

then the cooperative algorithm converges to the global minimum.
Proof See “Appendix 1. O

Next, we will analyze the convergence of another configuration of the coop-
erative algorithms, consisting in a particular SMISA using a soft approach (Case
b).

Theorem 3 (Convergence of the cooperative algorithm: Case b) Let f(x) be a con-
tinuous function on a compact set D. Suppose that there exists a SMISA s' that
employs a soft approach (6), satisfying the following assumptions:

o
1. the exploration measures d(Zil)(y) are given by (8),
2. the exploitation measure satisfies

0<m<wy(x) <M forallx € Dandforall X C D, (22)

3. the relationship {y(s) ,y(s) } C Z(v ) holds, and
4. it generates an mﬁmte sequence {y(s ),y(; Y

then this cooperative algorithm converges to a global minimum.
Proof See “Appendix 1”. O

Theorems 2 and 3 can be applied to a single SMISA, obtaining as corollar-
ies two sufficient conditions of convergence for the algorithmic class SMISAs.
In general, any sufficient condition of convergence of the cooperative algo-
rithm should be applicable to a single SMISA and therefore would establish the
convergence of the sole SMISA. The convergence of a certain SMISA s is an
implicit assumption for any sufficient condition of convergence of a cooperative
algorithm.
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5 Numerical experiments
5.1 Parallel surrogate-based optimization algorithms

The algorithm proposed in this paper describes a cooperative strategy among a
family of parallel surrogate-based optimization algorithms (defined in Sect. 3.1).
As previously mentioned, each element of this algorithmic class is called a
SMISA. They share the points sampled to update the surrogate models and their
exploration measures enable them to be coordinated. It is therefore essential to
define SMISAs that may be complementary in the search tasks.

In this numerical experiment the selection of the parallel surrogate optimiza-
tion algorithms has taken into account an important point found in the work of
Diaz-Manriquez et al. (2011). Diaz-Manriquez et al. (2011) compared four meta-
modeling techniques, polynomial approximation, kriging, radial basis functions
(RBF) and support vector regression (SVR), in order to select the most suitable
technique to be combined with evolutionary optimization algorithms. They found
that the best approach to be used in low dimensionality problems can be kriging
or even SVR. In contrast, when trying to optimize a high dimensional problem,
then, the best technique is RBF. For this reason, two types of surrogate models
have been used in the numerical experiments: RBF Thin Plate Spline (TPS) and
kriging models.

We have chosen the following radial-basis-based algorithm: CORS-RBF, intro-
duced in Regis and Shoemaker (2007c). Regis and Shoemaker reported good
results for CORS-RBF compared to a parallel multistart derivative-based algo-
rithm, a parallel multistart derivative-free trust-region algorithm, and a parallel
evolutionary algorithm. The CORS-RBF method has a comparable performance
to the parallel Gutmann-RBF method. The CORS-RBF algorithm can be a good
state-of-the-art exponent in algorithms based on radial basis.

A state-of-the-art parallel EGO algorithm is the Constant Liar approach. Zhan
et al. (2017) proposed the EGO-PEI algorithm and conducted a numerical experi-
ment on 6 test problems, showing that the EGO-PEI algorithm performs signifi-
cantly better than the Constant Liar approach. This result is the motivation for
choosing EGO-PEI as a representative of the parallel algorithms based on kriging
models.

As shown in Sect. 3.2 CORS-RBF and EGO-PEI algorithms are instances of
this family of parallel surrogate optimization algorithms and they have been cho-
sen as SMISAs; the resulting cooperative algorithm is named CPEI. A proper
acronym for this algorithm could be CORS-RBF + EGO-PEI, but due to its exces-
sive length we have preferred to shorten it to CPEI. We are interested in creating
a strategy that combines the advantages of CORS-RBF and EGO-PEI regarding
the dimensionality of the problem.

We also conduct a numerical experiment on the performance of Parallel Lower
Confidence Bound-based algorithm in “Appendix 3”. Parallel LCB is proposed
as a new instance of the SMISA framework and it is also based on kriging mod-
els. For this reason, Parallel LCB is compared with EGO-PEI. This experiment
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Table 1 The Dixon—Szegd test

bed Function 7 v #localmin Domain D
Branin 03979 2 3 [-5,10] X [0, 15]
Goldstein—Price 3.0000 2 4 [-2,217
Hartman 3 —-38628 3 4 [o,17°
Hartman 6 -33224 6 6 [0, 11°
Shekel 5 -10.1532 4 5 [0, 101*
Shekel 7 -10.4029 4 7 [0, 10]*
Shekel 10 - 105364 4 10 [0, 10]*

Table2 The BBOB test suite Function Description
F15 Rastrigin function
F16 Weierstrass function
F17 Schaffers F7 function
F18 Schaffers F7 function, moderately ill-conditioned
F19 Composite Griewank—Rosenbrock function F8F2
F20 Schwefel function
F21 Gallagher’s Gaussian 101-me peaks function
F22 Gallagher’s Gaussian 21-hi peaks function
F23 Katsuura function
F24 Lunacek bi-Rastrigin function

addresses the secondary objective of showing that SMISA contains novel algo-
rithms that can be considered as part of the state of the art.

5.2 Test problems

We use seven benchmark functions taken from Dixon-Szego test bed (Dixon and
Szegd 1978) and ten benchmark noiseless functions taken from the Real-Parame-
ter Black-Box Optimization Benchmarking (BBOB) test suite (Hansen et al. 2009),
namely functions F15-F24. The first set of functions has been widely used in the
literature and is composed of small-size problems (see Table 1 for descriptive sta-
tistics); these test functions have one global minimum. All test functions of the sec-
ond suite (see Table 2) have 10 dimensions and are multimodal, their actual search
region is given as [—5,5]'0. The test problems are analytic so we do not need to
worry about the computational time.

5.3 Experimental setup

We use a thin plate spline RBF interpolation model for CORS-RBF and CPEI
The kriging models for EGO-PEI and CPEI are built using the DACE (Design and
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Analysis of Computer Experiments) toolbox (Lophaven et al. 2002) with the fol-
lowing setting: Zero-order polynomial regression function (regpoly0), Gauss-
ian correlation function (corrgauss) and the initial guess on the hyperparam-
eter 6 is set to 1. Note that the CPEI is convergent by applying Theorem 2. The
parameters f, of CORS-RBF have been taken by cycling their values in the list
{0.9,0.75,0.25,0.05,0.03,0} and therefore the CPEI meets the hypothesis (2) of
Theorem 2. Hypotheses (1) and (3) are satisfied due to the CORS-RBF definition
and therefore CPEI and CORS-RBF are convergent by Theorem 2.

We use a SLHD sampling (Ye et al. 2000) to generate the initial design for all
three algorithms. The size of the initial experiment was set to 2(v + 1) points. All
algorithms use the same initial experimental design in order to mitigate the effect of
the initial experiment on the performance. We ran twenty trials for each algorithm,
for each value of g and for each test problem.

The three algorithms are run with ¢ =4, g = 8 and ¢ = 12 function evaluations
per cycle. Each algorithm requires solving ¢ infill sampling problems per main itera-
tion. The pseudo-expected improvement function is optimized by Particle Swarm
Optimization (PSO) (function particleswarm in MATLAB). The PSO algo-
rithm is executed with the following setting:

Swarm size: 50

Maximum iterations: 100

Self adjustment weight (c;): 1.49
Social adjustment weight (c,): 1.49

Sl e

The infill sampling criterion for CORS-RBF is a constrained optimization prob-
lem and we use the Interior Point (IP) algorithm (function fmincon in MATLAB).
The interior point method is executed using the default values and setting:

1. Maximum iterations: 1000
2. Maximum function evaluations: 3000

The experiments were done on a computer with the AMD Ryzen 5 1600X pro-
cessor of 3.6 GHz and 6 cores for parallelization. The RAM available was 16 GB
and the version of MATLAB used was R2017b. Note that in carrying out the experi-
ments, a total of 244,784 points were generated by solving the corresponding sam-
pling problems (optimization problems) in Dixon—Szego test and 1,432,800 points
in BBOB test suite. The computational cost of carrying out these experiments was
20 computing days.

5.4 Experiment 1: Analysis of the performance on a limited computational
budget

Experiment 1 corresponds to the practical scenario in which computational

resources limit the number of function evaluations that it is possible to perform. In
this experiment that number has been set to a maximum of 100 principal iterations.
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The goal was to test whether the proposed CPEI algorithm achieves an objective
function value significantly better than EGO-PEI and CORS-RBF algorithms.

Tables 3 and 4 show respectively the mean and the standard deviation of the
objective function values achieved in the 20 trials for the Dixon—Szegd and BBOB
test suites. In addition, the Mann—Whitney—Wilcoxon signed rank test is used to
identify whether or not two algorithms are significantly different. The algorithm in
each row is compared to the CPEI method and the symbol “—" represents the fact
that CPEI cannot be compared to itself. When the calculated p value is smaller than
the significance level @ = 0.05, we reject the null hypothesis and both algorithms are
significantly different with respect to the value of the objective function for a given
number of cycles. In this case, we indicate with A = 1 that CPEI outperforms the
other algorithm and with 7 = —1, otherwise. We use the value 2 = 0 to indicate that
the null hypothesis cannot be rejected.

When doing more function evaluations per iteration, it should be expected that
the algorithm improves the objective function value in less wall-clock time. Zhan
et al. (2017) has observed that when more points are included in one cycle, the best
results are not necessarily obtained with the greatest g value. This phenomenon may
come about because multi-point infill sampling problems [such as those defined in
Egs. (5) and (6)] are highly multi-modal and their optimization becomes increas-
ingly difficult.! A highlight supported by the numerical results is that this phe-
nomenon is not present in our implementation of the CPEI algorithm, and the best
results are obtained when g = 12 for all test problems. On the other hand, the best
configuration of the EGO-PEI and CORS-RBF algorithms is reached respectively
when g = 4 and g = 8 for problem F15. This is a relevant feature of the cooperative
algorithms that makes it possible to take advantage of a larger number of processors.

The results confirm the initial assumption and agree with what is emphasized in
the literature, that kriging models work well for low-dimensional problems such as
the Dixon—Szego test bed (fewer than 6 dimensions) while the radial basis models
are a good alternative for the larger ones such as the BBOB test suite (10 dimen-
sions). It has been observed that EGO-PEI outperforms CORS-RBF in Dixon-Szegd
test bed whereas the opposite occurs for BBOB test suite. CPEI has behaved as the
best alternative between CORS-RBF and EGO-PEI If we consider the total of the
17 test problems and for g = 12, it is observed that CPEI wins in 4 problems to
CORS-RBF (& = 1), behaves like it in 13 problems (2 = 0) and CPEI is never worse
than CORS-RBF (h = —1). If we analyze the results for the EGO-PEI we find that
CPEI wins over EGO-PEI in 6 problems (k = 1), ties in 10 (k = 0) and loses in 1
(h=-1).

If we consider all values of g and count which configurations achieve the best
results, we find that CPEI is the best option for 9 problems, CORS-RBF for 7 prob-
lems and the EGO-PEI for 6 problems. When a tie occurs, all tied algorithms are
considered the best option.

! Zhan et al. (2017) shows that the performance of the EGO-PEI is sensitive to the quality of the opti-
mizer of the PEI function, defined in (6).
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If we observe which algorithm is the worst for ¢ = 12, we observe that CPEI
is worst in only two of the total of 17 problems: F21 and Shekel7. The con-
clusion drawn from Experiment 1 is that the cooperation strategy improves the
robustness of the resulting algorithm, showing that for the case analyzed and for
the algorithms tested, CPEI is a good choice both for problems of small dimen-
sions and for larger.

5.5 Experiment 2: Analysis of performance to establish a predefined relative
error

Experiment 1 compares the algorithms in terms of the objective function value for
a given number of cycles; in Experiment 2, on the other hand, the number of itera-
tions is not fixed and what is set is the relative error to be reached. The comparison
is carried out in terms of number of cycles. Due to the great diversity of dimension
in the test problems, we have considered several stopping criteria. For Dixon—-Szego
problems (with dimension less than 10) we have used the same criterion as that used
in Jakobsson et al. (2010), that is, the procedure stops if this relative error is smaller
than 1% or a maximum of 100 major iterations has been reached. The difficulty in
solving the BBOB test suite is very diverse and has led us to apply several relative
errors. We have used a relative error of 150% for problems F15 and F24, of 20% for
F18, of 5% for F16, of 2% for F21 and F23 and for the rest of the problems we have
considered a relative error of 15%. The algorithm also stops if a maximum of 100
major iterations is reached. In order to evaluate the effect of the choice of the rela-
tive errors we have shown the progress of the algorithms on the BBOB test suite in
Figs. 3 and 4. It can be observed that the algorithms maintain their ranking through-
out the optimization process. Therefore, the choice of a given error affects the rate of
convergence but not the ranking between them.

The metrics compared are the number of cycles needed to find the optimum of
the benchmark problems and the success convergence rate to achieve a near optimal
solution. Both tests are solved 20 times with each algorithm and each function and
the mean and standard deviation of the number of cycles required to achieve the
given relative error are reported. In addition, the convergence success rate is calcu-
lated, i.e. the quotient between the number of times that a solution within the given
relative error is reached and the number of attempts (in our case twenty), expressed
as a percentage.

Tables 5 and 6 show the results for the Dixon—-Szegé and BBOB test suites,
respectively. In addition, the Mann—Whitney—Wilcoxon rank sum test is used to
identify whether or not two algorithms are significantly different with respect to the
number of cycles. For any algorithm A, we write & = 0 if A and CPEI are not sig-
nificantly different, we write & = 1 if CPEI is significantly better than A at the 5%
level of significance, and we write h = —1, otherwise. The difference between this
test and the one used in the Experiment 1 is that in this case we consider independ-
ent samples instead of paired samples.

The first notable fact is that when the number of processors ¢ is increased the
three algorithms improve their performance. This result is essential for the efficient
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Fig. 3 Average best objective function value found over twenty trials versus major iteration. Global opti-
mization methods on the test functions F15-F20 (taken from the BBOB test suite)

parallelization of the optimization of computationally expensive black-box prob-
lems, allowing the use of a large number of processors. For this reason, we note the
results obtained with g = 12 processors.
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Fig.4 Average best objective function value found over twenty trials versus major iteration. Global opti-
mization methods on the test functions F21-F24 (taken from the BBOB test suite)

Now we will analyze the best configuration of the algorithms, obtained when
g = 12. If we compare CPEI with CORS-RBF, we observe that CPEI is signif-
icantly better than CORS-RBF in 6 of the 17 problems, in the other 11 prob-
lems their differences are not significant. If we compare CPEI with EGO-PEI, we
observe that in 4 problems CPEI is significantly better than EGO-PEI, in 3 prob-
lems CPEI is significantly worse than EGO-PEI and in the rest of the problems (a
total of 10) there are no significant differences between them. The advantage of
CPEI over EGO-PEI is seen in the convergence rate. Using a significance level
of 5% and the McNemar test on paired proportions we find that CPEI has a sig-
nificantly better convergence rate than EGO-PEI on problems F15, F17, F18, F19
and Hartman6. There are no significant differences for the rest of the problems.

To summarize, if we analyze which is the best algorithm to solve a given
problem, whether or not this improvement is statistically significant, we observe
that CPEI is the best at 9 problems, EGO-PEI at 6 and CORS-RBF at 2. This
shows that cooperation between CORS-RBF and EGO-PEI improves the baseline
algorithms.
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6 Conclusions and future research

Parallel surrogate-based optimization allows the wall-clock time needed for opti-
mizing expensive objective functions to be reduced. The performance of these
techniques varies from one problem to another depending on their characteristics,
such as their dimensionality, the existence of noise, and so on. As suggested by
the “No Free Lunch Theorem” (Wolpert and Macready 1997) no algorithm is best
for solving all types of optimization problem. An area that is presently the subject
of intensive research is to combine the best features from different algorithms to
come up with a more effective algorithm in a wider domain of applications.

This paper introduces a framework to develop surrogate-based cooperative
optimization strategies to address computationally expensive black-box prob-
lems. The essential methodological contributions of this article are: (1) a formal
definition of a class of parallel optimization algorithms based on a bi-objective
approach; each algorithm of this class is called a Sequential Multi-point Infill
Sampling Algorithm (SMISA); (2) a mechanism for the coordination of SMISAs
and (3) a theoretical analysis on their convergence.

Within this framework, we have focused on the combination of a parallel RBF-
based algorithm, CORS-RBF, and a parallel kriging-based method, EGO-PEI. The
former algorithm is called CPEI, and has been designed with the goal of obtaining a
more robust convergence algorithm in a wider class of optimization problems.

In the numerical experiments, we compared CPEI with CORS-RBF and EGO-
PEI on the Dixon—Szego test bed and the F15-F24 benchmark functions taken
from the BBOB test suite. The results have two major highlight: (1) the reduction
of wall-clock time with respect to the number of processors ¢ and (2) the coop-
erative strategy improves the convergence properties of the baseline algorithms in
terms of relative error achieved and successful convergence rate.

This is a generic algorithmic class and allows multiple instances not analyzed
in this study. As evidence of this, we have proposed a parallel version of the
Lower Confidence Bound-based algorithm (Dennis and Torczon 1997). Another
notable example is that of homogeneous cooperative strategies (Garcia-Rédenas
et al. 2017) i.e. using the same surrogate-based optimization method with differ-
ent targets. The simplest example is to run different instances of an algorithm, for
example CORS-RBF, but using different Latin hypercube designs and/or different
hyperparameters for the RBF functions.

Emmerich et al. (2006) shows that the time complexity for the training of the
kriging models is O(Nk*v + k*v), where N is the number of iterations needed to
adjust the metamodel parameters, v is the dimension of search space, and k is the
number of training data points. The cooperative framework aims to implement
massively parallelizable instances and this computational cost highlights the need
to address the problem of restricting the number of points when updating the sur-
rogate model. This issue constitutes a future line of research. A pilot experiment
is discussed in “Appendix 2”: Pruning strategy but it will be necessary to make
a comparison with other methods proposed in the literature, such as Liu et al.
(2014) and Tian et al. (2019).
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Appendix 1

This appendix sets out the proofs of the mathematical propositions contained in the
article.

Theorem 2.

Proof We will show that the set Y = |J_ |J,5; Y\ is dense in D and, by using
Theorem 1, the cooperative algorithm is convergent.

By contradiction, we assume that the set Y*° is not dense on D, thus the set
Y©) U X9, where Y©) = Unst yﬁf'), is not dense. We focus only on the SMISA s’ in
the proof and we will delete the superscript (s”) associated with this SMISA to sim-
plify the notation.

As the set Y U X? is not dense on D, there exists a radius §, > 0 and x; € D such

as the open ball B(x,, §,) satisfying:

(YuXx®) nB(x.8,) = {#}, (23)
and Eq. (23) leads to:
A, = Ma;;lerlr)uze d; (x) 2 6, foralln > 1. 24)

From hypothesis (2), limsup,_ . f, >0 and thus there exists a parameter
6, > 0 and a subsequence {n,} satisfying:

B,, > 6, forall v. (25)

Using the Egs. (24) and (25), we find:
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€, =4, B, > 66, forallv. (26)

n

From here, we call 6 = 6,6, > 0 and we denote the subsequence n, simply by v.
If v < v/, from assumptions (1) and (3), then:

yv S ZV’
dZ\,/ (y‘;r) Z Evr > P } = d(ywyvr) > 0. (27)

The Eq. (27) guarantees that the open balls with centers y, and y,,, and radius g
have an empty intersection, i.e

s 5\ )
B(yv, 2) ﬁB(yV,, 2) = {@},forallv < V. (28)

On the other hand, the following inclusion holds:

6
DC UB<XZ) (29)
x€D
From the compactness of the set D, this covering has a finite sub-covering, i.e.
there exist a finite set of centers z,, ..., z,,, such as:
) )
DcB(z.2)uuB(z, ). (30)

The sequence {y,} contains an infinite number of distinct terms because
d(y,,y,) > 6> 0 for all v<V'. Thus, there exists a ball containing two or more
terms of {y, }. Let v, and v, be two different terms belonging to the same ball, then:

o
d0y,,.3,) < 5 31)
The relationship (31) is contradicts the Eq. (27). This contradiction proves that
the set Y is dense and the proof is completed. a
Theorem 3.

Proof Consider the case a by analogy. We will show that the set Y™ = [J/_ Y,
where Y = [, ¥\¥, is dense in D and, by using Theorem 1, the algorithm is
convergent.

By contradiction, we assume that the set Y is not dense on D, thus Y U X0 is
not a dense set and this implies that there exist a radius 6 > 0 and a point x; € D
satisfying, B(x’, §) C D and

B(¥.5)n (Y UX°) = {g). (32)
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The proof is exclusively based on the SMISA s" and for this reason we will omit
the superscript s’ to simplify the notation.

Since the sequence {y, } is contained in the compact set D, there is a subsequence

.. that converges to y* € D. To simplify the notation we simply denote the subse-
quence by {y,}. Since it is a convergent sequence, then it is a Cauchy sequence, and
ife = A’Z& > 0 there is a positive integer v, such that:

d@y,,y,) < %6, for all v,v' > v,,. (33)

From which we obtain:

m
dZV(yV) < M&, for all v > v,. (34)

Let v, > v, be a positive integer and let ¢ be the main iteration for the SMISA s’ in
which the point y, has been obtained, then given Eq. (34) and assumption (2) :

dz, 0, Wy Oy) < %5M = mé. (35)
From Eq. (32), it follows that dZV] («') > 6, and using the assumption (2),
dZV1 YWy () > 6m. (36)
Finally, from the optimality of y, , we get:
dy, Oy )Wy ) 2 dy, (ywy () > &m, (37)

which contradicts the Eq. (35) and the proof is completed. |

Appendix 2: Pruning strategy

The multi-point infill sampling strategies, as they include points in groups of g, may
have as result that even if the number of major iterations remains limited, the set of
stored points will be of significant size.

Haftka et al. (2016) points out that the overhead cost of surrogate fitting and pre-
diction may become large when the number of samples increases. It will be shown
in a computational experiment. In this appendix we introduce the so-called pruning
strategy that limits the number of points stored to a maximum of k points. When this
value is exceeded, the strategy is activated and those points that provide less sam-
pling information are deleted.

To define this strategy we introduce for each point x € X the following index:
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Ty (x) = dy () (W (x) (38)

where Wy (x) = w(f(x),x) > 0, i.e. it is obtained by replacing the definition of wy(x)
in the surrogate model with the function f(x) itself. This index estimates the infor-
mation provided by the point x on the location of a solution to the optimization
problem.

The problem to be solved is to find a subsample X’ C X of cardinality k, denoted
as |X’| = k, which contains the maximum information. Mathematically, we write:

WIS & Tt (39)

We propose a greedy algorithm to solve the previous combinatorial optimiza-
tion problem. This algorithm removes the worst of the points X and recalculates
the index I' over the resulting set of points X\{X}. This procedure is repeated
until a sample of cardinality k is obtained. Algorithm 4 shows a recursive coding
of the greedy algorithm.

Algorithm 4 Recursive method of the pruning strategy

Require: Set of sampled points X
Ensure: New reduced set of sampled points X’
1: function PrRUNING(X)
2 if | X| < k then
3 return X
4: end if
5: for all z € X do
6.
7
8

Compute I'x (z) using the Equation (38)
end for
: Compute T < arg minimize, ¢ x I'x ()
9:  Let X' + X — {a}
10: return PruNING(X)
11: end function

The overhead cost of surrogate fitting and prediction is cubic in the number
of retained points and it may become considerable when the number of samples
increase. This is the motivation to introduce the pruning strategy and due to this
reason is recommendable to consider two set of samples, the first one obtained
by the application of pruning rule, X", that is used to fit the surrogate models
and the second one is the full samples X’ that act as a memory of the whole
search process and it is only used in the definition of the exploration measures.

Figure 5 illustrates the pruning strategy used to minimize the function
f(x,y) =xy on the region [0, 1] X [0, 1]. The set of optimal solutions is repre-
sented by the red segments (those solutions for which x =0 or y =0). On all
the graphs, the contour lines are superimposed. Initially, the region [0, 1] X [0, 1]
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Fig.5 Illustration of pruning strategy on the function f(x,y) = xy

with 100 points is uniformly sampled. The circles are computed using as radius
the value %dx\{x}(x) and they represent the areas of influence of each point x in
the sample X. By chance, very close points exist in non-promising regions (small
circles in the upper right corner). If we apply the pruning strategy to exclude 50
points (figure k = 50) these points near to non-promising regions are eliminated.
It is shown that the lower left corner contains more points in the sample than the
upper right. If the pruning strategy is intensive (figure k = 10) the points try to
approximate the set of optimal solutions.
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Fig.6 Comparison between EGO and EGO with pruning strategy. a Objective function values versus
iterations, b computational time versus iterations

Figure 6 shows the mean efficiency and time required to update the surrogate
kriging models within the EGO algorithm and when it is used in combination
with the pruning strategy for k = 45 points. We have run 10 trials for both EGO
versions and 400 main iterations have been applied to optimize the Hartman
6 function. It can be seen how the computational cost of updating the kriging
model increases and how the pruning strategy prevents this, whereas the effi-
ciency is similar in both versions.

Appendix 3: Comparative between EGO-PEI and parallel lower
confidence bound-based algorithm

Section 3.2.3 defines a parallel version of the Lower Confidence Bound-based
(LCB) algorithm through the SMISA framework. The purpose of this experiment is
to compare the performance of this novel algorithm and the EGO-PEI. This experi-
ment is carried out on a BBOB test suite, setting g = 12. Both approaches use the
same experimental setup as in Sect. 5.3. i.e. the same kriging models and the same
optimizer for the infill sampling criterion. The parameter « of the Eq. (14) is set to 2.
Table 7 shows the mean and standard deviation for the best objective function value
reached in 100 major iterations. The results show that Parallel LCB wins in 7 prob-
lems whereas EGO-PEI in 3. If we take into account the Wilcoxon signed rank test,
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Table 7 The objective function

Function Algorithm =12
value (mean and standard & a

deviation for 20 trials) and the Avg. SD p value h
Wilcoxon signed rank test on
the BBOB test suite F15 LCB 35.69 12.59 - -
EGO-PEI 52.17 15.44 0.0019 1
F16 LCB —248.74 4.76 - -
EGO-PEI —254.80 3.88 0.0040 -1
F17 LCB —33.84 1.24 - -
EGO-PEI —33.31 1.11 0.0930 0
F18 LCB —26.48 3.85 - -
EGO-PEI -19.77 4.36 0.0003 1
F19 LCB 46.05 0.98 - -
EGO-PEIL 46.36 1.29 0.2959 0
F20 LCB 186.02 0.34 - -
EGO-PEI 186.47 0.32 0.0022 1
F21 LCB 312.95 2.01 - -
EGO-PEI 311.94 0.83 0.1913 0
F22 LCB 49.71 6.27 - -
EGO-PEI 46.02 2.23 0.3135 0
F23 LCB 212.86 0.54 - -
EGO-PEI 212.97 0.43 0.3317 0
F24 LCB 110.17 11.10 - -
EGO-PEIL 115.49 11.74 0.1354 0

we observe that the Parallel LCB outperforms EGO-PEI meaningfully in three test
problems, and fails in one problem.
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