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Abstract This paper studies the computational properties of the optimal subgra-

dient algorithm (OSGA) for applications of linear inverse problems involving high-

dimensional data. First, such convex problems are formulated as a class of convex

problems with multi-term composite objective functions involving linear mappings.

Next, an efficient procedure for computing the first-order oracle for such problems is

provided and OSGA is equipped with some prox-functions such that the OSGA

subproblem is solved in a closed form. Further, a comprehensive comparison among

the most popular first-order methods is given. Then, several Nesterov-type optimal

methods (originally proposed for smooth problems) are adapted to solve nonsmooth

problems by simply passing a subgradient instead of the gradient, where the results

of these subgradient methods are competitive and totally interesting for solving

nonsmooth problems. Finally, numerical results with several inverse problems

(deblurring with isotropic total variation, elastic net, and ‘1-minimization) show the

efficiency of OSGA and the adapted Nesterov-type optimal methods for large-scale

problems. For the deblurring problem, the efficiency measures of the improvement

on the signl-to-noise ratio and the peak signal-to-noise ratio are used. The software

package implementing OSGA is publicly available.
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1 Introduction

In many applications, e.g., those arising in signal and image processing, machine

learning, compressed sensing, geophysics and statistics, key features cannot be

studied by straightforward investigations, but must be indirectly inferred from some

observable quantities. Due to this feature, they are typically referred to as inverse

problems. In particular, a linear relevance between the features of interest and the

observed data leads to linear inverse problems. For finite-dimensional vector spaces

V and U, if y 2 U is an indirect observation of an original object x 2 V and A :
V ! U is a linear operator, then the linear inverse problem is given by

y ¼ Axþ m; ð1Þ

where m 2 U represents an additive or impulsive noise vector about which little is

known apart from qualitative knowledge.

In practice, the system (1) is typically underdetermined, rank-deficient, or ill-

conditioned. The primary difficulty with linear inverse problems is that the inverse

object is extremely sensitive to y because of small or zero singular values of A,

which leads to ill-conditioned systems. Indeed, in the case that A�1 for square

problems or pseudo-inverse Ay ¼ ðA�AÞ�1A� for full rank over-determined

systems exists, analyzing the singular value decomposition has shown that ex ¼
A�1y or ex ¼ Ayy is an inaccurate and meaningless approximation for x; see

Neumaier (1998). Moreover, when the vector m is not known, one cannot solve (1)

directly.

Linear inverse problems are usually underdetermined or rank-deficient, i.e., if a

solution exists, then there exist infinitely many solutions. Hence, some additional

information is required to determine a satisfactory solution of (1). One can find a

solution by minimizing kAx� yk2, which is a linear least-squares problem; k � k2 is
the Euclidean norm. Since the problem (1) is typically ill-conditioned, the solution

of the linear least-squares problem is commonly improper. Tikhonov (1963)

proposed the penalized minimization problem

min
x2V

1

2
kAx� yk22 þ

k
2
kxk22; ð2Þ

where k is a regularization parameter controlling the trade-off between the data

fitting term and the regularization term. The problem (2) is convex and smooth, and

selecting a suitable regularization parameter leads to a well-posed problem; how-

ever, in many applications, the sparsest solution of (1) among all solutions is

desirable, which leads to the constrained problem

min kxk0
s:t: kAx� yk2 � �;

ð3Þ

where kxk0 is the number of all nonzero elements of x and � is a small nonnegative

constant. Since this objective function is nonconvex, its convex relaxation

(Bruckstein et al. 2009) given by
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min kxk1
s:t: kAx� yk2 � �

ð4Þ

or its unconstrained reformulation

min
x2V

1

2
kAx� yk22 þ kkxk1; ð5Þ

is referred to as basis pursuit denoising (Chen et al. 2001) or the least absolute

shrinkage and selection operator (LASSO) (Tibshirani 1996).

Let us consider a function f : V ! R given by

f ðxÞ ¼
X

n1

i¼1

fiðAixÞ þ
X

n2

j¼1

ujðW jxÞ; ð6Þ

where fi : Ui ! R, for i ¼ 1; 2; . . .; n1, are convex functions, uj : Vj ! R, for

j ¼ 1; 2; . . .; n2, are smooth or nonsmooth convex functions, and Ai : V ! Ui, for

i ¼ 1; 2; . . .; n1, and W j : V ! Vj, for j ¼ 1; 2; . . .; n2, are linear operators. Here, f is
called the multi-term composite function (see also He et al. 2015). In general, linear

inverse problems can be modeled as a special case of the minimization problem

bf :¼ min
x2V

f ðxÞ: ð7Þ

If the boundedness of the level set Nf ðx0Þ ¼ fx 2 V jf ðxÞ� f ðx0Þg is assumed,

problem (7) has a global minimizer denoted by bx. In what follows, we will see that

many well-studied structured optimization problems are special cases of (7). The

objectives of the form (6) have been frequently stated in many applications, e.g.,

hybrid regularizations and mixed penalty functions for solving problems in fields

such as signal and image processing, machine learning, geophysics, economics, and

statistics. In this case, fi (i ¼ 1; 2; . . .; n1) are the data fidelity while uj

(j ¼ 1; 2; . . .; n2) stand for regularizers that can be smooth or nonsmooth and convex

or nonconvex; however, in this paper, we consider only convex regularizers. As an

example, the scaled elastic net problem

f ðxÞ ¼ 1

2
kAx� bk22 þ

1

2
k1kW1xk22 þ k2kW2xk1 ð8Þ

is of the form (7) with f ðxÞ ¼ f1ðA1xÞ þ u1ðW1xÞ þ u2ðW2xÞ, where

f1ðA1xÞ :¼ 1
2
kA1x� bk22, u1ðW1xÞ :¼ k1

2
kW1xk22, u2ðW2xÞ :¼ k2kW2xk1.

1.1 Examples of inverse problems

In this subsection, we describe two classical inverse problems that appear frequently

in many applications (see Sect. 3 for some applications).

Example 1 (Image restoration) Image reconstruction, also called image restora-

tion, is one of the classical linear inverse problems; see, e.g., Andrews and Hunt

(1977) and Bertero and Boccacci (1998). The goal is to reconstruct images from
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some observations. Let y 2 U be a noisy indirect observation of an image x 2 V

with an unknown noise d 2 U, and let A : V ! U be a linear operator. To recover

the unknown vector x, we use the linear inverse model (1). A typical model for

image reconstruction involves a smooth or nonsmooth data-fidelity term penalized

by some convex regularization penalties, which are selected based on expected

features of the recovered image. It is typical to use the models (2), (5), or (6) to

derive a solution for the corresponding inverse problem; see, e.g., Kaufman and

Neumaier (1996) and Neumaier (1998).

For a known image x 2 V , in the analysis strategy, the image is typically

recovered by solving either

min
x2V

1

2
kAx� yk22 þ kuðxÞ ð9Þ

or

min
x2V

kAx� yk1 þ kuðxÞ: ð10Þ

Although various regularizers like the ‘p-norm are popular in image restoration, it is

arguable that the best known and frequently employed regularizer in the analysis

approach is the total variation (TV).

The pioneering work on TV was undertaken by Osher et al. (1992). Total vari-

ation regularizations are able to restore discontinuities of images and to recover the

edges, and so they have been widely used in applications. TV is originally defined in

an infinite-dimensional Hilbert space; however, for digital image processing a

discrete version in a finite-dimensional space such as Rn of pixel values on a two-

dimensional lattice has been used. Isotropic total variation (ITV) is popular in signal

and image processing; it is given by

kxkITV :¼
P

m�1

i

P

n�1

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxiþ1;j � xi;jÞ2 þ ðxi;jþ1 � xi;jÞ2
q

þ
P

m�1

i

jxiþ1;n � xi;nj þ
P

n�1

j

jxm;jþ1 � xm;jj;
ð11Þ

for x 2 Rm�n, see, e.g., Beck and Teboulle (2009b). Model (9) with uð�Þ ¼ k � kITV
is denoted by L22ITVR and model (10) with uð�Þ ¼ k � kITV is denoted by L1ITVR.

Example 2 (Compressed sensing) Finding sparse solutions of problems using

structured models has become popular in various areas of applied mathematics. In

most cases, the problem involves high-dimensional data with a small number of

available measurements, where the core of these problems involves an optimization

problem. Due to the sparsity of the solutions and the structure of the problems, these

optimization problems can be solved in a reasonable time even for extremely high-

dimensional data sets. Basis pursuit, LASSO, wavelet-based deconvolution, and

compressed sensing are some examples. Compressed sensing in particular has

received much attention in recent years; see Candés (2006) and Donoho (2006).

Among the fields involving sparse optimization, compressed sensing is a novel

818 M. Ahookhosh

123



sensing/sampling framework for acquiring and recovering objects such as a sparse

image or signal in the most efficient way possible. Conventional processes in the

image/signal acquisition from frequency data follow the Nyquist–Shannon density

sampling theorem declaring that the number of samples required for reconstructing

an image or a signal matches the number of pixels in the image and the bandwidth

of the signal, respectively. Since most of the data we acquire can be thrown away

with almost no perceptual loss, one may recover only the parts of the data that will

be useful in the final reconstruction, which leads to compressed sensing theory; see,

e.g., Donoho (2006) and the references therein.

In compressed sensing, it is assumed that the considered object, image or signal,

has a sparse representation in some bases or dictionaries, and the considered

representation dictionary is incoherent with the sensing basis; see Candés (2006)

and Donoho (2006). Once an object is known to be sparse in a specific dictionary,

one can find a set of measurements or sensing bases supposed to be incoherent with

the dictionary. An underdetermined system of linear equations of the form (1) then

emerges; it is typically ill-conditioned. Hence, the main challenges are finding a

measurement matrix and reformulating this inverse problem as an appropriate

minimization involving regularizers.

1.2 State of the art

Over the past few decades, the solution of structured convex optimization problems

of the form (7) has received much attention. Convex optimization is theoretically

and computationally regarded as a mature area of optimization that is appropriate

for large-scale problems appearing in applications. Since problems of the form (7)

typically involve high-dimensional data, optimization schemes should avoid costly

operations and large amounts of memory. Depending on the objective structure,

various first-order methods have been developed to deal with such large problems.

Some popular first-order methods are gradient methods (Nesterov 2013, 2015),

subgradient schemes (Beck and Teboulle 2003; Nemirovsky and Yudin 1983;

Nesterov 2004), bundle-type methods (Lan 2015), smoothing methods (Beck and

Teboulle 2009a; BoŢ and Hendrich 2013a, 2015; Nesterov 2005) and proximal

methods (Beck and Teboulle 2009a; Becker et al. 2011).

In the context of convex optimization, the analytical complexity refers to the

number of calls of the first-order oracle (giving a function value and a subgradient)

to achieve an e-solution of the problem; see Nemirovsky and Yudin (1983) and

Nesterov (2004). Nemirovsky and Yudin (1983) proved that the complexity bound

of first-order methods for finding an e-solution is Xðe�1=2Þ for smooth objectives

with Lipschitz-continuous gradients and Xðe�2Þ for Lipschitz-continuous nons-

mooth objectives. Indeed, the interesting feature of these error bounds is that they

are independent of the problem dimension. For the established class of problems, an

algorithm is called optimal if it can achieve these complexities. In the case of

nonsmooth convex problems, the subgradient and mirror descent methods are

optimal; see Nemirovsky and Yudin (1983). The seminal optimal first-order method

for smooth convex problems with Lipschitz continuous gradients was introduced by
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Nesterov (1983), and since then he has developed the idea of optimal methods for

several classes of problems; see, e.g., Nesterov (2004, 2013, 2015). The theoretical

analysis and surprising computational results of optimal methods are most

interesting, especially for large-scale problems. These appealing features for

large-scale convex problems have led to much interest in optimal first-order

methods; see, e.g., Beck and Teboulle (2003), Becker et al. (2011), Chen et al.

(2014, 2015), Gonzaga and Karas (2013), and Lan (2015).

The primary difficulty in an implementation of a first-order method is the

requirement for global knowledge of the objective function, e.g., a Lipschitz

constant for the function values for nonsmooth problems and a Lipschitz constant

for the gradients in smooth cases. Nesterov (2015) proposed an adaptive procedure

to approximate the Lipschitz constant, but it still needs a suitable initial guess. Lan

(2015) proposed an optimal bundle-level method that does not need to know the

global parameters. Recently, Neumaier (2016) introduced an optimal subgradient

algorithm (OSGA) by incorporating a linear relaxation of the objective and a prox-

function into a fractional subproblem to construct a framework that can be

employed for both smooth and nonsmooth convex optimization problems at the

same time without needing Lipschitz constants. OSGA achieves the optimal

complexity of first-order methods and can be regarded as a fully adaptive alternative

to Nesterov-type optimal methods.

1.3 Contribution

We aim to study the computational properties of OSGA to deal with large-scale

linear inverse problems and to provide a software package for this method. There

exist many linear inverse problems with complicated objective functions of the form

(7) consisting of various combinations of linear operators and regularizers; however,

they cannot be handled by proximal point methods. For example, consider the

scaled LASSO problem, which has the form (5) when we replace kxk1 with kWxk1,
for a linear operator W. For this problem, the proximity operator

proxkkW�k1ðyÞ ¼ argmin
x2Rn

1

2
kx� yk22 þ kkWxk1 ð12Þ

must be computed, where this auxiliary problem cannot be solved explicitly using

the iterative shrinkage-thresholding except ifW is orthonormal, i.e., proximal-based

algorithms are not applicable effectively. Since OSGA has low memory require-

ments and needs only first-order information (function values and subgradients), we

believe that it can be used efficiently to minimize such complicated objective

functions. However, to apply OSGA effectively, we need suitable prox-functions

such that the OSGA subproblem can be solved explicitly and an effective routine for

computing the first-order information (see Sect. 2.1). Further, we aim to adapt

several Nesterov-type optimal methods (originally proposed for smooth problems)

to solve nonsmooth problems by passing a subgradient instead of the gradient. The

surprising results show that the adapted algorithms perform competitively. Finally,

the paper is accompanied with a software release.
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The underlying function of the OSGA subproblem is quasi-concave and finding

its solution is the most costly part of the algorithm. While it is crucial to efficiently

solve this subproblem, it is not trivial to find such solutions. We consider only

unconstrained convex optimization problems in which a closed-form solution for

this subproblem can be found. Moreover, for unconstrained problems involving

costly linear operators, a combination of a multi-dimensional subspace search

technique and OSGA is studied in Ahookhosh and Neumaier (2013, 2018). In

Ahookhosh and Neumaier (2017b), we gave one projection version of OSGA and

provided a framework to solve the subproblem over simple convex domains or

simple functional constraints. In particular, in Ahookhosh and Neumaier (2017a) we

described a scheme to compute the global solution of the OSGA subproblem with

bound constraints. In Ahookhosh and Neumaier (2017c), we reformulated structured

nonsmooth convex problems as smooth problems with one more functional

constraint and adapted a version of OSGA to handle the reformulated problem,

which attains the complexity Oðe�1=2Þ.
The remainder of this paper is structured as follows. In Sect. 2, we briefly discuss

OSGA and its implementation issues for multi-term composite problems. Section 3

presents the implementation of OSGA and reports comparisons with popular first-

order methods and state-of-the-art solvers for practical applications. Finally, we

provide concluding remarks in Sect. 4.

2 A review of OSGA

In this section, we give a short sketch of the optimal subgradient algorithm (OSGA;

see Algorithm 1). It was proposed by Neumaier (2016) for the convex constrained

minimization problem

min f ðxÞ
s:t: x 2 C;

ð13Þ

where f : C ! R is a proper and convex function defined on a nonempty, closed,

and convex subset C of a finite-dimensional vector space V.

OSGA is a subgradient algorithm for problem (13) that uses first-order

information, i.e., function values and subgradients, to construct a sequence of

iterates fxkg � C whose function values ff ðxkÞg converge to the minimum bf ¼ f ðbxÞ
with the optimal complexity. OSGA requires no information regarding global

parameters such as the Lipschitz constants of the function values and gradients. It

uses a continuously differentiable prox-function Q : V ! R, which is a strongly

convex function with the convexity parameter r satisfying

QðzÞ�QðxÞ þ hgQðxÞ; z� xi þ r
2
kz� xk2; ð14Þ

for all x; z 2 C where gQðxÞ denotes the gradient of Q at x and h�; �i stands for the
inner product. We also assume that
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Q0 :¼ inf
x2C

QðxÞ[ 0; ð15Þ

where a point x0 2 C minimizing this problem is called the center of Q. From the

definition of the center of Q, the first-order optimality condition for (15), and (14),

we obtain QðxÞ�Q0 þ r
2
kx� x0k2, implying QðxÞ[ 0 and Q(x) is greater than the

quadratic term Q0 þ r
2
kx� x0k2. At each iteration, OSGA satisfies the bound

0� f ðxbÞ � bf � gQðbxÞ ð16Þ

on the currently best function value f ðxbÞ with a monotonically decreasing error

factor g that is guaranteed to converge to zero by an appropriate step-size selection

strategy (see Algorithm 2). Note that bx is not known a priori, thus the error bound is

not fully constructive. However, it is sufficient to guarantee the convergence of

f ðxbÞ to bf with a predictable worst-case complexity. To maintain (16), OSGA

considers linear relaxations of f at z,

f ðzÞ� cþ hh; zi for all z 2 C; ð17Þ

where c 2 R and h 2 V�, updated using linear underestimators available from the

subgradients evaluated (see Algorithm 1). For each such linear relaxation, OSGA

solves a maximization problem of the form

Eðc; hÞ :¼max Ec;hðxÞ
s:t: x 2 C;

ð18Þ

where

Ec;hðxÞ :¼ � cþ hh; xi
QðxÞ : ð19Þ

Let cb :¼ c� f ðxbÞ, u :¼ Uðcb; hÞ 2 C be the solution of (18), and g :¼ Eðcb; hÞ be
the corresponding minimum. From (17) and (19), we obtain

g ¼ Eðcb; hÞ� � c� f ðxbÞ þ hh; ui
QðuÞ � f ðxbÞ � bf

QðuÞ � 0; ð20Þ

which implies that (16) is valid. If xb is not optimal for (13), then the rightmost

inequality in (20) is strict, and since QðzÞ�Q0 [ 0, we conclude that the maximum

g is positive. Indeed, (16) implies that the rate of decrease in the error bound

f ðxbÞ � bf is the same as the convergence rate of the sequence fgkgk� 0, where k is

the iteration counter, which is the main motivation for the subproblem (18).

For simplicity, we set fxb :¼ f ðxbÞ, fx0
b
:¼ f ðx0bÞ, fx :¼ f ðxÞ, fx0 :¼ f ðx0Þ,

gxb 2 of ðxbÞ, and gx 2 of ðxÞ. Motivated by the above discussion and that of Sect. 2

in Neumaier (2016) about the linear relaxation constructions and the case of

strongly convex functions, OSGA is presented in Algorithm 1.
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Algorithm 1: OSGA (Optimal SubGradient Algorithm)
Input: δ, αmax ∈ ]0, 1[, 0 < κ′ ≤ κ; local parameters: x0, μ ≥ 0;
Output: xb, fxb

;
1 begin
2 xb = x0; compute fxb

and gxb
;

3 h = gxb
− μgQ(xb); γ = fxb

− μQ(xb) − 〈h, xb〉;
4 γb = γ − fxb

; u = U(γb, h); η = E(γb, h) − μ; α = αmax;
5 while stopping criteria do not hold do
6 x = xb + α(u − xb); compute fx and gx;
7 g = gx − μgQ(x); h = h + α(g − h); γ = γ + α(fx − μQ(x) − 〈g, x〉 − γ);
8 x′

b = argminz∈{xb,x} f(z); fx′
b
= min{fxb

, fx}; γ′
b = γ − fx′

b
;

9 u′ = U(γ′
b, h); x′ = xb + α(u′ − xb); compute fx′ ;

10 choose xb in such a way that fxb
≤ min{fx′

b
, fx′};

11 γb = γ − fxb
; u = U(γb, h); η = E(γb, h) − μ; xb = xb; fxb

= fxb
;

12 update the parameters α, h, γ, η and u using PUS;
13 end
14 end

In Line 12, OSGA uses the following scheme for updating the given parameters

a, h, c, g, and u, as stated in Algorithm 2 [see Section 2 of Neumaier (2016) for more

information regarding step-size selection].

Algorithm 2: PUS (Parameter Updating Scheme)

Input: δ, αmax ∈ ]0, 1[, 0 < κ′ ≤ κ, α, η, h, γ, η, u;
Output: α, h, γ, η, u;

1 begin
2 R = (η − η)/(δαη);
3 if R < 1 then
4 α = αe−κ;
5 else
6 α = min(αeκ′(R−1), αmax);
7 end
8 α = α;
9 if η < η then

10 h = h; γ = γ; η = η; u = u;
11 end
12 end

Let us assume that the sublevel set Nf ðx0Þ ¼ fx 2 V j f ðxÞ� f ðx0Þg is bounded

for the starting point x0 2 C. Since f is convex, the sublevel set Nf ðx0Þ is closed, V is

finite-dimensional, and Nf ðx0Þ is convex and compact. From the continuity and

properness of the objective f, it attains its global minimizer on the sublevel set

Nf ðx0Þ. Therefore, there is at least one minimizer bx.

We now consider the complexity of OSGA given by Neumaier (2016) in the

subsequent theorem, which is valid for C ¼ V that is the case in the current study. In

light of the complexity analysis of first-order methods given in Nemirovsky and

Yudin (1983) and Nesterov (2004), the achieved complexities are optimal for

Lipschitz-continuous nonsmooth problems and smooth problems with Lipschitz-

continuous gradients.

Theorem 1 [Neumaier (2016), Theorem 5.1] Suppose that f � lQ is convex and

l� 0. Then we have
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(i) (Nonsmooth complexity bound) If the points generated by Algorithm 1 stay

in a bounded region of the interior of C, or if f is Lipschitz continuous on C,

the total number of iterations needed to reach a point with f ðxÞ� f ðuÞ þ e is

at most Oððe2 þ leÞ�1Þ. Thus the asymptotic worst case complexity is

Oðe�2Þ when l ¼ 0, and Oðe�1Þ when l[ 0.

(ii) (Smooth complexity bound) If f has Lipschitz-continuous gradients with

Lipschitz constant L, the total number of iterations needed by Algorithm 1 to

reach a point with f ðxÞ� f ðuÞ þ e is at most Oðe�1=2Þ if l ¼ 0, and at most

Oð
ffiffiffiffiffiffiffiffi

L=l
p

log e�1Þ if l[ 0.

2.1 Implementation issues for multi-term composite problems

In this section, we first propose some prox-functions and then derive a closed-form

solution for subproblem (18).

For f : V ! R and a finite-dimensional vector space V, the subdifferential of f at

x is given by

of ðxÞ ¼
X

n1

i¼1

A�
i ofiðAixÞ þ

X

n2

j¼1

W�
j oujðW jxÞ: ð21Þ

Note that practical problems typically involve high-dimensional data, i.e., the

computation of the function values and subgradients is expensive. On the other

hand, in many applications the major part of the cost of computing function values

and subgradients relates to the application of forward and adjoint linear operators,

arising from the presence of affine terms in (6). Therefore, the number of appli-

cations of linear operators and their adjoints should be as low as possible in each

call of the first-order oracle. Considering the structure of (6), we see that affine

terms Aix (i ¼ 1; 2; . . .; n1) and W jx (j ¼ 1; 2; . . .; n2) appear in both the function

value and a subgradient of f at x. By setting vix :¼ Aix (i ¼ 1; 2; . . .; n1) and wj
x :¼

W jx (j ¼ 1; 2; . . .; n2) and using (21), we provide the first-order oracle in Algorithm

3.

Algorithm 3: NFO-FG (Nonsmooth First-order Oracle)
Input: Ai for i = 1, . . . , n1, Wj for j = 1, . . . , n2, x;
Output: fx; gx;

1 begin
2 vi

x = Aix for i = 1, . . . , n1;
3 wj

x = Wjx for j = 1, . . . , n2;
4 fx =

∑n1
i=1 fi(vi

x) +
∑n2

j=1 ϕj(wj
x);

5 gx ∈ ∑n1
i=1 A∗

i ∂fi(vi
x) +

∑n2
j=1 W∗

i ∂ϕj(wj
x);

6 end

Each call of the oracle OðxÞ ¼ ðfx; gxÞ requires n1 þ n2 calls of forward and

adjoint linear operators. By using this scheme, one can avoid the double application

of expensive linear operators in the computation of the function values and

subgradients. We also emphasize that if the total computational cost of the oracle is
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dominated by the application of linear mappings, the complexity of an algorithm

can be measured by counting the number of forward and adjoint linear operators

used to achieve an e-solution.
Let k � k be the quadratic norm on vector space V, i.e.,

kxkD :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hDx; xi
p

ð22Þ

by means of a preconditioner D, where D is symmetric and positive definite. The

associated dual norm on V� is given by

khk�D :¼ kD�1hkD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh;D�1hi
q

; ð23Þ

where D�1 is the inverse of D. We here consider the quadratic function

QðxÞ :¼ Q0 þ
r
2
kx� x0k2D; ð24Þ

where Q0 is a positive number and x0 2 V is the center of Q.

Let us emphasize that the efficient solution of subproblem (18) is closely related

to the selection of the prox-functions. In Neumaier (2016), it is shown that with the

prox-function (24) (with r ¼ 1), subproblem (18) can be solved explicitly.

Proposition 1 [Neumaier (2016), Section 2.3] Suppose Q is determined by (24)

and Q0 [ 0. Then Q is a prox-function with the center x0 and satisfies

QðxÞ�Q0 þ r
2
kx� x0k2. Moreover, subproblem (18) with this Q is explicitly

solved by

u ¼ x0 � Eðc; hÞ�1r�1D�1h ð25Þ

with

Eðc; hÞ ¼
�b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ 4Q0b2

q

2Q0

¼ 2b2

b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ 4Q0b2

q ; ð26Þ

where b1 ¼ cþ hh; x0i and b2 ¼ 1
2
r�2 � r�1

� �

khk2�.

Notice that the error bound (16) is proportional to QðbxÞ, which means that an

acceptable choice for x0 makes the term QðbxÞ ¼ Q0 þ 1
2
kbx � x0k2D small. Hence,

selecting a suitable starting point x0 as close as possible to the optimizer bx has a

positive effect on the convergence rate. This also suggests that a reasonable choice

for Q0 is Q0 	 1
2
kbx � x0k2D.

For simplicity, we assume that there are only two linear operators A : Rn ! Rm1

and W : Rn ! Rm2 (m1;m2 
 n) in problem (6), i.e.,

f ðxÞ ¼ f1ðA1xÞ þ u1ðW1xÞ: ð27Þ

OSGA needs two function values (lines 7 and 9) and one subgradient (line 7) in each

step. Therefore, if computing f1ð�Þ and u1ð�Þ is negligible compared to the cost of
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matrix-vector products, Algorithm 3 implies that Oðn2Þ operations are needed. To

implement OSGA, we require two solutions of subproblem (18) to compute u (line

6) and u0 (line 9). From Proposition 1, we need OðnÞ to compute u and u0. Since the
cost of the other operations in OSGA is much less than the cost of computing the

first-order oracle and the subproblem solutions, OSGA requires Oðn2Þ operations at
each step. Taking this into account and the bounds on the number of iterations given

in Theorem 1, OSGA requires at most Oðe2n2Þ operations for Lipschitz-continuous
nonsmooth problems and Oðe1=2n2Þ operations for smooth problems with Lipschitz-

continuous gradients.

3 Comparisons of first-order methods

This section describes extensive numerical experiments and comparisons of OSGA

and state-of-the-art first-order methods to for several applications of inverse

problems. We start with image deblurring, adapt some Nesterov-type optimal (for

smooth problems) methods, and apply them and some state-of-the-art first-order

methods to elastic net and ‘1-minimization problems.

The OSGA software package (implemented in MATLAB) for unconstrained

convex optimization problems is publicly available at http://homepage.univie.ac.at/

masoud.ahookhosh/.

Some examples are available to show how to apply OSGA. The interface to each

subprogram in the package is fully documented in the associated file. Moreover, the

OSGA user’s manual Ahookhosh (2015b) describes the design of the codes and how

to solve problems. We use the prox-function (24) with the identity matrix D ¼ I and

Q0 ¼ 1
2
kx0k2 þ �, where � is the machine precision. We also use the parameters

d ¼ 0:9; amax ¼ 0:7; j ¼ j0 ¼ 0:5: ð28Þ

In our comparison, we use the codes of the authors where they are available.

Otherwise, the codes are written in MATLAB, and the default parameter values for

the algorithms and packages are used. All implementations are executed on a Dell

Precision Tower 7000 Series 7810 (Dual Intel Xeon Processor E5-2620 v4 with

32 GB RAM).

To illustrate the results, we used the Dolan and Moré performance profile Dolan

and Moré (2002). In this procedure, the performance of each algorithm is measured

by the ratio of its computational outcome versus the best numerical outcome of all

the algorithms. This performance profile offers a tool for statistically comparing

algorithm performance. Let S be a set of algorithms and P be a set of test problems.

For each problem p and algorithm s, tp;s denotes the computational outcome with

respect to the performance index, which is used in the definition of the performance

ratio

rp;s :¼
tp;s

minftp;s : s 2 Sg : ð29Þ

If an algorithm s fails to solve a problem p, the procedure sets rp;s :¼ rfailed, where
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rfailed should be strictly larger than any performance ratio (29). Let np be the number

of problems in the experiment. For any factor s 2 R, the overall performance of an

algorithm s is given by

qsðsÞ :¼
1

np
sizefp 2 P : rp;s � sg: ð30Þ

Here, qsðsÞ is the probability that a performance ratio rp;s of an algorithm s 2 S is

within a factor s of the best possible ratio. The function qsðsÞ is a distribution

function for the performance ratio. In particular, qsð1Þ is the probability that an

algorithm s wins over all other algorithms, and lims!rfailed qsðsÞ is the probability that
the algorithm s solves all the problems considered. Therefore, this performance

profile can be employed as a measure of efficiency among all the algorithms. In the

performance profiles of Figs. 1 and 3 in the next subsection, the number s is rep-

resented in the x-axis, while Pðrp;s � s : 1� s� nsÞ is shown in the y-axis.

3.1 Image deblurring with isotropic total variation

Image blur is one of the most common problems in photography and can often ruin

photographs. Hence, it has been an important problem in digital imaging, which is

an inherently ill-conditioned inverse problem of the form (1) leading to the

optimization problem of the form (6).

Let bx and bf be a minimizer and the corresponding minimum of the problems (9)

or (10), and also let x and f be the current iteration point and function value of the

algorithms, respectively. Let x0 be a m� n clean image. The performances are

measured by the relative errors

d1 :¼
kx� bxk2
kbxk2

and d2 :¼
f � bf

f0 � bf
; ð31Þ

for iteration points and function values with f0 :¼ f ðx0Þ, and the so-called

improvement in the signal-to-noise ratio (ISNR)

ISNR :¼ 20 log10
ky� x0kF
kx� x0kF

� �

ð32Þ

and the peak signal-to-noise ratio (PSNR) defined by

PSNR :¼ 20 log10
255

ffiffiffiffiffiffi

mn
p

kx� x0kF

� �

; ð33Þ

where the pixel values are in f0; . . .; 255g and

PSNR :¼ 20 log10

ffiffiffiffiffiffi

mn
p

kx� x0kF

� �

ð34Þ

in which the pixel values are in [0, 1]. This definition indicates that a larger PSNR

value means a smaller term kx� x0kF , i.e., a better quality for the restored image.
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Fig. 1 Performance profiles for the PSNR, the best function value (bf ), and the running time (T) after 100
iterations of each algorithm: a, c, and e show APD, AL-ADMM, ALP-ADMM, and OSGA while b, d,
and f show DRPD1, DRPD2, ADMM, and OSGA. a Performance profile for PSNR. b Performance
profile for PSNR. c Performance profile for function values. d Performance profile for function values.
e Performance profile for the running time. f Performance profile for the running time

828 M. Ahookhosh

123



Conversely, a smaller PSNR value indicates a larger term kx� x0kF leading to a

worse image quality.

We here study the deblurring problem using the optimization models L22ITVR

and L1ITVR (see Example 1), where they are applied to problems involving

additive and impulsive noise, respectively; see Nikolova (2004, 2002). We first

consider the deblurring of a set of 72 images (see Table 5) using the L22ITVR

model with k ¼ 5� 10�2. We use APD [an accelerated primal-dual method

proposed by Chen et al. (2014)], AL-ADMM and ALP-ADMM [two accelerated

ADMM methods proposed by Chen et al. (2015)], and OSGA. We stop the

algorithms after 100 iterations. We display the results of these reconstructions via

performance profiles in subfigures (a), (c), and (e) of Fig. 1. Next, we consider the

deblurring of a set of 72 images (see Table 5) using the L1ITVR model with

k ¼ 5� 10�2. We use DRPD1, DRPD2 [two Douglas–Rachford primal-dual

methods proposed by BoŢ and Hendrich (2013b)], ADMM [an alternating direction

method proposed by Chan et al. (2013)], and OSGA. In this case, the blurred/noisy

image is generated by a 7� 7 Gaussian kernel with standard deviation 5 and salt-

and-pepper impulsive noise with noise density 0.4. The algorithms are stopped after

100 iterations. We illustrate the results of these reconstructions via performance

profiles in subfigures (b), (d), and (f) of Fig. 1.

The results of subfigure (a) of Fig. 1 show that APD, ALP-ADMM, and OSGA

are competitive regarding PSNR; however, OSGA slightly outperforms the others.

Subfigure (c) shows that OSGA behaves considerably better than the others in terms

of attaining the best function value. In subfigure (c), APD requires less time than

AL-ADMM, ALP-ADMM, and OSGA, but OSGA is in second place. The results of

subfigure (b) of Fig. 1 show that DRPD1 and OSGA are comparable with respect to

PSNR, but OSGA attains slightly better results for 85% of the problems; however, it

performs poorly for the remaining 15%. It can be seen from subfigure (d) that

OSGA outperforms the others in terms of the best function value. In subfigure (f),

while ADMM and DRPD2 have better running times among the others, they are not

competitive with OSGA with respect to PSNR and the best function value.

To visualize the results of OSGA with L22ITVR, we consider the 512� 512

blurred/noisy fingerprint image, reconstructing it using L22ITVR with APD, AL-

ADMM, ALP-ADMM, and OSGA. We consider three different values for the

regularization parameter k ¼ 5� 10�1; 10�1; 5� 10�2, and we stop after 100

iterations. We report the results in Table 1. The blurred/noisy image is constructed

following the above procedure for L22ITVR, and the results are summarized in

subfigures (a)–(f) of Fig. 2 for k ¼ 5� 10�2. The quality of the recovered image by

OSGA seems acceptable (PSNR ¼ 32.51). Its d1 evolution is comparable with AL-

ADMM, while the d2 and ISNR evolution are competitive with ALP-ADMM.

To visualize the results of OSGA with L1ITVR, we consider the deblurring of the

1024� 1024 blurred/noisy pirate image and restore it using the L1ITVR model with

DRPD1, DRPD2, ADMM, and OSGA. We consider three different values for the

regularization parameter k ¼ 5� 10�1; 10�1; 5� 10�2, and we stop after 100

iterations. We report the results in Table 2. The blurred/noisy image is constructed

following the above procedure for L1ITVR, and the results are summarized in
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Fig. 2 a–f give a comparison of APD, AL-ADMM, ALP-ADMM, and OSGA for the deblurring of the
512� 512 fingerprint image with 9� 9 uniform blur and Gaussian noise with SNR ¼ 40 dB. We set

k ¼ 10�2, and all algorithms are stopped after 100 iterations. g–l give a comparison of DRPD1, DRPD2,
ADMM, and OSGA for the deblurring of the 1024� 1024 pirate image with the 7� 7 Gaussian kernel
with standard deviation 5 and salt-and-pepper impulsive noise with noise density 0.4. We set

k ¼ 5� 10�2, and all algorithms are stopped after 100 iterations. a Clean image. b Blurred/noisy image.
c OSGA: PSNR ¼ 32:51, T ¼ 6:73. d d2 versus iterations. e d1 versus iterations. f ISNR versus iterations.
g Clean image. h Blurred/noisy image. i OSGA: PSNR ¼ 27:66, T ¼ 13:82. j d2 versus iterations. k d1
versus iterations. l ISNR versus iterations
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subfigures (g)–(l) of Fig. 2. This figure shows that the best d1 and d2 evolution are

attained by OSGA.

3.2 Elastic net minimization

We now give a comparison of some first-order algorithms for the elastic net

problem, where the subgradient-type methods use the nonsmooth first-order oracle

and the proximal-type methods employ the smooth first-order oracle and a

proximity operator. We compare OSGA with PGA (proximal gradient algorithm;

Parikh and Boyd 2013), NSDSG (nonsummable diminishing subgradient algorithm;

Boyd et al. 2003), FISTA (Beck and Tebolle’s fast proximal gradient algorithm;

Beck and Teboulle 2009a), NESCO (Nesterov’s composite optimal algorithm;

Nesterov 2013), NESUN (Nesterov’s universal gradient algorithm; Nesterov 2015),

NES83 (Nesterov’s 1983 optimal algorithm; Nesterov 1983), NESCS (Nesterov’s

constant step optimal algorithm; Nesterov 2004), and NES05 (Nesterov’s 2005

optimal algorithm; Nesterov 2005). The codes are written in MATLAB, and the

original parameters of the related literature are used.

The algorithms NES83, NESCS, and NES05 were originally proposed to solve

smooth convex problems, where they use the smooth first-order oracle and attain the

optimal complexity Oðe�1=2Þ. Although obtaining the optimal complexity bound of

smooth problems is computationally interesting, problem (6) is typically nons-

mooth. Recently, Lewis and Overton (2013) investigated the behavior of the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method for nonsmooth nonconvex

problems, and their results are interesting. In addition, Nesterov (2013) showed that

subgradients of composite functions preserve the most important features of

gradients of smooth convex functions. These facts motivate our computational

investigation of the behavior of optimal smooth first-order methods by passing the

nonsmooth first-order oracle, providing a function value and a subgradient. In

particular, we consider Nesterov’s 1983 algorithm (see Nesterov 1983) and adapt it

to solve (6) by simply passing a subgradient of the function as described in

Algorithm 4.

Algorithm 4: NES83 (Nesterov’s 1983 algorithm for multi-term composite functions)
Input: select z and y0 such that z �= y0 and gy0 �= gz, ρ ∈ ]0, 1[, ε > 0;
Output: xk, fxk

;
1 begin
2 a0 = 0; x−1 = y0; compute gy0 and gz; α−1 = ‖y0 − z‖/‖gy0 − gz‖;
3 while stopping criteria do not hold do
4 α̂k = αk−1; x̂k = yk − α̂kgyk

;
5 compute fx̂k

;
6 while fx̂k

< fyk
− 1

2 α̂k‖gyk
‖2 do

7 α̂k = ρα̂k; x̂k = yk − α̂kgyk
; compute fx̂k

;
8 end

9 xk = x̂k; fxk
= fx̂k

; αk = α̂k; ak+1 =
(
1 +

√
4a2

k + 1
)

/2;

10 yk+1 = xk + (ak − 1)(xk − xk−1)/ak+1; compute gyk+1 ; k = k + 1
11 end
12 end
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Similarly to NES83, the methods NESCS and NES05 are adapted from

NESTEROV’s constant step (Nesterov 2004) and 2005 algorithms (Nesterov 2005),

respectively. The adapted versions of NES83, NESCS, and NES05 are able to deal

with nonsmooth problems as well; however, there is to date no theory to support

their convergence.

We compare OSGA with the subgradient-type methods (NSDSG, NES83,

NESCS, NES05) and the proximal-type methods (PGA, NSDSG, FISTA, NESCO,

NESUN) in separate comparisons. Most of these methods need to know about

Lipschitz constants to determine a step-size. While NESCS, NES05, PGA, and

FISTA use the constant L to determine a step-size, NESCO and NESUN start with a

lower estimation of L and adapt it by a backtracking line search; see Nesterov

(2013, 2015) for more details. In our implementation, similarly to that of Becker

et al. (2011), NESCO and NESUN use the initial estimate

L0 :¼
kgx0 � gz0k�
kx0 � z0k

ð35Þ

for the Lipschitz constant of gradients (x0 6¼ z0 and gx0 6¼ gz0 in which gx0 and gz0 are

gradients of f at arbitrary points x0 and z0). In Nesterov (1983), NESTEROV used a

similar term to determine an initial step-size for NES83. For NSDSG, the step-size

is computed by a0ðkÞ�1=2
, where k is the iteration counter and a0 [ 0 is a constant

that should be as large as possible such that the algorithm is not divergent; see Boyd

et al. (2003).

Let us consider an underdetermined system Ax ¼ y with a m� n random matrix

A and a random m-vector y. This problem arises in many applications in which the

goal is to determine x. Considering the ill-conditioned nature of this problem, the

most popular optimization models are (2), (5), and (8), where (2) is smooth and (5)

and (8) are nonsmooth. We are particularly interested in the multi-term problem (8)

with both dense and sparse data. For (8), we set W ¼ I, where I is the identity

operator. For m ¼ 2000 and n ¼ 5000, the dense data (A; y; x0) is randomly

generated by the ‘‘rand’’ function in MATLAB, and the sparse data (A; y; x0) by the

‘‘sprand’’ function. For both cases, we solve the problem by 1000 iterations of

OSGA, save the best function value fb, and stop the other methods as soon as a

function value less than or equal to fb is attained or if the maximum number of

iterations (10,000) is reached. In our comparison, we use bL :¼ max1� i� n kaik2,
where ai (i ¼ 1; 2; . . .; n) is the ith column of A. In the implementation, NESCS,

NES05, PGA, and FISTA use L ¼ 104bL and L ¼ 102bL for dense and sparse

problems, respectively. Moreover, NSDSG employs a0 ¼ 10�7 and a0 ¼ 10�5 for

the dense and sparse problems, respectively. We consider three levels of

regularization parameters. We perform 50 runs for each parameter setting and

report the averages in Tables 3 and 4. We also display the performance profiles of

the running time for all 150 runs in Fig. 3.

In Table 3, the best running time is given by OSGA, while the running times of

NES83, NES05, and OSGA are compared in Table 4. The performance profile of the

running time in subfigures (a) and (b) of Fig. 3 shows that OSGA outperforms the
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others substantially; but in subfigure (c), NES83, NES05, and OSGA are

competitive and in subfigure (d), NES83 and OSGA have the best running time.

To visualize the function value evolution of the methods, we display function

values versus iterations for both dense and sparse data with

k1 ¼ k2 ¼ 10�1; 10�2; 10�4. In subfigures (a)–(e) of Fig. 4, for dense data, it can

be seen that NESCO and NESUN are comparable with OSGA. It is notable that

FISTA, NESCO, NESUN, and OSGA have much better results than PGA, which

supports the theoretical results about the complexity of these methods. Subfig-

ures (g)–(l) of Fig. 4 show that the adapted algorithms NES83, NESCS, and NES05

are surprisingly comparable with OSGA and their results are much better than those

of NSDSG. Among the adapted algorithms, NES83 performs better than the others.
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Fig. 3 Performance profiles for the running time (T) for the elastic net problem (8): a, b show the
proximal-type methods PGA, FISTA, NESCO, NESUN, and OSGA with dense and sparse data,
respectively; c, d show the subgradient-type methods NSDSG, NES83, NESCS, NES05, and OSGA with
dense and sparse data, respectively. a Performance profile for the running time, dense data.
b Performance profile for the running time, sparse data. c Performance profile for the running time,
dense data. d Performance profile for the running time, sparse data
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Fig. 4 Function values versus iterations for the elastic net problem (8) (single instance) with the

regularization parameters k ¼ 10�; 10�2; 10�4: a–f show the proximal-type methods PGA, FISTA,
NESCO, NESUN, and OSGA, and g–l show the subgradient-type methods NSDSG, NES83, NESCS,

NES05, and OSGA. a Dense data (k ¼ 10�1). b Dense data (k ¼ 10�2). c Dense data (k ¼ 10�4).

d Sparse data (k ¼ 10�1). e Sparse data (k ¼ 10�2). f Sparse data (k ¼ 10�4). g Dense data (k ¼ 10�1).

h Dense data (k ¼ 10�2). i Dense data (k ¼ 10�4). j Sparse data (k ¼ 10�1). k Sparse data (k ¼ 10�2).

l Sparse data (k ¼ 10�4)
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3.3 Sparse recovery with ‘1-minimization

Here, we consider the inverse problem (1) with A 2 Rm�n, x 2 Rn, and y 2 Rm,

where the observation is deficient, m\n, as a common interest in compressed

sensing. Hence, the object x cannot be recovered from the observation y directly,

even in the noiseless system Ax ¼ y, unless there are additional assumptions such as

sparsity of x. We consider the recovery of a sparse signal x 2 Rn from y 2 Rm with

A obtaining by first filling it with independent samples from the standard Gaussian

distribution and then orthonormalizing the rows; see Figueiredo et al. (2007). In our

experiment, we consider m ¼ 2000 and n ¼ 4000. The data is generated as

explained in the script ‘‘demo_continuation.m’’ of the gradient projection for sparse

reconstruction (GPSR) (Figueiredo et al. 2007) package available at http://www.lx.

it.pt/*mtf/GPSR/, where the original signal x consists of 300 randomly placed �1

spikes. We therefore solve (5) with the regularization parameters

k ¼ 10�1kAyk1; 10�2kAyk1; 10�3kAyk1. For the original signal x0, the mean

squared error (MSE) is used as a measure of the quality of a recovered signal, i.e.,

MSE ¼ 1

n
kx� x0k22: ð36Þ

We solve the problem by 100 iterations of OSGA, save the best function value fb,

and stop the other methods as soon as a function value less than or equal to fb is

attained or if the maximum number of iterations (10,000) is reached. The results are

given in Fig. 5.

Figure 5 shows a comparison of OSGA and the proximal-type methods (PGA,

FISTA, NESCO, NESUN) and the subgradient-type methods (NSDSG, NES83,

NESCS, NES05) for the sparse signal recovery with ‘1-minimization, where we

compare the algorithms with respect to function values and MSE. Subfigures (a)–

(s) show that NESUN and OSGA are substantially better than the others; however,

NESUN takes far more iterations. Moreover, NESCO and sometimes NESUN do

not have good accuracy because the backtracking line searches are not terminated

with a reasonable approximation of the Lipschitz constant. Subfigures (d)–(f) show

that OSGA has the best MSE evolution. From subfigures (g)–(l), it can be seen that

NES83 and OSGA are comparable but much better than the others with respect to

function values and MSE evolution; however, OSGA requires fewer iterations for

the same accuracy.

3.4 Efficiency of OSGA and adapted Nesterov-type optimal methods

As discussed in Sect. 1, OSGA does not need global information (e.g., Lipschitz

constants for function values and gradients) of the underlying function of

minimization, except for the strong convexity parameter if it is available. The

parameters (28) of OSGA have been set so that they work well for a range of convex

problems in the fields of signal and image processing, machine learning, and

statistics; see Ahookhosh (2015a). Moreover, OSGA can be applied to any type of

convex problem without knowledge of the problem structure, which is not the case
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Fig. 5 Function values and MSE (36) versus iterations for a sparse recovery using the ‘1-minimization
problem (5) (single instance) with three levels of regularization parameters

k ¼ 10�1kAyk1; 10�2kAyk1; 10�3kAyk1. a–c and d–f show the function values and MSE versus

iterations of the proximal-type methods PGA, FISTA, NESCO, NESUN, and OSGA, respectively. g–i
and j–l show the function values and MSE versus iterations of the subgradient-type methods NSDSG,

NES83, NESCS, NES05, and OSGA, respectively. a Function values (k ¼ 10�1kAyk1). b Function

values (k ¼ 10�2kAyk1). c Function values (k ¼ 10�3kAyk1). d MSE (k ¼ 10�1kAyk1). e MSE

(k ¼ 10�2kAyk1). f MSE (k ¼ 10�3kAyk1). g Function values (k ¼ 10�1kAyk1). h Function values

(k ¼ 10�2kAyk1). i Function values (k ¼ 10�3kAyk1). j MSE (k ¼ 10�1kAyk1). k MSE

(k ¼ 10�2kAyk1). l MSE (k ¼ 10�3kAyk1)
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for Nesterov-type optimal methods. For example, OSGA is applied to L22ITVR and

L1ITVR successfully, while Nesterov-type optimal methods need a proximity

operator for the isotropic total variation, which is only iteratively available; this

requirement makes them expensive for such problems. Therefore, if an approxi-

mation of Lipschitz constants is not available or a closed-form solution for the

proximal mapping of a function is not available, OSGA can be applied successfully.

Further, our results show that if we have a good approximation of the Lipschitz

constants and a closed-form solution for the proximal mapping of a function (e.g.,

the elastic net and ‘-minimization), OSGA is competitive with the state-of-the-art

solvers.

The adapted Nesterov-type optimal methods (NES83, NESCS, and NES05)

applied to the elastic net and ‘-minimization with their standard parameters have

performed well for both problems. Surprisingly, NES83 outperforms the other

Nesterov-type optimal methods and is competitive with OSGA, which shows its

potential for nonsmooth problems.

4 Final remarks

We have studied the computational properties of OSGA for convex optimization

problems with multi-term composite functions. OSGA has a simple structure, and it

is flexible enough to handle general convex optimization with the optimal

complexity for Lipschitz-continuous nonsmooth problems and smooth problems

with Lipschitz-continuous gradients. It does not need to know global parameters

such as Lipschitz constants except for the strong convexity parameter, which can be

set to zero if it is unknown.

The main objective of this paper is the study of the computational behavior of

OSGA for large-scale structured convex problems. We also adapt some first-order

methods (originally proposed for smooth convex optimization) to nonsmooth

problems: we simply pass a subgradient of the nonsmooth function to these methods

in place of the gradient. We consider several examples of linear inverse problems

and report extensive numerical results by comparing OSGA with the adapted

methods and some state-of-the-art first-order methods. By these comparisons, it

turns out that OSGA is efficient (in the sense of PSNR, ISNR, the number of

function evaluation, and the running time) for such problems: its fast rate of

convergence is often beyond the theoretical rate. While OSGA attains the

complexity Oðe�2Þ, surprisingly its computational performance is competitive with

optimal first-order methods (FISTA, NESCO, and NESUN) with the complexity

Oðe�1=2Þ. Moreover, a promising performance of the adapted Nesterov-type optimal

methods is observed, especially for NES83 that is comparable with OSGA for the

elastic net and ‘1-minimization problems possibly because of its simple structure (it

does not need to solve a subproblem, so requires less running time); however, the

performance is not to date supported by theoretical results, so this might be an

interesting topic for future research.
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Appendix

The test images and corresponding spatial resolutions for the deblurring problems

L22ITVR and L1ITVR are given in Table 5.

Table 5 List of images and spatial resolutions for deblurring problems L22ITVR and L1ITVR

Image Spatial res. Image Spatial res. Image Spatial res.

Aerial 256 9 256 Crowd 1 512 9 512 Tank 1 512 9 512

Airplane 256 9 256 Crowd 2 512 9 512 Tank 2 512 9 512

Cameraman 256 9 256 Darkhair woman 512 9 512 Tank 3 512 9 512

Chemical plant 256 9 256 Dollar 512 9 512 Truck 512 9 512

Clock 256 9 256 Elaine 512 9 512 Truck APCs 1 512 9 512

Fingerprint 1 256 9 256 Fingerprint 512 9 512 Truck APCs 2 512 9 512

Lena 256 9 256 Flintstones 512 9 512 Washington 1 512 9 512

Moon surface 256 9 256 Girlface 512 9 512 Washington 2 512 9 512

Pattern 1 256 9 256 Goldhill 512 9 512 Washington 3 512 9 512

Pattern 2 256 9 256 Head CT 512 9 512 Washington 4 512 9 512

Star 256 9 256 Houses 512 9 512 Zelda 600 9 600

Aerial 512 9 512 Kiel 512 9 512 Dark blobs 1 600 9 600

Airfield 512 9 512 Lake 512 9 512 Dark blobs 2 600 9 600

Airplane 1 512 9 512 Lena 512 9 512 House 600 9 600

Airplane 1 512 9 512 Lena numbers 512 9 512 Ordered matches 600 9 600

APC 512 9 512 Liftingbody 512 9 512 Random matches 600 9 600

Barbara 512 9 512 Lighthouse 512 9 512 Rice 600 9 600

Blobs 512 9 512 Livingroom 512 9 512 Shepp-logan phantom 600 9 600

Blonde woman 512 9 512 Mandril 512 9 512 Airport 1024 9 1024

Boat 512 9 512 MRI spine 512 9 512 Pentagon 1024 9 1024

Cameraman 512 9 512 Peppers 512 9 512 Pirate 1024 9 1024

Car APCs 1 512 9 512 Pirate 512 9 512 Rose 1024 9 1024

Car APCs 2 512 9 512 Smiling woman 512 9 512 Testpat 1024 9 1024

Clown 512 9 512 Squares 512 9 512 Washington 1024 9 1024
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Dolan E, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program

91:201–213

Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application

to compressed sensing and other inverse problems. IEEE J Sel Top Signal Proces 1(4):586–597

Gonzaga CC, Karas EW (2013) Fine tuning Nesterov’s steepest descent algorithm for differentiable

convex programming. Math Program 138:141–166

He N, Juditsky A, Nemirovski A (2015) Mirror Prox algorithm for multi-term composite minimization

and semi-separable problems. Comput Optim Appl 61:275–319

Optimal subgradient methods: computational properties... 843

123

http://homepage.univie.ac.at/masoud.ahookhosh/uploads/User's_manual_for_OSGA.pdf
http://homepage.univie.ac.at/masoud.ahookhosh/uploads/User's_manual_for_OSGA.pdf
https://doi.org/10.1007/s11750-017-0462-3
http://www.optimization-online.org/DB_HTML/2015/04/4852.html
http://www.stanford.edu/class/ee392o/subgrad_method.pdf
http://www.stanford.edu/class/ee392o/subgrad_method.pdf


Kaufman L, Neumaier A (1996) PET regularization by envelope guided conjugate gradients. IEEE Trans

Med Imaging 15:385–389

Lan G (2015) Bundle-level type methods uniformly optimal for smooth and nonsmooth convex

optimization. Math Program 149:1–45

Lewis AS, Overton ML (2013) Nonsmooth optimization via quasi-Newton methods. Math Program

141:135–163

Nemirovsky AS, Yudin DB (1983) Problem complexity and method efficiency in optimization. Wiley,

New York

Nesterov Y (1983) A method of solving a convex programming problem with convergence rate $O(1/

k^2)$. Dokl AN SSSR 269: 543–547 (in Russian). English translation: Sov Math Dokl 27:372–376

Nesterov Y (2004) Introductory lectures on convex optimization: a basic course. Kluwer, Dordrecht

Nesterov Y (2005) Smooth minimization of non-smooth functions. Math Program 103:127–152

Nesterov Y (2013) Gradient methods for minimizing composite objective function. Math Program

140:125–161

Nesterov Y (2015) Universal gradient methods for convex optimization problems. Math Program

152(1):381–404

Neumaier A (1998) Solving ill-conditioned and singular linear systems: a tutorial on regularization.

SIAM Rev 40(3):636–666

Neumaier A (2016) OSGA: a fast subgradient algorithm with optimal complexity. Math Program

158(1):1–21

Nikolova M (2002) Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J

Numer Anal 40(3):965–994

Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vis

20:99–120

Osher S, Rudin L, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica

60:259–268

Parikh N, Boyd S (2013) Proximal algorithms. Found Trends Optim 1(3):123–231

Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc 58(1):267–288

Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Sov

Math Dokl 4:1035–1038

844 M. Ahookhosh

123


	Optimal subgradient methods: computational properties for large-scale linear inverse problems
	Abstract
	Introduction
	Examples of inverse problems
	State of the art
	Contribution

	A review of OSGA
	Implementation issues for multi-term composite problems

	Comparisons of first-order methods
	Image deblurring with isotropic total variation
	Elastic net minimization
	Sparse recovery with \ell _1-minimization
	Efficiency of OSGA and adapted Nesterov-type optimal methods

	Final remarks
	Acknowledgements
	Appendix
	References




