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Abstract Identifying unknown components of an object that emits radiation is an

important problem for national and global security. Radiation signatures measured

from an object of interest can be used to infer object parameter values that are not

known. This problem is called an inverse transport problem. An inverse transport

problem may have multiple solutions and the most widely used approach for its

solution is an iterative optimization method. This paper proposes a stochastic

derivative-free global optimization algorithm to find multiple solutions of inverse

transport problems. The algorithm is an extension of a multilevel single linkage

(MLSL) method where a mesh adaptive direct search (MADS) algorithm is incor-

porated into the local phase. Numerical test cases using uncollided fluxes of discrete

gamma-ray lines are presented to show the performance of this new algorithm.

Keywords Inverse transport problem � Derivative-free optimization � Stochastic
global optimization � Multilevel single linkage � Mesh adaptive direct search

1 Introduction

Inverse transport problems are problems in which radiation signatures are used to

identify unknown components of a radioactive source/shield system. Application

areas of inverse transport problems include national security, material safeguards,

and radioactive waste management. For a multilayered gamma-ray source/shield

system, unknown system parameters may include the number of layers, interface
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locations, the outer dimension (if it cannot be observed), source isotopic

compositions, shield materials, and material mass densities. Inverse transport

problems can be solved via an optimization approach whose goal is to find the

unknown system parameters that minimize a cost difference between the quantities

of interest measured from a system and the quantities of interest calculated using a

set of postulated parameters. In applications, inverse transport problems may have

multiple solutions, and we want to find all solutions so that a better decision can be

made. Our definition of inverse problem solutions is given in Sect. 2.

A few iterative optimization methods, such as Levenberg-Marquardt and

differential evolution (DE) algorithms (Mattingly and Dean 2010; Bledsoe et al.

2011a, b), have been applied to solve inverse transport problems. We have

investigated alternative optimization methods. In Armstrong and Favorite (2012),

we applied a mesh adaptive direct search (MADS) algorithm to solve the inverse

transport problem of material interface location identification in one-dimensional

spherical radioactive source/shield systems where all other system parameters are

known. The Levenberg–Marquardt, DE, and MADS methods are designed to locate

only one minimum. Since our goal is to find all combinations of system parameters

for which the difference between the measured and calculated values is minimized,

we want to use global optimization methods to search for multiple local minima. We

also want to use derivative-free optimization (DFO) methods so that only one

transport calculation is performed for each model during iterative schemes.

It is well known that in general solving global optimization problems is very

challenging (Dixon and Szego 1975; Stephens and Baritompa 1998; Neumaier

2004). The global optimization problem is to find the lowest value of a function in

some domain. It can be described as follows:

Given a compact set X � Rn and f : X ! R [ f1g;
find x� 2 X such that f ðx�Þ� f ðxÞ for all x 2 X:

ð1Þ

We refer to x� as a global minimizer of f and f ðx�Þ as the global minimum. A

function f and a set X are respectively called an objective function and a feasible

region. A global optimization problem has only one global minimum but may have

multiple different local minima, and a global minimizer is a local minimizer but the

reverse is not necessarily true. Global optimization methods can be categorized into

two classes, deterministic and stochastic. Typically, stochastic methods start from a

sample of points drawn randomly from X while deterministic methods locate the

global minimum by an exhaustive search over X or a dense countable subset of

X (Boender et al. 1982). Some stochastic methods contain a local phase for finding

all local minima in the hope that one of these local minima is the global one. This

causes difficulty in solving global optimization problems because there is no con-

structive method to decide whether or not all local minima are found.

One of the most reliable and efficient stochastic global optimization methods is

the multilevel single linkage (MLSL) method, also known as the Boender–Rinnooy

Kan–Stougie–Timmer (BRST) algorithm (Boender et al. 1982). The MLSL method

was originally developed for bounded constrained optimization problems and was

extended to optimization problems with inequality and equality constraints (Sendin
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et al. 2009). It is a multistart stochastic global optimization method that relies on a

combination of random sampling, clustering, and local search strategies. Its goal is

to find all local minima. Each MLSL iteration consists of two search phases, global

and local. In the global phase, a finite number of sample points is drawn from a

uniform distribution over a feasible region X and an objective function value is

evaluated at each sample point. In the local phase, a local optimization method is

started from points chosen from a subset of sample points with the lowest objective

function values, where the number of local searches is reduced by applying a single

linkage clustering technique to sample points of interest. Any local optimization

algorithm (including DFO local search algorithms) may be utilized in the MLSL

local phase.

DFO is a field of nonlinear optimization where methods that do not use

derivatives have been developed and rigorously analyzed (Conn et al. 2009).

Directional direct-search algorithms (as opposed to model-based methods) are DFO

methods developed to solve optimization problems by not using derivatives but

directly making comparisons of objective function values. A recent review of DFO

algorithms and comparison of software implementations can be found in Rios and

Sahinnidis (2013).

The DFO algorithm that we consider in this paper is the class of MADS

algorithms. The MADS method is an iterative method introduced and analyzed by

Audet and Dennis where nonsmooth calculus is used to prove its convergence

properties (Audet and Dennis Jr. 2006; Abramson and Audet 2006). At each

iteration, MADS generates a finite number of trial points lying on a spatial

discretization called the mesh, evaluates an objective function at some trial points

with an attempt to find a point with a lower objective function value than the current

best point found so far, and then adapts the fineness of the mesh to approach a

minimum. A point with a lower objective function value than the current best point

found so far is called an improved mesh point. The MADS iteration consists of two

steps called SEARCH and POLL. The SEARCH step is optional and any search

algorithm can be used to globally explore the mesh, while the POLL step searches

near an improved mesh point.

The MADS method is designed for a blackbox optimization problem with

general constraints. A blackbox optimization problem is an optimization problem

whose objective function and/or functions defining the feasible region are evaluated

by computational codes, which may return outputs that cannot be trusted (i.e., that

are numerically reliable, as discussed below in this section) even when all parameter

values used in calculations are feasible (Audet 2014). The constraints of blackbox

optimization problems can be classified as unrelaxable, relaxable, or hidden (Audet

et al. 2010). Hidden constraints are defined as feasible points for which compu-

tational codes (in the blackbox, discussed later in this section) return untrustworthy

outputs. Hidden constraints cannot be defined mathematically and can only be

evaluated after computational codes return results. Several strategies are developed

in the MADS method to handle constraints, and one of these strategies is an extreme

barrier approach. This technique rejects an infeasible point or a point that fails a

hidden constraint by setting its objective function value to infinity (Audet et al.

2010). The extreme barrier technique for handling constraints is necessary if a
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computational code cannot be started or if it returns results that cannot be trusted

when a constraint is violated.

We formulate inverse transport problems as blackbox optimization problems.

Characteristics of inverse transport optimization problems include: (a) no assump-

tion is made on the functions used to define the objective function, (b) no derivative

information is available to be exploited, (c) only objective function values

calculated by a computational code are used by an optimization algorithm during an

iterative scheme, and (d) a computational code may return outputs that cannot be

trusted even when feasible points are used in calculations (i.e., there are hidden

constraints). Blackbox optimization problems are common in real optimization

applications (Audet 2014).

In this paper, we consider a passive gamma-ray detection problem. Radioactive

isotopes decay with the release of gamma rays of specific energies; these are called

lines in the measured gamma-ray spectrum. Gamma rays arriving at an external

(stand-off) detector with their full characteristic line energy can only do so if they

do not interact with materials between their source point and the detector. Such

gamma rays are said to be uncollided. The quantities of interest used in this

application are the uncollided fluxes of discrete gamma-ray lines. Details will be

given in Sect. 2.

The objective function values can be trusted if the numerical subroutines used to

calculate them terminate normally. Feasible points used to calculate the uncollided

fluxes where the numerical integration method does not terminate normally define

the hidden constraints. We cannot include hidden constraints in the problem

definition because these constraints exist due to the failure of the numerical

integration method used to calculate the objective function values. Since it is very

difficult (or probably impossible) to make the numerical integration subroutine work

for all feasible hidden constraint points, we apply the extreme barrier approach to

handle the hidden constraints.

Since the inverse transport optimization problem is a blackbox optimization

problem, the MADS method is well suited. We want to locate multiple minima, but

the MADS method is designed to locate a single minimum. We thus propose to

integrate the MADS algorithm into the MLSL method to locate multiple minima in

a single run. We incorporate the MADS algorithm with an empty SEARCH step into

the local minimization phase of the MLSL method where points that fail hidden

constraints in both MLSL global and local phases are handled by the extreme barrier

method. We then apply the new combined algorithm to solve for multiple solutions

of inverse transport problems using uncollided fluxes of discrete gamma-ray lines.

This paper is organized as follows. Section 2 provides the background of inverse

transport problems. Section 3 briefly summarizes the MLSL and MADS methods.

Section 4 presents a new variant of the MLSL algorithm that we use to find multiple

inverse transport solutions in a single run. Section 5 gives some comments on

inverse transport solutions. Numerical test cases are presented in Sect. 6 and

conclusions are given in Sect. 7.
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2 Background

We consider a gamma-ray source and radiation shield system where both the source

and the shield may be multilayered but each layer is assumed to be homogeneous.

Information on passive gamma-ray detection and measurements can be found in

PANDA (2007). The source emits gamma rays isotropically at discrete energies

called lines, which can be resolved quite well using a high-purity germanium

detector. It is assumed that the detector can resolve energy lines well enough that

there is no scattering into the energy lines. Under these conditions, the angular flux

of gamma rays of energy Ei within the system is described by the Boltzmann

transport equation without scattering,

X̂ � rwEiðr; X̂Þ þ REi

t ðrÞwEiðr; X̂Þ ¼ qEiðrÞ ; i ¼ 1; . . .;Nl; ð2Þ

where wEiðr; X̂Þ is the angular flux of gamma rays of energy Ei at position r and

angle X̂ ðc � cm �2 � s �1Þ, REi
t ðrÞ is the total macroscopic photon cross section at

energy Ei and position r (cm-1), qEiðrÞ is the source rate density of gamma rays of

energy Ei at position r ðc � cm �3 � s �1Þ, Ei is the energy line at index i, and Nl is

the number of energy lines considered.

There are five independent variables in the transport equation (2): three spatial

coordinates for position r 2 R3 and two angles X̂ 2 ½0; 2p� � ½0; p�. We assume that

the spatial domain of the problem, denoted !, has external surface Cs and outside of

! is an infinite region of vacuum. Thus, no gamma rays enter into ! across Cs; i.e.,

wEiðr; X̂Þ ¼ 0 ; n̂ � X̂\0 ; r 2 Cs ; i ¼ 1; . . .;Nl; ð3Þ

where n̂ is the outward unit normal vector at point r on the surface Cs.

The derivation and analysis of neutral-particle transport equations can be found

in Lewis and Miller (1993) and Anikonov et al. (2002). It is well known that solving

transport equations is very challenging for real applications since there is no

analytic solution for describing complex geometrical configurations. Advanced

analysis and sophisticated numerical methods are typically utilized to calculate the

solutions of transport equations. Information on computational methods for neutral-

particle transport can be found in Lewis and Miller (1993).

Since uncollided particles do not change direction or energy, (2) can be solved

with ray-tracing techniques (Lewis and Miller 1993; Favorite et al. 2009). The ray-

tracing technique transforms a differential equation into an integral equation.

Applying numerical integration methods to calculate angular fluxes is not an easy

task for complex geometrical configurations (for example, a Monte Carlo

integration method is proposed in Anikonov et al. 2002).

The source rate density qEi in (2) is the emission rate per atom multiplied by the

atom density. The emission rate per atom is measured nuclear data and is not a

parameter to be optimized in this application, though the atom density may be. The

total photon macroscopic cross section REi
t in (2) is the product of the microscopic

photon cross section, which is measured nuclear data and not a parameter to be
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optimized in this application, and the atom density. Both the source rate density and

the macroscopic cross section depend on the material.

We assume a measurement of the uncollided flux of each line at a detector

external to the source/shield system. The detector response function for the

uncollided scalar flux at a point is

REi

d ðr; X̂Þ ¼ dðr � rdÞ; ð4Þ

where rd is a spatial coordinate in R3 defining the detector location and d is the

Dirac delta function. Integrating the detector response function REi

d ðr; X̂Þ with the

uncollided angular flux wEiðr; X̂Þ over the entire phase space (volume V and angle

X̂), the uncollided scalar flux of energy line Ei at point rd is

FEi;rd ¼
Z
Vd

dV

Z
4p
dX̂REi

d ðr; X̂Þw
Eiðr; X̂Þ

¼
Z
4p
dX̂wEiðrd; X̂Þ ; i ¼ 1; . . .;Nl; ð5Þ

where Vd is the detector volume and 4p means 4p in a solid angle. Note that wEi

must satisfy (2)–(3). For brevity, we use Fi instead of FEi;rd to denote the uncollided

scalar flux at point rd for line i.

The derivation and explicit form of (5) for a multilayered spherical source/shield

system is shown in Favorite et al. (2009). We developed a computational code for

calculating uncollided scalar fluxes for multilayered spherical source/shield

systems, applying the Gauss-Kronrod quadrature formula as implemented in the

QUADPACK library (Piessens et al. 1983). The adaptive quadrature subroutines in

QUADPACK automatically adapt based on the variation of integrals and return a

flag indicating that an extremely bad integrand behavior occurs at some points of the

integration interval.

The system parameters of a multilayered spherical source/shield system include

the number of layers, outer radii of layers (interface locations and the outermost

radius), source isotopic compositions, shield materials, and material mass densities.

To calculate Fi, a complete description of the multilayered source/shield system and

detector location must be known. This is the forward transport calculation.

Suppose there is a source/shield system where some (or all) system parameters

are unknown and uncollided scalar flux measurements are available. We want to use

the measured uncollided scalar fluxes to infer the values of the unknown system

parameters. This problem is called the inverse transport problem. The inverse

transport problem may not have a unique solution; in fact, in the usual case in which

there are more unknown parameters than measured lines Nl, multiple solutions are

guaranteed. Our goal is to identify all solutions of the inverse transport problem,

since this information can be used to make better decisions in applications. In

practice, other system measurements and expert knowledge may be used to infer

some of the unknown system parameters.
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Let Fm;i be the measured value of the uncollided scalar flux of energy Ei, rm;i be
the statistical uncertainty associated with measurement Fm;i, and x be a vector of

unknown system parameters. We call x a solution of the inverse transport problem if

jFm;i � FiðxÞj� rm;i ; for all i ¼ 1; . . .;Nl; ð6Þ

where FiðxÞ is the reliable calculated value of the uncollided scalar flux of energy Ei

using x and other known system parameters, and Nl is now the number of measured

data points. The value of FiðxÞ is numerically reliable if the numerical integration

subroutine used to calculate it terminates normally.

We want to locate multiple solutions of an inverse transport problem and an

optimization-based inversion technique is the method of choice. We consider a

blackbox optimization of the form

min
x2H

f ðxÞ :¼
XNl

i¼1

Fm;i � FiðxÞ
rm;i

� �2

; ð7Þ

where H � Rn is a set of feasible solutions and n is the number of unknown system

parameters. The set H is problem-dependent and the constraints defining H are hard

or (impossible) to describe using mathematical notation. The physical constraints

imposed on unknown system parameters may include the facts that (i) material

densities are positive and bounded, (ii) the sum of source weight fractions is 1.0,

(iii) outer radii and layer thicknesses are positive, (iv) the outermost radius is less

than the distance from the object’s center to the detector, (v) shield materials are

chosen from a material library. The values of shield materials are non-numeric, of

course, but we can arrange them in the library to have some ordering property. We

can then treat shield materials as continuous variables in a set of feasible solutions

H and use a mapping to transform the shield material values in H to those in the

material library. Another way to solve inverse problems with unknown shield

materials is to use mixed variable optimization (MVO) (Abramson et al. 2009), but

this approach is inappropriate for our problem because it requires more prior

knowledge (to define a discrete neighborhood) than we are willing to apply. Hidden

constraints occur when the numerical subroutine used to calculate the uncollided

flux Fi does not terminate normally (i.e., it returns a flag indicating that an extre-

mely bad integrand behavior occurs at some points of the integration interval).

The inverse transport optimization problem (7) is actually a nonlinear parameter

estimation problem, which can have a large number of local minima, and a global

optimization algorithm is a suitable tool for solving a nonlinear parameter

estimation problem (Csendes 1988). Since MLSL is a stochastic global optimization

algorithm designed for finding all local minima, we want to use MLSL to locate

multiple local minimizers of (7) in the hope that some of these minimizers are also

solutions of the inverse transport problem (i.e., minimizers that cause (6) to be

satisfied). Our definition of a solution of an inverse transport problem makes no use

of local or global minimizers of f: Any feasible solution x whose values of

calculated scalar fluxes are within the uncertainties of the values of measured scalar

fluxes is a solution of the inverse transport problem.
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3 MLSL and MADS algorithms

3.1 Multilevel single linkage (MLSL) algorithm

The MLSL method was developed by Boender et al. (1982) for a bound constrained

global optimization problem of the form

min
x2X

f ðxÞ; ð8Þ

where X ¼ fx ¼ ðx1; . . .; xnÞ j ai � xi � bi; i ¼ 1; . . .; ng � Rn and f : X ! R. It is

considered to be one of the most reliable and efficient stochastic global optimization

methods. The technical details, software implementations, and performance of the

MLSL method can be found in Rinnooy Kan and Timmer (1987a, b), Csendes

(1988), Csendes et al. (2008), and Sendin et al. (2009). A summary of the MLSL

algorithm is presented in this section.

The MLSL method is a multistart stochastic global optimization algorithm

designed to find all local minima by iteratively collecting information about the

regions of attractions of the local minimizers found so far. The region of attraction

of a local minimizer x� is the set of points in X such that, for any x 2 X, the local

optimization starting at x converges to x�. The MLSL algorithm relies on a

combination of random sampling, clustering, and local search strategies. Each

MLSL iteration consists of two phases, sampling and minimization. In the sampling

Table 1 High-level structure of the multilevel single linkage (MLSL) algorithm
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phase, a finite number of sampled random points are drawn from a uniform

distribution over X and the objective function value is evaluated at each of these

sample points. In the minimization phase, a minimization procedure is performed

from a subset of sample points. Several local search solvers have been used within

the MLSL minimization phase.

The high-level structure of the MLSL algorithm is described in Table 1, where

the notation bac defines the greatest integer that is less than or equal to a. The local

minimizers found are in the set X�. Any local optimization method may be used in

the MLSL algorithm. The single linkage clustering technique, which can produce

clusters of any geometric shape (Boender et al. 1982), is applied to reduce the

number of local searches. At each iteration k, ex 2 eC is selected as a start point for

the local optimization method if it has not been used as a start point at a previous

iteration (i.e., ex 62 bX), and if there is no point y 2 X� [ eC within the critical distance

rk of ex with a lower objective function value (i.e., there is no y such that

kex � yk� rk and f ðyÞ\f ðexÞ). The critical distance is given by

rk ¼ p�1=2 C 1þ n

2

� �
lðXÞa log kN

kN

� �1
n

; ð9Þ

where l is the Lebesgue measure (Royden 1988), C is the gamma function, a is a

positive constant, and N is the sample size per iteration.

3.2 Mesh adaptive direct search (MADS) algorithm

The MADS algorithms generalize the generalized pattern search (GPS) algorithm

(Torczon 1997). Both GPS and MADS are directional-base optimization methods.

The MADS method was developed and analyzed in 2006 (Audet and Dennis Jr.

2006; Abramson and Audet 2006) for general constrained optimization problems of

the form

min
x2S

f ðxÞ; ð10Þ

where S ¼ fx 2 X j gjðxÞ� 0; j 2 Jg � Rn, f ; gj : X ! R [ f1g for all

j 2 J ¼ f1; 2; . . .;Ncg, and X � Rn. No differentiability assumptions on either the

objective function f or the constraints gj are required for the MADS method. The

domain X represents unrelaxable constraints (i.e., constraints that necessarily need

to be satisfied in order for the functions to be evaluated). The unrelaxable con-

straints often include bounds constraints l� x� u with l and u in ðR [ f	1gÞn and
Boolean constraints that indicate if they are satisfied or not. The functions gj rep-

resent the other constraints and are referred to as relaxable constraints. The

objective function f and the constraints gj’s defining the feasible domain S are

usually provided as blackboxes in the sense that the way to obtain a function value

from a given x 2 Rn is not provided in an analytical way, or it may be time-

consuming or expensive to evaluate. The blackboxes may also fail to return function

values at some feasible points, and these points are referred to as hidden constraint

points. Blackbox functions are typically evaluated by running computational codes
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or simulations where advanced numerical methods are applied to solve complex

problems. We summarize the principle behind the MADS algorithms in this sec-

tion. The technical details and software implementation of MADS can be found in

Le Digabel (2011) and references therein.

The MADS method can handle constraints by three different strategies: the

extreme barrier (EB), the progressive barrier (PB), and the progressive-to-extreme

barrier (PEB) (Audet et al. 2010). In the EB approach, infeasible trial points and

feasible points that fail hidden constraints are rejected by setting their objective

function value to infinity. In the PB approach, a constraint violation function and a

threshold which is progressively reduced are introduced, and trial points whose

constraint violation values exceed the threshold are rejected from consideration. The

PEB approach is a hybrid of the PB and EB approaches.

MADS is an iterative method that attempts to locate a minimum over the feasible

region by directly making comparisons of the objective function value at some trial

points lying on a mesh over the domain space. At each iteration, the algorithm

generates a finite number of trial points on the mesh, evaluates the functions at some

(or all) generated trial points with an attempt to find a point with a lower objective

function value than the current best iterate point found so far, and then adapts the

fineness of the mesh to approach an optimum. The high-level structure of the MADS

algorithm is given in Table 2.

Each iteration k of the MADS algorithm is characterized by the SEARCH and

POLL steps where trial points are generated and functions are evaluated. These trial

points must lie on the mesh Mk defined by

Mk ¼
[
x2Vk

xþ Dm
k Uz j z 2 NnU

� 	
; ð11Þ

where Dm
k [ 0 is the mesh size parameter, Vk � Rn is the set of all previously

evaluated trial points at iteration k, V0 is the set of initial trial points, and U is an

n� nU matrix representing a fixed finite set of nU directions in Rn.

Table 2 High-level structure of the mesh adaptive direct search (MADS) algorithm
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The columns of matrix U constitute the set of mesh directions. U is constructed

so that U ¼ HZ, where H is a nonsingular n� n matrix and Z is an n� nU integer

matrix. Since Mk is defined to be the union of sets over Vk, all previously evaluated

trial points before iteration k lie on Mk and all new trial points can be constructed

around these previously evaluated points using the directions in U.
The SEARCH step is optional. If trial points are not generated and functions are

not evaluated in the SEARCH step, it is referred to as an empty SEARCH step. In

the SEARCH step, function evaluations are allowed at any trial point on the mesh

and any algorithm can be used. The SEARCH step can be used to globally explore

the feasible region. A few algorithms have been incorporated in the SEARCH step,

such as a particle swarm search algorithm with GPS (Vaz and Vicente 2007) and a

variable neighborhood search (VNS) algorithm with MADS (Audet et al. 2008).

The POLL step evaluates the objective function at local trial points in a poll trial

set defined by

Pk ¼ xk þ Dm
k / j / 2 Uk

� 	
� Mk; ð12Þ

where xk and Uk are the poll center and the set of poll directions at iteration k,

respectively. The poll size parameter Dp
k is introduced in the POLL step and points

of Pk must be generated so that their distances to the poll center xk are bounded

below by Dp
k . The POLL step includes evaluating the constraint functions as well.

The MADS method constructs the set of directions Uk in the POLL step. Uk must

be a positive spanning set and trial points generated by Uk must lie on the mesh Mk.

Two approaches for generating Uk are LTMADS and ORTHOMADS. LTMADS

uses a random lower triangular matrix to generate directions (Audet and Dennis Jr

2006), while ORTHOMADS uses a Householder matrix and Halton sequences to

deterministically generate orthogonal directions (Abramson et al. 2009). The

convergence properties of LTMADS and ORTHOMADS are proved in Audet and

Dennis Jr (2006) and Abramson et al. (2009), respectively.

When a trial point with a lower objective function value is found or all generated

trial points are evaluated, the next poll center xkþ1 will be selected and the mesh and

poll size parameters will be updated. If a trial point with a lower objective function

value is found at iteration k, the mesh size parameter at iteration k þ 1 must be

greater than or equal to the one at iteration k. Otherwise, it must be reduced. The

poll size parameter must also be updated in this step (using rules appropriate to the

algorithm used to generate Uk). The formula used to update the mesh and poll sizes

can be found in Audet and Dennis Jr. (2006) and Abramson et al. (2009).

A software package called Nonlinear Optimization by Mesh Adaptive Direct

Search (NOMAD) is a C?? implementation of MADS algorithms (Le Digabel

2011; Abramson et al. 2014). Three algorithms implemented in NOMAD to

generate the directions are ORTHOMADS, LTMADS, and GPS. There is another

MADS instance called QRMADS which uses an equal-area partition of the unit

sphere and QR decomposition to generate the directions (Van Dyke and Asaki

2015), but QRMADS is not currently implemented in NOMAD.
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4 A new variant of the multilevel single linkage algorithm

We propose to combine the MADS algorithm with the MLSL method. This new

combined algorithm is designed to locate multiple local mimina of blackbox

optimization problems. We consider an optimization problem of the form

min
x2H

f ðxÞ; ð13Þ

where H � Rn, f : H ! R [ f1g, the functions defining f and H are computed by

computational codes that may return invalid outputs even when all inputs are valid,

and the constraints defining H may be evaluated before or after running the com-

putational codes.

Each MLSL iteration consists of two phases, global and local. The sample points

are drawn from a uniform distribution over the feasible space and the function

evaluation is performed at sample points in the global phase, and the local search

solver is applied from some of these sample points in the local phase. Only some of

the sample points are used as the start points for the local search procedure because

it is costly to perform the local searches from all sample points. The strategy used to

reduce the number of local searches is that a subset of sample points with the lowest

objective function values are selected and the single linkage clustering procedure is

then applied to cluster these sample points so that only one local search procedure

initializes from each cluster.

Since MADS algorithms are designed for blackbox optimization, we want to

utilize MADS algorithms with empty SEARCH steps in the MLSL local phase. Any

MADS algorithm (such as LTMADS or ORTHOMADS) used to generate the

directions in the POLL step of the MADS method can be used in the MLSL local

phase, and all strategies introduced in MADS to handle constraints are applicable in

this MLSL local phase. All strategies used by MADS can be used in the MLSL

global phase since only objective function values are used in the MLSL global

phase. Any sample point whose objective function value is finite can be used as a

candidate of a start point of a local optimization method. Unlike in the MLSL local

phase, infeasible points that satisfy the PB constraints can be used without switching

to EB, because these points may be used as starting points of the MADS algorithm

in the local phase. The choice of MADS algorithms (LTMADS or ORTHOMADS)

and constraints handling techniques used in the combined MLSL–MADS algorithm

depends on applications. For example, if no information is available to help handle

infeasible points, then the EB approach is necessary; if uniform searching in the

local phase is desired, then ORTHOMADS should be applied in the local phase.

For blackbox optimization problems, objective function values are calculated by

a computational code and hidden constraint points may exist. Traditionally, the

optimization procedure is paused to provide information about hidden constraint

points so that the algorithmic parameters of the numerical subroutines used to

calculate the objective function values may be tuned to work for such points. Since

tuning algorithmic parameters to work for all hidden constraint points is not an easy

task, we deal with these hidden constraint points by setting their objective function
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values to infinity. The feasible points that fail hidden constraints are not used as start

points for the MADS algorithm integrated into the MLSL method.

The new combined MLSL–MADS algorithm is presented in Table 3 (the notation

‘‘eCnbC’’ is for fx j x 2 eC and x 62 bCg). The critical distance used in this combined

MLSL–MADS algorithm is

rk ¼ p�1=2 C 1þ n

2

� �
lðHÞ 1� a1=ðNk�1Þ

� �h i1
n

; ð14Þ

where l is the Lebesgue measure, C is the gamma function, a is constant in (0, 1),

and Nk is the sample size at iteration k. The critical distance rk was introduced in

Boender et al. (1982) and its theoretical properties were proved in Rinnooy Kan and

Timmer (1987a). Based on the theoretical results, using rk defined in (14) within the

MLSL method results in the least cost in terms of the number of local searches.

Table 3 High-level structure of the modified multilevel single linkage (MLSL–MADS) algorithm
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The stopping criteria of the combined MLSL–MADS can be set using different

information. The MLSL stopping criteria may include a maximum number of found

minimizers (size of X�), a maximum number of iterations k, and/or a maximum

number of random sampling points (size of C). Any MADS stopping criterion that is

available in NOMAD can be used in the MLSL–MADS algorithm. The stopping

criteria of MADS may include a maximum number of iterations, mesh or poll size

tolerances, and/or a convergence criterion.

5 On multiple solutions and different families of solutions

We expect that inverse transport problems of the type that we discuss in this paper

will have many unknown parameters and comparatively fewer measured data

points. Even for the case of more data points than unknown parameters, we expect

that many different system models could produce the same measurement. In other

words, we do not expect the inverse transport problem to have a unique solution.

Our goal in this work is to find all possible solutions. However, we wish to

distinguish between solutions that are related in some parametric way and those that

are not. For example, consider the simple case in which the mass and density of a

homogeneous cylinder are known, but the height and radius are to be found. There

are an infinite number of solutions to this inverse problem, but they are all related in

a parametric way. We call such solutions equivalent. However, if the shape of the

object is not known, then we may also seek solutions in cuboids or spheres. There

are an infinite number of solutions in the family of cuboids, but only one (or fewer)

solution in the family of spheres. We use family to distinguish among solutions that

are not related in an obvious parametric way. We are seeking all equivalent

solutions in all possible families. Presently, our implementation of MLSL–MADS

generally requires the user to manually initiate searches in different families

(spheres or cylinders, for example), but, as shown in Sect. 6, there are problems for

which solutions in different families can be found automatically.

6 Numerical test cases

Two numerical test cases illustrate the performance of the combined MLSL–MADS

algorithm for solving inverse transport problems. We consider the spherical test

geometry shown in Fig. 1. It is a solid spherical high-enriched uranium (HEU)

gamma-ray source containing 94.73 % 235U and 5.27 % 238U (by weight); the HEU

sphere has a radius of 8.741 cm. This spherical source is surrounded by a spherical

shield that is separated from the source by a void region. The shield is made of

layers of pure lead and pure aluminum. The lead layer has an inner radius of 12.4

cm and a thickness of 0.5 cm, and the aluminum layer has an inner radius of 12.9 cm

and a thickness of 0.3 cm. The HEU, lead, and aluminum mass densities are 18.74,

11.4, and 2.7 g/cm3, respectively.
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We use the uncollided flux of the 766-keV gamma-ray line emitted from 238U as

the quantity of interest. The emission rate of this line is 1:525� 104 c/s/(mole 238U).

Using the material parameters of the HEU given above, the source rate density qEi

of the 766-keV line in HEU is 38.1 c/s/cm3. (Actually, the 766-keV line comes from
234mPa, a daughter of 238U; the two are almost always in secular equilibrium, and

this line is often used for uranium diagnostics (PANDA 2007).)

The detector is modeled as a point located 100 cm from the center of the

radiating sphere. Multiplying the uncollided flux measured at this detector by

4p(100 cm)2 gives an estimate of the total leakage rate of the 766-keV line. Using

the ray-tracing method of Favorite et al. (2009) with the 15-point Gauss-Kronrod

adaptive quadrature formula implemented in QUADPACK (Piessens et al. 1983),

the uncollided flux of the 766-keV line at the detector point is 1:99642� 10�2 c/s/
cm2 and the total estimated leakage rate is 2:50877� 103 c/s. We used this value as

the reference Fm;i in (7) and assumed a relative uncertainty rm;i=Fm;i of 0.01 %.

The uncollided fluxes used during the MLSL–MADS iterations are also

calculated by the ray-tracing method, and the algorithmic parameters of the

QUADPACK subroutine are the same ones used in calculating the reference values.

We input enough digits from the reference result into the MLSL–MADS algorithm

such that the objective function value f(x) of (7) is zero for the model shown in

Fig. 1.

We consider two test cases. The unknown parameters of case I are the HEU

source radius, the radius of the inner surface of the lead layer, and the mass density

Fig. 1 Test geometry
(rendering provided by K.
C. Bledsoe, Oak Ridge National
Laboratory)
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of the HEU source. The unknown parameters of case II are the radius of the

interface between the two regions of the shield (lead and aluminum in Fig. 1) and

the material contained in those two regions of the shield. With three unknown

system parameters and one data point, these problems are underdetermined, and

multiple solutions are expected.

Typically, information and knowledge related to an optimization problem should

be used to define the correct feasible region, and information associated with the

feasible region may be used by the optimization algorithm to locate trial points. In

applications, other measurements and/or information may be available to help

define the correct feasible region, but we do not use measurements or information to

define the feasible region that is related to the true test geometry in this paper. We

thus impose only a few constraints on the unknown system parameters in the test

problems. Each layer’s thickness is at least 1:0� 10�6 cm, and an unknown

interface location (radius) is not allowed to cross a neighboring known interface

location. The mass densities are in [0.0001, 25.0] g/cm3. Unknown shield materials

are constrained to be one of those present in a library of 119 materials that we

developed for this purpose. The library defines each material’s composition

(isotopes and weight fractions), mass density, and macroscopic photon cross section

REi
t . The materials in the library are ordered by mass density.

We implemented the MLSL–MADS algorithm using a mixed Fortran/C??

programming paradigm where the MLSL algorithm and the subroutines for

computing the objective function values are written in Fortran and the algorithms

implemented in the NOMAD software package (Abramson et al. 2014), written in

C??, are used. The MLSL algorithm in our implementation is modified from the

GLOBALm software package (Csendes et al. 2008). The stopping criteria for the

global phase are k[ 100, sizeðX�Þ[ 100 or sizeðbXÞ[ 100 and the stopping criteria

for the local phase are that the maximum number of iterations is 50,000 or the

convergence of objective function values is within 1:0� 10�6. We used the EB

approach to handle constraints (including hidden constraints).

We ran each test case using the combined MADS–MLSL algorithms for 20

independent runs (i.e., using a different random number seed for each run).

For case I, each run of the MLSL–MADS algorithm found 94–96 local

minimizers. Every local minimizer was also a solution in the sense that we defined

solution in (6) of Sect. 2: The calculated line leakage was within one standard

deviation of the reference line leakage. All local minimizers from all 20 runs are

plotted in Fig. 2, where ‘‘r1’’, ‘‘r2’’, and ‘‘d1’’ represent the HEU source radius, the

radius of the inner surface of the lead layer, and the mass density of the HEU source,

respectively. The surface shown in Fig. 2 is the space of all local minimizers of this

transport problem. It is also the space of all solutions. Because these solutions all lie

on a surface—i.e., the three unknown parameters are always related by some

parameter—we say that they are all equivalent solutions rather than multiple

solutions (as discussed in Sect. 5).

The blue point on Fig. 2 is the exact solution shown in Fig. 1, which is also the

global minimizer. None of the 20 runs of the optimizer found the global minimum.

However, we are not merely seeking the global minimum but rather all possible
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solutions. A method that finds the global minimum but ignores the local minimizers

will not report the huge space of viable solutions. In other words, for our purposes,

finding the surface shown in Fig. 2 is much more important than finding the single

global minimum.

Also shown for comparison in Fig. 2 are the results of 20 independent runs of a

differential evolution implementation (Bledsoe et al. 2011a), shown in green. The

differential evolution algorithm reports a single minimizer with each run. None of

the 20 runs found the global minimum, but they all found points on the surface.

Each of the 20 runs of the differential evolution algorithm took an average of 4.6 s

to run, while each of the 20 runs of the MLSL–MADS algorithm took an average of

44.5 s to run. Thus, the MLSL–MADS algorithm took approximately 0.46 s to find

each solution, while the differential evolution algorithm took approximately 4.6 s to

find each solution. This timing comparison was for sequential implementations of

the algorithms and can change if either algorithm is implemented differently, but it

shows the efficiency of the MLSL–MADS algorithm.

Fig. 2 Two views of the surface formed of local minimizers for case I
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For case II, each run of the MLSL–MADS algorithm found 90-95 local

minimizers, except that one run found only 31. As for case I, every local minimizer

was also a solution in the sense that we defined solution in Sect. 2 with (6). All local

minimizers from all 20 runs are plotted in Fig. 3, where ‘‘xs2’’, ‘‘xs3’’, and ‘‘r3’’

represent the macroscopic photon cross section for the inner shield layer, the

macroscopic photon cross section for the outer shield layer, and the radius of the

interface between the shield layers, respectively. The macroscopic cross sections

were collected after the optimization and are plotted for convenience; it is the shield

materials, with their unknown composition and density, that are the unknown

parameters. Four of the 20 runs found the global minimum, indicated by the blue

point on Fig. 3. However, as for case I, it is not merely the global minimum that we

seek, but the entire space of solutions.

For this problem, the MLSL–MADS algorithm found two different families of

solutions, each indicated by a surface on Fig. 3. One family of solutions has

materials with cross section greater than 0.708 cm-1 (corresponding to pure silver at

Fig. 3 Two views of the surface formed of local minimizers for case II
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a mass density of 10.5 g/cm3) as the inner shield, and the other has materials with

cross section greater than 0.708 cm-1 as the outer shield. As discussed in Sect. 5,

we call these multiple families of solutions because there is no clear parameter-

ization that connects the two surfaces. Each surface is composed of ‘‘stripes.’’ The

macroscopic photon cross section for lead at 766 keV is 1.002 cm-1. The stripe

containing the exact solution in Fig. 3 (xs2 
 1 cm-1) shows all solutions with lead

as the inner shield material and different values of the interface location for different

values of the outer shield material. There is another stripe on the other surface (xs3


 1 cm-1) with lead as the outer shield material and different values of the interface

location for different values of the inner shield material. When pure iron at a mass

density of 7.896 g/cm3 is the inner shield material and lead is the outer shield

material, the interface location is 12.909 cm, only 0.009 cm greater than the true

interface location. For our purposes, this solution is just as valid as the exact

solution or global minimum. (Our implementation of the differential evolution

algorithm was not run on this problem because it treats shield materials differently,

so the comparison with MLSL–MADS would not be straightforward).

We ran these problems using both LTMADS and ORTHOMADS algorithms. For

case I, there are very small (round-off sized) differences in most of the solutions

found when using LTMADS versus ORTHOMADS, but essentially the same set of

solutions were found. The plots (Fig. 2) look exactly the same. For case II, there are

very small differences in a few of the solutions found when using LTMADS versus

ORTHOMADS, but essentially the same set of solutions were found. The plots

(Fig. 3) look exactly the same.

The ability to analyze MLSL–MADS results automatically, rather than visually,

would help enormously in realistic applications.

7 Conclusions

The inverse transport problem is a constrained nonlinear parameter estimation

problem. It is known that this problem often has a large number of local minima,

and the MLSL method is a reliable and efficient method designed for finding all

local minima that are potentially global. The inverse transport optimization problem

considered in this paper is a blackbox optimization problem in the sense that the

objective function value is computed by a computer code in which advanced

numerical methods are applied and hidden constraint points may be present. Since

MADS is a DFO method designed for blackbox optimization with general

constraints, we integrated the MADS algorithm into the local phase of the MLSL

method where the techniques used to handle constraints in the local phase can be

extended to the global phase. The new combined algorithm is implemented and

applied to solve inverse transport optimization problems of a multilayered spherical

system where the unknown system parameters are mixed types (interface locations,

shield materials, and mass densities).

Numerical results show that the combined MLSL–MADS algorithm locates

multiple local minimizers that are solutions of inverse transport problems (using our

definition of solution). We can determine whether or not the solutions are drawn
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from different families by visually examining surface plots, and we are seeking

computational methods for determining whether the solutions represent different

families or the same family.

Since the MLSL–MADS algorithm is designed for blackbox optimization

problems, our future work is to apply this algorithm to solve other related blackbox

optimization problems in particle transport applications.
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