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Abstract
Macroeconomic researchers use a variety of estimators to parameterise their models 
empirically. One such is FIML; another is indirect inference (II). One form of indi-
rect inference is ‘informal’ whereby data features are ‘targeted’ by the model — i.e. 
parameters are chosen so that model-simulated features replicate the data features 
closely. Monte Carlo experiments show that in the small samples prevalent in macro 
data, both FIML informal II produce high bias, while formal II, in which the joint 
probability of the data- generated auxiliary model is maximised under the model 
simulated distribution, produces low bias. They also show that FII gets this low bias 
from its high power in rejecting misspecified models, which comes in turn from the 
fact that this distribution is restricted by the model-specified parameters, so sharply 
distinguishing it from rival misspecified models.

Keyword Moments · Indirect inference
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1 Introduction

Macroeconomists are naturally interested in estimating DSGE models on the avail-
able data without involving the use of Bayesian priors that are uncertain and so 
would possibly bias their results. Unbiased estimates of these models’ parameters 
is important both to guide our knowledge of macroeconomic channels of causation 
and for good policy analysis. In this paper we consider the ability of two widely 
used empirical estimators to generate estimates with low bias in the small samples 
usually available in macroeconomics: FIML and indirect inference. With indirect 
inference we distinguish two methods of proceeding: one we term Informal Indi-
rect Inference (III) in which model parameters are chosen to ‘target’ (i.e. replicate 
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in simulation) a set of data features, usually moments: the estimated parameters are 
those whose simulated moments get closest on average to the targeted data moments. 
The other we term Formal Indirect Inference (FII) in which an auxiliary model, such 
as moments or a VAR, is chosen to describe the data and the DSGE model is simu-
lated to match this auxiliary model: the estimated parameters are those for which the 
simulated auxiliary model has the the highest probability of generating the auxiliary 
model found in the data. In what follows we consider the small sample bias in esti-
mation of all these methods revealed by Monte Carlo experiment. To anticipate, we 
find that the III targeting procedure produces high bias, whereas FII has low bias 
and should therefore be used in preference. Also, building on earlier work that has 
shown by Monte Carlo experiment the high and well-known small sample bias com-
ing from the FIML estimator, as against the low-bias FII estimator, we ask what it 
is about these two procedures that produces this relative bias outcome; we find that 
this is essentially derived from FII’s high power in rejecting misspecified models. 
The overall conclusion of this paper is that researchers should estimate their DSGE 
models by formal Indirect Inference (FII), eschewing both FIML and the III target-
ing method of indirect inference.

2  Should We Target Data Features in Estimating DSGE Model

A popular way to calibrate dynamic stochastic general equilibrium (DSGE) models 
is to calibrate them with parameter values chosen to ‘target’ (i.e. exactly replicate) a 
set of moments. The model is then asked how well it can match some other moments 
when simulated; this match is informally carried out, in the hope that the simulated 
and data moments are ‘similar’. An early example of this method is Chari et  al. 
(2002); two recent examples are Baslandze (2022), and Khan and Thomas (2013).

Chari et al. (2002) choose a set of parameters for a sticky-price benchmark model 
that approximately fits about a dozen moments; they then test the model against a 
real exchange rate-cross-country-consumption correlation, showing that it badly 
fails to replicate the absence of this correlation in the data. They interpret this result 
as showing that a New Keynesian model of the US is unable to fit key open econ-
omy data.

Baslandze (2022) sets out a model of innovation by firms, both regular and 
spinouts. She derives the steady state growth equilibrium for the model outcomes. 
The moments of these when simulated with heterogeneous firm shocks are com-
pared with the data moments; a subset of the model parameters is chosen to mini-
mise the distance between a weighted average of several moments, mostly with unit 
weights but one with a double weight. Various relationships in the data are then 
compared with those implied by the model and found to be similar — e.g. the share 
of spinouts in states with different non-compete laws.

Khan and Thomas (2013) set out a DSGE model of an economy with credit 
constraints. They calibrate the parameters to match moments of aggregate and 
firm-level data. Later they compare its simulated aggregate business cycle 
moments with US data moments, suggesting it is broadly similar.
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This methodology — which we call ‘informal indirect inference’, III — is pre-
sented as a way of finding a model version sufficiently ‘close to’ the data that it 
can be treated as the true model. We evaluate this methodology via Monte Carlo 
(MC) experiments. What we find is that it leads to highly biased ‘estimates’ of 
the model parameters in small samples. By contrast we know from previous MC 
experiments that formal indirect inference (FII) using moments as the auxiliary 
model produce estimates with very low bias.

Under FII a set of around 9 moments are chosen from among those available, 
this number being sufficient to generate high, but not excessively high, power 
against parameter inaccuracy. The joint distribution of the model-simulated 
moments is then calculated. Which particular moments are chosen makes little 
difference; the key to ‘goldilocks’ power lies in the number used. This is because 
all the moments are nonlinear functions of the structural parameters; hence any 
set of the data-based moments as a group will in all cases only have a high prob-
ability of occurring in the model-simulated joint distribution if the model is the 
true one. The estimated parameters are those that maximise this probability.

By contrast under III, the joint distribution of the model-simulated moments is 
not calculated, and so neither is the joint probability of the data-based moments. 
Hence in general the parameter set chosen does not maximise this probability. 
It might be thought that in practice it would come close; asymptotically, i.e. in 
large samples, it would be the same. However, in small samples there is no reason 
to believe that the set of parameters which generates mean simulated behaviour 
closest to the mean of the data moments will also have the highest joint probabil-
ity of generating these data moments. The two matching criteria are entirely dif-
ferent. Nor does using the same number of moments make them the same. Only 
one of them, FII, chooses the most likely set of parameters, conditional on the 
data moments. We confirm this in our Monte Carlo experiments below.

2.1  Indirect Inference on a DSGE Model

DSGE models (possibly after linearization) have the general form:

where yt contains the endogenous variables and zt the exogenous variables. The 
exogenous variables may be observable or unobservable. For example, they may 
be structural disturbances. We assume that zt may be represented by an autoregres-
sive process with disturbances �t that are NID(0,Σ) . Assuming that the conditions 
of Fernandez-Villaverde et al. (2007) are satisfied, the solution to this model can be 
represented by a VAR of form

(1)
A0Etyt+1 =A1yt + Bzt

zt =Rzt−1 + �t

(2)
[

yt
zt

]

= F

[

yt−1
zt−1

]

+ G

[

�t
�t

]

.
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where �t are innovations.
A special case of the DSGE model is where all of the exogenous variables are 

unobservable and may be regarded as structural shocks. An example is the Smets 
and Wouters (2007) US model to be examined below. This case, and its solution, can 
be represented as above for the complete DSGE model.

2.1.1  FII Estimation

The FII criterion is based on the difference between features of the auxiliary model 
(such as coefficients estimates, impulse response functions, moments or scores) 
obtained using data simulated from an estimated (or calibrated) DSGE model and 
those obtained using actual data; these differences are then represented by a Wald 
statistic; we call it the IIW (Indirect Inference Wald) statistic. The specification of 
the auxiliary model reflects the choice of descriptor variables.

If the DSGE model is correct (the null hypothesis) then, whatever the descriptors 
chosen, the features of the auxiliary model on which the test is based will not be 
significantly different whether based on simulated or actual data. The simulated data 
from the DSGE model are obtained by bootstrapping the model using the structural 
shocks implied by the given (or previously estimated) model and computed from the 
historical data. We estimate the auxiliary model, using both the actual data and the 
N samples of bootstrapped data to obtain estimates aT and aS(�0) of the vector � . We 
then use a Wald statistic (WS) based on the difference between aT , the estimates of 
the data descriptors derived from actual data, and aS(�0) , the mean of their distribu-
tion based on the simulated data, which is given by:

where �0 is the vector of parameters of the DSGE model on the null hypothesis 
that it is true and W(�0) is the weighting matrix. Following Guerron-Quintana et al. 
(2017) and Le et al. (2011, 2016), W(�0) can be obtained from the variance-covari-
ance matrix of the distribution of simulated estimates aS

where as =
1

N
ΣN
s=1

as . WS is asymptotically a �2(r) distribution, with the number of 
restrictions, r, equal to the number of elements in aT . An account of the detailed 
steps of involved in finding the Wald statistic can be found in Le et al. (2016) and 
Minford et al. (2016).

Estimation based on indirect inference focuses on extracting estimates of the 
structural parameters from estimates of the coefficients of the auxiliary model 
by choosing parameter values that minimise the distance between estimates of 
the auxiliary model based on simulated and actual data. A scalar measure of the 
distance may be obtained using a Wald statistic. This can be minimised using 
any suitable algorithm. The FII estimation may be expressed as

WS = (aT − aS(�0))
�W−1(�0)(aT − aS(�0))

(3)W(�0) =
1

N
ΣN
s=1

(as − as)
�(as − as)
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Under the null hypothesis of full encompassing and some regularity conditions, 
Dridi et al. (2007) show the asymptotic normality of II estimator �̂,

with

W(�0) is the weighting matrix, which can obtained from bootstrap samples as in Eq. 
(3).

2.1.2  The Auxiliary Models

Le et  al. (2017) show that the particular DSGE models we are examining are 
over-identified, so that the addition of more VAR coefficients (e.g. by raising 
the order of the VAR) increases the power of the test, because more nonlinear 
combinations of the DSGE structural coefficients need to be matched. Le et al. 
(2016) note that increasing the power in this way also reduces the chances of 
finding a tractable model that would pass the test, so that there is a trade-off for 
users between power and tractability. Le et  al. (2016) and others (for example 
Minford et al. 2018; Meenagh et al. 2019; Meenagh et al. 2022) suggest the use 
of a three variable VAR (1) as auxiliary model. In this case, there are 9 VAR 
coefficients to match in the Wald statistics. Minford et al. (2016) also consider 
the Impulse Response Functions and simulated moments, which all have 9 ele-
ments to match in the Wald statistics, as the auxiliary model, and show that the 
power of the II tests when using the different auxiliary models are similar. Con-
sidering the covariance matrix and using its lower triangular elements, there are 
3(3+1)/2=6 elements to compare in a three variable case.

In the Monte Carlo experiments below, we consider estimation with three dif-
ferent auxiliary models: 1) II using 9 VAR coefficients from a VAR(1); 2) II 
using 9 moments, consisting of 6 covariance elements and 3 first order autocor-
relation; 3) II using the average of 6 moments, only including 6 covariance ele-
ments as a single auxiliary model of ‘targeted moments’ — where the remaining 
moments are left for informal checking. 4) II using the average of 9 moments as 
a single auxiliary model of targeted moments, where all moments are thus used 
for estimation. The first two of these carry out formal II estimation, while the 
last two are considered as informal II estimation.

(4)�̂� = argmin WS(𝜃)

(5)
√

T(�̂ − �0) ∽ N(0,Ξ(N,W)

(6)Ξ(N,W) =

{

��(a)

�(�0)
W(�0)

−1 �
�(a)

�(�0)

}−1

.
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2.1.3  Monte Carlo Experiments

We now perform some experiments comparing the formal and informal II 
estimation in small samples. The sample size is chosen as 200, which is typi-
cal for macro data. We take the Smets-Wouters (2007) model, with their esti-
mated parameters to be the true model and generate 1000 samples of data from 
it. These are treated as the observed data in the II estimation. We design Monte 
Carlo simulation following the same approach as Le et al. (2016), Meenagh et al. 
(2019, 2022).

The true parameter values are from Smets and Wouters (2007), Table  4. In 
estimation, we start the initial parameter values by falsifying them by 10% in both 
directions ( +∕− alternately). We then estimate each sample and report the abso-
lute bias and standard deviation of the II estimators. The results are reported in 
the Table 1, where y: real GDP, pi : inflation rate, r : real interest rate.

We find that the FII estimator has a very small bias. The average absolute 
biases of the FII estimator based on using VAR coefficients and the 9 moments as 
auxiliary models are 2.26% and 3.02% respectively.

Table 1  Bias of II estimates by using different data descriptors

The true parameter values are from Smets and Wouters (2007) Table 4. Three variables used in VAR are 
(y, pi, r), Le et al. (2016). Bias denotes the bias of II estimates. Std dev denotes the standard deviation

Formal II Estimation Informal II Estimation

9 VAR coef-
ficients jointly as 
auxiliary model

9 Moments jointly 
as auxiliary 
model

Average of 6 
Moments as 
single auxiliary 
model

Average of 9 
Moments as 
single auxiliary 
model

Parameter True Values Bias% Std dev Bias% Std dev Bias% Std dev Bias% Bias%

� 0.19 0.64 0.020 0.74 0.021 6.53 0.018 3.05 0.017
h 0.71 5.02 0.065 7.22 0.069 9.09 0.049 5.54 0.055
�p 0.22 0.90 0.023 2.64 0.026 6.17 0.021 8.16 0.021
�w 0.59 1.38 0.060 1.92 0.068 10.17 0.058 6.8 0.054
�p 0.65 4.16 0.068 2.70 0.074 8.78 0.063 7.42 0.059
�w 0.73 1.42 0.075 0.34 0.083 4.50 0.073 7.64 0.066
� 5.48 1.86 0.557 2.72 0.608 7.20 0.524 8.48 0.486
Φ 1.61 0.32 0.166 3.06 0.182 3.92 0.140 4.28 0.146
� 0.54 0.00 0.057 1.14 0.062 6.80 0.051 7.76 0.050
rΔy 0.22 2.10 0.023 2.18 0.024 5.63 0.020 2.76 0.019
� 0.81 5.60 0.047 9.90 0.060 3.60 0.058 7.82 0.048
r� 2.03 2.24 0.188  3.72 0.204 5.76 0.188 6.40 0.163
ry 0.08 2.50 0.009 2.76 0.009 6.08 0.008 5.92 0.007
�c 1.39 4.58 0.137 1.90 0.155 10.58 0.132 4.90 0.124
�l 1.92 1.08 0.208 2.48 0.211 6.53 0.191 2.36 0.169
Average 2.26 0.113 3.02 0.124 6.75 0.106 6.08 0.099



251

1 3

Indirect Inference and Small Sample Bias — Some Recent Results  

In carrying out the III estimator, we first target only 6 moments, leaving 3 to 
be checked informally after estimation. We then extend the number of targeted 
moments to the full 9. The average bias of the III estimator, based on 6 moments as 
the auxiliary model, is twice to three times as large at 6.75% ; nor is it much reduced 
if more moments are used, as illustrated here with 9 moments, where the bias is 
6.08% . The informal II estimator thus has a much higher bias than the two formal II 
estimators. The standard deviations of the four estimators are roughly the same.

The three variables we choose follow Le et al. (2016). To check if our results are 
stable across different variables, we redo the Monte Carlo experiment by using three 
principal components of the 7 endogenous variables in Smets and Wouters (2007)’s 
model. The results, available on request, are similar.

2.2  Summary of Finding

A common practice in estimating parameters in DSGE models is to find a set that, 
when simulated, gets close to an average of certain data moments; the model’s simu-
lated performance for other moments is then compared to the data for these as an 
informal test of the model. We call this procedure informal Indirect Inference, III. 
By contrast what we call Formal Indirect Inference, FII, chooses a set of moments 
as the auxiliary model and computes the Wald statistic for the joint distribution of 
these moments according to the structural DSGE model; it tests the model accord-
ing to the probability of obtaining the data moments. The FII estimator then chooses 
structural parameters that maximise this probability, hence are the most likely con-
ditional on the data moments. We show via Monte Carlo experiments that the FII 
estimator has low bias in small samples, whereas the III estimator has much higher 
bias. It follows that models estimated by III will frequently be substantially different 
from the true model and hence rejected by formal indirect inference tests.

3  How Should We Account For the Low Bias of the Formal Indirect 
Inference Estimator

We have found so far that in carrying out indirect inference, the appropriate pro-
cedure is the one we have described above and termed Formal Indirect Inference. 
Previous work - Le et  al. (2016) and Meenagh et  al. (2022) -has shown also that 
FIML estimation (ML for short) produces high small sample bias compared with 
FII, which is, by contrast, as we have seen, almost unbiased- clearly a very useful 
property for those using DSGE models in practice. In this final section of our paper 
we investigate the reason for this difference in bias between FII and ML. We suggest 
that it comes from the high relative power of FII in rejecting misspecified models.

In two recent surveys of indirect inference estimation Le et al. (2016) and Meenagh 
et al. (2019) have found by Monte Carlo experiment that in small samples the formal indi-
rect inference (FII) test has much greater power than direct inference in its most widely 
used form of maximum likelihood (ML). So much so that in practice the power of the 
FII procedure needs to be limited by reducing the size of the auxiliary model in order 
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to ensure finding a tractable model that can pass the test threshold. These surveys also 
found that in small sample estimation FII produced much lower bias than ML. Meenagh 
et al. (2019) noted (p.606): ‘This property (of low small sample bias) comes from the high 
power of the test in rejecting false parameter values.’ In this section we attempt to quantify 
this small sample relationship between power and bias under ML and FII.

Let us first recap each procedure. In ML the structural model is taken to the 
data and the estimation searches over its parameters, including those of the ARMA 
error processes, to minimise the sum of squared reduced form residuals.The joint 
likelihood of the data, conditional on the model, is maximised when this sum is 
minimised.

The FII method is set out in the previous section. Suppose we examine the VAR 
parameters, we can think of the structural model we are estimating as implying a 
joint normal distribution of these reduced form parameters, which we illustrate for 
two parameters as follows:

We can generate this Likelihood distribution of the two parameters, �1.�2 , by 
bootstrapping the structural model with its shocks and estimating a VAR on each 
bootstrap. The cumulative probability of these two parameters’ squared devia-
tion from the model’s mean prediction (the peak likelihood point) weighted by the 
inverse of their variance-covariance matrix, V, is represented by a chi-squared distri-
bution where k, the degrees of freedom, is given by the number of VAR parameters. 
If the two parameters have a low correlation, then each is weighted by 1/its variance. 
The weight on �1 falls relative to the other’s with a rising covariance/its variance.

On Fig.  1  above one can see the likelihood distribution of the different data-
estimated reduced form coefficients, �1.�2 , according to the model parameters — 
the top frame showing one with zero correlation between the two � s, the bottom 
frame one with a high positive correlation. In FII the parameters of the model are 
searched over to find those that have the highest likelihood, given the data-estimated 

Fig. 1  Bivariate normal distribution with correlation of 0 and 0.9. Two possible data points shown: 
x=0.1, 0.9 and y=0.0
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coefficients shown by the red or blue dots; the parameters whose peak likelihood 
gets closest to the data dots will be the FII estimates. In ML the red or blue dots 
of the data are directly taken as the ML reduced form coefficients; and the model 
structural parameters are reverse-engineered to produce the ones closest to them.

Thus take a model y = f (�;�) which has a reduced form y = v(�;�) . Assume it is 
identified so that there is a unique v corresponding to a particular f; thus given v we 
can discover f and vice versa. Suppose now on a sample y0 we obtain an estimate 
v̂(y0). In FII we compute the likelihood of v̂(y0) conditional on the model and the 
data, thus L[̂v(y0) ∣ y0, f (�;�)] ; we then search over � to find the maximum likeli-
hood; this is the FII estimate. If unbiased, it will on average be the f corresponding 
to v. In general we find low bias in FII. In terms of our diagram v̂ is the blue or red 
dot and the joint distribution of the estimated model will be close to being centred 
around it. Now ML in principle does the same, choosing the ML values of � that 
generate v̂ as their solution of y0 = f (�;�).

It would seem therefore that the two estimates of the structural parameters should 
be the same. Indeed, it has been shown (e.g. by Gourieroux et al. 1993) that this is 
the case asymptotically, i.e. for very large samples. Both estimators are consistent in 
large samples, implying no bias.

However, in small samples — such as are typical in macroeconomics — they 
are not typically the same and we find bias in both according to our Monte Carlo 
experiments.

The question we wish to answer here is why the two estimates differ in small 
samples and the quantitative contribution of the causes.

Le et  al. (2016) showed that the power of the FII and the ML-based LR tests 
of the model f (�;�) differed; specifically FII was substantially more powerful. This 
occurred when the FII test used as the distribution of v implied by f (�;�) the model-
restricted distribution. If on the other hand it used the distribution of v from the 
reduced form data-implied distribution, then the power of FII was reduced to equal-
ity with that of LR. Thus the power of the FII test was considerably greater than that 
of the ML-based LR test — the reason being that the FII test used the distribution of 
v as restricted by the model under test, whereas the LR test used the reduced form 
v distribution from the data. In Fig. 2 we show a stylised illustration of this point: 
the figure shows the situation for the likelihood distribution of v̂(�),the vector of 
auxiliary model features (ordered according to their Wald value under the model, 
with parameter vector � , indicated), under the restricted and unrestricted cases. To 
the left we see the distribution under the true model, with �TRUE ; to the right we 
see the distribution under the false model, �FALSE . In the top panel this is given by 
the unrestricted distribution taken from the data, which is the same as the left hand 
distribution. In the bottom panel, it is given by the distribution generated by the false 
parameter model in conjunction with the errors implied by the model and the data. 
It can be seen that this latter distribution lies more narrowly around the central false 
average due to the inward pull of the false parameters on the simulations.

Table 2 shows the relative power of the FII and ML tests on a 3 variable VAR 
(1) and is replicated from Le et al. (2016) Table 1, where the Direct Inference col-
umn shows the results based on the LR test. What we see in this Table is that as 
the degree of mis-specification (the average Falsity of the model parameters) rises 
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from 0 (True) through 1% to 20%, the rejection rate rises far more rapidly under 
Indirect Inference (FII) than under Direct Inference (ML). Thus once it reaches 7%, 
the rejection rate is already 99% under FII, but has only reached 21.6% under ML. 
Under ML to reject 99% requires mis-specification to be as high as 20%.

We can now turn to the implications of this greater power in FII testing for the 
bias that arises in estimation by FII and ML on small samples. The bias we estimate 
in our Monte Carlo (MC) experiments is defined as B = E(�̂) − � , where the 

Fig. 2  Comparison of rejection rates of unrestricted and restricted distributions of v̂(�
FALSE

)
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expectation is across all the MC pseudo-samples from the true model. We can 
express this definition in terms of all the possible sets of � arranged in order of fal-
sity, thus B =

∑

i=%F

(�i − �)Pi where each �i is the set of parameters of i% falseness 

and Pi is the frequency with which these are estimated in the MC samples. We can 
think of estimation by FII or ML as a process related to rejecting model parameters 
that fail each test respectively; if a false parameter set is rejected, it cannot become 
an estimate, and if not rejected for a sample, it can go on to become an estimate for 
that sample. We also need to know the probability for either FII or ML that, condi-
tional on not being rejected, a parameter set � will then be chosen as an estimate. 
Call these probabilities in turn P1 for the probability of non-rejection, and P2 for the 
probability of selection conditional on non-rejection. The MC experiments give us 
directly Pi1 as one minus the rejection rate for �i , while we can obtain Pi from our 
MC results directly as the proportion of estimates that are False to each extent. Then 
we derive Pi2 from Pi = Pi1 × Pi2 . To gauge Pi2 we argue as follows: a � parameter 
set that has not been rejected will still not be selected as an estimate if there is an 
unrejected � of lesser falseness available instead that dominates it in the competition 
to become an estimate.

Table 3 shows the small sample bias of the two estimators in the Monte Carlo 
experiment, replicated from Table 3 from Le et al. (2016), clearly showing the big 
reduction in the bias under FII versus ML.

We show next the predicted two probabilities and biases for FII and ML in 
Table 4. For this table we have repeated the bias analysis with a fresh set of 1000 
samples from the same model, yielding different absolute mean biases, as one would 
expect; in this set the ML bias is about the same, the FII bias rather smaller. What 
we see is that on average an unrejected � is 60% more likely to survive to being esti-
mated under FII as under ML [0.42/0.26]. We suggest this is because FII has a gen-
erally higher rejection rate than ML, so that an unrejected � faces less competition 
from other unrejected � , and so has a greater probability of surviving to estimation. 
Under ML the probability of survival is inversely correlated with the probability of 
non-rejection of the neighbouring � closer to the truth: we suggest this is because the 
higher the chances of their non-rejection, the greater is the competition from them 
— see the right frame of Fig. 3. What we see under FII is different — the left frame 
of Fig.  3. Survival chances of false � , if unrejected, are low at the two extremes 

Table 2  Rejection Rates for 
Wald and Likelihood Ratio for 3 
Variable VAR(1)

Percent Mis-
specified

Indirect Inference Direct Inference

True 5.0 5.0
1 19.8 6.3
3 52.1 8.8
5 87.3 13.1
7 99.4 21.6
10 100.0 53.4
15 100.0 99.3
20 100.0 99.7
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— both when close to true and when extremely false. Thus competition from better 
alternatives is greatest either close to the truth (when the truth is a serious rival), or 
very far from the truth (when the less absurdly false are serious rivals). This shift of 
survival probability to the extremes weakens the tendency for FII to reduce bias, by 
increasing the estimation chances of the middlingly false values which contribute 
most to the bias after taking account of rejection.

Summarising our findings, our Monte Carlo experiments have shown that the 
lower bias of FII compared to ML comes primarily from a much higher rejection 
rate of false coefficients. This advantage is to a modest extent offset by the higher 
probability under FII that unrejected false coefficients will survive to become esti-
mates. We interpret this in terms of the competition between unrejected coefficients: 

Table 4  Predicted probabilities and bias

* The entries for this row, for each of FII and ML, are in turn 
∑

i Pi1�i;[
∑

i Pi�i]∕[
∑

i Pi1�i and
∑

i Pi�i

� ∶ %False − FII � ∶ %False −ML

Pi1 Pi2 Pi Pi1 Pi2 Pi

1 0.80 0.09 0.07 1 0.94 0 0
2 0.64 0.81 0.52 2 0.92 0.02 0.020
3 0.48 0.61 0.29 3 0.91 0.08 0.060
4 0.31 0.27 0.08 4 0.89 0.02 0.016
5 0.13 0.13 0.02 5 0.87 0.02 0.018
6 0.07 0.07 0.01 6 0.82 0.05 0.042
7 0.01 0.00 0.00 7 0.78 0.16 0.122

8 − 9 0.62 0.54 0.332
10 0 0 10 0.47 0.43 0.200

11 − 14 0.40 0.58 0.230
15 0 0 15 0 0
20 0 0 20 0 0
Predicted Bias Predicted Bias

E(�̂) − � 5.9 0.42 2.46 E(�̂) − � 33 0.26 8.7

Fig. 3  Predicted probabilities and biases for II and ML
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this is greater under ML than FII because there are more unrejected coefficients 
to choose from at all levels of falseness. This competition also behaves differently 
across the range of falseness, increasing with falseness under ML as nonrejection 
falls, but intensifying under FII at both extremes, either close to truth or highly false.

3.1  Summary of Findings

In this part we have reflected on the reasons that Maximum Likelihood (ML) shows 
both lower power and higher bias in small samples than formal Indirect Inference 
(FII ), drawing on the earlier work of Le et al. (2016) and Meenagh et al. (2019), 
based on extensive Monte Carlo experiments. It emerges from this work that when 
ML is being used, the likelihood distribution of v̂ , the auxiliary parameter vector 
from the model under test, has a variance given by the unrestricted distribution of 
the errors whereas when FII is used it is given by the variance of their distribution 
as restricted by the � of the model being tested, which is much smaller. This is the 
source of the higher power of FII, as explained by Le et  al. (2016). This in turn 
implies that FII will have lower bias, because as sample data from the true model 
varies, false parameter values will be rejected much more frequently under FII ; this 
greater rejection frequency is partly offset by a lower tendency for ML to choose 
unrejected false parameters as estimates, due again to its lower power allowing 
greater competition from rival unrejected parameter sets. 

4  Conclusions

In practice macroeconomic researchers use a variety of estimators to parameterise 
their models empirically and get as close as possible to what the data implies is 
the true model. One such is FIML; another is a form of indirect inference we term 
‘informal’ under which data features are ‘targeted’ by the model — i.e. parameters 
are chosen so that model-simulated features replicate the data features closely. In 
this paper we show, based on Monte Carlo experiments, that in the small samples 
prevalent in macro data, both these methods produce high bias, while formal indi-
rect inference, in which the joint probability of the data-generated auxiliary model is 
maximised under the model simulated distribution, produces low bias. We also show 
that FII gets this low bias from its high power in rejecting misspecified models, 
which comes in turn from the fact that this distribution is restricted by the model-
specified parameters, so sharply distinguishing it from rival misspecified models.

We think our findings here have important practical implications for the estima-
tion of structural macroeconomic models on the limited, small sample, macro data 
typically available. To obtain estimates with low bias Formal Indirect Inference 
should be used, with its considerable power in rejecting misspecified models1.

1 Code for implementing FII on modern computers is available from https:// www. patri ckmin ford. net/ 
Indir ect/ index. html, which also contains a contact for advice to those using this code.

https://www.patrickminford.net/Indirect/index.html
https://www.patrickminford.net/Indirect/index.html
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