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Abstract We consider semidefinite programming (SDP) formulations of certain
truss topology optimization problems, where a lower bound is imposed on the fun-
damental frequency of vibration of the truss structure. These SDP formulations were
introduced in Ohsaki et al. (Comp. Meth. Appl. Mech. Eng. 180:203–217, 1999). We
show how one may automatically obtain symmetric designs, by eliminating the ‘re-
dundant’ symmetry in the SDP problem formulation. This has the advantage that the
original SDP problem is substantially reduced in size for trusses with large symmetry
groups.

Keywords Truss topology optimization · Semidefinite programming · Group
symmetry

1 Introduction

In this paper we consider semidefinite programming (SDP) formulations of certain
truss topology optimization problems. In particular, we consider so called group-
symmetric truss designs of the type studied by Kanno et al. (2001); see also Ohsaki
et al. (1999), Ohsaki (2000).
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Kanno et al. pointed out that, although a symmetric truss design is desirable in
practice, there may exist optimal solutions of the SDP formulation that do not exhibit
this symmetry. They therefore proceed to show that certain search directions used
in interior point algorithms for SDP preserve symmetry. This means that the interior
point algorithms generate a sequence of iterates that are group symmetric, given that
the starting point is group symmetric.

In this paper we show how one may automatically obtain symmetric designs, by
eliminating the ‘redundant’ symmetry in the SDP problem formulation. In particular,
we perform pre-processing to restrict the feasible set of the SDP problem to symmet-
ric designs. This is in the spirit of work by Schrijver (1979), Gatermann and Parrilo
(2004), de Klerk et al. (2006, 2007), and others, who have shown how ‘group sym-
metric’ SDP problems may be reduced in size using representation theory.

We illustrate our approach by considering a family of dome truss structures, and
show that the resulting SDP problems may be greatly reduced in size via symmetry
reduction.

1.1 Outline

We begin with a discussion of finite groups and their linear orthogonal representations
in Sect. 2. The next two sections deal with matrix algebras and their representations.
In particular, the case where the matrix algebra in question is the commutant of a
linear representation of a finite group is of interest to us in this paper. In Sect. 5 we
recall the notion of SDP problems with ‘group symmetric data’, and how these prob-
lems may be reduced in size using the algebraic techniques described in the previ-
ous sections. We then describe the SDP formulation of a truss topology optimization
problem due to Ohsaki et al. (1999) in Sect. 6. We explain in which sense these SDP
problems have group symmetric data, and show how they may be reduced using the
techniques described in the previous section. Finally, we illustrate our results on a
family of dome truss structures in Sect. 7.

1.2 Notation

The space of p ×q real matrices is denoted by R
p×q , and the space of k × k symmet-

ric matrices is denoted by Sk , and the space of k ×k positive semidefinite matrices by
S +

k . We will sometimes also use the notation X � 0 instead of X ∈ S +
k , if the order

of the matrix is clear from the context.
We use In to denote the identity matrix of order n, and omit the subscript if the

order is clear from the context.
The Kronecker product A ⊗ B of matrices A ∈ R

p×q and B ∈ R
r×s is defined as

the pr ×qs matrix composed of pq blocks of size r × s, with block ij given by AijB

(i = 1, . . . , p), (j = 1, . . . , q).
The following properties of the Kronecker product will be used in the paper, see

e.g. Graham (1981),

(A ⊗ B)T = AT ⊗ BT (1)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (2)
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for all A ∈ R
p×q,B ∈ R

r×s,C ∈ R
q×k,D ∈ R

s×l .
Finally, let Eij ∈ R

n×n denote the matrix with 1 in position ij and zero elsewhere.

2 On finite groups and their representations

The next definition recalls the fact that finite groups may be represented by multi-
plicative groups of orthogonal matrices.

Definition 1 (Miller 1972) Let V be a real, m-dimensional vector space and iden-
tify R

m×m (respectively, Om) as the space of all (respectively, orthogonal) m × m

matrices. An (orthogonal) linear representation of a group G on V is a group ho-
momorphism T : G → R

m×m (respectively, T : G → Om). In other words for each
element g ∈ G there exists an invertible Tg ≡ T (g) ∈ R

m×m (respectively, in Om)
such that T (g1)T (g2) = T (g1g2).

In what follows we consider images of SDP data matrices Ai = AT
i ∈ R

m×m under
Tg’s. Thus, we have to restrict our attention to orthogonal representations, as in the
usual SDP setting one needs (as it will become clear in what follows) that Bi =
TgAi T −1

g are symmetric, i.e. Bi = BT
i . From the representation-theoretic point of

view, there is little loss of generality in considering such representations only. Indeed,
any real linear representation of a finite group is equivalent, by conjugation with an
upper-triangular matrix, to an orthogonal representation.1

The following theorem shows that, if one has two orthogonal representations of
a finite group, one may obtain a third representation using Kronecker products. In
representation theory this construction is known as tensor product of representations.

Theorem 2 Let G be a group and denote two orthogonal linear representations of
G by pi (i = 1, . . . , |G|) and si (i = 1, . . . , |G|), such that pi corresponds to si (i =
1, . . . , |G|).

Then a third orthogonal linear representation of G is given by

Pi := pi ⊗ si (i = 1, . . . , |G|).

Proof Let indices i, j, k ∈ {1, . . . , |G|} be given such that pipj = pk (and therefore
also sisj = sk). Note that

PiPj = (pi ⊗ si)(pj ⊗ sj )

= (pipj ) ⊗ (sisj )

= pk ⊗ sk ≡ Pk.

Moreover, note that the matrices Pi are orthogonal, since the pi and si ’s are. �

1This can be seen by modifying, in the obvious way, the standard representation theory argument,
that works for any complex representation of G , creating a T (G)-invariant positive definite matrix

A = ∑
g∈G T (g)

T T (g), and conjugating T (G) by the Cholesky factors of A.
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The commutant (or centralizer ring) of G is defined by

A′ := {X ∈ R
n×n : XP = PX ∀P ∈ G}.

An alternative, equivalent, definition of the commutant is

A′ = {X ∈ R
n×n : R(X) = X},

where

R(X) := 1

|G|
∑

P∈G
PXP T , X ∈ R

n×n

is called the Reynolds operator (or group average) of G . Thus R is the orthogonal
projection onto the commutant. Orthonormal eigenvectors of R corresponding to the
eigenvalue 1 form a orthonormal basis of A′ (seen as a vector space).

The commutant is a C∗-algebra, i.e. a subspace of R
n×n that is closed under matrix

multiplication and conjugation.
We will study optimization problems where we may assume that the feasible set

is contained in some commutant, and we therefore devote one more section to recall
some results on representations of matrix ∗-algebras. The basic idea is that we want
to obtain the most ‘economical’ representation of the feasible set of our optimization
problem.

3 Matrix algebras and their representations

Let A1 and A2 denote two matrix ∗-algebras. We say that A1 and A2 are equivalent
if there exists a unitary matrix Q (i.e. Q∗Q = I ) such that

A2 = {Q∗XQ : X ∈ A1}.
We define the direct sum of matrices X1 and X2 as

X1 ⊕ X2 :=
(

X1 0
0 X2

)

.

An algebra A is called basic if

A =
{

t⊕

i=1

M : M ∈ C
m×m

}

for some t and m. Finally, the direct sum of two algebras A1 and A2 is defined as

A1 ⊕ A2 := {X1 ⊕ X2 : X1 ∈ A1, X2 ∈ A2} .

The following existence theorem gives the so-called completely reduced represen-
tation of a matrix ∗-algebra A.
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Theorem 3 (Wedderburn 1907)2 Each matrix ∗-algebra is equivalent to a direct sum
of basic algebras and a zero algebra.

In general this completely reduced representation is not known, but it is known in
our case, that is, when our ∗-algebra is the commutant3 of a finite group representa-
tion.

In the next section we give details on how to compute the completely reduced
representation of the commutant. The reader may wish to skip this section during a
first reading of the paper.

4 Commutant of a group representation

Here we summarize (and use) the relevant material from Serre (1977), in particular
from Sect. 13.2, where R-representations are treated.4

Let F be either C or R, and T be a F-linear representation of a finite group G
into F

m×m, or more precisely, into the group GLm(F) of the invertible matrices in
F

m×m. The character of T is a function χT : G → F given by χT (g) := tr(T (g)),
that encodes a lot of information about T and G . For instance, two representations
of G are equivalent if and only if they have the same character. Note that in order to
know χT , it suffices to know its values on representatives of conjugacy classes5 of
G .

Important (and easy to check) formulae for the characters of the direct sum T ⊕ Q
and of the tensor product T ⊗ Q of two representations T and Q of G are as follows:

χT ⊕Q(g) = χT (g) + χQ(g), χT ⊗Q(g) = χT (g)χQ(g), g ∈ G. (3)

A representation is called irreducible if the space F
m does not contain a proper

subspace that is left invariant by all the T (g), where g ∈ G . The following is well-
known, cf. e.g. Serre (1977, p. 108).

Theorem 4 The commutant C(I) of a linear R-irreducible representation I of G is
isomorphic to a division ring6 over R. Thus C(I) depends upon the decomposition
of the representation I over C. Namely:

1. I is irreducible over C: C(I) ∼= R, dimR(C(I)) = 1.
2. χG (I) = ζG (J ) + ζG (J ), with C-valued ζG (J ) and a C-representation J of G :

C(I) ∼= C, dimR(C(I)) = 2.

2A detailed treatment of this material is given in Wedderburn (1934); our statement of the theorem is based
on lecture notes by A. Schrijver, available at http://homepages.cwi.nl/~lex/files/block.pdf.
3Called commuting algebra in Serre (1977).
4Representation theory of finite groups is easiest over the field of complex numbers C. It is in fact benefi-
cial to bear in mind that every R-representation is also a C-representation.
5The conjugacy class of g ∈ G in G is the set {hgh−1 | h ∈ G} ⊂ G .
6A division ring is an algebraic object that is “just like” a field, except that its multiplication need not be
commutative. The finite-dimensional division rings that have R in the center are classified: such a ring is
either R, or C, or H. The latter is the famous Hamilton’s algebra of quaternions.

http://homepages.cwi.nl/~lex/files/block.pdf
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3. χG (I) = 2ζG (J ), with a R-valued ζG (J ) and a C-representation J of G : C(I) ∼=
H, dimR(C(I)) = 4.

In our case the group G will only have irreducible over R representations that re-
main irreducible over C, so only case 1 will occur. One can describe C(I) explicitly.
In case 1 it just consists of the scalar matrices λI , λ ∈ R.

For the curious reader, let us give an example of case 2. Let G = Zn, the cyclic
group of order n, and let a be generator of the cyclic group as an abstract group.

All its irreducible representations over C are 1-dimensional. However Zn = {ak |
k = 1, . . . , n} has 2-dimensional representations over R that are irreducible over R,
e.g.

ak →
(

cos 2πk/n sin 2πk/n

− sin 2πk/n cos 2πk/n

)

.

This representation I has the character χ(ak) = 2 cos 2πk/n = e2π ik/n + e−2π ik/n =
ζ(ak) + ζ(ak), where ζ is the character of the 1-dimensional C-representation ak →
e2π ik/n. We can directly check that

C(I) =
〈(

y 0
0 y

)

,

(
0 z

−z 0

)

, y, z ∈ R

〉

.

Going back to the general situation, T is equivalent to a direct sum of irreducible
F-representations Tk , i.e.

T (g) ∼= T1(g) ⊕ T2(g) ⊕ · · · ⊕ T�(g), g ∈ G.

On the other hand, G has exactly as many irreducible C-representations as it has
conjugacy classes, say c := cC. Theorem 4 implies that when F = R then the number
cF of R-irreducible representations is at most cC. By rearranging, if necessary, direct
summands, and abbreviating

kJ (g) = J (g) ⊕ · · · ⊕ J (g)
︸ ︷︷ ︸

k times

,

we obtain a decomposition that is called explicit in Serre (1977, Sect. 2.7).

T (g) ∼= m1 T1(g) ⊕ m2 T2(g) ⊕ · · · ⊕ mc Tc(g), mi ≥ 0, 1 ≤ i ≤ c, g ∈ G, (4)

where Ti is not equivalent to Tj when i �= j . The latter implies in particular that any
x ∈ C(T ) must respect the coarse block structure provided by the Tk’s; on the other
hand x can have a nontrivial action within any mk Tk-block. The following completely
describes the commutant of such a block.

Theorem 5 Let I be an irreducible R-representation of G . Then for any k ≥ 1 one
has C(kI) = Mk(R) ⊗ C(I), where C(I) is isomorphic to either R, C, or H, de-
pending upon I in accordance with Theorem 4.
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The formula C(kI) = Mk(R) ⊗ C(I) just says that each element x ∈ C(kI)

equals the Kronecker product x = X ⊗ Y , with X ∈ Mk(R) and Y ∈ C(I). In the
case 1 of Theorem 4, we have Y = λI , λ ∈ R.

Further, we will use the following extremely useful First Orthogonality Relation
for characters, see Serre (1977, Theorem I.3). Let χ , ζ be characters of two repre-
sentations of G , and define the scalar product of them to be

〈χ | ζ 〉 = 1

|G|
∑

g∈G
χ(g)ζ(g).

Theorem 6 Let χ , ζ be characters of two nonequivalent irreducible representations
of G . Then 〈χ | ζ 〉 = 0, and 〈χ | χ〉 = 1.

4.1 Computing the decomposition

Computing the decomposition (4), more precisely, the isomorphism, that is, a matrix
M such that M−1 T (g)M has the form as in (4), between the original representa-
tion and the representation (4) is greatly helped by the explicit knowledge of each
irreducible occurring there. Let W := Tk for some k be an irreducible representa-
tion of G of dimension �, given by the matrices (wij (g)) for each g ∈ G . For each
1 ≤ α,β ≤ � consider the linear map

pαβ = �

|G|
∑

g∈G
wβα(g−1)T (g),

described in Serre (1977, Sect. 2.7), see in particular Prop. 8 there. In particular pαα

is a projection. Denote its image by Vα . Then Vα ∩ Vβ = {0} for α �= β . Moreover
dimVα = mk and dimV1 ⊕ · · · ⊕ V� = mk�. The matrices T (g), g ∈ G , preserve
V = V1 ⊕· · ·⊕V�. Such subspaces are called G -stable, because G , or, more precisely
T (g) for any g ∈ G , maps each vector in V to a vector in V . Each T (g) on V is
equivalent to mkW(g).

It remains to specify the mk subspaces V s of V that are G -stable, so that on each
of them T (g) is equivalent to W(g). Let V1 be spanned by x1, . . . , xmk

. Then for
1 ≤ s ≤ mk the subspace is spanned by p11(xs),p21(xs), . . . , p�,1(xs).

With this information at hand, it is a routine linear algebra to write down an iso-
morphism M . As we know the natural basis of the commutant for the representation
in the form as at the right-hand side of (4), we can apply M−1 to it to obtain a basis
for the commutant of T .

5 Group symmetric SDP problems

Assume that the following semidefinite programming problem is given

p∗ := min
X�0

{tr(A0X) : tr(AkX) = bk, k = 1, . . . ,m} , (5)
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where Ai ∈ Sn (i = 0, . . . ,m) are given. The associated dual problem is

p∗ = max
y∈Rm

{

bT y : A0 −
m∑

i=1

yiAi � 0

}

. (6)

We assume that both problems satisfy the Slater condition so that both problems have
optimal solutions with identical optimal values.

Assumption 1 (Group symmetry) We assume that there is a nontrivial multiplicative
group of orthogonal matrices G such that the associated Reynolds operator

R(X) := 1

|G|
∑

P∈G
PXP T , X ∈ R

n×n

maps the feasible set of (5) into itself and leaves the objective value invariant, i.e.

tr(A0R(X)) = tr(A0X) if X is a feasible point of (5).

Since the Reynolds operator maps the convex feasible set into itself and preserves
the objective values of feasible solutions, we may restrict the optimization to feasible
points in the centralizer ring (commutant) A′ of G .

Moreover, the next result shows that one may replace the data matrices Ai (i =
0, . . . ,m) in the SDP formulation (5) by their projections R(Ai) (i = 0, . . . ,m) onto
the centralizer ring.

Theorem 7 One has

p∗ = min
X�0

{tr(R(A0)X) : tr(R(Ak)X) = bk, k = 1, . . . ,m} .

Proof The proof is an immediate consequence of Assumption 1 and the observation
that tr(AiR(X)) = tr(R(Ai)X) for any i. �

It follows that one may also replace the data matrices in the dual problem (6) by
their projections onto the centralizer ring.

Corollary 8 Under Assumption 1, one has

p∗ = max
y∈Rm

{

bT y : R(A0) −
m∑

i=1

yiR(Ai) � 0

}

.

If the completely reduced representation of the centralizer ring is known, this may
be used to reduce the size of the SDP problem, by block-diagonalizing the matrix
variable S := R(A0) − ∑m

i=1 yiR(Ai) using the procedure described in the previous
section.
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This idea has been applied most notably by Schrijver (1979, 2005), for SDP’s
arising from coding theory, where the centralizer ring is either the Bose-Mesner al-
gebra (Schrijver 1979), or the Terwilliger algebra of the Hamming scheme (Schrijver
2005).

We will use the same approach below for an example in truss topology optimiza-
tion.

6 A truss topology optimization problem

We consider a truss defined by a ground structure of nodes and bars. Let m be the
number of bars, and assume that free nodes have 3 degrees of freedom.

Let b ∈ R
m be the vector of bar lengths, and z ∈ R

m the vector of cross-sectional
areas. The topology optimization problem (TOP) is to find a truss of minimum vol-
ume such that the fundamental frequency of vibration is higher than some prescribed
critical value (Kanno et al. 2001):

(TOP) min
m∑

i=1

bizi

s.t. S =
m∑

i=1

(Ki − 	̄Mi)zi − 	̄M0

zi ≥ 0, i = 1, . . . ,m

S � 0,

where 	̄ is a lower bound on the (squared) fundamental frequency of vibration of the
truss, and M0 the so-called non-structural mass matrix. If a nonstructural mass mi is
added to each free node i, then the nonstructural mass matrix M0 is given by

M0 := 1

3

∑

i is a free node

miEii ⊗ I3. (7)

The matrices ziKi and ziMi are known as element stiffness and element mass
matrices, respectively. If a bar k has endpoints i and j , these matrices are defined as
follows:

If i and j are free nodes, then

Mk = ρbk

6

(
2(Eii + Ejj ) + Eij + Eji

) ⊗ I3, (8)

where ρ is the mass density of the bars, and bk the length of bar k; moreover

Kk = κ

b2
k

(Eii + Ejj − Eij − Eji) ⊗ dkd
T
k , (9)

where dk is a unit direction vector of the bar k, and κ the elastic modulus (Young’s
modulus).
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If i is a free and j a fixed node, then

Mk = ρbk

6
(2Eii) ⊗ I3, (10)

and

Kk = κ

b2
k

Eii ⊗ dkd
T
k . (11)

Note that the order of the matrices Eij equals the number of free nodes.

6.1 Truss symmetry

We may formally define the symmetry group of a given truss, by viewing the ground
structure of the truss as the embedding of a graph in R

3 (for space trusses) or in R
2

(for plane trusses). We will in fact only consider space trusses in this paper.
Now the symmetry group of the truss is defined as the subgroup of graph auto-

morphisms that:

1. Are also isometries (i.e. that also preserve edge (i.e. bar) lengths);
2. Map free nodes to free nodes with the same nonstructural mass and fixed nodes to

fixed nodes.

We will consider a subgroup, say G , of the symmetry group of the truss, by only
considering the free nodes. This is convenient, since the fixed nodes do not appear in
the data of problem (TOP). It will be useful to represent G in two different ways:

1. As a multiplicative group of 3 × 3 orthogonal matrices ri (i = 1, . . . , |G|) that are
bijections of the set of coordinates of the nodes to itself; in other words, the ri
matrices are rotation or reflection matrices.

2. As a group of permutation matrices pi (i = 1, . . . , |G|) corresponding to the per-
mutations of the free nodes in the automorphisms.

Lemma 9 The matrices Pi := pi ⊗ ri (i = 1, . . . , |G|) form an orthogonal, linear
representation of G .

Proof Follows immediately from Theorem 2. �

Theorem 10 If Kj (resp. Mj ) corresponds to an element stiffness (resp. mass) matrix
of the truss structure, and an index i ∈ {1, . . . , |G|} is given, then there is an index k

such that

PiKjP
T
i = Kk,

resp.

PiMjP
T
i = Mk.

Moreover, one has bj = bk . Finally, one has

PiM0P
T
i = M0, (12)

where M0 is the nonstructural mass matrix of the truss as defined in (7).
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Proof If i and j are free nodes and the endpoints of bar k, then the matrix Mk is
given by (8).

Now let p be a permutation matrix corresponding to a permutation of the nodes,
and let r be the corresponding 3 × 3 rotation/reflection matrix. Set P = p ⊗ r .

One has

PMkP
T = ρbk

6
(p ⊗ r)((2(Eii + Ejj ) + Eij + Eji) ⊗ I3)(p

T ⊗ rT )

= ρbk

6
(p ⊗ r)((2(Eii + Ejj ) + Eij + Eji)p

T ⊗ rT )

= ρbk

6
(p(2(Eii + Ejj ) + Eij + Eji)p

T ) ⊗ (rrT )

= ρbk

6
(p(2(Eii + Ejj ) + Eij + Eji)p

T ) ⊗ I3.

Assume now that p maps bar k = (i, j) to the bar k′ = (i′, j ′). Since bk = bk′ and

p(2(Eii + Ejj ) + Eij + Eji)p
T = (2(Ei′i′ + Ej ′j ′) + Ei′j ′ + Ej ′i′),

we have PMkP
T = Mk′ .

If i is a free and j a fixed node, then Mk is given by (10), and the proof is similar
to the previous case, as is the proof of (12).

The proof for the element stiffness matrices is also similar: Let zkKk be an element
stiffness matrix corresponding to a bar (i, j). If i and j are free nodes, then using (9)
one has

PKkP
T = κ

b2
k

(p ⊗ r)((Eii + Ejj − Eij − Eji) ⊗ dkd
T
k )(pT ⊗ rT )

= κ

b2
k

(p ⊗ r)((Eii + Ejj − Eij − Eji)p
T ⊗ dkd

T
k rT )

= κ

b2
k

(p(Eii + Ejj − Eij − Eji)p
T ) ⊗ ((rdk)(rdk)

T ).

Now use the fact that rdk is the direction vector of bar k′ := (i′, j ′), say dk′ , i.e.

PKkP
T = κ

b2
k′

(Ei′i′ + Ej ′j ′ − Ei′j ′ − Ej ′i′) ⊗ dk′(dk′)T =: Kk′ .

If i is a free node and j a fixed node, then Kk is given by (11), and the proof is similar
as before. �

Thus the dual problem of (TOP) satisfies Assumption 1 for the representation
P1, . . . ,P|G| of the symmetry group G .
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Corollary 11 Consider the orthogonal, linear representation of the truss symmetry
group G given by Pi := pi ⊗ ri (i = 1, . . . , |G|). Let S be feasible for (TOP) and

R(S) = 1

|G|
|G|∑

i=1

PiSP T
i ,

be the Reynolds operator in S. Then, (R(S)) defines a feasible point for (TOP) with
the same objective value as S.

Proof Follows directly from Corollary 8. �

6.2 Reformulating problem (TOP)

By Corollary 8 we may replace the data matrices in the formulation of (TOP) by their
projections onto the centralizer ring to obtain

min
m∑

i=1

bizi

s.t. S =
m∑

i=1

R(Ki − 	̄Mi)zi − 	̄R(M0)

zi ≥ 0, i = 1, . . . ,m

S � 0,

where the Reynolds operator R is now given by

R(X) = 1

|G|
|G|∑

i=1

PiXP T
i

where the Pi ’s are as described in Lemma 9.
Note that each data matrix corresponds to a bar, except for the nonstructural mass

matrix M0 which is a multiple of the identity.
Now consider a bar k. The projection of the data matrix (Kk − 	̄Mk) onto the

commutant depends only on the orbit of bar k under the action of G .
In other words, for two bars k and k′

R(Kk − 	̄Mk) = R(Kk′ − 	̄Mk′)

if and only if k and k′ share the same orbit.
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We may therefore replace the variables zi that belong to the same orbit o by a
single variable ζo.

min
∑

o an orbit

ζo

∑

i∈o

bi

s.t. S =
∑

o an orbit

ζo

(∑

i∈o

(Ki − 	̄Mi)

)

− 	̄R(M0)

ζo ≥ 0, o an orbit

S � 0.

Note that the matrices
∑

i∈o(Ki − 	̄Mi) lie in the centralizer ring for each orbit o.
If we know the irreducible representation of the centralizer ring, we may obtain an

orthogonal matrix Q that block-diagonalizes it (see Theorem 3).
Thus we obtain the final formulation

min
∑

o an orbit

ζo

∑

i∈o

bi

s.t.
∑

o an orbit

ζoQ
T

(∑

i∈o

(Ki − 	̄Mi)

)

Q − 	̄QT R(M0)Q � 0

ζo ≥ 0, o an orbit.

(13)

Note that the number of scalar variables has changed from the number of bars
to the number of orbits of bars. The linear matrix inequality has also been block
diagonalized, and this may be exploited by interior point solvers for SDP. The actual
sizes of the blocks depends on the structure of the group G .

The technique of grouping variables that belong to the same orbits is known as
‘design variable linking’ in structural optimization, and is often done heuristically.
Our description may be seen as a rigorous mathematical basis for this technique.

7 A Dn-symmetric dome

Here we consider a lattice dome truss structure with the dihedral symmetry group
Dn, shown in Fig. 1. (Recall that the dihedral group Dn is the symmetry group of an
n-sided regular polygon for n > 2.)

The truss in Fig. 1 corresponds to the case n = 6 (and was studied in Ohsaki 2000),
but it is clear that the example may be generalized to all integer values of n ≥ 6. The
free nodes of the truss structure are denoted by filled circles in the figure, and the
remaining nodes are fixed. In the general case there will be 4n bars, n fixed nodes
and n + 1 free nodes. Each of the free nodes possesses 3 translational degrees of
freedom, giving in total of 3(n + 1) degrees of freedom for the system.

The symmetry group Dn of the truss consists of n elements corresponding to ro-
tations of the polygon, and n more corresponding to reflections. Therefore we may
represent the dihedral group in the following way
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Fig. 1 Top and side views of a spherical lattice dome with D6 symmetry. The black nodes are free and
the white nodes fixed

Dn :=
{

r

(
2π

n
k

)

, sr

(
2π

n
k

)

: k = 0,1, . . . , n − 1

}

,

where r(α) stands for counter-clockwise rotation around the z-axis at an angle α, i.e.

r(α) =
⎛

⎝
cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎞

⎠ ,
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Table 1 Comparison of the
sizes of the SDP problem before
(i.e. (TOP)) and after (i.e. (13))
symmetry reduction, for the
dome example (for even n)

# Scalar
variables

p.s.d. matrix variable sizes

(TOP) 4n 3(n + 1) × 3(n + 1)

(13) 3 1 × 1,2 × 2,4 × 4,3 × 3 (n/2 − 1 times)

and s for the reflections with respect to the xz-plane, i.e.

s =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ .

We proceed to derive the linear orthogonal representation of G = Dn as described
in Lemma 9. For continuity of presentation, we only state results here; the details we
require on different representations of Dn may be found in Appendix.

Our first representation of Dn is via the rotation/reflection matrices: for α = 2π/n,
set

ri :=
{

r((i − 1)α) : i = 1, . . . , n

sr((i − (n + 1))α) : i = n + 1, . . . ,2n.
(14)

This is the representation ρ1 as defined in (15) in Appendix.
Let pi (i = 1, . . . ,2n) be the permutation matrices that correspond to the permu-

tations πi ∈ Dn. Thus the representation of Dn described in Lemma 9 is given by
Pi = pi ⊗ ri (i = 1, . . . ,2n).

The size the SDP problem (13), is determined by the number of orbits of bars
under the action of Dn, and the block sizes of the completely reduced representation
of the commutant. The number of orbits equals 3 for the example (independent of
n). In particular, the set of bars is tri-partitioned into 3 orbits as follows: those bars
connected to a fixed node, those bars connected to the central (hub) node, and the
remaining bars (as is clear from Fig. 1).

Moreover, we show in Lemma 12 in Appendix that the block sizes of the commu-
tant are as follows:

1. If n is odd: 1 (one block), 4 (one block) and 3 for the remaining (n − 1)/2 blocks;
2. If n is even: 1 (two blocks), 2 (one block), 4 (one block), and 3 for the remaining

n/2 − 1 blocks.

Finally, we compare the sizes of the original problem (TOP) and the reduced prob-
lem (13) in Table 1 for even values of n.

Note that the biggest gain is in replacing on p.s.d. matrix variable of order 3(n+1)

by n/2 + 2 matrix variables of order at most four. This type of block structure can be
exploited very well by interior point methods.

Moreover, the number of nonnegative variables was reduced from 4n to only 3.
From a computational viewpoint, problem (13) can easily be solved for n = 1000,
whereas problem (TOP) would be of a size that is very challenging for the present
state-of-the-art in interior point method software for semidefinite programming.
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8 Conclusion and discussion

We have shown how the semidefinite programming (SDP) formulation of a specific
truss topology design problem may be reduced in size by exploiting symmetry con-
ditions. The size reduction has two components: ‘variable linking’ to eliminate vari-
ables and block diagonalization of the SDP data matrices. The former is commonly
used in practice in a heuristic way, but the block diagonalization technique is a rela-
tively recent development. The approach we used to reformulate the (SDP) is due to
Schrijver (1979, 2005) and described in Gatermann and Parrilo (2004).

An alternative approach for exploiting algebraic symmetry in SDP’s was intro-
duced in de Klerk et al. (2007), which uses the so called regular ∗-representation of
the commutant as opposed to its completely reduced representation. The advantage
is that the regular ∗-representation can be readily obtained (this is not the case for the
irreducible representation). The disadvantage is that it gives less reduction in general
than the irreducible representation. Indeed, for the dome example presented in this
paper the regular ∗-representation does not give any reduction in problem size.
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Appendix: Representations and characters of the dihedral group

A complete description of irreducible C-representations of the dihedral group Dn can
be found in Serre (1977, Sect. 5.3).

In Murota and Ikeda (1991), Dn-invariant decompositions of certain Dn-invariant
systems of nonlinear equations arising in bifurcation analysis were studied.

Here we need to adapt the description in Serre (1977, Sect. 5.3) slightly to our case.
We are helped by the fact that all the C-representations of Dn are in fact equivalent
to R-representations. The order of Dn is 2n, and it is generated by the rotation r

through the angle 2π/n and any reflection s (i.e. a linear transformation of order 2
fixing a hyperplane (in this case, a line) through the origin) that preserves the regular
n-gon rotated by r . So we know that rn = s2 = (sr)2 = 1. Note that it follows that
(srk)2 = 1 for all k. Each element of Dn can be uniquely written either in the form
rk , or in the form srk , for 0 ≤ k ≤ n − 1.

The irreducible representations of Dn The 2-dimensional irreducible R-representa-
tion ρh of Dn is given by

ρh(rk) =
(

cos 2πhk
n

sin 2πhk
n

− sin 2πhk
n

cos 2πhk
n

)

, ρh(s) =
(

1 0
0 −1

)

,

ρh(srk) = ρh(s)ρh(rk).

(15)
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It is straightforward to compute its character

χh(r
k) = 2 cos 2πhk/n, χh(sr

k) = 0.

It obviously depends upon h mod n, not h ∈ Z. Moreover, as χh = χn−h, we have
that ρh is equivalent to ρn−h. Moreover, when h = 0 or n = 2h the representation ρh

is reducible. So we can take 1 ≤ h ≤ �n/2� to parameterize the representations ρh

uniquely.
The number of 1-dimensional irreducible R-representation ρh of Dn is four, when

n is even, and two, when n is odd. In both cases Dn has two representations (and the
characters, as in the 1-dimensional case it is the same thing) ψ1 (the trivial represen-
tation), and ψ2 given by

ψ1(r
k) = ψ1(sr

k) = 1, ψ2(r
k) = −ψ2(sr

k) = 1, 0 ≤ k ≤ n − 1.

In the case n even Dn has two more 1-dimensional representations, ψ3 and ψ4 given
by

ψ3(r
k) = ψ3(sr

k) = (−1)k, ψ4(r
k) = −ψ4(sr

k) = (−1)k, 0 ≤ k ≤ n − 1.

The natural permutation representation θ of Dn We need to determine the decom-
position of the character χθ of the permutation representation θ of Dn acting on the
n-gon into the irreducibles ψi and ρh just described. It turns out that they can occur
at most once—one says that θ is multiplicity-free. Indeed, θ satisfies the well-known
sufficient condition for multiplicity-freeness, cf. e.g. Bannai and Ito (1984), that its
2-orbits, i.e. the orbits on pairs of elements of {1, . . . , n}, are symmetric. The lat-
ter means that for any i, j ∈ {1, . . . , n} there exists g ∈ Dn such that g(i) = j , and
g(j) = i. However, not all of ψi and ρh will occur—there are simply too many of
them. In order to determine the decomposition, we compute χθ . After this, we can
use Theorem 6 to see which irreducibles occur in χθ . (Even without computing, we
know that ψ1, the trivial character, will occur in χθ , as θ is a permutation representa-
tion, so all the group elements fix the sum of coordinates, an invariant 1-dimensional
subspace.)

As χθ is the character of a permutation representation, χθ (g) is simply the number
of fixed points of g, when it is considered as a permutation. So in particular χθ (r

k) =
0 for all 1 ≤ k < n, and χθ (r

n) = n. The case χθ (sr
k) needs to be treated separately

for n odd, resp. n even. In the former case χθ (sr
k) = 1.

In the latter case χθ (sr
k) depends upon the parity of k. The elements of the form

srk are split into two different conjugacy classes, each of size n/2; the elements of
first (resp. second) class fix two opposite vertices (resp. edges) of the n-gon, so they
have 2 (resp. 0) fixed vertices. So we have χθ (sr

2k) = 2 and χθ (sr
2k+1) = 0 for

0 ≤ k ≤ n/2 − 1. To summarize:

χθ (1) = n, χθ (r
m) = 0, 1 ≤ m ≤ n − 1, n ∈ Z+

χθ (sr
k) = 1, 0 ≤ k ≤ n − 1, n ∈ Z+ − 2Z,

χθ (sr
k) = 1 + (−1)k, 0 ≤ k ≤ n − 1, n ∈ 2Z+.
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We have 〈χθ | ψ2〉 = 0, and Theorem 6 implies that ψ2 does not occur in θ . Thus
for n odd we obtain

χθ = ψ1 +
(n−1)/2∑

h=1

χh, n ∈ Z+ − 2Z. (16)

For n even we compute 〈χθ | ψ3〉 = 1, and obtain

χθ = ψ1 + ψ3 +
n/2−1∑

h=1

χh, n ∈ 2Z+. (17)

9.1 The representation of Dn used in the dome truss example

Here, we construct the representation P of G = Dn as

P = (ψ1 ⊕ θ) ⊗ (ψ1 ⊕ ρ1), (18)

where, as before, ψ1 denotes the trivial 1-dimensional representation, θ the natural
permutation representation, and ρ1 is as in (15). Note that the representation ψ1 ⊕ρ1

is equivalent to the one described in (14) for α = 2π/n.
In order to analyze the block structure of the commutant, as described in Theo-

rem 14, we should find a decomposition of P into irreducibles. It suffices to compute
the decomposition of the character χP into irreducible characters using (3). Thus,
expanding the tensor product, we obtain

P = ψ1 ⊕ θ ⊕ ρ1 ⊕
⊕

h

(ρh ⊗ ρ1) ⊕ ρ1 ⊕ (ψ3 ⊗ ρ1).

The ⊕-summation index h ranges as in (16) for n odd, resp. as in (17) for n even,
using t := n. The last term in this decomposition is 0 when t is odd. Otherwise,
computing the character,

(χ1 ⊗ ψ3)(r
k) = 2(−1)k cos

2πk

n
= 2 cos

(

πk − 2πk

n

)

= χn
2 −1(r

k),

we obtain ψ3 ⊗ ρ1 = ρ
n
2 −1. Similarly one computes

(χ1 ⊗ χh)(r
k) = 4 cos

2πk

n
cos

2πhk

n
= 2 cos

2π(h + 1)k

n
+ 2 cos

2π(h − 1)k

n

= (χh+1 + χh−1)(r
k),

deriving ρh⊗ρ1 = ρh+1 ⊕ρh−1 as long as χh+1 are χh−1 are defined and irreducible.
When h = 1 we further decompose ρh−1 = ψ1 ⊕ψ2. When n is even and h = n/2−1
we further decompose ρn/2 = ψ3 ⊕ ψ4, and when n is odd and h = (n − 1)/2 we get
ρh+1 = ρn−h−1 = ρ(n−1)/2.

To summarize, we have the following proposition.
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Lemma 12 Consider the representation P of Dn, given by (18).
For n odd, one has:

P = 3ψ1 ⊕ ψ2 ⊕ ρ1 ⊕ 3
(n−1)/2⊕

h=1

ρh.

The block sizes of the commutant are thus 1 (for ψ2), 4 (for ρ1) and 3 for the re-
maining (n − 1)/2 irreducibles. Respectively, the dimension of the commutant is
1 + 42 + 32(n − 1)/2.

For n even, one has:

P = 3ψ1 ⊕ ψ2 ⊕ 2ψ3 + ψ4 ⊕ ρ1 ⊕ 3
n/2−1⊕

h=1

ρh.

The block sizes of the commutant are thus 1 (for ψ2 and ψ4), 2 (for ψ3), 4 (for
ρ1), and 3 for the remaining n/2 − 1 irreducibles. Respectively, the dimension of the
commutant is 2 + 22 + 42 + 32(n/2 − 1).
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